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ABSTRACT 

This thesis investigates the computational complexity of programs 

based on their running tine. A program consists of an arbitrary flow-

chart defined over some instruction set of assignments and test 

instructions, and computes a unique function. Each instruction set 

specifies an order code for a particular register machine, whose regis-

ters Al, A2, ... can contain arbitrary integers. Each instruction set 

includes the basic set I • 
0.  

assignments 
	

Aj:=Ak+1 	Aj:=Ak  

Aj:=Ak-1 	A.:=0 

tests 
	

A.=0 	Ae0. 

It is shown that programs defined over just I0  can be speeded up by 

an arbitrary linear factor. A formal demonstration of this result uses 

a new technique for verifying the correctness of equivalence preserving 

transformations. It is shown that this speed up property fails to hold 

if I
0 
 is augmented with the assignments 

Ai:=Aj+Ak 	Ai:=Aj-Ak. 

It is shown that the problem of determining whether or not a given 

function can be computed within a certain tine bound can be reduced to 

the problem of showing whether or not a different function can be 

computed in real tine. Finally, criteria are established for showing 

that, under certain conditions, a function is not real time computable. 
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CHAFFER ZERO 

INTRODUCuiON AND SUMMARY 

The present work is a contribution to model-theoretic compute--  

tional complexity. A rodel for the computational process is defined 

(in our case, register machine program) and studied with respect to 

some natural measure of complexity (in our case, the running tire). 

Such studies have intrinsic mathematical interest, but are also 

important in two practical respects: as an aid to the investigation 

of particular problems, and as a basis for the exploration of optimis-

ation procedures. We briefly discuss these areas. 

In the investigation of the complexity of particular problem, 

two distinct types of analysis are required; Knuth [25] calls them 

local (or type A) analysis, and global (or type B) analysis. In the 

local analysis, an algorithm for the solution of a problem is given, 

and its performance is analysed under various input assumptions, e.g. 

worst case analysis. The criteria by which the performance is judged 

may be storage requirements or, more usually, some measure of the 

running time based on certain natural operational units such as the 

number of additions and multiplications in arithmetic algorithms, or 

the number of comparisons in sorting algorithms. Such an analysis 

serves to put an upper bound to the complexity of the problem. Among 

many examples of this type of analysis, one may mention: Strassen's 

algorithm for matrix multiplication (Strassen aa), the Euclidean 

algorithm (Knuth D], Collins [11]), algorithms for the recognition 
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of context free languages (e.g. Younger [39]), and more recently, 

algorithms for the selection problem (Blum et al [0). 

On the other hand, global analysis attempts to put a lower bound 

on the complexity of the given problem. Such an analysis depends on 

the means admissible for a solution, and hence on some firmly established 

computational model to which the complexity of the problem can be 

related. Since this type of analysis is often sensitive to small changes 

in the model's technology, it is important that the model be both 

natural and flexible. For example, the complexity of polynomial evalu-

ation or matrix multiplication is naturally given in terms of a program 

model in which assigpments involving multiplication and addition can 

appear, but a different instruction set would be proper in the study 

of how long it takes to multiply two numbers (e.g. Cook and Anderaa [13]). 

A computational model based on programs over a variety of instruction 

sets appears to be both natural and flexible. By studying it, one hopes 

to develop general techniques for estimating lower complexity bounds. 

(Chapter 5 contains an example of such a technique). In contrast, it 

is felt that for many problems, computational models based on Turing 

machines fail to meet the criteria mentioned above. The language of 

Turing machines is not a particularly natural model of real programming 

languages, and the basic mode of operation is not easily augrented to 

correspond to real operational units. Furthermore, some of the Turing 

machine complexity measures, such as the number of tape reversals 

(Hartmanis DO) appear difficult to relate to actual programming 

situations. Of course, most models have features in common, and in 

the axiomatic development of computational complexity (e.g. Blum [7] 



McCreight CA), it is precisely these features that are brought to 

light. 

The second use of model-based complexity studies is in the 

investigation of efficiency increasing program transformations, which 

McCarthy [29] lists as one of the goals of a mathematical theory of 

computation. Here, the object is to describe translations which trans-

form programs into other equivalent programs, but at the same time 

increase some measure of the program's performance, possibly at the 

expense of another (e.g. Allen [2], Morrill 	Aho and Ullman [X], 

Hoperoft and Ullman [23]). It is an important problem to discover 

the nature of these trade-off relationships. (Chapter 3 contains an 

example of such a transformation). 

The present work contains an investigation of the computational 

complexity of programs based on their running tine. Each program 

consists of an arbitrary flowchart defined over some specified set of 

assignments and test instructions and computes a unique (partial 

number-theoretic) function. The instruction set is regarded as an 

order code for a particular machine. Thus the basic framework is 

the very natural one suggested by Scott D511  in which programs and 

machines are treated as distinct but closely related concepts, and 

the notion of computable function, rather than decidable set or enumera-

ble sequence is given prime importance. Each machine possesses the 

same basic hardware consisting of a denumerable number of registers 

each of which can contain an arbitrary integer, and is therefore 

called a register machine. 

The first comprehensive study of register machines was given by 

Shepherdson and Sturgis [A, and concentrated mainly on a particular 
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machine (the URM) which had an order code containing instructions 

for incrementing and decrementing a register, copying one register 

into another, initialising a register to zero, and testing for zero. 

(A precise description of this instruction set is given in Chapter 2). 

They showed that such programs could compute just the class of partial 

recursive functions. Minsky 	showed that with suitable coding of 

the input and output, only two registers were in fact needed. Cleave 

[g] studied tine-limited complexity classes of register machine 

programs, based on a somewhat less natural definition of running time 

than the one we use, relating them to the Grzegorzyk ag hierarchy 

of classes of recursive functions. Elgot and Robinson 0_43 introduced 
the idea of a stored program register machine, and the complexity of 

this model has recently been investigated by Hartmanis [19]. Fischer, 
Meyer and Rosenberg [XL [1f], studied an automata-theoretic version 
of register machines, concentrating on language recognition and 

sequence generation. Some of the results in the present work, parallel 

and extend the work in these Est two papers. Cobham [10] also studied 

sequence generation based on a register machine model. 

Meyer and Ritchie [X] studied register machine programs based on 
a more restrictive control mechanism than that given by an arbitrary 

flowchart (effectively, the Fortran DO-loop), and this work was extended 

by Constable and Borodin MI  who explored the relative efficiency of 
flowchart languages and DO-loop languages. 

The computational model which has been studied the most is the 

Turing machine model. This study, which was initiated by Yamada DO] 
and Hartmanis and Stearns [2l] now has a large literature (see the 
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bibliography of Ireland and Fischer [24]). 

We now summarize the main results presented in the thesis. 

Chapter 1 is of a rather different nature than the other 

chapters, and consists of a modified version of Bird [4] on the 

subject of compilers. 

A number of theorems in the present work are proved in the same 

manner; a translation is described which converts an arbitrary program 

or programs into another program with certain desirable properties. 

Usually, although not always, the translated program is equivalent 

to the original one, i.e. it computes the same function. In such a 

case, we call the translation a compiler. One major difficulty arises 

about the description of compilers: since we are proving theorems and 

not just writing software, it must somehow be proved that the compilers 

are correct, i.e. do produce equivalent object programs. In some 

simple cases, this is obvious from an informal description of the 

translation, and a formal demonstration of correctness would be 

unnecessarily pedantic. In other cases, the compilers may be quite 

complicated, and it is necessary to make use of some formalism for 

describing translations, and appeal to some general verification 

technique. This problem arises especially in Chapter 3, where compilers 

are defined which make heavy use of 'label logic' to control the 

flow of computation. 

Accordingly, Chapter 1 is devoted to establishing just such a 

formalism and verification technique. The main result, the compiler 

theorem, gives five conditions the conjunction of which is sufficient 



11 

to verify that a given translation is indeed a compiler. The 

mathematical background necessary to understand the details of 

the proof is given separately in Appendix A. The caviler theorem 

can be invoked to formally prove the correctness of all compilers 

described in the present work. 

Chapter 2 introduces, in more detail, the models to be studied. 

Some straightforward consequences of the definitions are proved, and 

three useful program transfbrmations (addition, composition, and 

inversion) are described. 

In Chapter 3, we prove a speed up theorem for programs defined 

over the original instruction set described by Shepherdson and Sturgis 

(i.e. URM programs). This theorem says that it is always possible to 

translate a given program into another equivalent one which runs twice 

as fast. By applying the translation a number of tines, it is there-

fore possible to speed up the running time of any program by an arbitrary 

linear factor. Speed up theorems of this sort are by no means new, 

but the author feels that their importance has been underestimated in 

the past. This is partly because the linear speed up theorem was 

first proved for Turing machines, and these machines only possess speed 

up of a very trivial sort, essentially reducing to: given a program Pi  

for a Turing machine Tl  (which uses an alphabet of k symbols), an 

equivalent program P2  for another Turing machine T2 (which uses 2k 

symbols) can be found. - In other words, the underlying hardware can be 

changed. More interesting is the question of whether an equivalent 

program P2  for the same machine T1  can be found; but for Turing 

machines this is not possible. 
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The proof of speed up for the Shepherdson and Sturgis instruction 

set is not trivial. Fischer, Meyer and Rosenberg [14] prove, in a 

different setting, a speed up theorem for a subset of these instructions. 

It is an interesting problem to explore the nature of the boundary 

between instruction sets that possess speed up, and those that do not. 

As a consequence of a general theorem in Chapter 5, it is proved that 

if the SS instruction set is augmented with instructions for adding and 

subtracting the contents of two registers, then the resulting set does 

not possess speed up. It is important to mention that the new set 

possesses exactly the sane input and output instructions as the original; 

were this not the case, the proof that speed up is impossible would be 

trivial. Using the same technique, it is possible to show that if the 

SS set is given the ability to address registers indirectly through index 

registers, then the resulting instruction set again does not possess 

speed up. This last result can also be proved by a straightforward 

diagonalisation argument, but such arguments are not used in this work. 

The main result of Chapter 4 shows that to a large extent the study 

of time-limited computations of register machine programs can be 

reduced to the study of real tine computations, i.e. where the running 

time is bounded by a linear function of the input. More precisely, 

we show that, under certain restrictions on t, the following two state-

ments are equivalent for an arbitrary function f: 

(i) f is computable within time t, 

(ii) Xx.f(max y [x t(y)]) is real time computable. 

The restriction on t is that it should be superhonest, and Chapter 4 
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also contains a discussion of this class of functions. 

In Chapter 5, we give a general technique for establishing 

lower bounds on the time for the computation of given functions. 

The results, which extend those of [11], can be used to show that 

there is a slowly increasing function which cannot be computed, no 

matter what instruction set is specified, in under ex steps for 

each input x, where e is some fixed positive real number. This 

enables us to prove that certain instruction sets cannot possess the 

speed up property., 
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CHAPTER ONE 

PROGRAMS, MACHINES, AND COMPILERS 

This chapter presents, under a fairly general definition of 

program and machine (similar in spirit to Scott [30), a technique 

for defining compilers and proving them correct. Here, a compiler 

simply means a translation between programs which preserves equiva-

lence in the sense that corresponding source and target programs 

compute the same function. The compiler theorem (Theorem 1.1), which 

is used extensively in subsequent chapters, gives certain conditions, 

the verification of which is sufficient to demonstrate that a specified 

translation does indeed preserve equivalence. Similar but somewhat 

less general conditions are given in Milner [52] and Knuth [26, 

The proof of the theorem depends heavily on a certain induction princi-

ple for establishing equality between recursively defined partial 

functions and the necessary mathematical background and notation is 

given, for convenience, separately in Appendix A. 

§1. Programs  

The basic components of programs are labelled instructions. The 

space I of labelled instructions is defined with respect to three 

sets of identifiers: 

L 	a set of label identifiers, 

F 	a set of function identifiers, 

T 	a set of test identifiers. 
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Each instruction i e I has one of the forms 

t: f ti  

or 	2,: t 	, 2," 

where f c F, t c T, and 2., 11 1  2."  c L. The label which appears 

to the left of the colon sign in an instruction i is called the 

label of i, and is denoted by X(i). The precise meaning of an 

instruction depends on specifying a machine, as we shall see, but 

the above forms are intended to suggest the Algol - like equivalents: 

t: do f then goto  

and 
	

/: if t then goto  2,1  else goto  tn. 

A program P is any finite subset of I for which the following 

condition holds: 

for all i, j c P, if X(i) = A(j) then i = j. 

Thus a program is a finite set of instructions each of which possesses 

a different label. 

The collection of programs over I is denoted by P(I), and the 

set (X(i): i c PI by A(P). We shall say that t is a terminal label 

of P if 2, is referenced by P (i.e. is contained in the right hand 

part of some instruction of P), but 2. is not in X(P). 

§2. Machines  

A. machine M = 	F, T) is defined when the following objects 

are given: 
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1. an input set X, 

2. an output set Y, 

3. a memory set V, 

4. an input function im: X 4' V, 

5. an output function Om: V + Y, 

6. for each f c F, a function fm: V V, 

7. for each t e T, a predicate tM: V 4 {true, false}, 

8. a particular element start of L, called the initial or 

start label. 

The transition function p of M is a function 

p: I + [(LXV) (LxV)] 

with the definition 

p(i)(L, v) = (ti, fM(v)) if i = t: f Li , 

= (£l , V) 	if i = t: t 	tu  

and tM(v) = true, 

=(iii , v) 	if i = t: t 	ti, 

and tM(v) = false, 

= undefined, otherwise. 

Note this definition implies that the execution of a test does not 

change the current value of thenemory set. 

It is convenient in the sequel to modify the input and output 

functions, by defining 

1. in: X 4' (LXV) by in (x) = (start, im(x)), 

and 2. out: (LXV) Y by out (t, v) = OM(v). 
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Suppose that P is a given program, and M is a given machine. In 

order to describe the function fP computed by P on M, we first 

define two useful fUnctions: 

	

(a) 	0: P(I) (LxV) + (true, false)] 

by 0(P)(1.1  v) = true if L c A(P), 

= false otherwise, 

	

and (b) 
	

$: P(I) -0. [(LXV) + (LW)), recursively by the equation 

0(P) = (0(P) + 0(P) • U p(i), 1). 
iEP 

(For the meaning of U see Appendix A). Here, 1 denotes the identity 
function on DT. The definition of p guarantees that (p(i): i e P) 

is a set of disjoint functions provided P is a well formed program, 

and so the upper bound is defined. 

The _function fP: X Y is now given by the equation 

fP = out • 0(P) • in . 

Thus fP(x) expresses the result of executing P on M with 

initial value im(x) of the memory set, beginning with the instruc-

tion labelled start, and proceeding instruction by instruction, as 

determined by the transition function, until an element (2., v) of 

LW is reached, if it ever is, where no instruction of P has the 

label L, in which case fP(x) = Om(v). 

Having established these preliminaries, we now proceed to the 

main definitions and theorem. 
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53. Translations and cowp11211 

A translation is a procedure for transforming programs into 

other programs. The translation may be defined by a step by step 

process in which individual instructions of a source program are 

translated into subprograms of the target program, or possibly by 

a more general process in which subprograms of the source program 

are translated as a whole. In general, corresponding source and 

target programs need not be intended for the same machine, but for 

the purposes of this thesis we can suppose that they are. 

In order to ensure that the set of instructions produced by 

a translation forms a program; the following definitions are 

adopted. 

1. A translation is a mapping E:R P(I), where R is a 

partition of I consisting of programs (i.e. a collection 

of disjoint subsets of I, each of which is a program, and 

whose union is I), for which the following condition holds: 

for all S1, S2  c II, if A(S1) and A(S2) are disjoint 

sets, then so are A(ES1) and A(ES2). 

2. A translation E:R P(I) is applicable to a program P if 

P is the union of some of the sets in R. In such a case, the 

collection {S: SC P, S e R}  partitions P and is denoted by 

Hp. It follows from the first definition that if E is 

applicable to P, then the set 

E(p) = U z(s) 
SCI 

is a well formed program. 
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3. A translation E:11 + P(I) is a step by step translation if II 

is the identity partition {(i): jel}. Clearly, step by step 

translations are applicable to any program over I. 

4. A translation 	+ P(I) is called a compiler (for a machine M) 

if the equation 

f(P) = f(EP) 

holds for each program P to which E is applicable. 

The conpilertheorem can now be stated. 

Theorem 1.1 A sufficient condition for a translation E:H P(I) 

to be a compiler (for M) is that there exists a 

(possibly partial) function a: LxV+ LXV for which 

the following conditions hold: 

(1) a • in = in, 

(2) cp(ES), maps D into D for all Sell, 

where D = domain (a), 

(3) out • a = out on DI  

(4) 0(S) • a = 0(ES) on D, for all SO, 

(5) f(S) • a = a • •(ES) on D, for all Sell. 

(An equation f = g holds on D if for all xeD, f(x) = g(x)). 

Remark. The conditions are best explained by pictures. Conditions 

(1) and (3) say that the following diagrams commute: 
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LxV 
	

LxV 
	

Y 

and conditions (2) and (5) entail the commutativity of 

LxV 

4)(5) 

LxV 

The proof of the theorem depends on three main lemmas. We suppose 

that an arbitrary program P is given, to which E is applicable, 

and that Q denotes the translated program EP = 	ES. As an 
SO, 

aid to readability, we shall sometimes write functionRl application 

without parentheses, i.e. 0 for 4)(P) etc. 

Lemma 1.2 Let 0 and ip be recursively defined by the equations 

(elp 4. 0 . U p(S), 1), 
Sell 
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1PQ = (eQ 1pQ • U u(ES), 1), 

SellP  

where for any program R 

U(R) = (eR +R, n). 

Then 

fP a = a • 4Q on D. 

(For the meaning of a see Appendix A). 

Lemma 1.3 With the above definitions, fQ maps D into D. 

The last lemma is independent of the concept of a translation. 

Lemma 1.4 Let R be any program, and IIR  any partition of R. 

If *R is recursively defined by the equation 

rR = (eR 11,R • U u(s), 1), 
seuR 

then ipR = .R. 

Assuming the truth of these lemmas, Theorem 1.1 follows easily. 

We have 

fP = out • OP • in 	by definition, 

= out • *P • in 	by Lemma 1.4, 

= out • *I) • a • in 	by condition (1) on E, 

= out • a • *Q • in 	by Lemma 1.2, 

= out • IA • in 	by condition (3) and 

Lemma 1.3. 



Now, *Q = (OQ *Q * U VES), 1) 
SeRp  

= (eQ ipc1 • U 	1), 
senQ  

where HQ  is the partition {ES : &Hp} of Q. Hence Lemma 1.4 

can be applied again, and we have 

fP = out • (pQ • in = fQ. 

Proof of Lemma 1.2  

First, it follows from condition (4) on E that 

OP • a = (3ScHp)9S .a 

= (3Sa
P 
 ) e(ES) on D 

= OQL on D. 

Second, it follows from condition (5) on E that 

u(S) • a = OS *a ' *S •41, Q) 

= (e (ES) + a •11)(ES), CI) on D 

= a•u(ES) on D. 

Having established, these facts, we can prove by induction that 

*k  P • a = a .4,1 Q on D for all k 0. 

The assertion is clearly true for k = 0, since both 

*op and *0Q are n, and the induction step is 

*k+1 P  • a 	a + 1PkP • U tl(S) • a, a), 

22 
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where the upper bound is taken over all S e n , 

= (0Q+ Vie .a 	p(ES), a) 

(eQ + a • 1Pk(1 • Li P(ES) 

using the induction hypothesis. Since this last expression is 

just a .VivaQ, the induction step is established. 

Proof of Lemma 1.3  

Using condition.(2) on E, the assertion 

*kQ maps D into D for all k > 0, 

can be proved by a similar induction argument. Since, for each 

d c D there exists a k such that 

02(d) A SZ implies *Q(d) = vicQ(d), 

the lemma is proved. 

The proof of Lemma 1.4 is more complicated and depends on four 

further lemmas. For shorthand, we denote 

U p(i) by A and U p(B) by B. 
ieR 	ScHR 

Lemma 1.5 If icR, then 4)11 • p(i)E 
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Proof. 	OR • 1.1(1) = (eR + OR- p(i), 	C2) 	since icR, 

= (OR 4 $R • A, 12) 

C 4)R 	by definition of 4)R. 

Lemrr  1.6 	If S R, then 4)R • tiS C 4)R. 

Proof. We prove by induction that 

4)R • 4)kS 4)R for all k 0, 

from which it follows that 4)R • 	C 4R. 

Since tiS C 44S, the conclusion follows. 

The assertion is clearly true for k = 0, and the induction 

step is 

4)R • 4)k41S r. (OS 4 4)R •4)kS • U p(i),  4)R) 
icS 

C (OS 4 4)R • U p(i), 4)R) by induction, 
icS 

= (OS 4 U 4)R • p(i), 4)R) 
icS 

C. (OS OR, OR) by lemna 1.5 and the fact 

that S R. Since 

(OS 4. 4)R, OR) C 4)R, 

the induction is complete. 
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mna 1.7 	If S e R2 then 4)11• 45 = 4)13. 

Proof. 	4R • 4)S = *R (OS -' iS, 1) by definition of iS, 

= (OS 4 *R • IS, *R) 

= (OS 4 *R • B, *R), 

since if IIR  is a partition of R, then the set Cp(S): Send 

is a set of disjoint functions. The last expression is equal 

to 
(OS (OR 	• B, 1), *II) since OS implies OR, 

= (es *R, *R) 

= *R. 

Lena 1.8 	If i e R, then ipR • p(i)C *R. 

Proof. Let S be the unique member of IIR  which contains i. 

Then 

*11 • p(i) = *R • *S • p(i) 	by Lemna. 1.7, 

C 	• 4)S 	by Lemma 1.5 since ieS, 

_R 	by Leona 1.7 again. 

Proof of Lemma 1.14  
• 

(a) *RC 4)R. We prove by induction that 

IpkR E 4R for all k a O. 
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The assertion is clearly true for k = 0, and the induction 

step is 

*k+1 R = (OR -P" 1PkR • B, 1 

[ (eR + OR • B, 1) by induction hypothesis, 

= (OR + U OR • pS, 1) 

SCIIR 

[ (OR 4 OR, 1) by Lemma. 1.6, 

= (W. 

(b) OR 	*R. Here, the induction step is 

4)1c41R 	(OR + cpkR • A, 1) 

[ (OR + *R • A, 1) by induction hypothesis, 

= (OR 	*R • p(i), 1) 

C (e 	la, 1) by Lemma 1.8, 

= *R. 

The proof of Theorem 1.1 is finally complete. It can be shown 

by considering suitable counter examples that the theorem fails 

to hold if any of the five conditions is omitted. 

In the next section, we consider the composition of 

translations. 
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§4. Composition of compilers  

We say that a translation E is a compiler under a, if E 

together with a satisfies the five conditions of Theorem 1.1. 

The following result is of interest, but is not used in the sequel. 

Theorem 1.9 Let E: HI  + P (I) and A: H2  -+ P(I) be two transla-

tions with the property that A is applicable to 

E(S) for each Sell. Suppose that E is a compiler 

under a, and A is a compiler under S. Then the 

composition translation A.E: Hi + P(I), defined by 

A .E(S) = 	A(T) 

sus  

for each Sell1' where 

S {T: Tell, T c Z(S)), 

is a compiler under a • S. 

Proof. 

It is easy to verify that 

(1) a • 6 in = in • 

Fbr the other conditions, let D = domain (a .6). It follows 

that DC domain (6) = D(6) and that 6(d) e domain (a) = D(a) 

for each d e D. The proof that 

(3) out • a .6 = out on D, 

is now straightforward. Next, if ScHl  we have 
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0(8).a .6 = e(Es). 6 on D, 

= (GT c ils) e(T) • 6 	on 	D, 

= (3T c Hs) 6(AT) 	on, D, 

=0(A - E(s)) 	on D. 

Thus 

(4) e(s) • a • 6 = 8(A • E (S)) 	on 	D 

is established. 

Next, using Lamas 1.2 and 1.11, we have for each S c rli  that 

4)(ES)• 6 = 6 • CA • E(S)) 

on DC6), and hence on D, since D D(6). Thus 

4)(S) •a •6 = a-4(ES) • 6 = a • 6 • +(A • E(S)) on D, 

which is just condition (5). 

Finally, we must verify 

(2) 4)(A • E(S)) maps D into D 

for all ScRl. Suppose, by way of contradiction, that for some 

Sell and deD, we have 

4)(A • E(S))(d) c D(6) - D. 

It follows that 
6 •4)(A • E(S))(d)i D(a), 



29 

and so 

•(ES) • 6(d) = 6 • (1)(A • E(S))(d) 	D(a). 

But this contradicts the condition that +(ES) maps D(a) into 

D(a), since we know 6(d) c D(a). Thus the final condition is 

verified, and the theorem is proved. 

§5. Modified programs  

It is often useful, when describing translations, to consider 

target programs that contain unconditional jump instructions. 

Unconditional jumps, which will be written in the form 

can always be eliminated by systematic label conversion. Thus, 

if t: ti  occurs as an instruction in a program P, we can delete 

it and replace all references to L in P by references to L". 

Some care must be exercised in certain situations; for example, if 

both L: t and t : t occur in program P, all references to 

both £ and ti  must be converted to a reference to an infinite 

loop. 

In fact, it is often convenient to assume that every program 

for a given machine contains a single initial jump 

start: + , 	for some t 

where start is the initial label given for the machine, and that 

no program ever contains an instruction which can reference start. 

This assumption, which enables the description of translations to 

be given more simply, entails no loss of generality. 
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CHAPTER TWO 

BASIC DEFINITIONS AND RESULTS 

In this chapter, register machines and their programs are 

described formally, and the definition of the running tine of 

a program made precise (Section 1). As a consequence of the 

definition, certain programs may have a zero running tire, and 

Section 2 characterises the class of functions such programs 

compute. Section 3 develops sons useful n 

 

ion on the relative f•-` 

 

growth of functions, and this is used in Section 4 to state some 

simple relationships between the function computed by a program 

and its running time. Section 5 considers the important notion 

of on-line programs, and Sections 6 and 7 describe some useful 

ways of combining and modifying programs. 

§1. Register machines and their programs  

The basic hardware of the machines which we shall study consists 

of a denumerable sequence of registers  

each of which is capable of containing an arbitrary positive or 

negative integer, including zero. We refer to n as the address  

of register A. In addition, there are two special registers X 

and Y, called the input register and output register respectively; 
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these can only contain non-negative integers. Thus our machines, 

when supplied with programs, compute partial 1-place number theoretic 

functions. This is not critical for the work that follows; only 

slight changes would be needed to deal with input and output registers 

that contain arbitrary strings of symbols over some finite alphabet, 

or both positive and negative integers. 

In addition to these registers, the machines supply an input  

function and an output function, which respectively initialise a 

machine for a computation, and extract a final result. 

- (1) The input function loads a given non-negative integer in 

the register X, and sets all other registers to zero. 

(2) The output function extracts the final contents of the 

output register Y as the result of the'computation. 

Programs for these machines consist of arbitrary flowcharts made 

up out of the following objects: 

Assignment 

Flowcharts, which are defined in the obvious way, can be 

represented, where convenient, as sets of labelled instructions 

(as in Chapter 1). Both representations of programs have their 

advantages; with flowcharts there is no need to make the decision 
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as to what labels to use, but sets of labelled instructions are most 

useful when describing transformations on programs. 

The instruction set (or order code) of a machine determines 

what assignments and tests the program can use. For the most part, 

we shall not be concerned with exactly what instructions are allowed, 

except to make the following remarks. 

(1) The only instructions involving the input and output registers 

are: 

assignments 	X:=X-1 	Y:=Y+1 

tests 	X=0. 

These have the obvious interpretation - we assume that if the 

assignment X:=X-1 is executed when X is empty, then X is 

unchanged - and ensure that each machine treats the input 

register as a read-only register, and the output register as 

a write-only register. 

(2) Each instruction set contains the basic instruction set I0, 

where I0  consists of: 

assignments 	A.:=Aj+1 	A.:= A.-1 

Ai:=Aj 	A.:=0 

tests 2*  A. 	Ai  ?. 0, 3.  

where i and j are arbitrary positive integers. These 

instructions, which effectively define the original Shepherdson-

Sturgis set, have their obvious interpretation, and their effect 

is not formally defined. 
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(3) Each instruction set defines programs which are relocatable. 

This term is defined precisely later, but means roughly that 

we can always modify programs so that they do not refer to 

certain areas of store, and so do not interfere with other 

programs which may be running at the same time. 

When as instruction set is specified, the machine is completely 

defined. Where necessary, we refer to a program defined over an 

instruction set I, as an I - program. 

When a program P is executed (on its register machine) a 

function f is defined, and we say P computes f . A formal 

definition of how the values of this function are obtained is not 

. given; sufficient details can be found in Chapter 1. We shall be 

concerned throughout only with programs that compute total functions. 

For each I, the class of I-programs which compute total functions 

is, of course, undecidable. Most of the results are proved 

constructively, i.e. usually by showing that a given program or 

programs can be transformed in some fashion in order to satisfy 

certain properties, and consequently can be given a valid interpre-

tation when the programs do not compute total functions. 

We say that program P is equivalent to program Q if fjp=fQ. 

Along with 	each each program P defines another (total) 

function tP2 
called the running time of P, which is defined as 

follows: 
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t (x) = the total number of work register instructions 

(both assignments and tests) executed by P, 

when run on input x. 

This measure of the complexity of a program is the only one with 

which we shall be concerned (Bird EA [6] deals with space-

restricted register machine computations). It is to be noted that 

input and output instructions are not counted towards the running 

time of a program. This assumption has certain convenient consequences, 

and is counter balanced by the fact that such instructions can only 

read the input and store the output. 

Occasionally we shall use the terms instantaneous description, 

and computation sequence. An instantaneous description of a point 

during a computation of a program P is a vector, 

(L, x, y, al, a2, ...), 

which represents the fact that P is just about to execute the 

instruction with label L, (in some consistent labelling of the 

instructions of P) and the current contents of the registers X, Y, 

Al, ... etc., are x, y, al, a21  ... etc. A computation sequence 

is a seqeunce of instantaneous descriptions. A register A. is 

referred to by a program P if there is a computation sequence of P 

with some input, in which a label of an instruction involving 

register. A. occurs. 

A set of instructions I is said to be relocatable if, given 

any two programs P and Q defined over I, we can find programs 

P and Q1, equivalent to P and Q respectively, such that no 
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work register referred to by Pt  is referred to by 	and vice- 

versa. 

Finally, two simple translations. Sometimes it is useful to 

suppose that the input instructions of a program only ever occur 

in the form • 

. that is, every input test is immediately followed by an X:=X-1, 

and each such instruction is always preceeded by a test. A program 

with this property is said to be in standard input form. We can 

always convert a program into an equivalent one in standard input 

form. This is fairly obvious, but we give details of the formal 

translation as it indicates the general manner of describing 

translations which we shall employ. 

The step by step compiler A which achieves the desired 

result, produces instructions with labels (apart from start) of 

the form 

(a, m), 

where in is arbitrary, and a = 0 or 1. The translation A 

satisfies the five conditions of the compiler theorem under the 

mapping 6, where 
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gstart, x, y, al, a2, ...) = (start, x, y, al, a2, ...) 

and 	6((a; m), x, Y, alp a2, ...) = (m, xfa, y, a1, a2, ...) 

A is given by: 

1. A [tart:  + 	= ptart: ÷ (0, m)] 

2. A Ey: X=0 ÷ini, 	= f(0,m): X=0 + (0, 	tra, 

t X: =X-1 + (1, g)'), 

(1, m): + (1, m")} 

A 5.1: X: = X-1 + mi3 = {(0, m): X = 0 + (0, Id), tie  

m: X: = X-1 (0, n!), 

(1, v): + (0, mi)) 

4. E [i] = (jia, for all other instructions i, where if a 

i; = m: fm1, then is = (a, m): f (a, n/) or 

if i: 	m: t ml, mil  , then ia = (a, m): t 	(a, Int), (a, mil). 

If A(P) = Q, then P is equivalent to Q since A is a compiler. 

Q contains unconditional jumps which can be eliminated by label 

conversion (Section 1.5), and is clearly in standard input form. 

The verification that A satisfies the five conditions of the 

compiler theorem is left to the reader. Note that in (3), we assume 

that the effect of executing X:=X-1, when X is empty, is to 

leave X unchanged. 

When all the input and halt instructions of a program occur 

ine form 
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We say that the program is on-line.  On-line programs possess a 

number of different characteristics to ordinary programs and are 

very important in the sequel. Section 2.5 goes into more detail 

about them. 

The last translation of this section is concerned with the 

instruction set I. We prove that for any I0  -program P we can 

find another equivalent Icl-program Q which stores only non-

negative integers in its work registers (and so makes no use of 

the test 1k. 0). Q is a step by step simulation of P in which 

only the absolute values of the contents of the registers is stored 

and the labels of Q contain information as to the proper sign of 

these contents. More formally, suppose k is the maximum address 

referred to by P. The step by step translation Ak, for which 

Ak(P) = Q, produces instructions with labels (apart from start) of 

the form 

(a, m) 

where in is arbitrary, and a = 	a2, 	ak) with ai  = 0 or 1.' 

The mapping (5k, which is associated with Ak, is 
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cSk  (start, x, y, a1,  ..., ak) = (start, x, y, als  ..., ak) 

dk  ((a, m), x, y, al, 	ak) = On, x, y, bl, 

where b.
J 
 = a.J  if a. = 0, and b.J  = -a.J  if a. = 1. 

Ak  is given by: 

(1) isk  En: Ai: = Aj+1 4 mg 

U ((a, m): A.: = A.1 
a.=0 	3. 	a 

U {(a, 	Ai=0 4. 2,m, 2,m1  
a•=1 

GI, min 

m1 : A.: = A.+1 	111 (al, 1) 

: A.1: = A.J -14 (a", DM).  

I 	 It lwherear 	r  =a1/  =ar 	i forrAa•=0 and .= 3. 

(2) 	.6.k  En: A.: = A.-1 4- mij 

{(a, in): A.: = A.+1 	(al, min U 
a.=1 

• 	U 	{(a, m): A• = 0 n m' m 
a.=0  

n: Ai: = Ai+1 	(a', m'), 

= 	4- (an, m')} 
• 

where art  = ar
// = a • $ r 	3. for r A 	a./  = 1 and a.I/ = 0. 
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(3) A GI: A. 	04. 1111, nt!) = 	{ 	(ct 	)1 U k al  

U {(a, m): Ai  = 0 + (a, m1),  (a, m")} 
. al=1  

(4) AkW = U ia, for all other instructions i. 
a 

In the definition, U means the union over all a for 
a.=0 

which a. = 0; similarly for (..) 
a.=1 

The verification that Ak satisfies the conditions of the 

compiler theorem under Sk  is again left to the reader. 
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§2. Functions computable within zero time  

Programs, which consist only of input and output instructions, 

have zero running time and compute fUnctions of a simple but 

important type: the ultimately linear functions. 

A function f is said to be ultimately linear, if there exist 

integers c, d, and xo.  with c a 1, such that 

f(x+c) = f(x)+d for all x x0  . 

If d = 0, then f is also said to be ultimately periodic. 

Theorem 2.1 A function f can be computed by a program with 

zero running time if and only if f is ultimately 

linear. 

Proof. (a) necessity. Suppose f is computed by P such that 

t (x) = 0 for all x, and suppose P contains k distinct instruc-

tions of the form X:=X-1. If for no input does P obey more 

than k such instructions, then for each input x > k, the computation 

sequence of P with input x will be identical, and so 

f(x+l) = f(x) for x > k, 

whehce f is ultimately periodic. If, on the other hand, P does 

obey more than k such instructions for some input xo, then some 

instruction will be executed at least twice. Let I be the seqeunce 

of instructions executed between the two occurrences of the first 
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such repeated instruction. Since the running time of P is zero, 

no work register instruction appears in I, and so the computation 

of P with input xo  will continue to cycle on I until the input 

is reduced to zero. Moreover, exactly the same situation will arise 

for the computation of P with an input x 3 xo. If c is the 

number of instructions of the form X:=X-1 and d is the number of - 

output instructions contained in I, then it follows that 

f(x+c+l) = f(x)+d 	for 	x xo0  

whence f is ultimately linear. 

(b) sufficiency. Suppose that f(x+c) = f(x) + d for x xo. 

The following program computes f and has zero running time: 



x tires 0 

C tines 

42 
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Bence the theorem is proved. 

We note, for later use, the following fact about the ultimately 

linear functions. 

Lemma 2.2 If f is ultimately periodic, then Ef is ultimately 

linear. 

Proof. Suppose f(x+c) = f(x) for x a xo, 

whence 
	f(x) = f(xo 	o + 5C- x g) for x a x. 

It follows that x+c 	x+c -1 
f(y) = 	f(y) d say, 

y=x+1 	y=xo  • 

for x a x0. Restated, this says 

(Ef)(x+c) = (Ef)(x) + d for x a xo,  

whence Ef is ultimately linear. 

§3. Asymptotic notation 

Before proceeding further, it is useful to describe some 

notation for comparing the rate of growth of functions. 

(1) We shall write f 4 g to mean that there exists a positive 

constant c and an integer xo  such that .  

f(x) 4 cg(x) for all x > xo. 
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(2) We shall write f 4 g to wean that g a f is false. 

(3) We shall write f ti g to mean both f a g and g 4 f. 

The notation f 4 g is equivalent to the more usual mathematical 

notation f = Og; each has its advantages, but the former is more 

natural in that it emphasizes the transitive nature of Q. It is 

straightforward to show that 

(a) f 4 g if and only if urn inf f(x) 
xice EV 

O
. 

Further facts noted without proof are: 

(b) 9 is reflexive and transitive)  

(c) If f 4 h and g a h, then f+g c h. 

The notation will frequently be abused to the extent that we shall 

write f(x) a  x •etc., to mean more precisely that f a i, where i 

is the identity function. 

VI. Three basic theorems  

We now prove three basic results which will be referred to 

subsequently as the almost everywhere theorem, the minimal growth  

rate theorem, and the size theorem.  

Theorem 2.3 Suppose P is a program such that 

t (x) 4 f(x) for'all x > XD, 
P 

where f is some specified function. Then we can 

find a program Q, equivalent to P and on-line if 

P is, such that 

tQ(x) 4 f(x) for all x. 
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Proof.. Let c = max t (x). Program P can be converted into an 

x'xo 

equivalent program Q for which tQ(x) = 0 if tp(x) 4 c, 

and t
Q
(x) = t (x) if t (x) > c. It follows from this that 

tQ(x) 4 f(x) for all x. We give only an informal description of Q. 

Q simulates P in a step by step fashion, except that, in any 

computation, Q delays the execution of the first c work register 

instructions executed by P. These instructions are remembered in 

the label structure of Q, and are only executed when the (c+1)st 

work register instruction of P is about to be executed. Q can 

clearly be made on-line if P is, and the running time estimate of 

Q follows at once. 

Theorem 2.4 If P is a program such that tp(x) a x, then fP  

is ultimately linear. 

Proof. 

Suppose that P contains k instructions of the form X: X-1. 

By hypothesis, there is an integer xo, as large as we please and 

hence greater than k, such that tp(x0) to/. Consider the 

computation sequence of P with input xo. If this sequence contains 

less than xo instructions of the form X:=X-1, then f is 

ultimately periodic by the same reasoning as Theorem 2.1. On the 

other hand, if this sequence contains xo  such instructions, then 

it must contain two occurrences of the same input instruction, 

between which no work register instruction occurs. To see this, 

suppose n > 0 is such that nk,1 xo  < (n+l)k. If the above 

situation does not arise, then ',p(x0) a n = N/9contrary to 

hypothesis. The rest of the proof is now identical with Theorem 2.1. 
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Theorem 2.4 is the best possible in the sense that one can construct 

a program P for which t (x) a x, such that f is not an ultimately 

linear function; for example, f = a, where 

a(x) = (x even 4- x, C). 

In fact, Theorem 2.4 can be used to show that no program P can 

have an unbounded running time tp  such that tp(x) 4 x. Suppose 

such a P exists. By removing the output instructions of P, and 

inserting new ones after each work register instruction, we obtain 

a program Q such that fQ  = tp and tQ  = te. Since tQ(x) 4  x, 

we must have that f
Q 

= t is ultimately linear; but since 

t (x) 4 x, t must be ultimately periodic and hence bounded. 

Theorem 2.5 Suppose P is a program such that x a tpf.x). 

Then fp(x) a  tp(x). 

Proof. Suppose P has k output instructions. Consider the computa-

tion of P with an arbitrary input x. During this computation, 

no output instruction can be obeyed twice with exactly the same contents 

of the input and work registers, since otherwise P would go into an 

infinite loop and fail to terminate. Thus between successive additions 

of k to Y, either the contents of X or some work register must 

have changed, and so 

4(x) k(i+v-tp(x)) tp(x), 

since x 4 tp(x). 
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§5. On-line programs  

As mentioned in Section 2.1, on-line programs are program 

in which input tests and halt instructions only occur in the form 

Programs with this property must operate in a particular fashion: 

if P is an on-line program, then for all x and all y 4 x, the 

computation sequence of P with input x is identical for the first 

t (y) steps with the computation sequence of P with input y. This 

fact is easily proved by induction. It follows that every computation 

sequence of P is an initial subsequence of just one computation 

sequence - the computation sequence of P with infinite input. It 

is sometimes useful to consider properties of on-line programs in 

terms of this hypothetical sequence. 

It also follows that on-line programs compute monotone functions, 

Where a function f is said to be monotone if for all x and y 

x 4 y implies f(x) 4 f(y). 

Below, we shall show that every monotone computable function is on-

line computable, i.e. is computable by some on-line program. The 

concept of on-line programs is crucial to certain constructions, most 

important of which is the inversion theorem (Section 2.7). Because 

of the restrictive nature of on-line computations, it is possible 

to obtain sharper bounds on the running time of on-line programs, 

than would otherwise be possible (Chapter 5). Arbib 	1] con- 

tains an interesting discussion of the on-line phenomenon in Automata 
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theory; see also Hennie [22]. 

Theorem 2.6 For each program P which computes a monotone 

function we can find an on-line program Q, 

equivalent to P, such that 

tcl  $ Etp  . 

Proof. 	First suppose that tr(x) 1 x. In this case, fp  is 

ultimately linear by the minimal growth rate theorem, and there 

exists an on-line program Q computing fp for which t(1  = 0. 

Suppose, on the other band, that x c  t (x). Without going 

into details, it is possible to construct from P a program R 

such that 

fR(x) = f (x) - f (x-1) if x > 0 

= fP (0) 
	

if x = 0 

and 	tR(x) a t,(x) + tr(x-1) + f(x) + f(x-1) + x. 

For each input x, R works by first using P to compute fp(x-1) 

into a work register not used by P, and then using P again to 

compute fp(x), sending only the difference to the output register. 

(Since programs are relocatable, it is always possible to select 

work registers not used by P.) Since the running time of R has 

to include the time required to store f (x-1) and f (x) in order 
P 

to compute the difference, and also the time required to preserve 

the contents of the input register for the second computation, it 

satisfies the above inequality. Using the size theorem and the fact 
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that x tp(x), we have 

tR(x) &:1 tp(x) + tp(x-1). 

Suppose that A and B are two registers not appearing in R. R 

is modified so that all references to the input register X are 

converted to references to register A, and Q is defined to be the 

program: 

Y:=Y+f (0) 

X=0 	
YES 	

HALT 

X:=X-1 

B:=B+1 

A:=B 

Q is on-line and, by construction, equivalent to P. 

Moreover 
X 	 X 	 X 

tQ(x)  ` 4 (X) 	1 (tR  (y) + y) q I (t (y) + t (y-1)) 1 I tP  (Y). P 	P 	_ y=o 	y=o 	Y-0 

4 
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Corollary 2.7 	Suppose P computes a monotone function and 

lim inf 
x+o. 

Then there is an on-line program Q equivalent 

to P, such that 

t 4 t . 
Q 

Proof. The result follows from Theorem 2.6 by showing that 

Et
P 
 ti,. By hypothesis, there is a real number 6 > 1 and an 

integer x0  such that 

tp(x+1) a 6 tp(x) for all x a x0. 

t (x+1) 

t (x) 
	> 1. 

• P 

Thus x-1 - 
. I tp  (y) 	X tp  (y) + 	

x 
(x) x ° 

y=o 	Y=0 	r=o 
6-r  t (x), 

co 

L 
r Since L 6 	converges. 

r=o 

In Chapter 5, it is shown that this corollary fails to hold if 

the condition lim inf tP(x+1) > 1 is dropped. 
x+00 t (x) 

§6. The composition and addition of programs  

Among the various ways of combining programs, there are two 

which will be used frequently. These relate to the following 

functional operations: 
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(a) composition. The composition f-g of two functions f and 

g is that function which is defined by 

(f.g)(x) = f(g(x)) for all x. 

(b) addition. The addition f+g of two functions f and g is 

that function which is defined by 

(f+g)(x) = f(x) + g(x) for all x. 

Below, we give constructions which carry out these operations within 

tight time bounds. 

Theorem 2.8 Given any two programs P and Q, we can construct 

a program P.Q such that 

f 	= f P.Q 	P f' Q 

and 	tp.Q  = tQ  + 

Moreover, if P and Q are on-line, then so is P'Q. 

Proof. 

The standard way of computing the composition f.g is to store 

the partial result g(x) in a new work register, and use this as 

input to the program computing f. This method cannot be used here, 

since the time taken to store and retrieve g(x) adds to the total 

running time of the program. However, another method is available 

which uses P and Q as co-routines. P and Q must first be 

modified so that they make use of distinct sets of work registers. 

Since we are assuming that programs are relocatable,-this causes 

no trouble. Informally, the program P•Q works as follows: control 
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starts off in P which remembers the label of the first instruction 

of Q in its label structure. P is executed until it attempts to 

carry out an input test, when control is handed to Q which begins 

computing at the remembered entry point. Q continues until it attempts 

to obey an output instruction when control is handed back to P which 

continues from where it left off, under the assumption that the input 

was not empty. When P asks for more input, Q is re-entered until 

another output is given. If P halts instead, control is returned 

to Q until it tool-sits. If Q halts first, then control is returned 

to P which continues on alone under the assumption that the input 

was empty. 

We now describe P.Q formally. Let L denote the set of labels 

of P which are either terminal labels or labels of input tests. It 

is convenient to suppose that each terminal label t corresponds to 

an explicit halt instruction, written as t: halt. 

We have 	P•Q = U E (Q) u U 	A (P), 
tcL 	meX(Q) m  

where X(Q) is the label set of Q, and E and Am  are two 
2. 

step by step translations defined as follows: 

1. If 2, labels an input test t: X=0 4 2. 2,11  of P, then 

(a) EL 	Y: = Y+1 	= {(2,, n): 	(m', z")} 

(b) E2,  [m: halt] = {(L, m): 	(m, Li  )1 

(c) EL  [I] = IL  otherwise, where 

	

if I = m:f mi, then IL  = (2., 	f (2., re) 

or if I = m:t mi, mit, then I2,  = 	m): t 	(2,, mf  ), (1,1 
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2. If t labels £: halt of P, then 

ELM = IL for all I. 

3. Am  is defined by: 

(a) Lim  [ start: t] = {start: + (m/, £)}, 

where start: mi  is contained in Q. 

(b) Am  Et:X=0 + 	= {(m, 2): + 	m)} 

(c) Am  [F,:X:=X-1 	= {(m, 2): 	(m, t/)} 

(d) Am  [t:halg = {(rn, 2) 	(t, m)) 

(e) Am  [I] = Im  otherwise. 

The program P•Q contains unconditional jumps which can be eliminated 

by label conversion. In order to see that P•Q will be on-line if 

P and Q are, note that the only input tests of P•Q come from Q 

via 1(c) or 2. If Q contains in: X=0 + mi, mil  1  where m is 

terminal , then P•Q contains (2, m): X=0 (2, le), (2, mii) for 

	

each t c L. But by 1(b), P•Q also contains (t, mi): 	(m/, 1//), 

where t: X=0 + 2', 2?' is contained in P. If P is on-line, then 

1/  is terminal, and so (n/, 2') is a terminal label of P-Q. Hence 

P•Q is on-line. The timing estimate follows at once. 

We shall refer to the above theorem as the composition theorem,  and 

to the next as the addition theorem.  
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Theorem 2.9 	Given any two programs P and Q, we can construct 

a program P+Q such that 

fp4Q 
= fIG fQ 

and 	tp4Q  = tp  + 

Moreover, P+Q is on-line if both P and Q are. 

Proof. 

The construction is very similar to the previous one, and only 

an informal description is given. In P+Q, the programs P and Q 

act as co-routines which share the input. P and Q are again 

modified to refer to distinct sets of work registers, and Q is put 

in standard input form. In the combined program, Q alone is given 

the task of testing and decrementing the input register. Control 

starts off in P which remembers the first label of Q in its label 

structure. Each time P attempts to execute an input test, control 

is handed to Q which begins computing from where it left off. Each 

time Q executes an input test, control is returned to P. This 

process continues until one of P and Q wants to halt, when the 

other program is entered until it too halts. The final contents of 

the output register will be the sum of the contributions from P 

and Q, and the running time of the combined program, will be the sum 

of the running times of P and Q. 
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§7. The inversion of programs  

Suppose f is a monotone and unbounded fUnction. We define 

the inverse f* of f to be the function whose values are given 

by 

f*(x) = min y [x < f(y)J. 

f* is also monotone and unbounded. In this section, we show how 

to construct from an on-line program P computing f, an on-line 

program P* which computes f*. The following facts about inverses 

are important and are used in Chapter 4. 

Lerma 2.10 	Suppose f and g are monotone and unbounded. 

Then 

(i) f** = f and (ii) 	(f•g)* = g*•p•f, 

where p(x) = x-1. 

Proof. (i) By definition, 

f**(x) = min y Ex < min z [y < f(z)]] 

whence 
min z [f**(x) < f(z)] > x. 

From this it follows that f**(x) a f(x). Since f is monotone 

and unbounded, we have 

min z [f(x) < f(4] > x, 

from which it follows that f**(x) f(x). Hence f**(x) = f(x). 

(ii) We have 
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(f.g)*(x) = min y 	< f-ey)] 

= min y [g(y)  a min z x < f(z)]], 

since f and g are monotone. Now 

min y [g(y) i] = min y Dr(y) > x-I], 

whence 	(f.g)*(x) = g*(f*(x)-1). 

Suppose next, that P is an arbitrary on-line program computing 

an unbounded monotone function. In such a case, the function Op, 

where 

0 (x) total number of work register instructions 

executed by P on any sufficiently large 

input (equivalently, on infinite input), 

prior to the execution of the (x+l)st out-

put instruction, 

is well defined, total and monotone. 

We shall refer to the following theorem as the inversion theorem. 

Theorem 2.11 Suppose P is an on-line program computing an 

unbounded function. Then we can construct an on-

line program P* such that 

f = f* P* P 

t = 	4 t *f P* 	P P P 
and 
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Proof. Without loss of generality, we can assume that P is in 

standard input form. The program P* is exactly the same as P except 

that the input instructions are replaced by output instructions and 

vice-versa. Mare precisely, the translation A which produces P* 

is given by: 

1. A [n: X=0 4. 0 Mg = 	4- mij 

2. A En: X:=X-1 Id] = [m: Y:=Y+1 4. ma 

3. A [m: Y:=Y+1 + = 	X=0 .4- 0, it 
X: =X-1 tj 

4. A[i] = i, for all other instructions i. 

(0 is regarded as the terminal label). 

In order to prove that P* does indeed compute fp it is convenient 

to define two further functions. In the definitions, the term 'input 
instruction' refers to the pair 



58 

The functions i and o are defined by 

i(x) = total number of instructions, including 

input and output instructions, executed 

by P on any sufficiently large input, 

prior to the execution of the (x+1)st input 

instruction 

o(x) = similar to i(x), but prior to the (x+1)st 

output instruction. 

If P computes an unbounded function f, then i and o are both 

total and monotone (in fact, i(x) = tp(X) + x + f(x)) and we have 

o (f(n) - 1) < i(n) < o (f(n)), 

for all n. If i* and o* denote similar functions for P* then 

i* = o 	and 	o* = i, 	... (2) 

since both P and P* are in standard input form. 

Consider the computation of P* on an arbitrary input x. 

Since f is unbounded, there exists an n such that 

f(n) 4 x < f(n+1), 	... (3) 

and we have 

o*(n) = i(n) 	from (2), 

< o(f(n)) from (1), 

= i*(f(n)) from (2), 

4 i*(x), 
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from (3), since i* is monotonic. 

Also, 	i*(x) = o(x) 

4 o(f(n+1)-1) since o is monotonic, 

< i(n+1) 	from (1), 

= o*(n+1). 

Therefore, 

o*(n) < i*(x) < o*(n+1). 

It follows from this that exactly (n+1) output instructions are 

executed, before the computation of P* with input x terminates. 

Thus 

fP*(x) = n+1 = f*(x). 

Finally, we estimate tP*. We have 

t = 8P P 

by definition of P*2  and moreover 

0 (f(x)-1) 4 t (x) for all x, 

since P is on-line. Sinde 

f(f*(x)) > x a x + 1, 

we have 

O(X) 4 O p  (f(f*(x))-1) 4 tp(f*(x)), 

from equation (4) and the fact that O, is monotone. 
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CHAPTER THREE 

THE SPEED UP THEOREM 

Throughout this chapter, we shall be concerned only with Is  - programs; 

that is, flowcharts defined over the instruction set: 

assignments 	A.:= A.+1 	Ai:=Aj-1 

A.a.:=A 	A.:=0 

tests 	A.=0 	A.O. 

(To avoid messy subscripts, register Ai  will sometimes be denoted 

by Ai, etc.) 

The central object of the chapter is to prove the following theorem, 

which will be referred to subsequently as the speed-up-property (for Is). 

Theorem 3.1 Given any program P, we can always find an equivalent 

program Q, which is on-line if P is, such that 

t
Q 
 C t

P
/2. 

Because the proof is fairly long (and will not be complete until the 

end of Section 4), we first give an informal summary of the main 

steps. 

The running time tp  of a program P is the sum of two functions 

ap  and b1,, where 
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a (x) = the number of assignments executed 
P 

by P when run on input x, 

b (x) = similarly, the number of tests. 

It is shown, in Section 4, that in order to prove the speed up 

property, it is sufficient to reduce a by a factor of two; i.e. 

we can forget about tests and concentrate on cutting the assignments 

by half. The reason this can be done, and the pivot upon which 

speed up turns, is the fact that, by taking a sufficiently long 

sequence of assignments, another equivalent sequence (in the strong 

sense of having the same effect on the work registers) can be found 

of no more than half the length of the first. On the other hand, the 

second sequence uses the more general assignments 

Ai:= Aj+d 
	

e 

for integers d and e, where le( < ldl. Section 1 is devoted 

to a proof of this fact. This result is used in the construction 

of two step by step compilers (although they can be combined into 

one) to achieve the desired reduction in P. In the first,(defined 

in Section 2) , P is converted into an equivalent program R for 

which aR  4 ap/2. Program R uses a more general instruction set 

than I.  In Section 3, R is converted into a proper Io
- program 

Q for which aQ  4 aR. Combining these two translations gives the 

final result. 

Section 5 shows speed up at work on an example, and Section 6 

contains some fUrther results and a discussion. 
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§1. flnitegtguences of a8sierrents 

Throughout this section, the letters S and S' will denote 

finite sequences of assignments of the form 

A.:= A.+d 	and 	A.:= e-, 

where 1 4 1, j 4 k, and d and e are arbitrary integers with 

lel < Idl. We say that S is a D-sequence if it consists only of 

assignments with Id' 4 D. Thus a 1 - sequence is a sequence of 

10  - assignments. The length of a sequence S is denoted by 11511, 

and the same notation is used to denote the number of elements in a 

finite set. With each sequence S we can associate two mappings: 

as. • {1 2, 	k} 4- CO, 1, ... 

and 
pS  : (1" 2, ... k} 	{..., -1, 0, 1, ...} 

which serve to characterise S. These mappings are defined by the 

criterion that for each i, in the range 1 4 i 4 k, the effect of executing 

S changes the contents of register Ai, as if the single instruction 

Ai:= Aa5(i) + p3(i) 	if 	a5(i) > 0, 

or 	Ai  := p5(i) 
	

if 	a5(i) = 0, 

were executed instead. 

Note that if S is a D -sequence, then for 1 4 i 4 k, 

IPs(i)1 4 D x IISII 	if 	a5(i) A 0; 

and 	IPs(i)1 4 D X 	(IISII - 1) if a8(i) = O. 
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If S and S are two sequences, then we say that S is equivalent  

to S if as  = aS  / and pS  = psi. Equivalent sequences thus have 

exactly the same effect when executed. 

Our object in this section is to prove the following theorem. 

Theorem 3.2 	Given any D-sequence S, it is possible to construct 

aLDI  - sequence Si, equivalent to SI  such that 

IIS/II 4 min (IISII, k + PLA 1). 

In particular, if IISII = 3k (or 4, if k=2), then 

IIS/II 4 IISII/2 and D( = 31,0 (or 4D, if k = 2). 

In order to prove this theorem, it is necessary to investigate certain 

properties associated with as. Let Nk  denote the set {0, 1, 	k} 

and for convenience, extend as  to a function as:Nk  Nk  by defining 

a (0) = O. 

Suppose a is any mapping a:Nk  Nk  with 00:-.0 (we often 

omit parentheses for brevity). The mapping an:Nk  Nk  is defined 

iteratively for each n 0, by the equations 

a 1=1 O. . 	on+li  = (ani)  

for each i E`14'. A cycle of a is a subset C of Nk consisting 

of the integers 

. ai, a2i, 	, wt-1 1 

for some i e Nk and positive integer t, such that the conditions 
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(i) ati = 

and 	(ii) aai obi 	for 0 4 a < b < t, 

are satisfied. 

Since each cycle of a is uniquely determined by any one of 

its elements, we immediately have 

Lemma 3.3 If C and D are two cycles of a which 

have an element in common, then C = D. 

The tree set T of a cycle C is defined to be 

T = C 	C jcC 

where 	Tc(j) = fi: oni=j for some n > 0, 

and dmi C for all mil  0 4 m < nJ. 

A cycle and its tree set can be pictured as follows: 

Tc.( j) TcCk) 
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The relevant facts about tree sets are: 

Lemma 3.4 	(i). If i,j c C with i j, then the sets 

T (i) and Tc(j) are disjoint. 

(ii), If C and CI  are two disjoint cycles, 

then the sets T and T / are disjoint. 

(iii). If C and C I  are two cycles, possibly the 

same, then the sets Tc  and C/  are disjoint. 

Proof. (i). Suppose Tc(i) and Tc(j) have the element in in 

common. There therefore exists two positive integers r and s 

with arm = i and asm = j. If s < r, then by definition of Tc(i), 

it is impossible that j = osm is in C. Similarly, if r < s, 

then it is impossible that i s C. So if i,j are in C, we must have 

r = s and so i = j. 

(ii). Suppose Tc  and Te have the element in in common. 

There therefore exists positive r and s such that arm c C and-

sm c C . If r 4 s, then since C is a cycle, C contains 

So C and CI  are not disjoint. A similar argument holds for r s. 

Suppose Tc  and CI  have the element m in common. 

It follows that a"m is in both C and CI  for some n. By Lemma 

3.3 we mist have C = CI, but by definition of Tc, the sets Tc  

and C are disjoint. 
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Lemma 3.5 	For any a, the collection of sets 

{C, Tc: C is a cycle of a} partitions Nk, 

and so 
(IICII + IITc11) = k+1 

"Proof. 	It is immediate from Lemmas 3.3 and 3.4 that the collection 

is pairwise disjoint. For each i c Nk, consider the sequence of 

integers 

ai, 	ak+li. 

Since there are (k+2) integers in this sequence, all of which are in 

Nk, they cannot all be different. Suppose aai = abi, where a < b, 

and suppose further that a is the least integer for which this is true. 

. If a = 0, then i belongs to the cycle {i, ..., a b -1 1), while if 

a A 0, then i belongs to the tree set of the cycle generated by 

a. a 1. Thus the collection covers Nk. 

There is one important difference between an arbitrary a: Nk  Nk 

and one given by a sequence of instructions: 

Lemma 3.6 Suppose S is a finite sequence of instructions 

with associated mapping as. Either as(i) = i for 

all i c Nk (in which case S is said to be simple), 

or else there is at least one cycle of as  whose 

tree set is not empty. 

Proof. 	If S is not simple, then it must contain some instruction 

of.the form 

A.:= A.±d where iAj 

or 	Ai:= e. 
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The first such instruction destroys the original contents of Ai, 

and so i range (as). Therefore i cannot belong to any cycle 

of QS  and so it must belong to some tree set. 

We now show how to. construct from a given sequence S, a" 

sequence SI  equivalent to S, which satisfies the hypothesis of 
• 

Theorem 3.2. Suppose S is given and a and p are the 

associated functions. If S is simple (i.e. ai = i for each 1), then 

we can at once define S to be the sequence consisting of all the 

instructions of the form 

A.:= A. + p(i) where p(i) A 0 and 1 4 i 4 k, 

written in any order. Clearly IIS/11 4 min(IIS(I, k). Otherwise 

we determine the cycles and tree sets of a. By Lemma 3.6, at 

least one tree set is not empty, so suppose, without loss of generality 

that 1 c T
co 

and al c Co. For each cycle C and tree set Tc  we 

define instruction sequences S(C) and S(Tc) as determined below. 

Supposing the cycles of a are Co, Cl, 	Cn, the sequence SI  

is defined to be 

= S(Tc  ); S(C1) 	 S(T ); S(Cn  ): S(Tc  ); S(C0) 1 	Cn  0 

The sequences S(C) and S(Tc) are determined as follows: 

1. Sequence S(Tc). This sequence is a concatenation of subsequences 

K(m) for m e C, written in any order. Each subsequence K(m) 

serves to assign the correct final value to register A. for 

each j e Tc(m) (except for j=1, which is a special case). To 
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define K(m), we must order the elements (il, i2, 	in} of 

T(m) so that 

r = is  implies r < s. 

This is the familar end ordering of nodes in a rooted tree.  

(with root m) and can be carried out by a standard procedure (e.g. 

Knuth [0]). For 1 4 j 4 n, define I (j) to be the instruction 

AL:=A101-.+ p(i.)if 	al, > 0 

or 	 Ai.:= p(ii) 	if 	ai. = 0, 

and K(m) to be the sequence I(1); I(2); ...; I(n). Executing 

K(m) assigns the correct final values, since the end ordering 

condition means that the sequence I(1); I(2); ...; I(r-1) for 

1 4 r C n, does not alter the contents of register Aair. The 
special case of register Al  arises when 11%11 a 2. In 

implementing cycles of length greater than 1 the register Al  is 

going to be used as work space, so there is no point in assigning 

Al  its correct final value, when there is still Co  to come. 

Insuchacase,wedefinetheinstruction1(j)(where ij  =1) to 

be 

A1:= Aal. 

This means that to give Ai  its correct final value, p(1) must 

be added at a later stage. 
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2. Sequence S(C). If C is the special cycle 101, then no instructions 

are defined, i.e. S(C) = null. If C is a cycle {i} of length 1, 

then S(C) is 

Ai:= Ai  + p(i). 

If C = {i, 
ai  2 	at ."1 it s where t > 1, then S(C) is the sequence 

Al:= Ai  

A.:= Aai + p(i) 

Aai:= Aa2i + p(al) 

t-1. 	t-1. Aa 1:= Al  + p(a 1), 

provided C A Co. For Co  we have (supposing liColi 4 2))  

C
o 

= {al, a211 	atl} 

for some t > 1, and we define S(C0) to be 

Aal:= Aa21 + p(al) 

Aat1:= Al + p(a
t1) 

Al:: Al + p(1). 

(The instruction A .= A 	is omitted because it occurs in S(T ), and 
1' al 	 C' 0  
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the instruction A1:= Al 
+ p(1) is inserted at the end to assign the 

correct final value to A1. Actually, a single instruction could be 

saved: S(Pc  ) could assign Al  its correct final value, the last line 
0 

above omitted, and the penultimate one modified to read 

/ IN Act 1:= Al + pot  1.) - PIN 
 

but this may increase the bound on the constant in the assignment 

statements). 

This completes the rather lengthy description of S". By the fore-

going remarks, s'  is equivalent to S, and if S is a D-sequence, then 

St  is a Di - sequence where 	DI/  4 D x IISIL. In order to estimate 

the total length of S we note: 

(1) If IICII = 1, then 	= 1 if C 	{0}, 

=0 if C = {0}. 

(2) If IICII > 1, then IIS(C)II = IICII + 1. 

(3) Ils(Tc )11 = IITc11. 

Hence IIS'II = 	(IICII 	IITcli 	/1 	-1. 

C 	 IICII > 1 

From Leona 3.5, it follows that 

11S111 =k + 

IICII >1 

At this point, we can complete the proof of Theorem 3.2. 
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Proof of Theorem 3.2  

The length of S i  is maximised by taking an S which has as many 

cycles of length greater than 1 as possible. If k = 2m71-11  we can 

take at most m distinct cycles, each of length 2, so that 

+ 

	

k+ 11 	k+m=k+ [1k1271  --- 
	
-1. 

IICII > 1 	

1 

 

If k = 2m, we can take at most (m-1) distinct cycles of length 

greater than 1, since by Lemma 3.6, there is at least one element 

which does not belong to a cycle. Hence 

k+ 	1 
	

k+ (m-1) = k + 	1, 
IICII > 1 

and the proof is complete. 

To clarify the concepts involved, we work an example. Let S 

be the sequence 

Al:= A2 	A7:= A6+1 

Al:= A2+1 	A := A,+1 
( 

A2:= A 	A6:= A5+1 

A := A +1 
3 	3 	

A5:= A8  

A2:= A3+1 	A8:= A9+1 

A3:: A1-1 	A9:= A5  

A4:= A5+1 	A5:= A7-1 

A5:= A7 	A
55  
:= A5 
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We have IISII = 16 and k = 9. The functions a and p associated 

with S are given by the following table: 

0 1 2 3 4 5 6 7 8 9 

a 0 2 3 2 5 6 7 6 9 8 

p 1 2 0 1 0 1 2 1 0 

The cycles and tree sets. of a are: 

Co 
= {2, 3} 	To  = To  (2)v T0(3) 

T0(2) = {1} 

T0(3) = null 

C1 = {0} 	T1 = null 

C2  = {6,7} 	T2  = T2(6) u T2(7) 

T2(6) = (4, 51 

T2(7) = null 

C3  = {8,9} 	T
3 

= null. 
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The reduced sequence S1  is: 

A4:= A5+1 

A5:= A6 

k(6), the endordering of T2(6) 
being f4, 5} 

A1:= A6 

A6:= A7+1 

A7:= A1+2 

S(C2), using Al  as work space. 

Al:: A8  

A8:= A9+1 

A9:= Al 

A1:= A2 

S(C.7), ditto 

K(2). Since Ileoll 	2, this is 

treated specially. 

A2:= A3+2 

A3:= Al 

A1 A1+1 

S(C0), the special cycle 
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§2. Halving the number of assigprents  

In this section, we use the result of Section 1 to halve the 

number of assignments in a program P. It is convenient to first 

transform P into an equivalent program which stores only non-

negative integers in its work registers. Although this preliminary 

transformation is not strictly necessary, it will simplify the 

details of a subsequent transformation. The second translation of 

Section 1 of Chapter 2 gives the details. It is to be noted that 

thetranslatedprogrmlIPdoesnotusethetest, and, more 	yea 

importantly, api = ap  (although bp/ will be greater than bp). From 

now on, each program will only store non-negative integers in its 

work registers. 

Lemma. 3.7 	Given any program P, we can find an equivalent 

program R, which is on-line if P is, such that 

aR  t ap/2. 

On the other hand, R makes use of more general 

instructions than P. In fact, if k is the 

maximum address used by P, then R is defined 

over the instruction set 

A.:= A.-1d 
	

A.:= A. -d 1 	 1 

e 	A. = e? 

where 1 4 io  j C k, 0 4 d 4 3k and 0 4 e < 3k 
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Proof. 

Informally, R works by simulating P in a step by step manner, 

except that it delays the execution of assignments. Each assignment 

executed by P is saved in the label structure of R until a sequence 

S of sufficient length (i.e. 3k) has been built up to enable an equi-

valent sequence Sd, defined over the extended instruction set and 

with IIS#11 5 IIS11/2, to be constructed. Only at this point does R 

execute S . Provided (MI = 3k, the existence of such an S is 

guaranteed by Theorem 3.2. Moreover, if S is a 1-sequence (i.e. 

a sequence of 1
0 
 assignments), then S is a 3k-sequence. Since S 

never makes a register negative, we have e O. 

Formally, the compiler A1'  for which A1  (P) = R, produces labels 

(apart from start) of the form 

(S, 

where m c L and S is a sequence of assignments of length at most 

K = 3k-1. 

To clarify what Al  does, we first define the mapping 61  

under which Al satisfies the conditions of the compiler theorem. 

61  (start, x, y, al, ...,.ak) = (start, x, y, al, 	ak) 

61 ((S,  mO, x, y, a1, 	ak) = 

(m, x, y, a6(1)+ p(1), 	ao(k)i- pf,k)), 

where a and P are the functions associated with the sequence S 
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and are defined in Section 1. Note that the definition of Al  deperids 

on k4 and consequently is only applicable to programs which use 

registers Al, 	Ak. 

The definition of Al  is: 

1. Ai  [Start: 4- i3 = (start: 4- (null, m)). 

2. (For work register assignments F): 

1] 	{(S, m): -' (S;F,m()) u 
IISII < K 

{(S, m): Si  + 	m()), 

fish = K  

where S
/ 
 is the sequence equivalent to S; F, with 

11s111 5 I1s;F11/2. 

	

Al  = 0 m, 	= 	{(S„m0: Aas(i) = -ps(i) 3* Al 5m: 
Ps(i):0 

-+ (S, e) p  (S, m )) V 

U 	m): (s, e)}, 
P (i) > 0 

where the union is taken over all S with IISII 4 K, such 

that the subsidiary condition holds. 
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4. A 	= 	IQ , for all other (i.e. input and 1 	I ISI I4K 	" 

output) instructions I. (Here the current sequence S is 

just carried along in the labels). 

The verific.gion that Al  under 6 satisfies the conditions of 

the compiler theorem will not be given. The first four conditions 

are immediate, and the fifth follows from Theorem 3.2. As 

IISII 4 K = 3k-1, we have Ips(i)1 4 K < 3k for all i, so that 

Ai  produces tests Ai  = e with 0 g e < 3k. Hence the conclusions 

can be verified. 

§3. Conversion to an ID-program 

Lemma 3.8 	Given any program R satisfying the conditions of 

Lemma 3.7, we can find an equivalent 10-program Q, 

which is on-line if R is, such that acil  4 aR. 

Proof. 

Informally, Q works by simulating R in a step by step manner, 

1 except that Q stores only R- (where K = 3k) of the contents of 
the registers. The remainders of division are stored in the label 

. structure of Q. Formally, the step by step compiler A2, for which 

A2(R) = Q, produces labels (apart from start) of the form 

(a, m) 

where m is arbitrary and a = (al, a2, 	ak) where 0 4 ai  < K. 

The mapping 62  under which A2  is a compiler is: 
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62(start, x, y, al, 	ak) = (start, x, y, al, ..., ak) 

620a,NO, xl y,  al, 0.., 	= (31, X, 5r, 	04.*, 

Kakluk) - 

The formal definition of A2 is: 

I. A2  [start: 4. m] = {start: 4. (0, m)} 

2. A [In: A.3.: 2  

where d(a,) 

A.+d rra = U {(a,m): A. :=A.+d(a. a  

=[
a.l+d 
-Q----] a = ar  for r i,. and K 	r  

(a/ 	)1, 

r a. = L+d, Kj. Since -K d K and 0 4 a. < K, we have 

-1 4 d(ai ) 4 1, so the translated instruction is in It) . 

3. /12  [m: is = e in] 	{(a,m): Ai: = 0 4- (a l  An) 

where ar  = ar  for r i and a . = e. Since 0 e < K, 

this instruction also translates correctly. 

4. A2  Era: A.= e 	m"] = {(a m): A. = 0 4. (a, ml ), (a,re )I 
ai=e 

{(a,m): 	(a,m11)). 

cti°e  

5. A2  [I]= [jIa, for input and output instructions I. 
a 
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The verification that A2 under 6_ satisfies the conditions of 

the compiler theorem is left to the conscientious reader. The 

first four conditions are immediate, and the fifth is straightforward 

but somewhat tedious. The conditions of the lemma can be verified 

from the definition of A2. At this point, we have succeeded in 

converting an arbitrary program P into an equivalent program Q 

for which aQ  4 ap/2. Moreover, Q only stores non-negative integers 

in the work registers, and consequently makes no use of the test 

A. a O. In the next section, we use these facts to complete the 

proof of the speed up theorem. 

Concluding the proof, 

In this section we prove: 

Lemma 3.9 Given any program P which uses only the test 

Ai  = 0, we can find an equivalent program Q, 

which is on-line if P is, such that 

tQ  4 2ap. 

From this result, the speed up theorem follows easily. Suppose P 

is an arbitrary program, and the translations of Sections 2 and 3 

are applied twice to P, giving a program Q for which aQ  4 ap/4. 

Lemma 3.9 then guarantees that a program R can be found so that 

tR  C 2all  4 ap/2 4 tp/2, 

and so speed up is assured. 
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Proof of Lemma 3.9 

Informally, P is modified to ensure that, in every execution 

ofP,thereisatmostonetestA.=0 executed between any two 

executions of assignments to Ai. Because the input convention 

initialises each A. to zero, we can further arrange that no test 

Ai  = 0 occurs before the first assignment to Ai. If Q denotes the 

resulting program, then clearly bQ  4 act,  = ap, from which the conclusion 

follows. 

More formally, we describe the step by step compiler 13, for 

which A
o
(P) = Q. This compiler is the composition of compilers 

(i) 	 (i) A 	where each Ao
(i) reduces just the tests involving A., A 

0 ' 

	

	 1  0 
produces instructions with labels (apart from start) of the form 

(a,m), 

where me L and a is either 0, 1 or 2. The mapping 6 which 

guarantees that Ao
(i) is a compiler, according to the compiler 

theorem, is 

60  (start, x, y, a1,  a2, ...) = (start, x, y, al, a2  .) 

and 
	

d
o 
((x0m), x, y, a1,  a2, ...) = (m, x, y, al, a2, 

provided that, either a = 2 or (a = 1 and ai  # 0) or (a = 0 and 

a. = 0), 

and
0 
 is undefined otherwise. 

A0(1)  i The definition of A 	is: 
0 
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( i) 1. A 	start + 	= {start + (0,m)} , 0 

2. A (i)  C m:F + 	= U{(a,m): F+ (e'en, 0 	 a 

	

where 	 and 

	

ere 	= 2 if F is an assignment to A., 

al  = a otherwise, 

3. c)(i) 	=. 0 + mf , m9 	{(2,m): Ai=0 + (0,m/), (1, e) 

(1, in): + (1,m") 

(0, m): 	(0,e) ) 

(i) r L 11. AO 	t 	ml = U{(a,m): t 	(a, mi ), (alm")) 
a 

for all other tests. 

( i) It is left to the reader to verify that A0  is indeed a compiler 

with the desired properties. It is clear from the last line of 
( i) the definition, that A 	preserves on-line programs. 0 

This completes the proof of the speed up theorem. 



X:=X-1 

A:=A+1 

B:=A+1 
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§5. A worked example  

We speed up the program P by a factor of two, where P = 

YES 
X = 0 
	 HALT 

YES 

A = 0 

v NO 

A:=A-1 

Y:=Y+1 

A:=B 
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We can write P as the following set of labelled instructions: 

1: X=0+0,2 
	5: AD+8,6 

2: X: X1+3 
	6: A:=A-1 + 7 

3: A: =A+1 4- 4 
	

7: Y:=Y+1 + 5 

4: B:=A+1 + 5 
	

8: A:=8 1. 

	

It is easy to verify that 
	

f (x) = x2, 

	

anti 	t (x) = 2x2 + 4x, for all x. 

Moreover, P stores only non-negative integers in A and B. The 

first translation to be applied is Al  (Section 2). Since k = 2, 

the special case of Theorem 3.2 shows that we need only build 

up sequences of length 4. To denote sequences, we use the code 

n 	null sequence 

a 	A:=A+1 

b 	B:=A+1 

c A :=A-1 

d 	A:=13 

The first two instructions of A1  (P) are 

(n,1): X = 0 + (n,0), (n,2) 

(n,2): X -7. 0 -I- (n,3), 

since no assignments have yet to be remembered. 
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The next two are 

(n,3): + (a,11) 

	

(a,11): 	(ab15), 

and the next is 

	

(ab,5): 	(ab,6), 

since it can be determined from the remembered sequence ab, that A 

cannot be zero at this point. Continuing, we construct 

(ab,6): (abc,7) 

(abc,7): Y:=Y+1 (abc,5) 

(abc,5): A=0 .+ (abc,8), (abc,6) 

The effect of the sequence abc is to leave A unchanged so the 

test A=0 must be performed. Since the sequence abcc is equivalent 

to B:= A+2; A:=A-1, the next instructions are 

(abc,6): B:=A+2 11  

1 	• : A:=A-1 (n,7) 

(n,7): Y:=Y+1 (n,5). 

where I, is some new label. Continuing in this fashion, the 

rest of A1  (P) is found to be 
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(abc ,8) 	B:=A+2 + £2  

£2: A:=B (n,l) 

(n,5): A=0 4 (n,8),(n,6) 

(n,6): (C,7) 

(e,7): Y:=Y+1 	(0,5) 

(c,5): A=1 4- (c,8), (c,6) 

(c,6): A:=A-2 	(n,7) 

(c,8): (cd,1) 

(cd,l) : X=0 (cd,O) (cd,2) 

(cd,2): X:=X-1 	(cd,3) 

(cd,3): (cda,4) 

(cda,4): A:=B+1 £3 
3B:-B+2 (n,5) 

(n,8): (d,1) 

(d,1): X=0 	(d,0), (d,2) 

(d,2): X:=X-1 	(d,3) 

(d,3): (da,4) 

(da,4): (dab,5) 

(dab,5): (dab,6) 

(dab,6): A:=B £4  

£4 : B =A+1 (n,7) 

We have cheated a bit, in instruction (c16), replacing the sequence 

cc by the single instruction A:=A-2, to save an instruction or two. 

The unconditional junps can now be eliminated, leaving the following 

21 instructions for R = 1(P): 

1: X=0 0,2 

2: X:=X-1 + 3 

3: Y:=Y+1 + 4 

4: A=0 + 12,5 

5: B:=A+2 + 6 

6: A:=A-1 4- 7 

7: Y:=Y+1 4. 8 

8: A=0 + 14,9 

9: Y:=Y+1 4. 10 

10: A=1 + 18,11 

11: A:=A-2 + 7  

12: B:=A+2 13 

13: A:=B + 1 

14: X=0 -+ 0,15 

15: X:=X-1 4. 16 

16: A:=B 17 

17: B:=A+1 7 

18: Xr.0 4- 0,19 

19: X:=X-1 4- 20 

20: A:=B+1 + 21 

21: B:=B+2 + 8 
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The next translation to be applied is A2  (section 3). Here, we can 

take K=2, and obtain, for Q = A2(R); 

(00,1): X=0 4 (00,0), (00,2) 

(00,2): X:=X-1 4- (00,3) 

(00,3): Y:=Y+1 4 (00,4) 

(00,4) : A=0 4- (00,12) , (00,5) 

(00,5): B:=A+1 4- (00,6) 

(00,6): A:=A-1 4 (10,7) 

(10,7): Y:=Y+1 4- (10,8) 

(10,8): 4 (10,9) 

(10,9): Y:=Y+1 + (10,10) 

(10,10): A=0 4- (10,18), (10,11) 

(10,11): A:=A-I 4- (10,7) 

(00,12): B:=A+1 -+ (00,13) 

(00,13): A:=B 4- (00,1) 

(10,18): X=0 4- (10,0), (10,19) 

(10,19): X: X-1 4 (10,20) 

(10,20): A:=B 4- (10,21) 

(10,21): B:=B+1 4- (10,8) 

At this point, we know fQ  = fp and aQ  4 ap/2. Actually, Q has 

a running time given by 

tQ(x) = x2 + 2x - I 	for x 2 

= 0 	 for x = 0, 
= 3 	for x = 1, 

so that tQ  4 tP  /2 already, and so in this case Lemma 3.9 does 

not have to be invoked. The flowchart version of Q is 



A:=A-1 

0 
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STARE' 

	 YEas 
X = 0 

X:=X-1 

Y:=Y+1 

A = 0 

NO 

YES 

B:=A+1 

A:=A-1 

B:=A+1 

A:=B 

Y:=Y+1 

Y:=Y+1 

A= 0  

YES 

( X=0 

YES 

NO 

X:=X-1 

A:=B 

B:=B+1 
■ 6111 

HALT 
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§6. Further results and discussion  

It immediately follows, by using Theorem 3.1 repeatedly, that 

given an arbitrary integer c and program P, we can find a 

program Q, equivalent to P and on-line if P is, such that. 

tQ 4 tp/c. Hence I0  - programs can be speeded up by an arbitrary 

linear factor. 

It is worth emphasising that the speed-up property for an 

instruction set I asserts that given any I - program P, an I - program 

Q can be found such that 

(i) Q is on-line if P is, 

(ii) Q is equivalent to P, 

(iii) t
Q 
4 t

P
/2. 

Condition (i) is important in that, only by assuming it necessary, 

can we prove that if Io  is augmented with addition and subtraction, 

then the resulting instruction set does not possess the speed up 

property (Chapter 5). Similarly, if I0  is augmented with instructions 

to address work registers indirectly. We do not know whether 

condition (i) can be dropped. That is, if condition (i) is omitted 

and the weakened version called the weak speed up property, then we 

do not know whether, for an arbitrary instruction set I, weak speed 

up for I implies speed up for I. A similar ignorance exists for 

exact speed up. An instruction set I has the exact speed up property  

if, given an integer c > 0 and an I-program P, an I - program Q, 
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equivalent to P, can be found such that 

(i) Q is on-line if P is, 

and 	(ii) tQ  = 

Does the speed up property for I imply exact speed up? We can 

show that I0  possesses exact speed up. This can probably be proved 

by modifying the translations, but we give an alternative proof, 

based on the fact (which we do not formally verify), that the given 

translations actually prove the following stronger result: 

Corollary 3.10 Given an I0  - program P, we can find an I0  - program 

Q, which is equivalent, to P and on-line if P is, 

such that 

At
Q 
4 (AtP  )/2 2  

(where Af(x) = f(x) - f(x-1) if x > 0, and 

Af(0) = f(0)). 

This fact is used in case (ii) of the following theorem. The 

proof technique, which also appears again in Chapter 4, is similar 

to that used in Fischer [15] on an analogous result for Turing 

machines. 

Theorem 3.11 Given any program P and integer c, we can find 

a program Q, equivalent to P and on-line if P 

is, such that 	
tQ 	[c  
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Proof. 	Let t = 	There are two cases to be considered 

depending on whether P is on-line or not. 

(i) P is not on-line. By suppressing the output instructions 

of P, inserting appropriate new oneseter the work register instruc-

tions and using speed-up, we can find a program R such that 

fR  = t and tR 4 tp/6c. 

Also by speed up a program S can be found such that 

fS  = fP  and tS 4 tp/6c. 

Since 
; 	

33' ft 	it follows that 

	

-""*"' 	i 

is 4[3:1' 
	 (1) 

with equality only when the right hand side is zero. The final 

program Q is defined from modified versions of S and R, 

described as follows: 

(a) program e is formed from R by replacing the output 

instructions of R by instructions of the form 

A:=A+1, where A is a register not appearing in S/  

or le, so that, through these instructions, R/  

computes [10 in A. In addition, R remembers in 

its label structure whether an instruction A:=A+l is 

ever executed, and arranges to waste [t, 3] steps by 

obeying some dummy instruction. Next, each original 

work register instruction of R has inserted after it, 
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an instruction A:=A-1. Thus R computes a] - tR  in 

register A, and 

fR,  = 0 and tR/ = 2tR  + 	+ 

(b) Program S
i 
 is formed from S by inserting an instruction 

A:=A-1 after each work register instruction of S. Thus 

f / = fs and t
3/ = 2ts. 

The final program Q is formed by following the program 

Ri  + Si(given by the addition theorem) by the code 

which is only executed when R indicates that at 

least one A:-A+1 instruction has been obeyed. Since 

the effect of Ri  + Si  is to leave 	- tR  - is  

in register A, the running time of Q is given by 



 

+ [to] + 20] - tR  - 
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tQ  = 2tR  + 2ts  .+ 

 

 

by inequality (1). Thus tQ  = t and as fiz  = fs, + fRi = fp, 

the theorem is proved in this case. Note that the construction 

never yields an on-line program Q, so that a slightly different 

construction has to be given in the case that P is on-line. 

(ii) P is on-line. Using the stronger conclusion of Corollary 

3.10 we can find, in a similar fashion to case (1), on-line programs 

R and S such that 

fR = t and fS  = f P 

and 	AtR  + Ats  [3] 

with equality holding only when the right hand side is zero. The 

programs R and Si  are formed as in case (i), except that R 

arranges to waste Del], steps before the execution of each input 

test storing only OD Q is also the same as in case (i), except 

that the code which reduces A to zero is inserted before each 

input test of R1  + S/. Program Q is therefore on-line, and 

since A is reduced to zero before each input test, we have 

At l 	[et 	At 1 AtQ  = R + 2AtP 
r  + 	+ 	 ,2.1 + 2q_A-  11  - AtR - AtP). 3  

Thus t
Q 

= t and as Q is equivalent to P and on-line, the theorem 

is proved. 

In the next chapter, we show that linear speed up is the best 

that can be obtained. 
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CHAPTER FOUR 

THE HONEST FUNCTIONS 

Throughout this chapter, except where otherwise stated, the 

term program denotes a program defined over some fixed, but arbitrary 

instruction set I; thus all concepts are defined relative to I. The 

object of the chapter is to investigate the class of honest fUncticas. 

These functions have the following definition: 

(1) A program P is said to be honest if t 	f P P.  

(2) A function f is honest if there is an honest program 

which computes f. 

(3) A function f is superhonest if there is an on-line 

honest program which computes f. 

The main reason behind the introduction of the honest functions, is 

that it is exactly the concept we need to show that, no matter what 

instruction set I is specified, linear speed-up is the best possible 

(Section 1). However, having introduced this notion, a more funda-

mental fact emerges (Section 2), which we now outline. 

For any function t, let T[t] denote that class of functions 

which can be computed by programs with a running time bounded by ct, 

for some constant c. More briefly, 

= tfp:tp 2e t). 
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Further, let R, the class of real-time computable functions, be 

the set 

R =:t (X) 4 x} g p ■ x} . 

The main theoi.em of Section 2 then says: there is a simple 2-place 

functional F, such that if t is a strictly increasing superhonest 

function, then 

f e TEA if and only if F(f,t) e R . 

The import of this result is that to a large extent (more precisely, 

to the extent that the superhonest functions form a sufficiently 

embracing class of fUn4tions), the study of time limited computation 

on register machines can be reduced to the study of real-time 

computation. In order to show that a given function f is or is not 

computable within time t, it is sufficient to show that F(f,t) is 

or is not real-time computable. This remark motivates Chapter 5, 

wherein methods, more subtle than crude size arguments, are developed 

for showing that functions are not real-time computable. 

Further sections clarify the relationship between the honest 

and superhonest functions and the running times of programs (Section 3), 

and explore some of the closure properties of these classes (Sections 

4 and 5). 

§1. Honesty and linear speed-up  

In this section, we show that no instruction set I can have 

a better than linear speed-up property. 
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Suppose I does possess such a speed-up. This means, in 

particular, that given any program P, one can find an equivalent 

program Q for which 

tQ4 ti,. 

Let P be an honest program which computes a non-ultimately linear 

function (the existence of such a program is guaranteed by the fact 

that I always contains I ), and let Q be the speeded up version. 

Since f- f
P2  we have x..43 t

Q(x) by the minimal growth rate theorem. 

But now, 

	

f
Q 

t
Q 
	by the size theorem, 

	

4 tP 
	by hypothesis, 

since P is honest, 

	

= fQ 	since Q is equivalent to P. 

Thus f
Q
4 fQ, which is impossible; hence Q cannot exist. 

The same idea can be stated differently. 

Theorem 44/ Suppose f is an unbounded honest function, and g 

is arbitrary. Then 

T[f] T{g3 if and only if f d g. 

The proof makes use of the following lemma, which is also used 

in subsequent sections. 
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Lemma 4.2 If f is honest and f(x) 4 x, then f is 

ultimately periodic. 

Proof. By definition, there is a program P computing f for 

which tp  a f. If f(x) 4 x, then tp(x) 4 x, and so f is 

ultimately linear, by the minimal growth rate theorem. But since 

f(x) 4 x, f must in fact be ultimately periodic. 

Proof of Theorem  4.1 

The fact that f4 g implies T[f] G Tto is obvious by the 

transitive property of 4 . For necessity, suppose g 4 f. We 

show that there is some function h c T[f] - T[4. 

Case 1. x d g(x). Clearly, f c T[f] since f is honest. If 

f c T[01  then I'll g by the size theorem and the fact that 

xt1 g(x). This contradicts the assumption that g 4 f. 

Case 2. g(x) 4 x. In this case, TIg] is just the class of 

ultimately linear functions. The function a, where 

a(x) = (x even + x, 0) 

is not therefore in TE;g1, The function a can be computed by a 

I - program P (since I contains I0), for which 

tp(x).4 x. 

Now, since f is unbounded, it is not ultimately periodic, and 

so xd f(x) by Lemma 4.1. Hence a e 
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Corollary 4.3 	If f and g are unbounded honest functions, then 

T[f] = T[g] if and only if f ti g. 

Proof. Immediate from Theorem 4.1. 

§2. The real-tine characterisation 

In order to prove the main result of this section, we need 

to consider certain properties of the output function Op  of an 

on-line program P. It will be recalled from Section 2.7 that 

(x) = total number of work register instructions 

executed by P, on any sufficiently large 

input, prior to the execution of the (x+1)st 

output instruction, 

= undefined, if no such output occurs. 

If P is on-line and fp  is unbounded, then OP  is a well defined 

total function. (If P is not on-line, then Op  is not well 

defined, since the definition depends on the particular input chosen). 

Theorem 4.4 If 'f is unbounded and superhonest, then there is 

an on-line program P computing f, for which 

Op(x) d x. 

Proof. There are two cases to be considered. First, if f is 

ultimately linear, then there is an on-line program P computing 

f for which 	(x) = 0 for all x, and in this case the theorem 

follows at once. Accordingly, we suppose for the rest of the proof, 
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that f is not ultimately linear. 

Since f is superhonest, we can assume, by the almost 

everywhere theorem and the composition theorem, that there is an 

on-line program Q computing cf, for which 

tQ(x).$ cf(x) for all x, 

where c is some integer greater than zero. 

Below, we construct a program R, for which 

fR(x) = cf(x) and OR(x) 0 x. 

R can be converted into the final program P by permitting only 

one out of every c outputs to be given. We have 

O(x) = OR(cx) d x, 

and 	4(x) = f(x)„ 

giving the desired result. 

The program R is a modified version of Q, in which 

(supposing A and B are two registers not appearing in Q): 

(1) after each work register instruction of Q is 

inserted the code: 
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(ii) each (original) output instruction of Q is 

replaced by the sequence 
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First, it is immediate that R is an on-line program if Q is. 

To show that R has the desired properties, we compare the compu-

tation sequences of R and Q on some sufficiently large input, 

and examine the contents of the registers A, B and Y at those points 

in the computation sequence of R which correspond to points in 

the computation sequence of Q immediately prior to an output or 

work register instruction. We refer to the nth such point as point  

n, allowing point 0 to designate the very start of the computations. 

Suppose that at point n, to  work register instructions of R 

have been executed, and an, bn, yn  denote the contents of A, B, and 

Y. At the corresponding point of Q, suppose t work register 

instructions have been executed, and y is the contents of Y. 

It is immediate that 

to  = 3f +. 	(1)  

Moreover, we claim: 

(i) if y t, then an  = y-t, bn  = 0, yn  = y 

(ii) if y < t, then an  = 0, bn  = t-y, yn  = t. 

The proof is by induction. (i) and (ii) trivially hold for n=0, 

since all registers are zero at the start. Suppose (i) and (ii) 

hold at point n. Between point n and point (n+1) the computation 

sequence of Q contains exactly one output or work register 

instruction. These two possibilities are examined separately. 
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Let yl and tl  be y and t for point (n+1). 

(a) an output instruction. Here, yl  = y+1 and t/= t. 

(i) if y t, then y/ > t/. By inductive assumption, 

bn  = 0, and so by definition of R: 

	

arra 
	+1 = y' - t/  

bn+1 = 0 

	

Yn+1 	+ 1  = Y/' 

(ii) if y < t, then y/  tl. By assumption bn  # 0 and so: 

an+1 = 

bn+1 =t-y-l= t/  

Yn+1 = t  = t'' 

(b) a work-register instruction. Here y' =y and t/  = t+1. 

(i) if y > t, then 	V. Since an  # 0: 

an+1 = Y t  - 1  = Y1 ti  

bn+1 = 0 

Yn+1 

(ii) if y 4 t, then y' < t/. Since an  = 0: 

an+1 = 

bn+1 =b-y+ 1 =t1 y1  

yn+1 = t + 1 = t . 
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The induction step is complete. It immediately follows that 

fR(x) = max (tQ(x), foll(x)) = cf (x) 

for all x. 

By an argument similar to that used in the size theorem, we 

also have 

	

y 4 k(l+t), 	 (2) 

since fQ  is not ultimately linear. Here, k is the number of 

distinct output instructions in Q. From (1) and (2) we have 

to 4 (3 + 2k)t + 2k, 

whence 

Yn 	3+2 k 

since yn = max(y,t). By definition of 0R' we have 

0R(yn-1) 4 tn, 

t -2k 
whence 
	

eR ( 	3+2k 	1) to 1 
	(3) 

since @R is monotonic. 

Finally, let x be arbitrary. By choosing a sufficiently 

large input, we can find an n, such that 

(2k+3)x 4 to  - (4k+3) < (2k+3)x + 3, 

to-2k 



since to < tn+1 4 tn+3. Hence, using (3), 

8R(x) 4 t v  x2 

and the theorem is proved. 

We can now prove 

Theorem 4.5 	An unbounded function f is superhonest if and only 

if f* is on-line real time computable. 

Proof. 

Suppose f is superhonest, so that by Theorem 4.4, there is an 

on-line program P computing f, for which Op(x) a x for all x. 

By the inversion theorem of Section 2.7, P* computes f* with a 

running time given by 

P*(x) = eP 	` (x) x. 

Thus f* is on-line real time computable. Conversely, suppose P 

is an on-line program computing f* and 

tP  (x) 4 x. 

Using the inversion theorem again, P* computes f** = f, and 

tp*(x) 4 tP •fP* 	` 4 (X) 	f*(X) = f(X), P 

whence f is superhonest. 
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The main characterisation can now be stated. 

Theorem 4.6 Let t be a strictly increasing superhonest 

function, and p be the function p(x) = x-1. 

Then 

(i) f c T[t] if and only if f.p.t* 

(ii) f c ToNN if and only if f.p.t* a RoN. 

(where TONEt] = {fp:tp  d  t, P on-line} etc.) 

Proof. (a) necessity. Suppose P is a program for which 

f = f and tP  4 t 
 • (1) 

Since p is ultimately linear, we can find an on-line Q for 

which 

f = p and t = 0. 	(2) 

Since t is superhonest and unbounded, we can find an on-line 

program R, by Theorem 4.5, such that 

fR  = t* and tR(x) ,.x. 
	( 3 ) 

By the composition theorem of Section 2.6, the progpamP.Q-R 

which is 'on-line if P is, computes f.p.t* with a running time 

tP.Q.R (x) = tR(x) + tQpfR(x) + tP.1Q-fR(x) 

x + .p-t*(x), 

using (1), (2) and (3). By definition of t*, we have 



t(t*(X)-1) 4 x for all x a t(0), and so 

t 	(x) P•Q•R 	■ 4 x.  

(b) Sufficiency  

Let P be a program such that 

fp  = 	p•t* and tp  (x) 4 x. 

Since t is superhonest, we can find an on-line Q such that 

fQ  = t and tQ  4 t. 	 (5) 

By composition, the program P-Q which is on-line if P is,, computes 

f-p-t*-t with a running time 

tp41  = tQ  + tp-fQ a t, 

using (4) and (5). However, if t is strictly increasing, 

t*(t(x)) = x+1, 

i.e. p•t*.t(x) = x. Thus P-Q computes f, and the theorem 

is proved. 

It is worth noting that the statement of Theorem 4.6 cannot be 

simplified to read: 

4o 



f e TE if and only if f-t* e R, 

as this assertion is false. Consider f(x) = t(x) = x: It can 

be shown (Example 4.17) that the factorial function is IQ superhonest 

so that f e T [t]. However, f-f*(x!) = (x+1)!, which shows that 

f.f*(x) x, so by the size theorem, f'f* cannot be real time 

computable. 

Corollary 4.7 Suppose t is strictly increasing and superhonest. 

Then 

f e TON  [t] if and only if t.f* is 

superhonest.. 

Proof. 	Immediate, from Theorems 4.5 and 4.6, since by Lemma 2.10 

(t.f*)* = f**.p-t* = f.p-t . 

§3. Honesty and running time  

In this section, we examine the relationship between the 

honest functions and the running tines of programs. It turns out 

that for I0  - programs these classes are identical. The following 

theorem is the register machine analogue to the main result of 

Fischer [15]. 
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Theorem 4.8 
	

Let f be an arbitrary honest function and P 

a program for which tp  4 f. Then there is a 

program Q equivalent to P for which tQ  = of 

for some constant c. 

Proof. 	The proof is very similar to that of Theorem 3.11. 

Suppose R is an honest program which computes f, i.e. tR  44 f. 

In fact, using the almost everywhere theorem, we can assume that 

tR(x) + ti,(X) 4 kf(x) for all x, 

for some positive integer k, with equality holding only when f(x) = 0. 

We modify these programs as follows: 

(i) program RI  is formed from R by replacing every 

output instruction of R, by a sequence of k instructions 

of the form A:=A+1, where A is some register not 

appearing in P and R. 

Moreover, R/  remembers in its label structure whether such a 

sequence is ever executed. In addition, an instruction A:= A-1 

is inserted after each original work register instruction of R. 

Thus R/  computes kf - tR  in register A, and has 

fRi = 0 and t
R
/ = 2t

R 
+ kf. 

(ii) Program P1  is formed from P by inserting an 

instruction A:=A-1 after each work register instruction. 
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Thus 

fp/ = fp  and t,i = 2tp. 

The final program Q is formed by following the program 

PI  + RI  by the code 

which is only executed when PS! indicates that at least one 

sequence of A:= A+1 instructions has been executed. Since the 

effect of P + R is to leave kf - tR - tP in register A, the 

running time of Q is given by 

= 2tR  + kf + 2tp  + 2(kf-tR-tp), 

since, by supposition, kf a tR  + tp. Thus tQ  = 3kf and fefp, 

proving the theorem. 

Corollary 4.9 If f is Icrhonest, then f is the running 

time of some Icrprogram. 

Proof. 	For I -programs, we can speed up the Q of Theorem 4.8 
1 by exactly — . 



Lemma 4.10 The running time of every (on-line) program is honest 

(superhonest). 

Proof. 	Let P be an arbitrary program. Delete all output 

instructions from P and insert new ones after each work register 

instruction. The resulting program Q has 

fmQ  = t
P and tQ 

= t
PI 

showing that tp  is honest. If P is on-line, Q will be also, 

and so tP is superhonest. 

Corollary 4.11 	A function is I0  -honest if and only if it is 

the running time of some io  program. 

The proof of Theorem 4.8 does not carry over in the case of on-line 

programs and superhonest fUnctions. 

Lemma 4.12 	The function h, where h(x) = [4]2, is superhonest, 

but for no integer c is ch the running time of 

any on-line program. 

Proof. 

We have h(x) = S(S*(x)-1), where S(x) = x2. Since S is 

superhonest (Example 4.15), h is on-line real time computable. 

Hence h is superhonest, as x 0 h(x). 

10 

Suppose that P is an on-line program with tp  = oh, for 

11 
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some integer c. Suppose P has k distinct input tests, and 

consider the computation of P with an input of the fornix2+2x, 

where 2x > k. Since P is on-line and 

t (x2+2x) - t (x) = ch(x2+2x) - ch(x2) = 0, 

the last 2x input tests of this computation were executed on the 

same contents of the work registers, and so sorry input test was 

obeyed twice with the same work register configuration. This means 

that for any input y 3 x2+2x, tp(y) = tp(x2) and so h is bounded, 

which is clearly false. 

For on-line programs, the best result is: 

Theorem 4.13 Suppose Af is honest and P is an on-line 

program for which Atp$ Af.- Then there is 

an on-line program Q, equivalent to P, such 

that tQ  = cf for some constant c. (For lib -programs 

we can take c=1). 

Proof. 	Once we prove that if Af is honest, then there is 

an on-line program R computing f such that AtR e Af, the 

rest of the proof follows along the same lines as Theorem 3.11. 

There are two cases to be considered 

(1) Af(x) 4 x. In this case Af must be ultimately 

periodic by Lemma 4.2, and so f is (monotone) ultimately linear. 

Here, we can take AtR  = 0. 
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(2) x 4 Af(x). Suppose S is an honest program which 

conputes Af. Modify S to read its input from a new register 

A, and let R be the program 

Y:=Y+f(0) 

X = 0 
YES 

HALT 

X:=X-1 
B:=B+1 
A:=B 

where B is another register not appearing in Q. R is an on-line 

program which conputes f, and 

AtR(x) = 2 + kx + t5(x) for some k 

1 Af(x), 

since S is honest and x P Af(x). 

Corollary 4.14 If tf is honest, then f is superhonest. 

Example 4.15 Let S(x) = x2. Since AS(x) = (x=0 + 0, 2x-1), 
• 

AS is ultimately linear and so honest. Thus S is superhonest. 

Restated, the last corollary says that if f is honest, 

then Ef is superhonest. We end this section by showing that 

if f is honest, then IIf is superhonest, where 
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(11f)(x) = f(0) x f(1) x 	x f(x). 

Theorem 4.16 If f is honest and f > 0, then 

Ilf is superhonest. 

Proof. There are two cases to be considered. 

(i) f(x) 4 x. In this case f is ultimately periodic. 

Suppose f(x+c) = f(x) for x x0. 

It follows that for x x0, 

f(x) = f(xo  + 	- x0,0), 

whence 
x 

- x+c 	
4.c 

 

II 	f(y) = II 	f(y) = d 	say. 
y=x+1 	y=x0+1 

Thus, if Hf = h, then 

h(x+c) = dh(x) for x a xo 

and so 
All(x+c+1) = dAh(x+1) for x xo. 

It follows from this that the following on-line program computes h: 
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Y: =Y+f (0) 
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When the instructions involving multiplication of A by a constant 

are replaced by Io  - subprograms, it is possible to verify that 

the resulting program P has a running time tel h, whence h is 

superhonest. The details are omitted. 

(ii) x 41f(x). In this case, suppose P is a program which 

computes f honestly. Q is a modified version of P in which the 

input is read from a new register A. In addition, for each input 

x, Q computes f(x) into some work register, and outputs the quantity 

b(f(x)-1), where b is the initial contents of another register B. 

Finally, before halting, Q stores the value bf(x) in B. Now let R 

be the following program: 

Y:=Y+f(0) 

B:=f(0) 

	 YES 
X = o HALT 

X:=X-1 
C:=C+1 
A:=C 
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where C is yet another register not appearing in Q. It is 

easy to verify by induction that the contents of B immediately 

prior to the execution of the (x+1)st input test of R is just 

h(x) = (11f) 	and so 

fil(x) = f(0) + f(0) x (f(1)'- 1) + 

+ f(0) x f(1) x 	x f(x-1) x (f(x) - 1) 

Moreover, the running time of R satisfies 

tR  (x)4 E 	+ h(Y)) 4.13. (Eh)(x), 
Y=o 

since y a  f(y) (1 h(y). It remains to show that Eh a  h. 

We have 

(Eh)(x)_ 	1 	1 	1  
1 + f-7-67 	TTirxf(x-1) 	*" f(x)x...x f(1) 

1 + x  -f-cii) • 

Since x$ f(x), the conclusion follows. 

Example  4.17 	The factorial function is superhonest. 

Clearly x! = (fff)(x), where f is the ultimately linear function 

f(x) = (x=0 + 1, x). 
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§4. Closure under composition  

The honest functions are not closed under unrestricted composition 

as we can easily show. 

Let f be the function 

f(x) = 2x+1 if x is square, 

= 2x 	otherwise. 

We have 

f(x) = 2x + Asq*(x), 

where sq(x) = x2. Since sq is superhonest, sq* and hence Asq* 

are real time computable. It follows from the addition theorem that 

f is real time computable and hence honest, since x f(x). Let g 

be the ultimately linear, and so honest, function 

g(x) = (x even -► 1, 0). 

The function g.f, whose values are 

(g.f)(x) = (x square 0, 1) 

is not honest by Lemma 4.2 

Theorem 4.17 	(1). If f and g are honest and f is unbounded 

then f•g is honest. 

(ii). If f and g are superhonest, then so is f.g. 

(iii). If f is honest and g is ultimately linear, 

then f.g is honest. 
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Proof. First, suppose g is bounded in each case, whence both g 

and f.g: are ultimately periodic. This shows that f-g is honest in 

cases (i) and (iii) and superhonest in case (ii). Supposing g is 

not bounded so x I ex), and P and Q are honest (on-line) programs 

which compute f and g, so that P•Q is an (on-line) program computing 

(i) We have tp.Q  = tQ  + t
P  •fQ ' g + f-g f-g, 

4 
 

if f is unbounded, since we have x a  f(x) by Lemma 14.2. 

(ii) Similar to case (i) if f is unbounded. If f and g 

are monotone, and f is bounded, then f.g is constant 

almost everywhere and so superhonest. 

(iii) If g is ultimately linear, then tQ  = 0, and so 

tp.Q:a f.g. 

The above theorem can be generalised to prove certain other closure 

properties of the honest functions. Just for the remainder of this 

section we introdUce functions of more than one argument, and say that 

a n-place function f is honest if there is a program P, with n 

input registers X1, X2, ..., Xn, which computes f with 

t ( p  X'  x2, 	$ Xn) 15.1  f (xi  , x2, . . . n). 

It is easy to see that each of the functions 

Axy-x+y, Xxy•xxy, Xxy-xY  

are honest in this extended sense. 
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Theorem 4.18 	Suppose gl, g2, 	gn  are 1-place honest 

functions, and f is a rr-place honest function. 

Then the function h defined by 

h(x) = f(gi(x), g2(x),611  ( )) 

is honest, if either 

(a) each function gi  is bounded, 

	

or 	(b) Exi a  f(xl, x2, ..., xn  

Proof.Foreachi,14i‘n,let.be an honest program 

which computes gi  but stores the result in a new register Ai. 

Let F be a program which computes f, but reads the input from 

registers Al, A2, 	An. By the addition theorem, the program 

Gi  + G2  + 	+ Gn  = G say, computes gi(x), for each input x, 

in register Ai  for 14 i .C.n, and has a running time 

tG  (x) 4 	2.(x). 
i=1 

Let H be the program G followed by program F. H computes h, 

and 

tii(x) 4- gi(x) + f(gl(x), 	gn(x)). 

In the case that each g. is bounded, the right hand side of this 

inequality is bounded and so h is honest. If at least one g. 

is unbounded, then x 4 gj  (x), and so 	xi  .41 f(xl, x2, ..., xn) 

implies 
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tH(x) f(gi(x), gn(x)). 

Hence h is again honest. 

Corollary  4.19 	If f and g are honest, then so are 

(i) ftg, 

(ii) fxg„ provided f>0 and g>0, 

(iii) fgs  provided f>2 and g>0. 

Proof. 	(i) is immediate..  

(ii) If f and g are honest, with f,g>01  then the 

functions f-1 and g-1 are honest by Theorem 4.17 (iii). 

Since 

x+y < (x+1)(y+1) for all x,y, 

and Axy.(x+1)(y+1) is an honest function, we have 

fxg = (f-1+1)x(g-1+1) 

is honest. 

(iii) If f and g are honest with f?,2 and g>0, then 

so are the functions f-2 and g-1. Since 

x+y C (x+2)371.1  for all  x,y, 

and Axy.(x+2)57+1  is honest, the conclusion follows. 

Note that the conditions in (ii) and (iii) are necessary. Both f 

and g are honest, where 
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f(x) = x 

g(x) = (x even-, 1,0), 

but neither fxg or fg  are honest. 

§5. Subtraction of honest functions  

In this section, we show, under certain conditions, that 

the function f-g is honest if both f and g are. This result 

enables us to state more clearly the relationship between the 

honest and superhonest functions. The following subsidiary result 

is needed. 

Lemma 4.20 	Suppose that f is honest and g=f almost everywhere. 

Then g is honest. 

Proof. 

Suppose xo  is such that x xo  implies g(x) = f(x). If 

we define h by 

h(x) = f(x+x0), 

then h is honest, by Theorem 4.17. Suppose P is an honest 

program which computes h, and let Q be the program: 
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It is clear that flz(x) = (x<xo g(x), h(x-xo)) 

= g(x), 

and 	t(x) = (x < xo  0, tp  (x-xo  )) 

ex), 

and so g is honest. 

f(x) Theorem 4.21. If f and g are honest with f3g and lim inf 	1, 
- xs,00 gAY)  

then the function f-g is honest. 

Proof. 

The theorem is proved by constructing a program R for which 

tR(x) = k(f(x) - g(x)) 1 almost everywhere, where k is some 
positive integer. Since the running time of any program is honest, 

Lemma 4.20 shows that the function k(f-g)+1 is honest, and the final 
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result follows by using Theorem 4.17. 

By Theorem 4.8, we can suppose that there are programs P and 

Q such that 

fp = f, tp  = cf and fog  = g, tQ  = cg, 

for some positive integer c. By hypothesis, we can find an integer 

n so that nf(x) 3 (n+l)g(x) almost everywhere. We modify 

programs P and Q, by replacing every output instruction of P by 

a sequence of n assignments A:=A+10  and every output instruction 

of Q by a sequence of (n+1) assignments A:=A-11  where A is a 

register not appearing in P and Q. The resulting programs are 

added, giving a program RI  with a running time 

tp! = (c+n)f + (c+n+l)g, 

and which leaves in A the quantity nf-(n+l)g. The final program 

R consists of RI  followed by the code 
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where m is a positive integer that will be determined in a moment, 

and B is an arbitrary register. As long as of 3 (n+l)g, i.e. 

almost everywhere, the running time of R is given by.  

tR  = (c+n)f + (c+n+l)g + 1 (m+2)(nf (n+l)g). 

We now choose m to satisfy 

(m+2)n + c + n = (m+2)(n+1) - (c+n+l), 

which gives m = 2c + 2n-1. With this value of m, 

tR = k(f-g) + 1, 

where k = 2n(n+c+1)+c, and the theorem is proved. 

The following example shows that the condition 

lim inf f(x) 	1  
x-  co 	iTi7 

is, in general,necessary. 

Example 4.22 	Let f and g be the honest functions 

f(x) = (x even -0- x, 2x) 

and 	g(x) = x 

im 	f(x) we have f 3 g and l inf 	- 1, but f-g is not honest. x..000 Tic' 
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Corollary 4.23 	Suppose f is a monotone honest function for 

which 

lim inf f(x+1) 	1.  
7.57c 

Then f is superhonest. 

Proof. 	Immediate from Corollary 4.14, since the condition implies 

,Af is honest. 

In Chapter 5, we show the existence of a monotone honest function, 

which is not superhonest. 
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CHAPTER FIVE 

NECESSARY CONDITIONS FOR ON-LINE COMPUTATION 

The size theorem of Chapter 2 gives a sinple condition that 

a 'Unction f must satisfy in order to be conputable within a 

time bound t; namely, 1%11 t. However, thEs condition does not 

give any information on the computational complexity of 01-valued 

or slowly increasing functions. In this chapter we develop a 

sharper condition, but one that only pertains to on-line computation 

(Sections 1-3). Using this condition it is pcesible to show the 

existence of functions f, with f monotone and f(x) a x, which 

are not on-line real time Io - computable. In the case of a general 

instruction set I, the condition can only be used to construct 

fUnctions f such that for any on-line I-program P computing f, 

we must have t (x) 3 ex, where c > 0 is a constant independent 

of P. (Section 4). Supposing f is suala fUnction, this means 

that if f is on-line real time I-computable, then I cannot possess 

the speed up property of Chapter 3. In Section 5, we use this fact 

to show that certain instruction sets do not possess speed up. 

Section 6 shows that there is a rontonic honest but not superhonest 

function - answering a question raised inChapter 4, and Section 7 

gives a structural characterisation of the real time I-computable 

functions, in terms of a certain type of programming language. 

The basic necessary condition turns on two equivalence relations, 

one associated with functions, and the other with on-line programs. 

Sections 1 and 2 define these relations and investigates their 

properties. 
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§1. The equivalence relation En  

Let f be an arbitrary (total) function. For each integer 

0, we define the equivalence relation En  (mod f) on N by 

the condition: 

for all x, y c NI 	x En  y (mod f) if 

for all z 4n, 	f(x+z) - f(x) = f(y+z) - f(y). 

It is easily verified that En  is an equivalence relation. We are 

interested in the number of equivalence classes induced by E
n on 

N. Taking S(x) = x2, it is clear for any n > 0 that x En  y (mod S) 

if and only if x = y, so that each integer stands in an equivalence 

class by itself. On the other hand, if E(x) = x, then x En  y (mod E) 

is satisfied for any integers x, y, and n, so there is only one 

equivalence class. 

For m 3 n, we let JE(m,n) denote the number of equivalence 

classes induced by En(mod f) on the initial subset 

{0, 1, 	mrn) 

of N. Clearly, Jf(m,n) is always finite, and the following two 

properties of J are immediate: 

(i) 1 Jr(m,n) m-n+1. 

(ii) Jr  is monotone in each argument. 

Moreover, the bounds given in (i) can be obtained for n > 0, since 

JE(m,n) = 1 and .Js(mln) = m-n+l, where E and S are the 

functions defined above. 
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It may be mentioned that the reason we do not define Jf  

over the, possibly more natural, initial subset {0, 1, 	m} 

of N, is simply because the above definition enables certain 

properties to be stated more elegantly. 

The definition of Jf(m,n) means just that we can find a 

sequence 

Xis X21 so., Xj. 

of integers xi, where 0 g xj  c m-n for 1 j J = Jf(m,n), 

such that 

jAk implies yn  xk(mod f). 

This sequence is not necessarily unique, and we want to be able 

to choose one with, roughly speaking, minimum density. Define 

S(i)(m n) for 1 i J, by the condition f 

(i), S
f 

on,n) = size {xk: I x.-x,x  I < n}. 

( In words, Sfi)  (n,n) is the number of elements of the above 

sequence which lie within distance n of the element xi. If 

T = {x1, x20 	xj} is chosen so that 

max 	S(i)(in n) 4i;J 	f 

is minimised, we refer to T as a spanning set with minimum density, 

and define the density Sf  to be 

min max 	( Sf(m3n) = T 1 . 	Sf
i)  (m n). 
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It is easily verfied that S depends only on f,m and n, and 

1 Sf 2  n) < 2n-1 

for all in and n, with n > 

We consider one example to see how these definitions work out in 

practice. This example turns out to be important in the following 

sections. 

Example 5.1 	Suppose D = E6, where 6 is the function whose 

sequence of values 

6(0), 6(1), ... 	etc., 

is identical with the sequence of dyadic integers, written one 

after the other. The first few terms of this sequence are 

0 1 0 0 0 1 1 0 1 1 0 0 0 0 0 1 ... 

D is clearly monotone and satisfies D(x) < x. The first few values 

of D are 

0 1 1 1 1 2 3 3 4 5 ... 

Since every binary 
n 

most 	j2 terms 
j=o 

pattern of length n 1 has appeared after at 

of 6, i.e. by 6(y j211  - 1), it follows that 

n 
(/ j2J  + n - 1,n) = 2n  for all n 



129 

Since i j23 	(rrl)2n+1 + 2, we therefore have 

JD ((n-1)(2n+1  + 1) + 2, 	= in. 

Moreover, 

SD  ((1-1)(2n+1  + 1) + 2, 	= 1, 

since we can choose a spanning set T with minimum density, by 

taking 
n-1 

T = {( I j23) + kn : 0 < k < in  - 1}. 
j =1 

The following five lemmas summarise the important properties of Jf  

and S.  The first is an analogue of the Nerode theorem for regular 

sets (Rabin and Scott [34) ). 

Lemma 5.2 If Jf is bounded, then f is ultimately linear. 

  

Proof. 	If Jr is bounded, then for some constant k, the 

equivalence relation E, where 

X E y if for all z > 0 f(x+z) - f(x) = f(y+z) - f(y), 

induces just k equivalence classes on N. This means that among 

the numbers 

0, 1, 	k 

there exists i,j with i < j such that i E j. Suppose j = i+c, 

where c > 0. It follows that 

f(i+z) - f(i) = f(i+c+z) - f(i+c) 
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for all z O. Taking y = z + i, we have 

f(y4c) - f(y) = f(i+c) - f(i) = d 	say, 

for all y i. Hence f is ultimately linear. 

Lemma 5.3 For all m and n (with m n), we have nJf(mln) m Sf(m,n). 

Proof. Let m and n be fixed. Choose a spanning set T = 

with minimum density S = Sf(mln). Suppose without loss of generality 

that xi  < x. for i < j. The definition of S implies that 

xjS+1 > xl + in in, for j=0,1, ... etc. Since xi  .< urn, it follows 

that 

J< (n-11 	n 1)S+1< 	S • 	n  

since S 1. 

Lemma 5.4 x =n  y (mod f) if and only if for all z, l< z < n, 

we have Af(x+z) = Af(y+z). 

  

Proof. 	Suppose x 	y (mod f). Since 

z 
f(x+z) - f(x) = 	Af(x+r), 

r=1 

it follows that 
z 	z 

Af(x+r) = 	Af(y+r), 
r=1 	r=1 
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for all z n. Taking z = 1,2, ... in succession, we have 

Af(x+z) = Af(y+z) for 1 $ z $ n. 

Conversely, this condition ensures that x En  y (mod f). 

Lemma 5.5 Suppose k = size (Af(x): 1 $ x $ mrn + 1). 

Then 

Ja(m+1, n-1) Jf(m,n) kJ6f(m*1, nrl). 

Proof. 	By lemma 5.4 x En  y (mod f) if and only if 

Af(x+z) = Af(y+z) for 1 4 	n. 

In turn, this condition is equivalent to: 

(i) Af(x+1+z) - Af(x+1) = Af(y+1+z) - Af(y+1) for 0 z < n, 

and (ii) Af(x+1) = Af(y+1). 

Therefore, a necessary and sufficient condition that x En  y (mod f) is 

(X+1) E(n-1) (y+1)(mod Af) and Af(x+1) = Af(y+1), 

from which the estimates follow. 

Lemma 5.6 	Suppose f is monotone. Then there exists a constant c 

such that for all m and n with 

lo; Jf(m,n) 

n 

sufficiently large, we have 
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Jf(m,n) loge  Jf(m,n) ` <   cf(m). 

Sf(mn) 

Proof. 

Let m and n.be given, and let J = Jf(m,n) and S = Sf(m,n) 

for short. It follows from Lemma 5.4 that we can find a spanning 

,set T = {x1, x2, ... xis} with minimum density S such that the set 

of sequences 

Af (x1+1) , 	Af(xi+n) 

Af(xel), 	Af(x3+n) 
I 

are pairwise distinct. Let 

n 
0. = 	Af (x.+0. 

r=1 

Since each term in any sequence can occur in upto as many as 5-1 

of the other sequences, we have 

J 
f(m) -8-1  ?. 	1 a.. 

j=1 

The proof is now completed by putting an appropriate lower bound 

to 
J 
X 	 . 

j=1 3  



Let yn(j) denote the number of distinct integer sequences 

all  a2, ... ariwhere 	a. > 0 

with la- = j. Since the set of such sequences can be described, 

recursively, as the union from k = 0 to j of sequences of the form 

al, a2, 	an_1, k where lai  = j-k, 

it follows that 

Yn(i) = 	Yn-1(r) r=o 
	 (1) 

for all n > 1. Since y1(j) = 1, the recurrence relation can be 

solved to give 

(;) = (fin-1 ' 
	(2) 

The sum la. will be minimised by having distinct sequences 

Af(xi+1), 	Af(x.+n) 
2  

with as small suns as possible. Since f is monotone, no term 

is negative and no sum of  is negative. Thus 

J 	B 
	

B 

ai 	jyn(j) + (B+1)(J - I yn(j)), 	(3) 
jra u j=0 	j=0 - 

13 

where B is defined by the condition 



'134 

B 	B+1 

Yn(j)4J < 	Yn(j)1  j=o 	j=o 

that is 

Yn+1(B) J  < Yn+1 (B+1)' 

Using (1). 

,In order to evaluate the right hand side of (3), suppose, conventionally, 

that Y
n+1 

 (X) = 0 for x < 0. Using (1), we have '— 

jY,(j) =/ j (Yin+1(j) - Yn+1.(j -1)) j=o " j=o 
• 

jYn+1(j) - 	(j-1) Yn+1  (j-1) j=o 	j =0  

Yn+1(j-1)  
j

, 
=o 

= Bynia(B ) Yn+2(13-1)* 

Now from (2), we have 	yn+2(B-1) - 	y (B). Thus n+1 n+1 

B _ Bn y 	(B). jY,(j) 
j=0 	n+1 n+1 (5) 

Substituting (5) into (3) and using (1), we obtain 

1 +n+ I a. > (B+1)J B
n+1 yn+1 (B). 
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Hence using (4) 

Bn 	(B+1) a• 	J J n+1 	TI 

provided B 1. To estimate B, we have from (4) and (2), that 

J113+1+n\  
4  n • 

It can be shown, using Stirlings approximation, that 

(
B+1+n

) 4 eB+1+n n 

whence 

B+1 	log6J - n 3 	logeJ, 

lokJ 
provided 	n' 	is sufficiently large. Thus the lemma is proved. 

§2. The equivalence relation 4,n  

The second equivalence relation on N is defined with respect 

to an arbitrary on-line program P. Let P be given and, for each 

x a 0 and n 3 0, let C (x,n) denote that subsequence of the 

computation sequence of P with infinite input, which begins with 

the instantaneous description at the point where the (x+1)st input 

test is obeyed and ends with the instantaneous description immediately 

prior to the point where the. (n+l)st next work register instruction 

is executed. We now define 
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X Nil  y (nod P) if Cp(x,n) = Cp(y,n). 

The number of equivalence classes induced by ft.n will be denoted 

by Kp(n). Since x 	y implies x ny, it is clear that Kp  

is monotone. Moreover, as the following lemma shows, Kp  is always 

well defined. 

Lemma 5.7 Suppose P is an on-line program (defined over an 

arbitrary instruction set) and has c distinct input 

tests. Then 

Kp(n) 4 c2n  

for all n. 

Proof. It is sufficient to put an upper bound to the number of 

distinct sequences of the form Cp(x,n) for some x. If two such 

sequences begin with the same input test, they can only differ after 

the execution of some work register test. Since each test can yield 

at most two possible continuations, the number of such sequences 

is no greater than 2n. If there are c possible input tests to 

begin with, then the number of distinct sequences is no greater than 

c2n. 

This bound can be much improved if P is an 10- program. 

Lemma 5.8 	If P is an on-line II- program which refers to 

just k work registers, then 

Kp(n) 0 nk. 
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Proof. 	We can write the instantaneous description Ip(x) at the 

point where the (x+l)st input test is obeyed, in the form 

42  x1, Yr al.' 

where £ labels the (x+l)st input test to be obeyed, and al, a2, 

ak  denote the contents of the work registers at this point. 

Suppose, similarly, that Ip(y) is of the form 

(m, x2, Y23  b1, 	bk). 

Now if P is an To- program, then Cp(x,n) and C p(y,n) can only 

differ if either: 

(i) t t m6 

	

or 	(ii) there isaj, where 1 4jcksuch that 

- n 4 ai, bj4 n and aj  # bi. 

Since the number of distinct instantaneous descriptions satisfying 

(i) or (ii) is at most c(2n+2)k, where c is the number of input 

tests appearing in P, we have 

Kp(n) 4 c(2n+2)k, 

from which the conclusion follows. 
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i3. The basic conditions  

The fundamental relationship which connects the two equivalence 

relations can be expressed as follows. 

Lemma 5.9 	Let P be an on-line program. Suppose n 3 0 is 

given, and T is a set, of integers such that 

x # y implies x In  y (mod fp) 

for all x, y e T. Then 

size (T) Kp(t), 

where t = max ftp(x+n) - tp(x)1. 
xcT 

Proof. 

The proof follows immediately from the fact that 

xlIft  y (mod P) implies x 	y (mod fp) 

for all x, y e T. 

Corollary 5.10 If Kp  is bounded, then fp is ultimately linear. 

Proof. It follows, from Lemma 5.9, that the size of T is 

bounded if Kp is. But this means that Jf  is bounded, where f=fp, 
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and so, by Lemma 5.2, fp  is ultimately linear. 

From now on, we write JP  for Jf  and Sp  for Sf
. 
 to 

P  
avoid messy subscripts. If fp is not ultimately linear, the 

fUnction Kp

1  defined by 

Kp 1(x) r. min y Ex 4 Kp(y)3 

is total. This follows from Corollary 5.10. Moreover, we have 

Kp-1(Kp(x)) 4 X. 

Lemma 5.11 	Suppose P is an on-line program and fp  is not 

ultimately linear. Then for all m and n, 

R 
tp(m) 	L K.0  1  (jSp(m,n)), 

j=o 

where R = ;76770 

[Jp(m,n) 

Proof. 	Let m and n be fixed and let J = Jp(m,n) and S = Sp(m,n). 

By definition of En, there is a spanning set T1  with minimum 

density S, and containing exactly J elements, such that 

x # y implies x 	y (mod fp) 

am. 

• 

for all x, y c T1. Choose xl  c T1  so that 
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max {t (x+n) - t (x)1 = tp(xi+n) - tp(x1), 
xcT1 

and let tP(x1+n) - tP(x1) be denoted by t1 for short. 

Applying Lemma 5.9, we have 

J 4 Kp(ti). 

Remove xi  from Ti  and also all y for which Ixi  - yl < n. 

By definition of S, the remaining set T2 contains at least J-S 

members. In a similar fashion, we can now choose x2  c T2  so that 

J-S 4 Kp(t2) where t2  = tp(x2+n) - tp(x2). 

Proceeding in this way, we can choose a sequence xi, x2, 	xr  

where 0 4 x.4 mrn and r =' [JIS] + 1, such that for 1 4 j 4 r 

we have 

J - (j -1)S 4 Kp(ti), 

where 	t. = t
P 
 (x.+n) - tP j  (x.). 

J   

Moreover, by construction, Ix. - x.I n for i A j, whence j 

t (m) 	t.. 
j=1 

Now 

tj  Kp 1  (Kp(ti)) a Kp  -1  (J -(j -1)S) 

since Hp-1 is total and monotone if f is not ultimately linear. 
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Therefore 

R 
) 	 1 YITO 	L KID (A iS), 
j=o 

where R = m and A = PIS]. Since 1c1  is monotone, the 

conclusion follows. 

The next task is to simplify the lower bound given in the statement 

of Lemma 5.11 by using the estimates on Kp  given in the last 

section. These lead directly to the following two theorems. 

Theorem 5.12 Suppose P is an arbitrary on-line program, 

where f is not ultimately linear. Then for 

all m and n such that J  P(n 'n) is sufficiently 
n 

large, we have 

4.(m,n) 
t (m)   loa J

2 P 
 (m,n) 

4Sp(m,n) '1°   

Proof. 

Lemma 5.7 states that Kp(x) 4 c2x  for some c, whence Kp 1(x) 

log2  (F), since Kp 1  is total. Using this estimate in Lemma 5.11, 

it follows that 

R 
t (m) a 1 log2 (q) = log2  (R! 

j =1 

Now by Stirlings approximation, 

) (e) provided R is sufficiently large, 

and also 
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R  = CS]  2S 3  

and RS , J-S , 1.1 
ec 	ec 	3  

J i provided is sufficiently large. Since S.< 2n, this means that 

provided — is sufficiently large, 

tp(m) ) 	log2  J, 

and the theorem is proved. 

Theorem  5.13 	Suppose P is an on-line 10- program which uses 

k work registers, and fp  is not ultimately 

linear. Then for some c > 0, 
14-1  

P n)}  t (m) )•e Sp  (m'  n) 

for all m and n. 

Proof. 	Lemma 5.8 states that Kp(x) cxk  for some constant c, 
- whence Kp  1(x) e xl/k for some e > 0. Using this estimate in 

Lena 5.11, we have 
1 

tp(m) a c 	(js)k . 
i=0  

Since 
R (141  k  ) 

l/k 
j 	SR 	for some S > 0, 

jr.0 
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we have 1 	(14-1 
t (m) a eSSk k  

and the conclusion follows. 

The following corollaries are immediate from Theorems 5.12 and 5.13 

by using the estimate Sp(m6n) < 2n. 

Corollary 5.14 Under the hypotheses of Theorem 5.12, 

tp(m) 3 	Jp(m,n) log2  Jp(m,n) • 

Corollary 5.15 Under the hypotheses of Theorem 5.13 

1+1  

k  t (11.) 	c LTP'  Om n)1 " . 

§11. Applications  

Theorem 5.13 can be used to show the existence of slowly 

increasing functions which are not on-line real-time 107 computable. 

We consider, as an example, the function D defined in Example 5.1. 

Theorem 5.16 	If D is computable by an on-line I0- program P, 

then for some (5 > 1 

{log2  x) x) 4 t (x). 

In particular it follows that D is not real time 

on-line I 
0  - computable. 
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Proof. 	From the discussion in Example 5.1 we know that 

JD(h(n),n) = 2n  

and 	SD(h(n),n) = 1 

for all n, where h(n) = (ri..1)(n+14.1) 2. Thus, if P is an on-line 

ID- program which computes D, then there is an c > 0 and a & > 1 

such that 

t (h(a)) a e216. 

Let x be arbitrary and suppose n is such that h(n) 4 x < h(n+l). 

This gives 

n a logic - log2log2x - 3, 

whence 

(log2x-log2log2x-3)6 
tP  (x) a tP  (h(n)) a c2 

proving the theorem. 

Later on we shall show that there is an on-line ID- program P which 

computes D for which 

2 
t (x) ' 	. P 	log2x 

(Theorem 5.19). 

Unfortunately, TheoreM 5.12 cannot be used to show the existence 

of a monotone function f with f(x) 4 x, which is not on-line I - 
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computable for any instruction set I. This can be seen by showing 

that the lower bound given by Theorem 5.12 satisfies 

J , P  	, 

Sp
(
n2n) log2  jp(n,n) m. (1) 

There are two cases to be considered: 

(i) If log2Jp(m,n) 4 en for some constant c, then (1) 

follows by using Lemma 5.3. 

(ii) If, on the other hand, 

log2Jp(m,n) 

n 

is sufficiently large, we have 

SP log-JP  4. f(m) -e  

by Lemma 5.6. Since f(m) 4 m, inequality (1) holds in 

this case also. 

However, Theorem 5.12 can be used to give some sort of lower bound. 

Theorem 5.17 If D is computable by an on-line program P, then 

tp(x) 

for sufficiently large x. 
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Proof. 	Suppose P is an on-line program which computes D. 

From Theorem 5.12, we have 

t (h(R)) no 2 

• 

where h(n) = (n-1)(2n+1+1)+2 as in Theorem 5.16. From this estimate, 

we can deduce that 

tp(x) (logo - log2log2x - 3)2 (log
2x-log2log2x-5) 

whence 

tp(x) 

for sufficiently large x. 

This result has the following interesting consequence: 

Theorem 5.18 	If I is any instruction set such that D is 

on-line real time 1-computable, then I does not 

possess the speed up property. 

Proof. 	If I does possess the speed up property, we could use 

it to produce an on-line program P which contradicted Theorem 5.17. 

We now give two examples of this theorem. 
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§5.  Instruction sets not_ ossessing speed up 

Let I1  be the instruction set which includes I0  and 

has, in addition, the instructions 

assignments 	A : =Ai  +Ak 	Aj:=AJ-Ak  

tests 	Aj  Ak  . 

Let I2 be the instruction set which includes Io and has, in 

addition, 

assignments A.:=A.+1 A 
J  
.:=A.-1 A.:=0 

J J   

j:=j+1 	j:=j-1 	j:=0 

tests 
	

A.=0 	Ajax 	j =0 	j 0 

That is I2 consists of Io together with the possibility of referring 

to the work registers Al, A2, ... indirectly through an index 

register j. 

Theorem 5.19 
	

(1) D is on-line real time I1 - computable. 

(ii) D is on-line real time I2 - computable. 

(iii) D is on-line Icr Computable within time 

2 

Ax. 	x' 

Proof. 	The proof in each case is by direct construction of a 

program P to conpute D. 
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(1) In the first case, P works by determining, between 

successive input tests, the next symbol in the sequence 

0 1 0 0 0 1 1 0 1 1 ... 

and incrementing the output register if the next symbol happens 

to be 1. P does this by extracting the binary representation of 

the odd numbers 5, 7, 9, ... one after the other. The binary 
representations of these numbers are 

101, 111, 1001, 1011, ... etc., 

and the sequence formed from the interior digits of each number 

(i.e. every digit except the first and last of each number) is just 

the sequence we want. The interior digits of the odd number n are 

extracted as follows. Initially, register N contains n and 

register K contains 2k, where 2k  4 n < Pl. The first digit 

of n is removed by subtracting K from N and leaving n-2k  in N. 

To extract the next digits, the contents of N are successively 

doubled and compared against K. If N < K, then the next digit is 0 

and no output is given. If N > K, then the next digit is I and Y 

is incremented. If N = K, then the processing of N is complete, 

and the next odd number is set up for processing. With these 

remarks, we now give the complete program P. 
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M: 5 
K: 	it  

NO 
N 4 L 

K: = L I 

N: = N-K 

N: = N+N 

= N-K 

Y: = Y+1 

= X-1 

N: = M 
M: = M+2 
L: = K+K 



150 

Since f = D and t (x) 4 18x, part (i) is established. 

Program P can be modified into an I0- program 

that computes D. Instead of doubling N and comparing against 

K, the modified version Q halves K and compares against N. 

Thus during the processing of the number n, no number greater 

than 2n is stored in any register. The various instructions of Q 

can be expanded as macros defined over I0'  and it is possible to 

verify that the resulting program R processes n (i.e. extracts 

the interior digits of n) within en steps for some constant c. 

Since this processing produces a further Rogig - 1 values of D, 

we have 

tR( f (Elog2(2j+1) J - 1)) 0 f j 	for all 	Y 
j=2 	j=2 

which simplifies to 

tR ( f clog2J:1) 4 y2. j=1 
• 

Let x be arbitrary, and suppose y satisfies 

y+1 
[log2j J  4  x< E CLOE1/40] 

J=1 	 j =1 

whence it follows that 	y 4 (10; x), and so 

2 
tR( X) tR (

y+1  
E 	3.0g2i ) 4 (y+1)2  4 (loX  s2x) 

J=1 

This establishes part (iii). 
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(ii) The I2- program P which computes D, evaluates for 
n = 1,2, ..., the dyadic expansion of n in the registers 
Ai, A2, ... At- L log2n] . Generating the expansion for n+1, given the 
expansion for n, can be achieved in c[log2n] steps for some 
constant c. As a result of expanding n, a further [log2n] values 

of D are computed, so that P operates in real-tire. The details 
are left to the reader. 

Corollary 5.20 	Neither I1  nor I2 possess the speed up property. 

It is worth mentioning that Theorem 5.19 also shows that both Il  and 

I2 are strictly more powerful instruction sets than I0'  in the sense 

that on-line real-time I
1 and I2-programs compute a strictly larger 

class of functions than on-line real-time Io- programs. 

§6. Further results  

The techniques of Section 3 can be used to settle some of the 

questions raised in previous chapters. In particular, we can now 

establish the existence of a monotone 10- honest function which is 

not I0  - superhonest. 

Theorem 5.21. Let 6 be the 0-1 valued function described in 

Example 5.1, and let E be defined by 

E(x) = x 6(x). 
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(i) E is a monotone 10- honest function, but is 

not 10- supethonest. 

(ii) E is real time 10- computable, but not on-line 

real time I0  - computable: 

The proof makes use of some of the closure properties enjoyed by 

the real time Io- computable functions. The following lemma can be 

verified by direct construction of the appropriate programs: 

Lemma 5.22 	If f and g are real time Io- computable, then 

so are each of the following functions: 

(i) f.g, 

(ii) f+g, 

(iii) f-g provided fg, 

(iv) [fig], 

(v) Cf3g3. 

Proof of Theorem 5.21 

E is clearly total and monotone and 

x E(x) 4 2x. 

It follows that, if E is real time computable, then it is honest, 

and if it is superhonest, then it is on-line real time computable. 

Hence it suffices to prove the second assertion only. In order to 

show that E is not on-line real time I0  - computable, it will be 

enough to prove 
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JD(nn) JE(m'n) for all m,n, 

where D = Ed is the function used in Section 4. By definition, 

x En y (mod E) if and only if 

E(x+z) - E(x) = E(y+z) - E(y) 

for 0 z 4 n, i.e. 

6(x+z) - 6(x) = 6(y+z) - d(y) 

for 0 4 z 4 n. In other words, 

JE(m,n) = jAD(Irriln)* 

Lemma 5.5 now shows 

JD(m,n) 2JE(m+1, n-1) 4 2(JE(m,n)+1), 

and the demonstration follows. 

In order to show E is real time I0  - computable, it is sufficient 

to show that 6 is. This is accomplished by deriving. a closed 

formula for 6 and using Lemma 5.22. 

For each x a 0, we characterise the xth position in the 

sequence S of dyadic integers, by three quantities a(x), b(x) and 

p(x). The first, a(x), is a positive integer and denotes the number 

of the area into which x falls, where the jth area is that 

subsequence of S which consists of all the dyadic integers of length 

j. Next, b(x) is an integer in the range 0 4 b(x) < 2a(x)  and denotes 

the number of the block in area a(x) into which x falls. A block 

is just the subsequence of S consisting of a single dyadic integer. 



154 

Finally, p(x) is an integer in the range 0 p(x) < a(x) and denotes 

the position in block b(x) of area a(x) at which x occurs. 

Given these three quantities, 6(x) can be determined as follows: 

if p(x) = a(x) - 1, then 6(x) will be 0 or 1 depending on whether 
b(x) is even or not; similarly, if p(x) = a(x) - 2, then 6(x) will be 

0 or 1 depending on whether [b(x), 113 < 2. In general, the condition 

is 

6(x) = 0 if and only if 

Eb(x), 2a(x)-13(x)3 < a(x)-p(x)-1 

Thus, in order to compute 6(x) for a given x, it is sufficient to 

determine a(x), b(x) and p(x) and see whether the above condition 

holds. The functions a, b, and p are determined as follows. Since 

the jth area is of length j2j, a given x falls in area k, where 

k 2j 
A(k-l) 4 x < A(k) and A(k) = / .  

j=l 

In other words, 

a(x). = A*(x), where A(x) = (x-1)23(4.1  + 2. 

Furthermore, it is easily seen that 

b(x) = Pc-A(a(x) -1)  a(x) 

and 	p(x) = [x-4(a(x)-1), a(x)] . 
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At this point, it is only necessary to remark: 

(1) A is a strictly monotone 10- superhonest function, 

whence by Theorems 4.5 and 4.6 both a and A(a-1) are 

on-line real time-0  computable. 

(2) From (1) and Lemma 5.22 we have that b, p and also a-p 

are real time 107 computable. 

(3) Since Ax.2x  is superhonest, the function 2a-13  is 

IO computable by _some program P 

for which t (x) x + 2a(x)-P(x)  

However, 

2a(x)-P(x) 4 2a(x) 4 A(a(x)-1) 4 x, 

which shows that 2a  P is real time 10- computable. 

(4) It follows that the truth value of the condition 

[b(x), 2a(x)-P(x)] 	2a(x)-p(x)-1 

can be computed within real time. 

Thus 6 is real time o- computable and the theorem is proved. 
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§7. Structural characterisation of real time functions  

Because the real time computable functions are so important, 

it is interesting to obtain some sort of structural characterisation 

of the class. In this final section a programming language is 

described, relative to a given instruction set I, whose programs 

compute exactly the real-time I- computable functions. This language 

is a modified version of the language LOOP first described by Meyer 

and Ritchie [31]. 

Suppose I is a given instruction set. The language LOOP(I), which 

we shall write as LOOP whenever I is implicity understood, is 

defined recursively as follows: 

(1) Each assignment in I, but not X:=X-1„ 

standing by itself is a LOOP program. 

(2) If P1  and P2 are LOOP programs, and t is 

son test in I, but not X=0, then the conditional 

(t P1, P2) 

is a LOOP program. This is equivalent to the 

Algol: 
if t then P1  else P2. 

(3) If P
1  and P2 

are LOOP programs, then so is 



The meaning of this program is: first do P1  then do P2. 

(4) If P is a LOOP program, then so is 

loop X P end, 

where X denotes the input register. This program is 

equivalent to 

•P; P; ...; P (x times) 

where x is the initial contents of X, i.e. the input. 

(5) By convention, the program E of no instructions is a 

LOOP program. 

For example, the following LOOP (I0) program computes Ax.[Vx]: 

A:=1; 

loop X 

A:=A-1; 

B:=B+1; 

(A=0 A:=B; Y:=Y+1 	:=A÷*2) 

end. 

For each n 3 1, we define LOOPn(I) to be the class of LOOP(I) 

programs which have a depth of nesting of loop ... end statements 

no greater than n. 

15 
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Theorem 5.23 	For an arbitrary function f and instruction set I, 

the following two statements are equivalent: 

(i) f is LOOPn(I) - computable. 

(ii) f is computable by some I - program P 

for which t (x) a xn. 

In particular, the L00P1(I) programs compute just 

the real time I - computable functions. 

Proof. 	(i) > (ii). It is straightforward to translate LOOP(I) 

programs into I - programs using additional registers to control 

the number of times a loop is executed. Since the program 

loop X lopp X ... P end ... end (n times), 

where P contains no loop instructions, is equivalent to 

P; P; ...; P 	times), 

and the execution time of P is bounded, the simulation by a I 

program can be carried out within 4 Ax.xn  steps. Further details 

are omitted. 

(ii)/(1). Suppose P is an I-program and tp(x) 4 X. 

Let P have k instructions with labels 1, 2, ..., k and let 

label 0 denote the termination condition. P is translated into 

a LOOPn(I) - program by making use of new registers A, Fb, F1, ..., 
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and translating the instructions of P as follows: 

(1) All references to X are replaced by references to A, 

where A does not appear in P. 

(2) An instruction t: a m of P is translated itto 

the program Lit, where 

L 	CF =0 + E, a; F :=0.  Fm:=1) 

(3) An instruction 2.: t mi, m2  of P is translated 

into L2,, where 

L2,  = (F2.=0 E, (t 	 F2.:=0; Frn2:=1). 

Let L(P) denote the program L1; L2; ...; Lk  and L0(F) denote the 

program L(P); ...; L(P) (c times), where c is such that t (x) 4 cx 

for all x. We now claim that the program 

A:=0; loop X A:=A+1 end; loop X ... loop X LC(P) end ... end 

is equivalent to P. The first part merely ensures that register A 

contains the input x. The second part guarantees that the program 

L(P) is executed cXn  times. The flag registers F0, Fl, 	Fk  

appearing in L(P) control the flow of computation to follow that of P. 
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It is possible that the above characterisation can be used to 

show that certain functions f, for which f(x) x, are not real 

time I- computable, at least for I=I0. It is worth noting, in 

this respect, that Tsichritzis E38] has characterised the functions 

computable by LOOP1(I0) - programs which do not use the conditional 

statement, showing them to be just the simple functions. A function 

f is simple if there exists numbers xo  and c and a function d 

such that 

f(x+c) = f(x) + d([ x, c ]) for x 3 x0. 

The simple functions therefore represent a slight generalisation of 

the ultimately linear functions. The function xx.r vx is not 

simple, but is computable by a LOOP1  (I0) program, thus showing that 

the presence of conditional statements in LOOP yields a definite 

increase in capability. 
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APPENDIX A 

MATHEMATICAL BACKGROUND FOR CHAPTER ONE 

In Chapter 1, the basic objects under consideration are partial 

functions. A partial function f:D f D/  can be extended to a total 

function by introducing a new element no  standing for the undefined, 

into both D and DI, and defining 

f(x) = R if x = SZ or f(x) is undefined. 

A partial ordeuingE, on functions with the same domain, can then 

be set up according to the rule 

f C g if for all x, f(x) A C2 implies f(x)=g(x). 

It follows from this that 

f = g if and only if f C g and g C f. 

If f:D -0- D and Di  is a'subset of D, we say that f maps I/ into Di  

to man that for all x c Di, if f(x) A SI, then f(x) e Di. 

New partial functions are either defined explicitV, or by making 

use of one or more of the following operations: 

(1) Composition. The composition fsg of two functions f and g 

is that function which is defined by the equation 

f.g(x) = f(g(x)) for all x. 

Implicit use is made of the fact that composition is associative, 

and the following deductive rule is used: 
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if r f/  and g C gl  then f-g C. fi•gi. 

(2) Conditional expressions. 	If P is a predicate, and f and g 

are functions,.then (P f,g) denotes the function defined by 

(P f,g) (x)= f(x) if P(x) = true, 

= g(x) if P(x) = false, 

= S2 otherwise. 

The following facts about conditional expressions are used: 

(a) if f C f1  and g C g', then (P f,g) 	(P f l ,g1 ). 

(b) (P 	f h•g) = h • (P f, g). 

(c) (P-h f-h, g-h) = (P f,g)-h. 

(3) Upper bounds. If S is a set of functions with 

disjoint domains, i.e. if 

for all f, g c S and all x, either f(x) = n or 

g(x) = n or both, then a unique function U f is 
fcS 

defined by the condition 

(Lif)(x) = f(x) if f(x) A a for some fcS, 
fcS 

= S2 otherwise. 

If S is a set of functions with disjoint domains, so 

is the set arf feS} for any function h, and we have 

h • (Uf) = U h-f . 
fcS 	fcS 
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It is of course possible to take upper bounds of a 

more general type of set, but we shall not need to 

do so. 

(4) Recursion. If E(f) is some functional expression 

involving the function letter f, then a unique function 

f is specified by the conditions: 

(1) f = E(f), 

(ii) for all functions g, if g = E(g), then f E. g. 

In such a case, we say that . f is recursively defined by the 

equation f = E(f). 

In order to prove statements about recursively defined functions, 

use is made of the following induction principle, which is justified 

in Morris [42] or Manna [41]: 

to prove that a certain statement S(f) holds, 

it is sufficient to prove by induction that 

S(fk) holds for all integers k a 0, 

where the sequence f0, fl, ... of functions is 

defined by 

f0  (x) = n for all x, 

fk+1 = E(fk). 

This principle is not applicable to all possible statements 

involving f, as can be seen from consideration of the statement 
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63x)(f(x) = 	However, all statements which are assertions 

about inclusion, e.g. f g, can be proved in this way, and these 

are the only ones needed. 
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APFENPDC B 

LIST OF SPECIAL SYMBOLS 

The following list of .special symbols used frequently in the 

text, supplements that given in.APpendix A. 

Symbol 	 Meaning  

fP 	function computed by 

program P (section 2.1) 

tP 	running time of program P 

(section 2.1) 

N 	the set of natural numbers 

{0,1,...} 

[x] 	the integral part of x 

[x, y3 	the (non-negative) remainder 

when x is divided by y. 

Ix' 	the absolute value of x. 

Xx.f(x) 	Church's-Lambda notation for 

denoting functions. 

f g, f 4 g, f ti g 	defined in Section 2.3 

f.g, f+g, f* 	defined in Section 2.6-2.7. 
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Symbol 	Meaning 

IISI1, Size(S) 	two notations for number of 

elements in a finite set 

there exists an x such that ... 

Ef 
	 denotes function h, where 

h(x) = f(0) + f(1) + 	+ f(x). 

denotes function h, where 

h(0) = f(0) 

b(x+1) = f(x+1)-f(x) 

U U 
	

set theoretic inclusion and 

union notation. 

, r, 
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A NOTE ON DEFINITION BY CASES 

by RICHARD BIRD in Reading, Berkshire (Great Britain) 
The usual proofs that the function h defined by the conditions 

h(x) = If (x) 
if P (x) , 

g (x) otherwise, 
can also be defined using the operations of primitive recursion and substitution in 
terms of f , g and the characteristic function of P, are incorrect if it is not assumed 
that f and g are total functions. According to the natural interpretation of the 
above conditions, the value of h(x) is defined to be f (x) if P (x) is true (whether or 
not the value of g (x) is defined), and g (x) if P (x) is false -(whether or not the value 
of f (x) is defined). The most common translation into a primitive recursive definition 
of this function is to define h1  by 
(1) hi  (x) = (p (x)) x f (x) 	p(x)  x F  (x), 

Here, sT is the primitive recursive function that satisfies 
1 if x = 0 

,(x) 0 if x > 0, 
and p is the characteristic function of P, which takes the values 0 or 1 depending 
on whether P (x) is true or not. However h1 , which is primitive recursive in g, 
and p, only coincides with h if f and g are assumed total. This is because in the 
semantics of the operation of substitution which specifies k by 

k (x) 	r (81(x) , 82(X) • 	Sn(X))i 

k (x), is only defined if all of si  (x), 82(x), . . s„ (x) are defined. It follows by (1), that 
if either f (x) or g (x) is undefined for some x, so is hi, (x) , and this is not necessarily 
true of the originat function h . 

As another attempt at giving a correct primitive recursive definition of h, we 
can define A by 
(2) A (x , 0) = f (x) , 	A (x , y 	1) = g (x) , 

which represents a degenerate case of the operation of primitive recursion, and set 
h2  (x) = A (x , p (x)) . 

However this attempt' also fails because of the way the operation of primitive 
recursion is defined. The equations (2) are not to be regarded as an instance of, defi-
nition by cases (otherwise we would be admitting definition by cases as a primitive 
operation),, but rather as the special case of 

(3) A (x , 0) = f (x) , 	A (x , y 	1) = k (x , y, A (x , y)) 

in which k (x , y, z) = g (x) . 
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The values of A (x , y) are defined inductively from the equations (3). It follows 
that if f (x) is undefined so are the values of A (x , y) for every y. Therefore, according 
to the definition of A by (2), if f (x) is undefined so is h2  (x) , and once again this is 
not necessarily true of the original function h. 

However; by using a not too obvious trick, it is possible to give a proper primitive 
recursive definition of h . We define two functions A and B by primitive recursion 
as follows. 

B (x , 0) = x, B (x , y 	1) = f (B (x , y)) 
and 

A(x, y,0) = B(x,y), 	A(x,y,z +1) =-Z g(A(x,y,z)). 

The function A, which is defined by 

h3(x) = A (x , (p (x)) , p(x)) 

can now be proved to coincide everywhere with h. There are three cases to be con-
sidered: 

(a) p (x) is undefined. In this case, h3 (x) is undefined, and so h3  (x) = h (x). 

(b) p (x) = 0. According to the inductive definition of A and B, 

h3 (x) = A (x , 1, 0) = B (x , 1) = f (B (x , 0)) = f (x) 

so that h3 (x) = h (x) . 

(c) p(x) = 1. Again, according to the inductive definition of A and B, 

h3 (x) = A (x , 0, 1) = g (A (x , 0, 0)) = g (B (x , 0)) = g (x) 

so that h3  (x) = is (x) and the proof is complete. 
It may be mentioned that the author arrived at the difficulty mentioned in this 

note, while attempting the apparently straightforward task of arithmetising a class 
of algorithms in terms of the functions corresponding to the atomic steps of the 
calculation. These unspecified functions were not assumed to be total. The usual 
arithmetisation procedure does assume that the atomic step§ of the algorithm 
correspond to total functions (as in the case of Turing machines), and so the primi-
tive recursive definition of the next-step function, which implicitly uses definition 
by cases, causes no trouble. That such an artificial trick has to be employed for the 
more general situation, argues the case for adopting a recursive function formalism 
based directly on conditional expressions such as that given by MCCARTICY in [1]. 

Reference 
[1] McCABTnr, J., A basis for a mathematical theory of computation. In: Computer Program. 

ming and Formal Systems (Editors: P. ERAFFORT and D. Ilrasonsnao,) North-Holland 
Publ. Comp., Amsterdam 1963. 

(Eingegangen am 14. Februar 1972) 
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INTEGERS WITH GIVEN INITIAL DIGITS 

R. S.. 	Inaitate of Computer Science, London, England 

Consider the following situation. Two mathematicians called X and Y.  are talk-
ing, and X announces, that he has just computed a- large- prime, which he begins 
to recite, to Y -digit by digit. There are two possible responses open ,to Y.. He can 
either wait until X has finished and then check the assertion, or he can interrupt X at 
some point in the recitation with the information that noprintecan begin-  with-those 
digits. The problems we are interested in are these: 

(1) Assuming that Y knows his primes, can we prove that there is no sequence 
of -digits:that allows Y to interrupt X? 

(2) Can the same be said about other sets of integers such as, the squares, the 
factorial numbers„ or the powers of 2? 

To make things precise, suppose that S is an (infinite) set of positive integers. 
We shall say that S is extendable in base, b if for each integer x 1, -there are in-
tegers y and. n, with y < bn, such that xi)" + y is in S. 

If S is extendable in base: b and consists of the integers so, sr, ---,then: 
(1) for each integer x 1, there are integers in and n such that ex 
b"(x+ 1). 
Conversely, (1) implies that S is extendable in base b, as we can take y to be 

s„, — bnx. 
If we use the prime number theorem,. the proof of the extendability of P, the set 

of primes, in every base is fairly easy. 

THEOREM 1. Let ns(n) be the number of members of S less than n. A sufficient 
367 
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condition for S to be extendable in every base is that if rcs(n)Irs(An)-+ 0(2) for 
all real 2 satisfying 1 	2, then 0(1)=1 only if 2 = 1. 

Proof. Assume that S is not extendable in some base b. Then by (1), there 
exists an x such that ns(bn(x + 1)) = ns(bnx) for all n. Let 10  = (x + 1)/x (whence 
1 < A :5_ 2), and m„ = b"x, so that 

ns(nin)ins(4111„) = 1 for all mn . 

It follows that if as(n)Ins(An)--* 0(2), then WO = 1 for some 10 	1, which 
contradicts the hypothesis of the theorem. 

Now the prime number theorem asserts that np(n) n/log n, whence 
VVp(n)/tcp(In) -+112, which is 1 only if = 1. Therefore P is extendable in every 
base. A similar argument shows that for each k, the set of kth powers is extendable 
in every base. However, in other interesting cases the ratio it s(n)1ns(2n) fails to 
converge, or converges to 1, for all 2, and a sharper condition is needed. The follow-
ing theorem effectively characterises the extendable sets of numbers and reduces 
the question to a problem of Diophantine Approximation. 

THEOREM 2. A necessary and sufficient condition for the set S = {so ,s 1 ,••.} 
of positive integers to be extendable in base b is that the set of fractional parts of 
the real numbers lognso  , logksi, ••• be dense in the unit interval. 

Proof. In the following, all logarithms are taken to the base b. 
(a) Necessity. Suppose S is extendable in base b, so that condition (1) holds. 

Take logarithms and write 	= logs„„ ce = logx, and b(a) = log(1 + 1/x). Then, 
by assumption, for each a of the form log x, there exist integers m and n such that 

(2) 0 < u. — n — a < o(a). 

If we write (z) for the fractional part and [z] for the integral part of the real num-
ber z , then (2) can be expanded to 

(3) (a) — (um ) < [um] — [a] — n < o(a) + (a) — (um ) < 6(a) + (a). 

Since (oc) — (um ) > —1, and o(a) + (oe) = log(x + 1) — [log , which has a max-
imum value of 1 (obtained when x is of the form bk  — 1, for some k), the above 
inequalities imply that [um ] — [ce] = n , whence (2) can be simplified to 

(4) 0 = (u.) — (a) < 6(a). 

Let 8 be any positive real number, and x any integer. Define ak  = log bkx. Clearly 
(ak) = (logx), for each k. Let n be any integer such that 

6(an ) = log(1 + 1/b"x) < s . 

For such an n, there exists, by (4), an m such that 0 < (u.) — (an) < S(a.); i.e., 
an m satisfying 
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(5) 
	

0 S 	— (log x) < s. 

Given e, we can also find an integer xo  such that 0 0 (log x0) < a. The sequence 
of points 

(log xo) , (2 log xo) , (3 log xo) , • • • 

therefore marks a chain across the interval (0,1), where the distance between con-
secutive points is less than e. Hence, given any 0 in (0, 1), one can find a number 
x = xt„ for some k , such that 0 	— (log x) < 6. It follows, using (5), that a 
number m exists such that 

(6) 
	

( 0- (101<8. 
Since 0 and s were arbitrary, (6) is just the condition for the set of fractional parts 
of log so  , log sl, • •• to be dense in the unit interval. 

(b) Sufficiency. Suppose that (6) holds for arbitrary 0 and e. Let x be any 
positive integer, and take 0 = (log x) . Then there must be an infinite number of 
integers m such that 

0 5_ (um ) — (log x) < s, 

for otherwise, we can construct an interval to the right of (log x) that contains no 
point of the form (u,,,), contrary to assumption. If we take an s < (5(a) and an m 
such that un, 	, where a = log x, then n = [u,n ] — [a] is a non-negative integer 
that satisfies condition (1). Hence S is extendable in base b . 

The following lemma is based on a proof by J. W. S. Cassels [1]. 

LEMMA. Let U be a sequence a D,i d ,••. of real numbers of increasing size. 
A sufficient condition for the fractional parts of U to be dense in the unit interval 
is given by either 

(i) Au„ —* 0, where 0 is either irrational or zero, or 
(ii) Au„ —> ao , and A2un  0. (By definition, Au. = Un+ 1 u„•) 

Proof. To begin with, assume that Au. —> 0, and let be an arbitrary real 
number. Since u. —> co , it is easy to verify that, given any e > 0 and any integer in , 
there exist integers p and no  such that 

(7) 	I un  —0—pke for all n satisfying no  S  n no  + m . 

In particular, it follows that the fractional parts of U are dense in the unit interval. 
Actually (7) asserts slightly more, and this is used below. 

In the case Au. —* co and A2un  —> 0, it follows from (7) (with un  replaced by 
Au„) that, given e > 0 and m , there exist integers p and no  such that 

I Au. — 0—pl<shn for all n satisfying no  n no  + m. 
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The above statement (with p = 0 and 0 = 0) also holds true in the third case Aun  —› 0, 
so that in either case, given c and m, there exist p and no, and some irrational 0, 
such that 

k — 1 
(8) 
	

Uno+ k uko ke kpl 	E Auno+, —0— pl<8 
r =0 

provided that 0 k <= m. 
Next, one version of Kronecker's theorem asserts that if 0 is irrational, then 

givens > 0, there is an n1 , such that for any real a there exist integers q and ko , 
with 0 ko < ni , such that I ko0 — a —ql< c. 

In substance, this says that the set of points {(0), (20), • • .} is dense in the unit 
interval. For a proof see Cassels [2], or Hardy [3]. 

Now, if in (8) we take m = n1 , let 13 be arbitrary, and set a = /3 — uno  , then 
Kronecker's theorem asserts the existence of integers q and ko, with ko 
such that 

ik00—fl+ u„0  — q I <c. 

Setting s = ko p + q, it follows that 

I Uno+ko 	— s _5_ 'uric, +ko  — U no  — ko p — k001 +PO — • + 	— ql<2e 

Since # ands were arbitrary and s is an integer, the lemma is proved. 

THEOREM 3. A sufficient condition for the set S = {s o ,s 1 ,•••} of positive 
integers to be extendable in base b is that 

either (i) 	0, where 0 = 1 or 0 is not a rational power of b, 

or 	(ii) sn+ ash 	oo and s„ sn+ 2/ + —* 1. 

The proof is a straightforward consequence of the lemma and Theorem 2. The 
second condition is independent of b, and so asserts the extendability of S in every 
base. 

Now we can show, for example, that the set of powers of a given integer p is 
extendable in base b, provided that p is not a power of b, as the first condition is 
satisfied. Also, the set of factorial numbers is extendable in every base as 
(n + 1)1/n 1 = n + 1 —› co and n!(n + 2)1/(n + 1)!2  = (n + 2)/(n + 1) —› 1. 
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