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ABSTRACT

This thesis investigates the computational complexity of programs
based on their running time. A program consists of an arbitrary flow-
chart defined over some instruction set of assignments and test'
instructions, and computes a wnique function. Each instruction set
specifies an order code for a particular register machine, whose regis-
ters Ay5 Ay, ... can contain arbitrary integers. Each instruction set

includes the basic set I :

0
as&gmnentg AJ.::Ak+l ‘ A.:=Ak
tests .=0 A.30,
es AJ 5

It is shown that programs defined over just IO can be speéded up by

an arbitrary linear factor. A formal demonstration of this result uses
a new technique for verifying the correctness of equivalence preserving
transformations. It is shown that this speed up property fails to hold

if I 9 is augmented with the assignments

It is shown that the problem of determining whether or not a given
function can be computed within a certain time bound can be reduced to
the problem of showing whether or not a different function can be
computed in real time. Finally, criteria are established for showing

that, under certain conditions, a function is not real time computable.
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CHAPTER ZERO

~ INTRODUCTION AND SUMMARY

The present work is a contribution to model-theoretic conputa~"
tional complexity. A model fof the computational process is defined
(in our case, register naéhine programs) and studied with respect to
some natural measure of complexity (in our case, the rumning time).
Such studies have intrinsic mathematical interest, but are also
important in two practical respects: as an aid to the investigation
of .particﬂar ﬁmblems, -and as a basis for the exploration of optimis-

ation procedures. We briefly discuss these areas.

In the investigation of the complexity of particular problems,
two distinct types of analysis are required; Kmuth [25] calls them
local (or type A) gnalysis, ard global (or type B) analysis. In the
local analysis, an algorithm for the solution of a problem is given,
and its performance is analysed urder various input assumptions, e.g.
worst case analysis. The criteria by which the performance is judged
may be storage requirements or, more usually, some measure of the
running time based on certain natural operational units such as the
number of additions and multiplications in arithmetic algorithms, or
the nunber of‘ comparisons in sorting algorithms. Such an analysis
serves to put an upper bound to the complexity of the problem. Among
many examples of this type of analysis, one may mention: Strassen's
algorithm for matrix miltiplication (Strassen [37]), the Euclidean

algorithm (Knuth [27] , Collins [11]), algorithms for the recognition



of context free languages (e.g. Younger [39]), and more recently,
algorithms for the selection problem (Blum et al [§]).

On the other hénd, global analysis attempts to put a lower bound
on the complexity of the given problem. Such an anaiysis deperxls on
the means admissible for a solution, and hence on some firmly established
computational model to which the complexity of the pmblem can be
related. Since this type of analysis is often sens::.tlve to small changes
in the model's technology, it is important that the model be both
natural and flexible; 'For example, the complexity of polynomial evalu-
ation or matrix multiplication is naturally given in terms of a program
model in which assignments involving multiplication and addition can
appear, but a different instruction set would be proper in the study
~ of how long it takes to multiply two numbers (e.g. Cook and Anderaa ain.
A computational model based on programs over a variety of instruction
sets appears to be both natural and flexible. By studying it, one hopes
to develop general techniques for estimating lower complexity bounds.
(Cﬁapter 5 contains an example of such a technique). In contrast, it
is felt that for many problems, computational models based on Turlng
machines fail to meet the criteria mentioned above. The language of
Turmg machlnes is not a particularly natural model of real programming
languages, and the basic mode of opera’cn.on is not easily augmented to
correspond to real operational units. Furthermore, some of the Turing
machine complexity measures, such as the number of tape reversals
(Hartmanis [20]) appear difficult to relate to actual programming
situations. Of course, most models have features in common, and in

the axiomatic development of computational complexity (e.g. Blum [7]



McCreight [30]), it is precisely these features that are brought to
light.

The second use of nndel—based complexity studies is in the
investigafion of efficiency increasing program transformations, which
McCarthy [29] lists as one of the goals of a mathematical theory of
computation. Here, the object is to describe translations which trans-
form programs into other equivalent programs, but at the same time
increase some measure of the program's performance, possibly at the
expense of another (e.g. Allen [2], Marill [28], Aho and Ullmen [1],
Hoperoft and Ullman [23]). It is an important problem to discover
the nature of these trade-off m;ationships. (Chapter 3 contains an

example of such a transformation).

The present work contains an investigation of the computational
complexity of programs based on their rumning time. Each program
consists of an arbitrary flowchart defined over some specified set of
assignments and test instructions and computes a unique (partial
number-theoretic) function. The instruction set is regarded as an
order code for a particular machine. Thus the basic framework is
the very natural one suggested by Scott [35], in which programs and
machines are treated as distinct but closely related concepts, and
the notion of computable function, rather than decidable set or enumera-
ble sequence is given prime importance. Each machine possesses the
same basic hardware consisting of a denumerable number of registers
each of which can contain an arbitrary integer, and is therefore
called a register machine.

The first comprehensive study of register machines was given by
Shepherdson and Sturgis [36], and concentrated mainly on a particular



machine (the URM) which had an order code containing instructions

for vincrex.nenting and decrementing a register, copying one register
into another, mltlahsmg a register to zero, and testing for zero.

(A precise description of this instructibn set is given in Chapter 2).
They showed that such programs could compute just the class ’of partial
recursive functions. Minsky [53] showed that with suitable coding of
the input and output, only two registers were in fact needed. Cleave
[9) studied time-limited complexity classes of register machine
programs, based on a somewhat less natural definition of running time
than the one we use, relating them to the Grzegorzyk [1§] hierarchy

of classes of recursive functions. Elgot and Robinéon (i4] introduced
the idea of a stored program register machine, and the complexity of
this model has recently been investigated by Hartmanis [19]. Fischer,
Meyer and Rosenberg [16], [17], studied an automata-theoretic version
of register machines, concentrating on language recognition and
sequence generation. Some of the resuli:s in the present work, parallel
and extend the work in these hst two papers. Cobham [10] also studied

'sequence generation based on a register machine model.

Meyer and Ritchie [31] studied register machine programs based on
a more restrictive control mechanism than that given by an arbitrary
flowchart (effectively, the Fortran DO~loop), and this work was extended
by Constable and Borodin [12], who explored the relative efficiency éf

flowchart languages and DO-loop languages.

The computational model which has been studied the most is the
Turing machine model. This study, which was initiated by Yamada [40Q]

and Hartmanis and Stearns [21] now has a large literature (see the
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bibliography of Ireland and Fischer [24]).

We now sumarize the main results presented in the thesis.

chapter 1 is of a rather different nature than the other
chapters, and consists of a modified version of Bird [4] on the

subject of compilers.

A number of theorems in the present work are proved in the same
manner; a translation is described which converts an arbitrary program
or programs into another program with certain desirable properties.
Usually, altﬁough not always, the translated program is equivalent
to the original one, i.e. it conbut';es the same function. In such a
case, we call the translation a compiler. One major difficulty arises
about the desecription of compilers: since we are proving theorems and
not just writing software, it must somehow be proved that the compilers
are correct, i.e. do produce equivalent object programs. In some
simple cases, this is obvious from an informal description of the
translation, and a formal demonstration of correctness would be
unnecessarily pedantic. In other cases, the compilers may be quite
complicated, and it is necessary to make use of some formalism for
describing translations, and appeal to some general verification
technique. This problem arises especially in Chapter 3, where compilers
are defined which make heavy use of 'label logic' to control the

flow of computation.

Accordingly, Chapter 1 is devoted to establishing just such a
formalism and verification technique. The main result, the compiler

theorem, gives five conditions the conjunction of which is sufficient
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to verify that a given translation is indeed a compiler. The

- mathematical background necessary to mderst‘;and the details of

the proof is given separaﬁely in Appendix A. The compiler theorem
can be invoked to formally prove the correctness of all compilers

described in the present work.

Chapter 2 introduces, in more detail, the models to be studied.
Some straightforward consequences of the definitions are proved, and
three useful program transformations (addition, composition, and

inversion) are described.

In Chapter 3, we prove a speed up theorem for programs defined |
over the original instruction seﬁ described by Shepherdson and Sturgis
(i.e. URM programs). This theorem says thét it is always possible to
translate a given program into another equivalent one which runs twice
as I‘aét. By applying the translation a nunber‘of times, it is there-
fore possible f.o speed up the ruming time of any program by an arbitrary
linear factor. Speed up theorems of this sort are by no means new,
but the author feels that their importance has been underestimated in
the past. This is partly because the linear épeed up theorem was
first proved ffor Turing machines, and these machines only possess speed
up of a very trivial sort, essentially reducing to: given a program Pl
for a Turing machine Tl (which uses an alphabet of k symbols), an
equivalent program P2 for another Turing machine T, (which uses 2k
symbols) can be fourd. - In other words, the underlying hardware can be
changed. More interesting is the question of whether an equivalent
program P2 for the same machine Tl can be found; but for Turing

machines this is not possible.
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The proof of speed up for the Shépherdson and Sturgis instruction
set is not trivial. Fischer, Meyer and Rosenberg [16] prove, in a
different setting, a spéed up fheorem for awsubset of these instructions.
It is an interesting problem to explore the nature of the boundary
between instruction sets that possess speed up, and those that do not.
As a consequence of a geheral theorem in Chapter 5, it is proved that
if the SS instruction set is augmented with instructions for adding and
subtracting the contents of two registers, then the resulting set does
not possess speed up. It is important to mention that the new set
: poé.sesses exactly the same input and output instructions as the originalj;
were this not the case, the proof that speed up is impossible would be
trivial. Using the same technique, it is possible to show that if the
SS set is given the ability to address registers 'indirec'cly through index
régisters, then the resulting instruction set again does not possess
speed wp. This last result can also be proved by a straightforward

diagonalisation argument, but such arguments are not used in this work.

The main result of Chapter 4 shows that to a large extent the study
of time-limited computations of register machine programs can be |
reduced to the study of real time conpu’cai:_ions s i.e. where the ruming
time is bounded by a linear function of the input. More precisely,
we show that, under certain restrictions on t, the following two state-

ments are equivalent for an arbitrary function f:

(1) f is computable within time t,

(ii) Ax.f(max y [x 3 t(y)]) is real time computable.

The restriction on t is that it should be superhonest, and Chapter 4
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also contains a discussion of this class of functions.

In Chapter 5‘, we give a géneral technique for establishing
lower bourds on the time for the computation of given functions.
The results, which extend those of [17], can be used to show that
there is a slowly :’mcreaéing function which cannot be computed, no
matter what instruction set is specified, in under ex steps for
.each input x, ‘where e is some fixed positive real number. .This
enables us to prove that certain instruction sets cannot possess the

speed up property..
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CHAFTER ONE

PROGRAMS, MACHINES, AND COMPILERS

L

This chapter presents, urxier a fairly general definition of
program and machine (similar in spirit to Seott [35]), a technique
for defining compilers and proving them correct. Here, a compiler
simply means a translation between programs which preserves équiva-
lence in the sense that corresponding source and target programs
compute the same function. The compiler theorem (Theorem 1.1), which
is used extensively in subsequent chapters, gives certain conditions,
the verification of which is sufficient to demonstrate that a specified
translation does indeed preserve equivalence. Similar but somewhat
less general conditions are given in Milner [32] and Knuth [26, Ex.1.1.9].
The proof of the theorem depends heavily on a certain induction princi-
ple for establishing equality bei:ween recursively defined partial
functions and the necéssary mathematical backgro{md and notation is

" given, for convenience, separately in Appendix A.

§1. Programs

The basic components of programs are labelled instructions. The
Spé.ce I of labelled instructions is defined with respect to three

sets of identifiers:

L a set of label identifiers,
F = a set of function identifiers,

T  a set of test identifiers.
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Each instruction i e I has one of the forms

2: £+ ¢
or ‘z:t-»z',z",

1o
where feF,teT,amd 2, 2 , %

¢ L. The label which appears
to the left of the colon sign in an instruction i is called the
label of i, and is denoted by A(i). The precise meaning of an
instruction depends oﬁ specifying a machine, as we shall see, but

the above forms are intended to suggest the Algol - like equivalents:

2: do f then goto ¢/,

and £: if t then goto ' else goto o,
A program P is any finite subset of I for which the following

condition holds:

for all i, j € P, if A(i) = A(j) then i =j.
Thus a program is a finite set of instructions each of which possesses
a different label.

The collection of programs over I is denoted by P(I), and the

set {A(i): i € P} by A(P). We shall say that % is a terminal label

of P if & is referenced by P (i.e. is contained in the right hand

part of some instruction of P), but £ is not in A(P).

§2. Machines

A machine M = M(L, F, T) is defined when the following objects

are given:



1. an input set X,

2. an output set Y,

3. a memory set V,

4, an input function 1M X-V,

5. an output function Og: V+ Y,

6. for each feF, a function f,: V+V,

M

7. for each t € T, a predicate t,: V+ {true, false},

M
8. a particular element start of L, called the initial or

start label.

The transition function u of M is a function

u: I+ [Ixv) » (LxV)]

with the definition

w@ e, v = (0, f,() if i=e:e-4,
=, v if izt 9
and ’cM(v) = true,
=@, v if i=gt-el,

and tM(v) = false,

undefined, otherwise.

Note this definition implies that the execution of a test does not

change the current value of theremory set.

It is convenient in the sequel to modify the input and output
functions, by defining

1. in: X+ (V) by in (x) = (start, iy(x)),

and 2. out: (LxV) + Y by out (2, v) = Qy(v).
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Suppose that P is a given program, and M is a given machine. In
order to describe the function fP computed by P on M, we first

define two useful functions:

(@)  8: P+ [xV) + {true, falsel]

by 6(P)(2, v) = true if 2 € A(P),

false otherwise,

and (b) ¢: P(I) » [(LxV) » (IxV)], recursively by the equation

$(P). = (8(P) » ¢(2) - L w(d), 1.
ieP
(For the meaning of U see Appendix A). Here, 1 denotes fhe identity
function on IxV. The definition of u guarantees that {u(i): i ¢ P}
is a set of disjoint functions provided P is a well formed program,

. and so the upper bound is defined.
The.function fP: X+ ¥ is now given by the equation
fP = out - ¢(P) - in .

Thus f"P(x) expresses the result of executing P on M with
initial value iM(x) of the memory set, begiming with the instruc-
tion labelled start, and proceeding instruction by instruection, as
determined by the transition function, until an element (2, v) of
IXV 1is reached, if it ever is, where no instruction of P has the

label &, in which case fP(x) = OM(V) .

Having established these preliminaries, we now proceed to the

main definitions and theorem.



§3. Translations and compilers

A translation is a procedure for transforming programs into

other programs. The translation may be defined by a step by step

process in which individual instructions of a source program are
translated into subprograms of the target program, or possibly by
a more general process in which subprograms of the source program

are translated as a whole. Inh general, corresponding source and

target programs need not be intended for the same machine, but for

the purposes of this thesis we can suppose that they are.

In order to ensure that the set of instructions produced by
a translation forms a program, the following definitions are
adopted.

1. A translation is a mapping T - P(I), where NI is a
- partition of I consisting of programs (i.e. a collection
of disjoint subsets of I , each of which is a program, and
whose union is I), for which the following condition holds:
for all Sy» S, € 1I, if A(Sl) and A(SZ) are disjoint
sets, then so are A(Zsl) and A(ZSZ).

2. A translation I:I = P(I) is applicable to a program P if

P is the union of some of the sets in II. In such a case, the
collection {S: SC P, Se II} partifions P and is denoted by
n P It follows from the first definition that if I is
applicable to P, then the set

pe) = U z(s)
SeI%,

is a well formed program.

18
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3. A translation I:I + P(I) is a step by step translation if I

is the identity partition {(i): ieI}. Clearly, step by step

translations are applicable to any program over I.

4. A translation I:Il » P(I) is called a compiler (for a machine M)
if the equation

£(P) = £(zP)

holds for each program P to which I is applicable.

The compiler theorem can now be stated.

Theorem 1.1 A sufficient condition for a translation I:Il + P(I)
to be é. compiler (for M) is that there exists a
’ (possibly partial) function o: IxV » LxV for which
the following conditions hold:

(1) o «in = in,

(2) ¢(zS) maps D into D for all Sell,

where D = domain (o),
(3) out - o
(4) o8(s) + ¢

(5) ¢(s) -

out on D,

8(ES) on D, for all Sell,

Q
1

o « ¢$(ZS) on D, for all Sell.

g holds on D if for all xeD, £(x) = g(x)).

(An equation f

Remark. - The conditions are best explained by pictures. Conditions

(1) and (3) say that the following diagrams commte:
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and corditions (2) and (5) entail the commtativity of

a
o(s) Y © Y ¢(ss) ;
y ¢ {
LxV < D

The proof of the theorem depends on three main lemmas. We suppose
that an arbitrary program P is given, to which I is applicable,
and that Q denotes the translé’ced program IP = U IS. As an

aid to readability, we shall sometimes write funct?ce)ggl application

without parentheses, i.e. ¢P for ¢(P)”etc.

Lemma 1.2 Let YyP and ¢Q be recursively defined by the equations

WP = (P yP - L u(s), 1),
' SEHP
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Q= a>yq - U ues), ),

Sell P

where for any program R

u(R} = (6R »+ ¢R, Q).
Then

yP *0 = g+ PYQ on D.

(For the meaning of  see Appendix A).

Lemma 1.3 With the above definitions, YR maps D into D.

The last lemma is independent of the concept of a translation.
Lemma 1.4 Let R Dbe any program, and My any partition of R.
: If. YR is recursively defined by the equation

wR= (R+yr - L u(s), 1),
' SelIR

then YR = ¢R.

pa

'Asswning the truth of these lemmas, Theorem ]..‘.l- follows easily.

We have
fP = out + ¢P - in . by definition,
=out * YP * in by Lemma 1.4,
=out - yP + 0 - in by condition (1) on I,

=out * 0 -9Q - in by Lemma 1.2,
=out * ¥Q * in by eondition (3) and
Lemma 1.3.



(0 + ya + L sy, 1)

Now, YQ =
Sell,
= (+vq - L wus), 1),
Sellg
where IIQ is the partition {ZS : Ser[P} of Q. Hence Lemma 1.4

can be applied again, and we have

fP=out - ¢Q - in = M.

Proof of lemma 1.2

First, it follows from condition (4) on I that

6P - ¢

GSenP)e,s .0

(BSenP) 9(8S) on D

6Q on D.

Second, it follows from condition (5) on I that

u(s) o =(eSo+9¢sS*a, Q)

(8(zS) » o - $(Z8), Si) on D

o*u(ZS) on D.
Having established, these facts, we can prove by induction that

/

lka'0'=0"\ka on D forall k=3 0.

The assertion is clearly true for k = 0, since both

Vof and lpOQ are ), and the induction step is

Y4y PO = (6P-c+ka-Uu(S).c, o),

22
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‘'where the upper bound is taken over all S € IIP,

(6@ + y, P -0 - L u(ss), o)

©Q » o -9,Q - Uu@s), o),

using the induction hypothesis. Since this last expression is

Jjust o "”k+1Q’ the induction step is established.

Proof of Lemma 1.3

Using condition.(2) on I, the assertion

¥ Qmps D into D for all k20,

can be proved by a similar induction argument. Since, for each

deD thefe exists a k such that

(@) £ @ implies ya(d) = ¥,QA),

the lemné is proved.

The proof of Lemma 1.4 is more complicated and depends on four
further lemmas. For shorthand, we denote ’

| (i) by A and L) u(s) by B.

ieR St—:lIR y

lemma 1.5 If ieR, then ¢R ° w@) L ¢R.



Proof. ¢éR * u(i) = (6R + ¢R- u(i), Q) since ieR,
= (6R » ¢R * A, Q)

C 4R by definition of ¢R.

Lemma 1.6 If S &R, then ¢R-uSLC ¢R.

Proof. We prove by induction that
¢R-¢ksg R for all k20,

from which it follows that ¢R - ¢S C ¢R.

Since uS L[ ¢S, the conclusion follows.

The assertion is clearly true for k = O, and the induction

step is

0RbgS = 05> 0R -5+ L uh), o
R ¥

nr

ieS

(es> U ¢r- 1), ¢R)
ieS

C (6s + ¢R, $R) by lemma 1.5 and the fact

that S < R. Since

(es + ¢R, ¢R)C oR,

the induction is complete. -

(eS + ¢R ° U u{i), ¢4R) by induction,

2L



lemma 1.7 If Sel, then yR-¢S = yR.

YR - (6S + uS, 1) by definition of uS,

Proof. | YR - ¢S

(6S + YR * uS, YR)

- (6S + YR - B, yR),

since if 1IN is a partition of R, then the set {u(S): SeIIR}
is a set of disjoint functions. The last expression is equal
o

(6S + (6R » YR+ B, 1), yR) since 6S implies 6R,

(65 + YR, YR)

yR.

Lemma 1.8 If i€ R, then yR-u(i)C yR.

Proof. Let S be the unique member of IIR which contains i.

Then )
YR -u(i) = yR- ¢S -u(i) by Lemma 1.7,

C YR - ¢S by Lemma 1.5 since ieS,

= YR by Lemma 1.7 again.

Proof of lLemma 1.4

(a) YRE$R. We prove by induction that

WREGR forall k3O,

25
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~ The assertion is clearly true for k = 0, and the induction

step is

[ (R~ ¢R + B, 1) by induction hypothesis,

(R + L] ¢r - s, 1)
Sc»:I[R

[ (6r > ¢R, 1) by Lemma 1.6,

= ¢R.

(b) ¢R [ yR. Here, the induction step is
bp41R = (BR > ¢, R + 4, 1)
L (R +yR + A, 1) by induction hypothesis,

@R+ bR ), )

C (6r + yR, 1) by Lemma 1.8,

= yR.

The proof of Theorem 1.1 is finally complete. It can be shown

by considering suitable counter examples that the theorem fails

to hold if any of the five conditions is omitted.

In the next section, we consider the composition of

translations. '



§4. Composition of compilers

We say that a translation I is a compiler under o, if ¥

together with o satisfies the five conditions of Theorem 1.1.
The following result is of interest, but is not used in the sequel.

Theorem 1.9 et I: @, + P(I) and A: I[2 + P(I) be two transla-

1
tions with the property that A is applicable to

2(S) for each Sel Suppose that I is a compiler

l.

wder o, and A is a compiler under §. Then the

conposition translation A-%: I, + P(I), defined by
A-5(3) = |J A
: Tellg

for each SeIIl s where

= {T: Tell,, T € £(S5)},

g 29

-

is a compiler under o - §.

Proof.
It is easy to verify that

- (1) o+6 in=in.
For the other conditions, let D = domain (o +§8). It follows

that D € domain (§) = D(8) and that §(d) € domain (o) = D(o)

for each d € D. The proof that

(3) out *o+6=o0ut onD,

is now straightforward. Next, if Se:IIl we have

§

27



8(S)+0+8 =6(Z35)-8 on D,

= (@1 ¢ g) 6(T) -6 on D,

= AT e Iy) 6(aT) o D,
=6(a- E(S)) on D.

Thus
(4) o(S)-o.8 = 6(a-L(S)) on D

is established.

Next, using Lemmas 1.2 and 1.4, we have for each S ¢ I, that

1

$(ZS)+ & = 8 ¢p(A° L(S))

on D(8), and hence on D, since D &D(§). Thus

| $(S) +0+8 = 0¢p(ZS) * § =0 -8§-¢(A-2Z(S)) on D,

which is just cordition (5).
Finally, we must verify

(2) ¢(A-Z(S)) maps D into D

for all Sell,. Suppose, by way of con’crgdic’cion, that for some

Sell, and deD, we have

1
¢(A -+ 2(3))(d) € D(§) - D.

It follows that _
§ +¢(a - 2(8))(a) ¢ D(o),

e,
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~and so

| $(ZS) ° 6(&) = §-¢(A-I(S))(d) ¢ D(c).

But this contradicts the cordition that ¢(ZS) maps D(o) into
D(o), since we know &(d) € D(0). Thus the final condition is

verified, and the theorem is proved.

§5. Modified programs

It is often useful, when describing translations, to consider

target programs that contain unconditional jump instructions.

Unconditional jumps, which will be written in the form

2:-»2,’

can always be eliminated by systematic label conversion. Thus,

if 2:+ 2’ occurs as an instruction in a program P, we can delete

it and replace all references to % in P by references to 2.’.
Some care must be exercised in certain situations; for example, if
both 2, > 2,’ and 2.': + £ occur in program P, all references to
both £ and & must be converted to a reference to an infinite

loop. .

In fact, it is often convenient to assume that every program

for a given machine contains a single initial jump
start: »~ £ , for some 2 ¢L,

where start is the initial label given for the machine, and that
no program ever contains an instruction which can reference start.
- This assumption, which enables the description of translations to

be given more sinply, entails no loss of generality.

H
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CHAPTER TWO

BASIC DEFINITIONS AND RESULTS

In this chapter, register machines and their programs are
described formally, and the definition of the running time of
a program made precise (Section 1). As a consequence of the
definition, certain programs may have a zero running time, and
Section 2 characterises the class of functioms such programs
compute. Section 3 develops some useful nowstion on the relative
growth of functions, and this is used in Se@ion 4 to state some
simple i‘elationships between the function computed by a program
and its rumning time. Section 5 considers the important notion
of on-line programs, and Sections 6 and 7 describe some useful

ways of combining and modifying programs.

§1. Register machines and their programs

The basic hardware of the machines which we shall study consists

of a denumerable sequence of registers

Al’ A2, e e An, .'O’

each of which is capable of containing an arbitrary positive or
negative integer, including zero. We refer £o n as the address

of register A . In addition, there are two special registers X

and Y, called the input register and output register respectively;
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-these can only contain non-negative integers. Thus our machines,
when supplied with programs, compute partial l-place nunber theoretic
functions. This is not critical for the work that follows; only
slight changes would be needed to deal with input and output registers
that contain arbitrary strings of symbols over some finite alphabet,

or both positive and negative integers.

In addition to these registers, the machines supply an input

function and an output function, which respectively initialise a

machine for a computation, and extract a final result.

(1) The input function loads a given non-negative integer in

the register- X, and sets all other registers to zero.

(2) The output function extracts the final contents of the

output register Y as the result of the computation.
- i

- Programs for these machines consist of arbitrary flowcharts made

up out of the following objects:
==

Flowcharts, which are defined in the obvious way, can be

represented, where convenient, as sets of labelled instructicns
(as in Chapter 1). Both representations of programs have their

advantages; with flowcharts there is no need to make the decision
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as to what labels to use, but sets of labelled instructions are most

useful when describing transformations on programs.

The instruction set (or order code) of a machine determines

what assignments and tests the program can use. For the most part,

we shall not be concerned with exactly what instructions are allowed,

except to make the following remarks.

(1) The only instructions involving the input and output registers

(2)

are:
assignments X:=X-1 Y:=Y+1
tests X=0.

These have the cbvious in‘terpretation - we -assume that if the
assigmment X:=X-1 ié executed when X is empty, then X is
unchanged - and ensure that each machine treats the input
register as a read-onlyregister, and the output register as

a Writé—only register.

Each instruction set contains the basic instruction set To»

where I0 consists of:

assignments Ai: =Aj +1 Ai: =Aj -1
tests A0 A >0,

i” i

where i and j are arbitrary positive integers. These

instructions, which effectively define the original Shepherdson-~

Sturgis set, have their obvious interpretation, and their effect

is not formally defined.

32,



‘(3) Each instruction set defines programs which are relocatable.
This term is defined precisely later, but means roughly that
we can lalways modify programs so that they do not refer to
certain areas of store, and so do not interferewith other

programs which may be running at the same time.

Whenan instruction set is specified, the machine is completely -
defined. Where necessary, we refer to a program defined over an

instruction set I, as an I - program.

When a program P 1is executed (on its register machine) a
function fP is defined, and we say P computes fP. A formal
definition of how the values of this function are obtained is not
given; sufficient detailé can be found in Chapter 1. We shall be
concerned throughout only wit;h programs that corpute total functions.
For each I, the class of I-programs which compute total functions
is, of course, undecidable. Most of the results are proved
constructively, i.e. usually by showing that a given program or
programs can be transformed in some fashion in order to satisfy
certain prqperties, and consequently can be given a valid interpre-

tation when the programs do not compute total functions.

We say that program P is eguivalent to program Q if fp=fQ’

Along with f,» each program P defines another (total)

function t_, called the ruming time of P, which is defined as

P’

!

follows:
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tP(x) = the total number of work register instructions
(both assignments and tests) executed by P,

when run on input x.

This measure of the complexity of a program is the only one with

which we shall be concerned (Bird [5] [67] deals with space-
restricted register machine computations). It is to be noted that
input and output instructions are not counted towards the running

time of a program. 'fhis assumption has certain convenient consequences,
and is counter balanced by the fact that such instructions can only

read the input and store the output.

Occasionally we shall use the terms instantaneous deseription,

and computation sequence. An instantaneous description of a point

during a computation of a program P 1is a vector,

(%, X, ¥, 85 85, -.0),

vwhich represents the fact that P is just about to execute the
instruction with label 2, (in some consistent labelling of the
instructions of P) and the current contents of the registers X, Y,

' Al, ... etc., are x, y, 2y, 8, ... etc. A computation sequence

is a segeunce of instantaneous descriptions. A register AJ. is
referred to by a program P if there is a computation sequence of P
with some input, in which a label of an instruction involving

register A 5 oceurs.

A set of instructions I is said to be relocatable if, given
any two programs P and Q defined over I, we can find programs

/ . .
P amd Q ', equivalent to P and @ respectively, such that no
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work register referred to by P‘ is referred to by Q' and vice-

versa.

Finally, two simple translations. Sometimes it is useful to
suppose that the input instructions of a program only ever occur

in the form

that is, every input test is immediately followed by an X:=X-1,

and each such instruction is always preceeded by a test. A program

with this property is said to be in standard input form. We can
always convért a program iﬁto an equivalent one in standard input
form. This is fairly obvious, but we give details of the formal
translation as it indicates the general manner of describing

translations which we shall employ.

The step by step compiler A which achieves the desired
result, produces instructions with labels (apart from start) of
thé form

(ay, m),

where m is arbitrary, and a = 0 or 1. The translation A

| satisfies the five conditions of the compiler theorem under the

mapping 6, where



§(start, x, vy, )5 a5, «eo) = (start, x,y, a5 85, eee)
and 8({a, m), x, ¥, a5 8ys «er) T (M Xty ¥y 85 By, en) ‘
A is given b;;r:

1. A [starb: +n'1_] = Estart: + (0, m)]
2. A [m: X=0 -+ m', ] = {(O,m): X=0 + (0, m'), 20

Yoy o )
g X:sX-1 -+ (1, m"),
kls m): g (1’ m”)}

3 8 [m:X:=x1>m] = {0, m:X=0+(0,n), 8,

£ 2 X: = X-1+ (0, m'),

@, m: > (0, m')}

=
™

i)

s
"

ia’ for all other instructions i, where if
a

i: =m: £+m', then ia: (@, m): £+ (a, m') or

if i: =m: t'+m’, m’ , then ia z (@, m): t + (@, m’), (o, m¥).

If A(P) = Q, then P is equivalent to Q since A is a combiler.
Q contains unconditional jumps which can be eliminated by label
conversion (Section 1.5), and is clearly in standard input form.
The verification that A satisfies the five conditions of the
compiler theorem is left to the reader. Note that in (3), we assume
that the effect of executing X:=X-1, when X 1is empty, is to

leave X unchanged.

When all the input and halt instructions of a program occur

in’e form
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Xe=X-1

N

We say that the program is on-line. On-line programs possess a
number of different characteristics to ordinary programs and are
very important in the sequel. Section 2.5 goes into more detail

about them.

The last translation of this section is concerned with the
instruction set IO' We prove that for any Io-pmgram P we can
_find another equivalent Io-prog:'am Q which stores only non-
negatiire integers in its work registers (and so makes no use of
the test A; 3 0). Q is a step by step simulation of P in which
only the absolute values of the contents of the registers is stored
and the labels of Q contain information as to the proper sign of
these contents. More formally, suppose k is the maximum address
referred to 'by‘ P. The step by step translation 4, for which
AK(P) = Q, produces instructions with labels (apart from start) of

the form
(o, m)

where m is arbitrary, and « = (al, sy eees ak) with o5 = Oor l.-
The mapping Gk’ which is associated with b is ‘
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Gk (start, x, y, él, coes ak) = (start, x, ¥, g5 +ees ak)
" 61{ ((as m).yxs s al’ covy ak) = (ms X, ¥» b1’ seey bk)s

'whe .=a. i . = . = -a. 1 . = 1.
ere bJ a, if aJ O,ande a.JlfmJ 1l

B, is given by:

W o [ A = AL > 0]

1

cn . = o tal o
2o {(a, m): Agi = AJ.+1 (", m')}

%
: _ /
U {(G, m)n Aj-o > lm, gvm
o.=1 4
! £ : A.: = A4l » (a' m’)
m" i’ J ’
{, . - - /4 {
« Romo Ai- - Aj l g (G > m )}
where o, =a”=a for » £1 a'-O and a”=1
e T T ’

@ [m: 4 d A.'].-_l + 1]

= U e, m: As: = AL > (o, m!)} U
uj=l J

{
U {(a, m): Aj =0>n, n

.=0
%5
ng Ay o= AgHL (a/, m"),
n:n: Asz = Aj-l +> (af, m')}

1 - - . Y /-
.wh‘ere a,” e, =a, for x'f‘-l,czi-landmi = 0.



- (3) & [m: A; 3 o+ml, nf] = ago {(a, m): + (a, m)} v
i

U {(a, m: A; =0~ (o, m’),‘ (a,
ui=1 ‘

®  a [ - U i, for all other instructions i.
a

In the definition, U means the union over all a for
a.=0
J

which @y = 0; similarly for U .
a.=1
J

The verification that Ak satisfies the concﬁtions of the

compiler theorem under Gk is again left to the reader.

39
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‘§2. Functions computable within zero time

Programs, which consist only of input and output instructions,
have zero rumning time and compute functions of a simple but
important type: the ultimately linear functions.

A function f 1is said to be ultimately linear, if there exist

integers ¢, d, and X, with ¢ > 1, such that
f(xtc) = f(x)+d@ for all x 3 X, o

If d =0, then £ is also said to be ultimately periodic.

Theorem 2.1 A function f can be computed by a program with
zero running time if and only if f is ul'cima’c'ely’

linear.

Proof. (a) necessity. Suppose f is computed by P such that
tP(x) = 0 for all x, and suppose P contains k' distinet instrue-
tions of the form X:=X-1. If for no input does P obey more

than k such instructions, then for each input x > k, the compu'cation?

sequence of P with input x will be identical, and so
f(x+l) = f(x) for x>k,

whehce f is ultimately periodic. If, on the other hand, P does
obey more than k such instructions for some input Xs then some
instruction will be executed at least twice. Let I be the segeunce

of instructions executed between the two occurrences of the first
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~ such repeated instruction. Since the running time of P is zero,
no work register instruction appears in I, and so the computation
of P with input Xy .will continue to cycle on I until the input
is reduced to zero. Moreover, exactly the same situation will arise
for the computation of P with an input x 3 X If c 1is the
nunber of instructions of the form X:=X-1 and d is the number of )
output instructions contained in I, then it follows that

f’(x+c+i) = f(x)+d  for X3 X,

whence f is ultimately linear.

(b) sufficiency. Suppose that f(x+e) = f(x) +d for x 3 X,

The following program computes f and has zero running time:



x times

¢ times

Y:=Y+£(0)

X:=X-1

X=

Y:=Y+f(xo—l)

X:=

_1 ’

Yi=Y+£(x,)

Y:=Y+f(xo+c-1)

(7

L2



L3

-Hence the theorem is proved.

We note, for later use, the following fact about the ultimately
linear functions.

Lemma 2.2 If f is ultimstely periodic, then If is ultimately
linear.

Proof. ~ Suppose f(x+e) = f(x) for x 3 Xy

whence £(x) = £(x, + [x=x_, ¢]) for x3x.
It follows that X+ X o+c—1 |
| ] £y =31 £y =4 say,
y=X+1 y=x;

for x 3 X Restated, this says
() (x+e) = (EHX) +d for x32x,

whence If is ultimately linear.

§3. Asymptotic notation

Before proceeding further, it is useful to describe some

notation for comparing the rate of growth of functions.

(1) Ve shall write f € g to mean that there exists a positive

constant ¢ and an integer X, such that.

f(x) € cg(x) for all x> X,
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(2) We shall write £ <4 g tomean that g g f is false.

(3) We shall write fv g tomeanboth fgg and g g f.

The notation f ¢ g is equivalent to the more usual mathematical
notation f = Og; each has its advantages, but the former is more

natural in that it emphasizes the transitive nature of 4. It is

straightforward to show that

(a) f<9g if and only if 1lim inf f£(x) _ 0
X0 g(x) ‘

Further facts noted without proof are:
(b) ¢ 1is reflexive and transitive,

(¢) If £gh and ggh, then figgh.

The notation will frequently be abused to the extent that we shall
write f(x) @ x . ete., to mean more precisely that f g i, where i

is the identity function.

1 Three basic theorems

We now prove three basic results which will be referred to .

subsequently as the almost everywhere theorem, the minimal growth

rate theorem, and the size theorem.

AN
Theorem 2.3 Suppose P is a program such that
i'f,(x) € f(x) for all x> X
wheré f is some specified function. Then we can

find a program Q, equivalent to P and on-line if

P is, such that

/ tu(X) € £(x) for all x.
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Proof. Let ¢ = max tP(?{)' Program P can be converted into an
XSXO

equivalent program Q for which tQ(x) =0 if tP(x) <c,

and tQ(x) = tP(x) if tP(x) > ¢. It follows from this that

tQ(x) < f(x)_ for all x. We give only an infonnal description of Q.

Q simlates P in a step by step fashion, except that, in any

conputation, Q delays the execution of the first ¢ work register

instructions executed by P. These instructions are remenbered in

the label structure of Q, and are only executed when the (c+l)st

work register inétruction of P is 'about to be executed. Q can

clearly be made on-line if P is, and the rumning time estimate of

Q follows at once.

Theorem 2.4 If P is a program such that tP(x) 4 x, then fP
is ultimately l:Lnear

Proof.

Suppose that P contains k instructions of the form X:=X-1.
By hypothesis, there is an integer X, @S large as we please and
hence greater than k, such that tP(xo) <Eco/k]. Consider the
computation sequence of P with input X If this sequence contains
less than X, instructions of tﬁe form X:=X-1, then fP is
ultimately periodic by the same reasoning as Theorem 2.1. On the
other hand, if this sequence contains X, such inétmctions, then
it must contain two occurrences of the same input instruction,
between which no work register instruction occurs. To see this,
suppose n > O 1is such that nk g Xy < (n+1)k. 1If the above
situation does not arise, then tP(xO) *n = [xollilcontrary to

hypothesis. The rest of the proof is now identical with Theorem 2.1.

/
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Theorem 2.4 is the best possible in the sense that one can construct
a program P for which t,(x) ¢ X, such that fP "is not an ultimately

linear function; for example, f‘P = a, where

a(x) = (x even » x, 0).

In fact, Theorem 2.4 can be used to show that no program P can

have an wnbounded rumning time t_ such that tP(x) 4 X. Suppose

P
sucha P exists. By removing the output instructions of P, and
inéerting new ones after each work register instruction, we obtain
& program Q such that fQ =tp and tQ = to. Since tQ(x) 4 x,
we must have that f‘Q =t is ultimately linear; but since

must be ultimately periodic and hence bounded.

tP(x) <4 X, tP

Theorem 2.5 ‘Suppose P 1is a program such that x ¢ tPfx).

Then f‘P(x) g tP(x).

;Pr:;o_g.l Suppose P has k output instructions. Consider the computa-
tion of P with an arbitrary input X. During this computation,

no output instruction can be obeyed twice with exactly the same cont:ent:s;j
of the input and work registers, since otherwise P would go into an l
infinite loop and fail to terminate. Thus between successive adciit:ions3

. N
of k to Y, either the contents of X or some work register must

- have changed, and so

fP (%) S k(l-l-x-l-tP (x)) ¢ tP (x),

since x ¢ tp(x).
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§5. On-line programs

As mentioned in Section 2.1, on-line programs are programs

in which input tests and halt instructions only occur in the form

.Programs with this property must operate in a pax’ticular fashion:

if P is an on-line program, then for all x and all y < x, the
computation sequence of P with input x 1is identical for the first
‘ ’cP (y) steps with the conputation sequence of P .with input y. This
fact is easily proved by induétién. It follows that every computation
sequence of P is an initial subsequence of just one computation
sequence - the computation sequence of P with infinite input. It
is sometimes useful to consider properties of on-line programs in

terms of this hypothetical sequence.

It also follows that on-line programs compute monotone functions,

where a function f is said to be monotone if for all x and y

x €y implies f(x) € £(y).

Below, we shall show that every monotone computable function is on-
line computable, i.e. is computable by some on-line program. The
concept of on-line programs is crucial to certain constructions, most
inportant of which is the inversion theorem (Section 2.7). Because
of the restrictive nature of on-line computations, it is possible

to obtain sharper bounds on the running time of on-line programs,
than would otherwise be possible (Chapter 5). Arbib [3, l.ﬂ eon-

tains an interesting discussion of the on-line phenomenon in Automata
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theory; see also Hemnie [22]

Theorem 2.6 For each program P which computes a monotone
function we can find an on-line program Q,
equivalent to P, such that

th ZtP.

Proof. First suppose that tP(x) 4 X. In this case, fP is
ultimately linear by the minimal growth rate theorem, and there

exists an on-line program Q computing fP for which tQ = 0.

Suppose, on the other hand, that x ¢ tP (x). Without going

into details, it is possible to construct from P a program R

such that
fR(x) = fP(x) - fP(X-l)> if x>0
= £(0) if x=0
and ‘tR(x) g tP(x) + tP(x-l) + £(x) + £(x=1) + x.

For each input x, R works by first using P/ to compute f‘P(x-l)
into a work register not used by P, and then using P again to
compute fP (x)ﬂ, sending only the difference to ther output register.
(Since programs are relocatable, it is always possible to select
work registers not used by P.) Since the running time of R has
to include the time required to store fP (x~1) and fP (x) in order
to compute the difference, and also the time required to preserve
the contents of the inpﬁt register for the second computation, it

satisfies the above inequality. Using the size theorem and the fact
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that x ¢ tP(x), we have

(0 ¢ £, + tpeD).

Suppose that A and B are two registers not appearing in R. R
is modified so that all references to the input register X are

converted to references to register A, and Q is defined to be the

program:

1= 0
Y Y+f‘P( )

X:=X-1
A B:=B+1

Q is on~line and, by construction, equivalent to P.

Moreover

X X X
t,(x) ¢ . +y) e I G @)+t (y-1)) s ] t (¥).
Wl G@enel 6o eneml g



Corollary 2.7 Suppose P computes a monotone function and
lim inf to(x+1)
Xroo P >1
: t () )
- P
Then there is an on-line program Q equivalent
to P, such that

tQ

s_ tP 4

Proof. The result follows from Theorem 2.6 by showing that
IZtP 9 tP. By hypothesis, there is a real number 6 > 1 and an

integer X, such that

tP(x+1) 36 tp(x) for all x 3 X

Thus }f ' o xg—l " . xixo 6"1" o
. y) £ t (y) +t (x a4t (x),
y=o % yzo T P r=o P

-]
since § & ° converges.
r=0

In Chapter 5, it is shown that this corollary fails to hold if

the condition 1im inf p(¥*1) 1 is dropped.
X tP<x5

§6. The composition and addition of programs

Among the various ways of combining programs, there are two
which will be used frequently. These relate to the following

functional operations:

50
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(a) composition. The composition f-g of two functions f and

g 1is that function which is defined by

(f-g)(x) = £(g(x)) for all x.
(b) addition. The addition f+g of two functions f and g 1is
that function which is defined by

(£+)(x) = £(x) + g(x) for all x.
Below, we give constructions which carry out these operations within

tight time bounds.

Theorem 2.8 Given any two programs P and Q, we can construct

a program P.Q such that

Tp.q = fp-fq
and tp.q = B * tpefg-

Moreover, if P and Q are on-line, then so is P-Q.

Proof.

The standard way of computing the composﬁion f.g is to store
the partial result g(x) in a new work register, and use this as
input to the program computing f. This method cannot be used here,
since the time taken to store and retrieve g(x) adds to the total
rumning time of the program. However, another method is available
which uses P and Q as co-routines. P and Q must first be
modified so that they make use of distinct sets of work registers.
Since we are assuming that programs are relocatable, this causes

no trouble. Informally, the program P-Q works as follows: control
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starts off in P which remembers the label of the first instruction
of Q in its label structure. P 1is execut‘ed until it attempts to
carry out an input test, when control is handed to Q which begins
computing at the remenbered entry point. @ continues until it ati:enpts
to obey an output instruction when control is handed back to P which
continues from where it left off, under the assumption that the mput
was not empty. When P asks for more input, @ is re-entered until
another output is given. If P halts instead, control is réturned

to @ until it toolmlts. If Q halts first, then control is returned

to P which continues on alone under the assumption that the input

v}as empty.

We now describe P-Q formally. let L denote the set of labels
of P which are either terminal labels or labels of input tests. It
is convenient to suppose that each terminal label £ corrésponds to

an explicit halt instruction, written as £: halt.

We ha\}e P-Q = U 2,Q v U

A (P),
LeL meA(Q) T

where A(Q) is the lsbel set of @, and I and A are two
' L

step by step translations defined as follows:
1. If % labels an input test 2: X=0+ &/, ¢" of P, then
(@) %, En Y: = Y4l > o] = {(2, m): » (m', &)}

®) =, [m: balf] = {2, m): + (m, &')}

() Z, 1 = I, otherwise, where

if I =mf +m’, then I, = (2, m): £+ (2, m’)

m:t » m/, m¥, then I, = (2, m: t > (8, o), (2, m”).

or if I
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2. If % 1labels 4&: halt of P, then

g0 =1, foralll.

3. A, is defined by:

(2) 8, [start: » 2] = {start: + m’, W)},

where start: + m’ is contained in Q.

() A Rx=02,2"] = {(@ 0:> @2, w)

@ & [:X:x1+¢] = {(m, 0: > (@, 2}

(@) 4, [2:na1t] = {(m, £) > (2, )}

) & [ =1, otherwise. | ‘

The program P-Q contains unconditional jumps which can be eliminated
by label conversion. In order to see that P-Q will be on-line if
P and Q are, note that the only input tests of PQ come from Q
via 1(e) or 2. If Q contains m: X=0 + m’, m" , where m is
terminal, then P+Q contains (%, m): X=0 + (%, m’), (¢, m”) for
each % ¢ L. But by 1(b), P-Q also contains (%, m’): + (m’/, 27),
where %: X=0 + &/, 27 is contained in P. If P is on-line, then
2/ is terminal, and so (m/, £/) is a términal label of P+Q. Hence

PQ is on-line. The timing estimate follows at once.

We shall refer to the above theorem as the composition theorem, and

to the next as the addition theorem.
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Theorem 2.9 Given any two programs P and Q, we can construct

a program P+Q such that

fP+Q = fP + fQ
and tP+Q = tP + tQ.

2

Moreover, P+Q is on-line if both P and Q are.

Proof.

The construction is very similar to the previous one, and only
an informal description is given. In P+Q, the programs P and @
act as co-routines which share the input. P and Q are again
modified to refer to distinct sets of work registers, and Q is put
“in standard input form. In the combined program, Q alone is given
the task of testing and decrementing the input register. Control
starts off in P which remenbers the first label of Q in its label
structure. Each time P attempts to execute an input test, control
is handed to Q which begins computing from where it left off. Each
time Q executes an input test, control is returned to P. This
process continues until one of P and Q wants to halt, when the
other program is entered until it too halts. The final contents of
the output register will be the sum of the contributions from P
and Q, and the running time of the combined program, will be the sum
of the rumning times of P and Q. ‘
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§7. The inversion of programs

Suppose f is a mohotone and unbounded function. We define
the inverse f* of f to be the function whose values are given

by
£*(x) =mn y [x < £(y)].

f* is also monotone and unbounded. In this section, we show how
to construct from an on-line program P computing f, an on-line
program P* which computes f*. The following facts about inverses

are important and are used in Chapter 4.

lemma 2.10 Suppose f and g are monotone and unbounded.
Then
(1) *=f ad (i) (f.g* = g*-p-f,

where p(x) = x-1.

Proof. (i) By definition,
£4(x) = min y [ x < min z [y < £(z]] ]
whence

min z [£**(x) < £(z)] > x.

From this it follows that £**(x) 3 f(x). Since f is monotone

and unbounded, we have

min z [£(x) < £(2)] > x,
from which it follows that f**(x) f(x). Hence £**(x) = f(x).

(ii) We have
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(£+g)*(x) =miny [x < f-g(y)]

=miny [gly) > mn z [x < £(z)]],

si_nce f and g are monotone. Now

mny [g) > %] =miny [gly) > %I,
whence (£eg)*(x) = g*(£*(x)-1).

Suppose next, that P is an arbitrary on-line program computing
an unbounded monotone function. In such a case, the function 9p>

where

eP(x) "= total number of work register instructions
execut;ed by P on any sufficiently large
input (equivalently, on infinite input),
prior to the execution of the (x+l)st out-

put instruction,

is well defined, total and monotone.

We shall refer to the following theorem as the inversion theorem.

Theorem 2.11 Suppose P is an on-line program computing an
unbounded function. Thefi we can construct an on-

line program P* such that

= f*

£ P

P*

*
=05 € t°F

Upx = 0p € Tp°fp
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Proof. Without loss of generality, we can assume that P is in
standard input form. The program P* is exactly the same as P excépp
‘that the input instructions are replaced by output instructions and
vice-versa. More precisely, the translation A which produces P*

is given by:

[m: » m’]

1. A [m: X=0+ 0, n']

2. A [m: X:=X-1+w] = [m: Yis¥+l-mw]

3. A [m: Y:=¥+l > m'] [m: x=0 + 0, 2

22 X:=X-1» 2]

4. A[i] =i, for all other instructions i.

(0 is regarded as the terminal label).

In order to prove that P* does indeed compute fi‘;, it is convenient
to define two further functions. In the definitions, the term 'input

instruction' refers to the pair




1

The functions i ard o are defined by

i(x) = total number of instructions, including
anut and output instructions, executed
by P on any sufficiently large input,
prior to the execution of the (x+l)st input

instruction

o(x) = similar to i(x), but prior to the (x+l)st

output instruction.

If P computes an unbounded function f, then i and o are both

total and monotone (in fact, i(x) = tP(x') + x + £(x)) and we have
o (f(n) -1) <i(n) <o (f(n)), eee (1)
for all n. If i* and o* denote similar functions for P*, then
i*=0 and o* =1, ees (2)

since both P and P* are in standard input form.

Consider the computation of P* on an arbitrary input x.

Since f is unbounded, there exists an n such that

) € x < £(n+l), ees (3)
and we have
o*(n) = i(n) from (2),
< o(f(n)) from (1),

i*(f(n)) from (2),

"N

i*(x),
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from (3), since i* is monotonic.

Also,

Therefore R

i*(x)

o(x)

€ o(f(n+1)-1) since o is monotonic,

i(n+l) from (1),

A

o*(n+l).

o*(n) < i*(x) < o*(n+l).

It follows from this that exactly (n+l) output instructions are

executed, before the computation of P* with input x terminates.

Thus

'Finally, we estimate t

' fP*(x) z n+l = £*(x).

tP*

p** We have

:eP

by definition of P*, and moreover

BP(f(x)—l) € tp(x) for all x, ‘ eee (W)

since P is on-line. Since

we have

£(f*(x)) > x3 x+ 1,

ep(x) < 0 (£{f*(x))-1) ¢ tP(f*(x)),

from equation (4) and the fact that op is monotone.
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CHAPTER THREE

THE SPEED UP THEOREM

i

Throughout this chapter, we shall be concerned only with IO - programs;

that is, flowcharts defined over the instruction set:

assigrments Ai: :Aj +1 A:L =Aj -1
Ai : =AJ. Ai :=0
tests Ai= : Aizo.

(To avoid messy subscripts, register Ay will sometimes be denoted

by Ai, ete.)

The central object of the chapter is to prove the following theorem,

which will be referred to subsequently as the speed-up-property (for IO) .

Theorem 3.1 Given any program P, we can always find an equivalent

program Q, which is on-line if P is, such that

t, € tP/2.

Q

Because the proof is fairly long (and will not be complete until the
end of Section 4), we first give an informal sumnmary of the main

steps.

The running time tP of a program P is the sum of two functions

ap and bP’ where .
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a (x) = the nunber of assignments executed
P
by P when run on input x,

_bP(x) = similarly, the number of tests.

It is shown, in Section L, that in order to prove the speed up
property, it is sufficient to reduce aP by a factor of two; i.e.
we 'can forget about tests and concentrate on cutting the assignments
by half. The reason this can be done , and the pivot upon which
spéed wp turns, is the fact that, by taking a sufficiently long .
seqﬁence of assignments, another equivalent sequence (in the strong 4
sense of having the same effect on the work registers) can be found
of no more than half the length of the first. On the other hand, the

second sequence uses the more general assignments

Ai:= Aj+d Ai:= e

" for integers d and e, where |e| < |d]. Section 1 is devoted

to a proof of this fact. This result is used in the construction

* of two step by step compilers (although they can be combined into
one) to achieve the desired reduction in 8, In the first, (defined
in Section 2) , P is converted into an equivalent program R for
which ag € a?/é. Program R uses 2 more general instruction set |
than IO. In Section 3, R is convérted into a proper IO- program

Q for which & € a- Combining these two translations gives the

final result.

Section 5 shows speed up at work on an example, and Section 6

contains some further results and a discussion.
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§1. Finite sequences of assignments

Throughout this section, the letters S and s’ will denote
finite sequences of assignments of the form

| Ai:= Aj+d and Ai:= e,

.

where 1€1i,j €k, and d and e are arbitrary integers with
le] < |a|]. We say that S is a D-sequence if it consists only of
assignments with |d| < D, Thus a 1 - sequence is a sequence of

I, - assignments. The length of a sequence S is denoted by |[S||,
and the same notation is used to denote the number of elements in a

finite set. With each sequence. S we can associate two mappings:

og: 1,2, ..., k} > {0, 1, ... k}

OS: {1(, 2, eeny k} b {,ooo, "l’ O, 1, c-'}

which serve to characterise S. These mappings are defined by the

eriterion that for each i, in the range 1 € 1 € k, the effect of executing
S changes the contents of register Ay, as if the single instruction ‘

i
I

v
o
-

A;:= Aqs(i) + pS(i) ir | oS(i)
o 'Ai:= pg(d) if  og(i) = 0,
_were executed iﬁstead.

Note that if S is a D-sequence, then for 1 € i € k,

log()] < D Il if o) # 05

and log(i)| « D x  (|]s]| - 1) if og(i) = 0.
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If S and S’ are two sequences, then we say that S is equivalent
to S if Og = 0g/ and py = Pg’e Equivalent sequences thus have

exactly the same effect when executed.
- Our object in this section is to prove the following theorem.

Theorem 3.2 Given any D-sequence S, it is possible to construct

ap’ - sequence S/, equivalent to S, such that
[1s/[} < min (|[S]], k + [-15-;-1-] - 1).

In particular, if ||S|| = 3k (or 4, if k=2), then
1S/l < |IS|]/2 ana D/ = 3D (or 4D, if k = 2).

In order to prove this theorem, it is necessary to investigate certain
properties associated with Oge Let Nk denote the set {0, 1, ..., k}

ard for convenience, extend Og to a function ch:Nk -+ Nk by defining

os(o) = Q.
Suppose ¢ 1is any mapping o:Nk - Nk with 0¢0=0 (we often
omit parentheses for brevity). The mapping on:Nk > Nk is defined

iteratively for each n 3 O, by the equations

%i=i  and ™ = o(d™)

k k
of the integers

for each i e'N-. Acycle of o is asubset C of N, consisting

- . 'Y t-lo
i, oi, o%i, ..., 0o i,

for some i€ N, and positive integer t, such that the conditions



64

(1) o% =i,
and (i) o®i #d%  for 0Oga<b<t,
are satisfied.

Since each cycle of o0 is uniquely determined by any one of

its elements, we immediately have

Lerma 3.3 If C and D are two cycles of ¢ which

have an element in common, then C = D.

The tree set T

C of a cycle C is defined to be

r, = U ),
JeC ‘
where To(3) = {i: oizj for some n > O,

and o™i £ C forall m, O<m<n}.

A cycle and its tree set can be pictured as follows:
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The relevant facts about tree sets are:

Lemma 3.4 (i). I£ i,j e C with i# j, then the sets
'I'C(i)"and Tc(j) are disjoint.
(ii), If ¢ and C’ are two disjoint cycles,

then the sets T, and T,/ are disjoint.

(iii). If ¢ and C’/ are two cycles, possibly the

same, then the sets TC and ¢/ are disjoint.
Proof. (i). Suppose TC(i) and TC(J') have the element m in

common. There therefore exists two positive integers r axd s -

"

with o’'m=1i and o°m j. If s < r, then by definition of Tc(i),

o’m is in C. Similarly, if r < s,

it is impossible that j
then it is impossible that 1 e C. So if i,j are in C, we nust have

r=s and so i =j.

(ii). Suppose TC and TC/ have the element m in common.
There therefore exists positive r ard s such that orm € C and

mec’. If rg s, then since C is a cycle, C contains

Ty = Sy,

So ¢ and ¢’ are not disjoint. A similar argument holds for r 3 s

(iii). Suppose Tc and ¢’ have the element i in common.
It follows that om is inboth C and ¢’ for some n. By Lemma
3.3 wemust have C = C’, but by definition of T,, the sets TC |

and C are disjoint.

9]
A,
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lemma 3.5  For any o, the collection of sets
{c, To: C is a cycle of o} partitions N

ard so
Yalell + NTelD = ka1
Cc

Proof., It is immediate from Lemmas 3.3 and 3.4 that the collection
is pairwise disjoint. For each i ¢ Nk s consider the sequence of
integers

. . +l.
l’ 01, ...’ dkllO

Since there are (k+2) integers in this sequence, all of which are in
\Nk, they camnot all be different. Suppose o%i = oPi, where a < b,
and suppose further that a is the least integer for which this is true.
If a = 0, then i belongs to the cycle {i, ..., Ub—li}, while if

a # 0, then 1 belongs to the tree set of the cycle generated by

0%i. Thus the collection covers N .

There is one important difference between an arbitrary o: Nk -+ Nk

~and one given by a sequence of instructions:

Lenma 3.6 Suppose S is a finite sequence of instructions
with associated mapping Oge Either os(i) = i for
all i € N (in which case S is said to be simple),
or else there is at léast one cycle of Og whose

tree set is not empty.

Proof. If S is not simple, then it must contain some instruction

of the form
A;:= AJ.id where i#j

or Ai:= €.



67

The first such instruction des'croyé the original contents of Ai’
and so 1 ¢ range (cs). Therefore 1 cannot belong to any cycle

of Og and so it must belong to some tree set.

We now show how to. construct from a given sequence S, a
sequence s’ equivalent to S, which satisfies tﬁe hypothesis of
Theorem 3.2. Sux;pose S is given and ¢ and p are the
associated functions. If S is simple (i.e. oi = i for each i), then
we can at once define S to be the sequence consisting of all the

instructions of the form
Ai:= Ai + p(i) where p(i) #0 aad 1< i<k,

written in any order. Clearly ||S/|| ¢ min(]|S]|, k). Otherwise
we determine the cycles and tree sets of ¢. By Lemma 3.6, at
least one tree set is not empty, so suppose, without loss of generality

that 1 ¢ TC and ol € C,. For each cycle C and tree set TC we

0
0
define instruction sequences S(C) and S(TC) as determined below.
Supposing the cycles of o are C., Cl s veey Cn, the sequence s’

is defined to be

S = S(Tcl); S(C)) weeenns S(T, ); 8(C): S(TCO); S(Cy)

n

The sequences S(C) and S(TC) are determined as follows:

1. Sequence S(TC) . This sequence is a concatenation of subsequences
K(m) for m € C, written in any order. Each subsequence K(m)
serves to assign the correct final value to register Aj for

each j € TC(m) (except for j=1, which is a special case). To
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define K(m), we must order the elements {il, 3'.2 s oo in} of
Tc(m) so that

:. d 4 < .
crir i implies r<s

This is the familar end ordering of nodes in a rooted tree
(with root m) and can be carried out by a standard procedure (e.g.

Knuth [26]). Tor 1 & j &n, define I(j) to be the instruction

A = Aol + p(i, ; i, >
3 OlJ p(l.}) if 013 0
or AiJ.:= p(iJ.) if ‘oij = 0,

and K(m) to be the sequence I(1); I(2); ...; I(n). Executing
K(m) assigns the correct final values, since the end ordering
condition means that the sequence I(1); I(2); ...; I(r-1) for

1€ r < n, does not alter the contents of register Aoir. The

* special case of register arises when ||C.|] » 2. In
A 0

implementing cycles of length greater than 1 the register .l\l is
going to be used as work space, so there is no point in assigning

A, its correct final value, when there is still Co to come.

1
In such a case, we define the instruction I(j) (where ij = 1) to

" ve

Al:= 51 ° ’

This means that to give A its correct final value, p(l) must

be added at a later stage.
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2. Sequence S(C). If C is the special cycle {0}, then no instructions
are defined, i.e. S(C) = null. If C is a cycle {i} of length 1,
then S(C) is

Ai:= Ai + p(i).

If C={i, o1, ..., ot-li}, where t > 1, then S(C) is the sequence
hed
A;i= Agi + p(i)

Aci:= Ac?%i + p(oi)

st iz A+ p(e* M),
provided C # C,. For C, we have (supposing lICOII 3 2),

Co = {01, 0%, ... ov1}

for some t > 1, and we define S(CO) to be
Acl:= A%l + p(ol)

S 5 6098050008 000 es

Act1:= A1 + p(a1)

Al:= Al + p(1).

(The instruction A,:= A 1 is omitted because it occurs in S('I'C ), and
. 0 .

1 (o]



the instruction Al = Al + p(1) is inserted at the end to assign the

correct final value to A.. Actually, a single instruction could be

ll
saved: S('I‘C ) could assign Al its correct final value, the last line

0
above omitted, and the penultimate one modified to read

. |
AC 1:= Al + p(ctl) - p(1),

but this may increase the bound on the constant in the assignment

statements).

This completes the rather lengthy description of S/. By the fore-
going remarks, S/ is equivalent to S, and if S is a D—sequerice, then
s/ isa D/ - sequence where D’ ¢ D x |[S||. In order to estimate

the total length of S , we note:

1) If ||c|] =1, then [[|S(@)|]| =1 if c;é{o},

0 if ¢ = {0}.

(@ 1 ||c|l > 1, then [[s(O]] = [|c|] +1.
(3) ”S(TC)” = ”Tcn
Hence ||S/]] = 1 dlcl] + [ITgll + T2 -1
c el > 1
From Lemma 3.5, it follows that
/
15|l =%+ 11 :
lell > 1

At this point, we can complete the proof of Theorem 3.2.



Proof of Theorem 3.2

The length of s! is maximised by taking an S which has as many
cycles of length greater than 1 as possible. If k = 2mtl, we can

take at most m distinct cycles, each of length 2, so that

k+ )1 < k+m=k+ -l-‘-;—q'-:] - 1.
lell > 1

Ir K = 2m, we can take at most (m-1) distinct cycles of length
greater than 1, since by Lemma 3.6, there is at least one element

which does not belong to a cycle. Hence

k+ ) 1 X k+(m—1)=k+[1‘-f-l- -1,

2
lcll > 1

and the proof is complete.

To clarify the concepts involved, we work an example. Let S

be the sequence

A1'= A2 A7:= A6+1
Al.= A2+l A7:= A7+1
A2.- All A6:= A5+1
AB: = AB‘FI A5:= AS
A2: = A3+1 A8:= A9+1
.A3:= Al—l A9:= AS
A iz = -
4 A5+1 5 A7 1
Bgi= A A= Ag-l



We bave |[S|| =16 and k = 9. The functions ¢ and p associated

with S are given by the following table:

bh 5 6 7 8 9

0o 1 2 3
/0 2 3 2 5 6 7 6 9 8
pl= 1 2 o1 0 1 2 1 O

The cycles and tree sets.of o are:

G, = {2, 3)
Cl = {0}

¢, = 6,7}
C5 = {8,9)

They can be pictured thus:

Ty = T0(2) v TO(B)

T0(2), = {1}
TO‘(B) = null
Tl = null

T, = T,(6) U T,(7)
T,(6) = {4, 5

T2(7) = mll

T, = null.

3

o b é> .

72
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The reduced sequence S’ is:

By:= A5+1 k(6), the endorderlng of T, (6)
.= bemg {4, 5}

Aso" A6

b= Bg

Agi= A7+l s(C, ), using Al as work space.

A7:= A1+2 |

A1:= AS ,

Ag:= A9+l S(C ) ditto

A9:= Al

Az A K(2). Since ||C |l » 2, this is

1-“ 2
treated specially.

A2:= A3+2

A3:= Ai S(C ), the special cycle

Al:= Al+l
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§2. Halving the number of assignments

In this section, we use the result of Section 1 to halve the
nunber of assignments in a program P. It is cc‘mvenient to first
transform P into an equivalent program which stores only non-
negative integers in its work registers. Although this preliminary
transformation is not strictly necessary, it will simplify the
details of a subsequent transformation. The second translation of
Section 1 of Chapter 2 gives the details. It is to be noted that
~ the translated program P does not use the test AJ. 3 0, and, mre =
inportantly, ap’ = ap (although by will be greater than bP); From |
now on, each program will only store non-negative integers in its

work registers.

Lemma 3.7  Given any program P, we can find an equivalent
program R, which is on~-line if P 1is, such that

ap € aP/2.
On the other hand, R makes use of more general
instructions than P. 1In fact, if k is the
maximum address used by P, then R is defined

over the instruction set

A.:= A.+d A.:= A.-d

1 J 1 J
ez ‘ . = e?

Ai. e _Al e

where 1 €1, jsk,0cd€ 3k and O0<€e < 3k
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Proof.,

Informally, R works by similating P in a step by step manner,
except that it delays the execution of assignments. Each assig'mént
executed by P is saved in the label structure of R until a sequence
S of sufficient length (i.e. 3k) has been built up to enable an equi-
valent sequence S/, defined over the extended instruction set and
with ||S7|| < |I8]|/2, to be constructed. Only at this point does R
execute S . Provided ||S|| = 3k, the existence of such an S is
guaranteed by Theorem 3.2. Moreover, if S is a l-sequence (i.e.

a seQuence of IO assignments), then S’ is a 3k-sequence. Since S

never makes a register negative, we have e 3 O.

Formally, the compiler A , for which Al(P) = R, produces labels
(apart from start) of the form

(S, m),

where me L and S is a sequence of assignments of length at most
K = 3k-1.

To clarify what A, does, we first define the mapping 61

1

under which A, satisfies the conditions of the compiler theorem.

1

8 (start, x, y, a, ...,Aa.k) = (start, x, vy, 81y eees ak)

61 ((S: m): Xy, ¥» 81: teey ak) =

(m, x, ¥, a(1)* o{1), ceey 3 ) pkk)),

where ¢ and @ are the functions associated with the sequence S



and are defined in Section 1. Note that the definition of Ay deperids
on k, and consequently is only applicable to programs which use

registers Ais vees Ak

The definition of Al

is:
[star't: +m) = {start: » (mll, m}.

2. (PFor work register assignments F):

“ A [mF-n] = U {(s, m: + (S;F,m)} o
LIs|] < x

U (s, m: &+ (mui1, w)},
LIst] =

where s’ is the sequence equivalent to S; F, with
r'd
LS| < [ssFll/2.
3. A [m:‘Ai =0+, n'] = U {(S,m): Aog(1) = -pg(1)

pg(1)50
-+ (S: ml): (Ss H{’)} vV

U s, mes s, a0,
- pgli) >0

where the union is taken over all S with ||S]]| € X, such

that the subsidiary condition holds.
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U Ig, for all other (i.e. input and

4oa [1I] =
ot IS <k

output) instructions I. (Here the current sequence S is

Jjust carried along in the labels).

The verificdion that 4 under § satisfies the conditions of
the compiler theorem will not be given. The first four conditions
are immediate, and the fifth follows from Theorem 3.2. As

S]] ¢ K = 3k-1, we have |og(i)| < K < 3k for all i, so that

A, produces tests Al = e with 0 € e < 3. Hence the conclusioﬁs

1
can be verified.

§3. Conversion to an Io-program

Lemma 3.8  Given any program R satisfying the conditions of
Lemma 3.7, we can find an equivalent Io—prog;ram Q,
which is on-line if R is, such that a € ag.

Proof.

Informally, Q works by simulating R in a step by step mamner,
except that Q stores only %{- (where K = 3k) of the contents of
the registers. The remainders of division are stored in the label
structure of Q. Formally, the step by step compiler A2, for which
A2(R) = Q, produces labels (apart from start) of the form

(ay, m)

where m is arbitrary and a = (al, Gps =ees ak) where O £ aJ. < K.

The mapping 62 under which A2 is a compiler is:



dz(starl:, X5 ¥s 815 eoes ak) (start, x, ¥, 815 ees ak)

Sy((am), X, ¥s aps oees @)
Ka}:*“k)'

(m, x, y, Kalml’ seey

The formal definition of A2 is:

1.

3.

A, [start: +m] = {start: + (0, m)}

A, [ m: Ayt = A > ] = ,&J {(a,m): Ai:=AJ.+d(aj) + (a/ ')},

o.+d
where d(aj) =[—JK———] ’.“r’: a, for r#i, and

ai1=[<xj+d,K]. since K <d €K and 0 ¢a; <K, we have

-1 € d(aj) € 1, so the translated instruction is 1nI0

A, [(m: Az =e +m] = u {(a,m): A2 =0 (o ,m)H}

/ . / R
where o, = a, for r#£3i and a; = € Since 0 ¢ e< K,

this instruction also translates correctly.
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A, [m: A =e- m, m”] = U {(a;m): Ay 20+ (o, ), (a,m”;)}

=€
al

o U Hesm: > (am),

ai#e

A, I = I, for input and output instructions I.

o



The verification that A, under 62 satisfies the conditions of
the compiler theorem is left to the conscientious reader. The

first four conditions are irmediate, and the fifth is straightforward
but somewhat tedious. The conditions of the lemma can be verified
from the definition of A,. At this point, we have succeeded in
converting an arbitrary program P into an equivalent program Q

for which & £ aP/ 2. Moreover, Q only stores non-negative integers
in the work registers, and consequently makes- no use of the test

A; 3 0. In the next section, we use these facts to complete the

proof of the speed up theorem.

§4, Concluding the proof, .

In this section we prove:
Lemma 3.9 Given any program P which uses only the test
Ai = 0, we can find an equivalent program Q,
which is on-line if P is, such that

tQ £ 23?'

‘

From this rcsﬁlt » the speed up theorem follows easily. Suppose P
is an arbitrary program, and the translations of Sections 2 and 3
are applied twice to P, giving a program Q .f.‘or which ag ¢ aP/H.
Lemma 3.‘9 then guarantees that a program R can be found so that

ty € 280 € 8p/2 € tp/2,

and so speed wp is assured.
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Proof of ILerma 3.9

Informally, P is modified to ensure that, in every execution
of P, there is at most one test Ai = O executed between any two
executions of assignments to Ai' Because the input convention
initialises each A; to zero, we can further arrange that no test
Ai = 0 occurs before the first assigmment to Ai.. If Q denotes the
resulting program, then clearly bQ € a7Q = ap, from which the conclusion

follows.

More formally, we describe the step by step compiler Ab , for
which A O(P) = Q. This compiler is the composition of compilers
A (l), where each A 1) reduces just the tests involving Ao A (

0 C 0
produces instructions with labels (apart from start) of the form

i)

(a,m),

where me L and o is either O, 1 or 2. The mapping § which
(i)

0 is a compiler, according to the compiler

guérantees that A

theorem, is

(start, x, ¥, a;5 3, )

60 (start, x, ¥, ays 25, ces)

and 60 ((@,m), x, ¥, a7, 8y, cee) = (m, x,»y, N T

provided that, either a = 2 or (a=1andai¢0) or (¢ = 0 and -
ai=0),

and 6 0 is undefined otherwise.

The definition of Ao(l) is: -



1. Ao(i) [ start » m7] = {start + (O,m)},
2. Ao(i)‘[m:F +u] = (J{(a,m: F+ (o’ ,m))},
a

where o =2 if F is an assignment to A;, and

o/ = o otherwise s

3.} Ao(i) [m:A:.L =0~ n, mf] = {(2,m): A;=0 » ©,m"), (1, m")
(1, m): » (1,m")

(0, m): » (O,m') }
b, Ao(i) [m:t+>m, n] = U{(a,m): t + (a, m’), (a,m")}
Coa
for all othef tests.
(1)

0
with the desired properties. It is clear from the last line of

It is left to the reader to verify that A is indeed a compiler

the definition, that A (1) preserves .on-li'ne programs.
0

This completes the proof of the speed up theorem.
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§5. A worked example ‘

We speed up the program P by a factor of two, where P =

X:=X-1
As=A+]
B:=A+1

' YES :
Al-B ’\‘\“ A - O
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We can write P as the following set of labelled instructions:

1: X=0+0,2 5: A=0+8,6

2: X:=X-1+3 6 Ai=A-1 -+ 7
3: A=A+l > 4 T: Y=Y+l »+ 5
h: B:=A+l + 5 8: A:=B~» 1.

It is easy to verify that fP(X) = x2,

and tp(0) = 2 + bx, for all x.

Moreover, P stores only non-hegative inftegers in A and B. The
first translation to be applied is Al (Section 2). Since k = 2,
the special case of Theorem 3.2 shows that we need only build

up sequences of length 4. To denote sequences, we use the code

n null sequence
a A=A+l
b Bi=p+]1
c A:=A-1

d A:=B

The first two instructions of Al(P) are

n,1): X=0~ (n,O)‘,W (n,2)
(n,2): X = 0+ (n,3),

since no assignments have yet to be remenbered.
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The next two are

(n33): + (agu) : )
(a,4): + (ab,5),

and the next is

(ab,5): + (ab,6),

since it can be determined from the remembered sequence ab, that A

cannot be zero at this point. Continuing, we construct

(ab,6): » (abe,T)
(abe,7): Y=Y+l + (abe,5)
(abe,5): A=O + (abc,8), (abc,6)

The effect of the sequence abe is to leave A unchanged so the
test A=0 must be performed. Since the sequence abcc is equivalent

to B:i= A+2; A:=A-1, the next instructions are

(abc,6): B:=A+2 » 2.1

2,: ASA-l > (n,7)

(n,7): Y=Y+l + (n,5).

where £, is some new label. Continuing in this fashion, the
rest of Al(P) is found to be ‘



(abc,8): B=A+2 + 2.2' (cda,l): A:=B+l » 9,3
| %, A=B + (n,1) | 233 Bipi2 » (n,5)
(n,5): A=0+ (n,8),(n,6) (n,8): +(d,1)
(n,6): + (C,7) (d,1): X=0 + (d4,0), (d,2)
(c,7): Y:sY+41 + (c,5) (d,2): X:=X-1 -+ (d,3)
(c,5): A=1 -+ (c,8), (c,6) (d,3): + (da,l)
(e,6): A:=A-2 + (n,T) . (da,l): + (dab,5)
(c,8): + (cd,l1) (dab,5): + (dab,6)

(cd,l): X=0 » (cd,0),(cd,2) (dab,6): A:=B » y
(cd,2): X:=X-1 + (cd,3) Ly: BizA+l » (n,7)
- (ed,3): »+ (cda,l)

We have cheated a bit, in instruction (c,6), replacing the sequence ‘

¢¢ by the single instruction A:=A-2, to save an instruction or two.
The unconditional jumps can now be eliminated, leaving the following

21 instructions for R = Al(P):

1: X=0 + 0,2 12: B:=A+2 » 13
2: X:=X-1-+ 3 13: A=B~+ 1

3: Ye=Y+l » 4 14: X=0 » 0,15
4: A=0 » 12,5 15: X:=X-1 + 16
5: BizA+2 + 6 16: A:=B » 17
6: A=A-1 + T 17: B:=A+1 » 7
T: Y:=¥+41 > 8 18: X=0 + 0,19
8: A=0 + 14,9 19: X:=X-1 + 20
9: Y:=Y+1 » 10 20: A:=B+l » 21

10: A=l » 18,11 . 2l: B:=B+2 + §
11: A:=A-2 + 7 '
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The next translation to be gpplied is A2 (section 3). Here, we can

take K=2, and obtain, for Q = AZ(R)5

(00,1): X=0 + (00,0),
(00,2): X:=X-1 -+ (00,

(00,2)
3)

(00,3): Y:=Y+1 -+ (00,4)

(00,,‘;): A=0 » (wslz)s(mss)

(00,5): B:=A+l + (00,

6)

(00,6): A:=A-1 + (10,7)
(20,7): Y:=Y+1 -+ (10,8)

(10,8): » (10,9)

(20,9): Y:=Y+1 » (10,

£

At this point, we know Q

a running time given by

tQ(X)

10)

(10,10):
(10,11):
(00,12):
(00,13):
(10,18):
(20,19):
(10,20):
(10,21):

A=0 + (10,18), (10,11)
A:=A-1 + (10,7)
Bi=A+1 + (00,13)

A:=B » (00,1)

X=0 + (10,0), (10,19)
X:=X-1 + (10,20)

A:=B + (10,21)

B:=B+l + (10,8)

= fP and a £ a?/2. Actually, Q has |

x2+2x-_1

0
3

for x3 2
for x =0,
for x=1,

S0 that tg ¢ tp/2 already, and so in this case Lemma 3.9 does

not have to be invoked. The flowchart version of Q is



B:=A+l
A:=

87

X:=X-1
Y:=¥+1
h
A=0
NO
YES N
B:=A+l
A:=A-1
/\‘
A:=A-1

HALT

NO

>
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§6., Further results and discussion

It imediately follows , by using Theorem 3.1 repeatedly, that
given an arbitrary integer ¢ and program P, we can find a
program Q, equivalent to P and on-line if P is, such that
t

Q
linear factor.

< tP/c. Hence IO, - programs can be speeded up by an arbitrary

It is worth emphasising that the speed-up property for an
instruction set I asserts that given any I - program P, an I - program
Q can be found such that

(i) Q is on-line if P is,
(ii) Q is equivalent to P,
(iii) .tQ £ 'cP/2. :
Corﬂition (1) is important in that, only by assuming it necessary,
can we prove that if I o is augmented with addition and subtraction,
then the resulting instruction set does not possess the speed up
property (Chapter 5). Similarly, if IO is augmented with instructions
to address work registers indirectly. We do not know whether
condition (i) can be dropped. That is, if condition (i) is omitted

ard the weakened version called the weak speed up property, then we

do not know whether , for an arbitrary instruction set I, weak speed
up for I implies speed up for I. A similar ignorance exists for

" exact speed up. An instruction set I has the exact speed up property

if, given an integer ¢ > O and an I-program P, an I ~ program Q,



equivalent to P, can be found such that
(i) Q is on-line if P is,

ad (1) 1t =[-tc£]

Does the speed up property for I imply exact speed up? We can
show that I o Possesses exact speed up. This can probably be proved
by modifying the translations, but we give an alternative proof,
based on the fact (which we do not formally verify), that the given

translations actually prove the following stronger result:

Corollary 3.10 Given an IO - program P, we can find an I0 - program

Q, which is equivalent to P and on-line if P is,
such that

AtQ e (AtP)/z,

(where Af(x) = £(x) - £f(x-1) if x> 0, and
A£(0) = £(0)).

This fact is‘used in case (ii) of the following theorem. The
proof technique, which also appears again in Chapter 4, is similar
to that used in Fischer [15] on an analogous result for Turing
machines. |

Theorem 3.11 Given any program P and integer ¢, we can find

a program Q, equivalent to P and on~line if P

t
- P
% ['E']

is, such that
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_ ¢ : S
Proof. ILet t = [-—(—?] . There are two cases to be considered

deperding on whether P is on-line or not.

(i) P is not on-line. By suppressing the output instructions
of P, inserting appropriate new ones &ter the work register instruc-
tions and using speed-up, we can find a program R such that

fR=t and t, £ t /6e.
p

R

Also by speed up a program S can be found such that

f

s=fP ad ¢t 4tp/6c.

S

t t
Since 'S'clz s%— [-5] » it follows that

ty + tg s[%],, (1)

with equality only when the right hand side is zero. The final
program Q 1is defined from modified versions of S and R,

deseribed as follows:

(a) program R” is formed from R by replacing the output
instructions of R by instrﬁctions of the form
A:=A+1, where A is a register not appearing in 87
or R’, so that, through these instructions, R’
computes [%] in A. In addition, R remembers in
its label structure whether an instruction A:=a+l m is
ever executed, and arranges to waste [t, 3] steps by
obéying some dumy instruction. Next, each original

work register instruction of R has inserted after it,
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an instruction A:=A~1. Thus R’ corputes [%] -ty in

register A, and
- - t
fr =0 and tps = 26p + (3] + ¢.3
(b) Program s’ is formed from S by inserting an instruction
A:=p-1 after each work register instruction of S. Thus

fS/ =fS and t‘.s/ =2tS.

The final program Q 1is formed by following the progr'ain
R’ + S’ (given by the addition theorem) by the code

which is only executed when R indicates that at

least one A=A+l instruction has been obeyed. Since
' y, ! = E - -

the effect of R + S is to leave [3] tR ts

in register A, the rumning time of Q 1is given by



ty = 2tg *+ 25+ [%’] +{t,3) + 2([%] . tp - tg),

by inequality (1). Thus tQ =t and as fQ = fg/ + fps = fP’
the theorem is proved in this case. Note that the construction
never yields an on-line program Q, so that a slightly different

construction has to be given in the case that P is on-line.

(ii) P is on-line. Using the stronger conclusion of Corollary

3.10 we can find, in a similar fashion to case (i), on-line programs
R and S such that |

fR=t and fS=fP

and atp + a5 ¢ [5]

with equality holding only when the right hand side is zero. The
programs R’ and S’ are formed as in case (i), except that R
arranges to waste [_Z\t,}] , steps before the execution of each input
test storing only [—é.}] Q is also the same as in case (i), except
that the code which reduces A to zero is inserted before each
input test of R’ + S’/. Program Q is therefore on-line, and

since A is reduced to zero before each input test, we have

& ' At
AtQ_ = 2A1;R + 2AtP + [%—{] + [At,}] + 2([-—.),— - AtR - AtP).

Thu.stQ

is proved.

In the next chapter, we show that linear speed up is the best

that can be obtained.

=t and as Q is equivalent to P and on-line, the theorem
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CHAPTER FOUR

THE HONEST FUNCTIONS

Throughout this chapter, except where otherwise stated, the
term program denotes a program defined over s::)me fixed, but arbitrary
instruction set I; thus all concepts are defined relative to I. The
object of the chapter is to investigate the class of honest functions.

These functions have the following definition:

(1) A program P is said to be honest if tp 9 I,

(2) A function f is honest if there is an honest program

which computes f.

(3) A Af’unction f 1is superhonest if there is an on-line
honest program which computes f.

The main réason behind the introduction of the honest functions, is
that it is exactly the concept we need to show that, no matter what
instruction set I is specified, linear speed-up is the best possible
(Section 1). However, having introduced this notion, a more funda-

mental fact emerges (Section 2), which we now outline.

For any function t, let T[t] denote that class of functions
which can be computed by programs with a running time bounded by ct,

for some constant c. More briefly,

Tit] = {fP:tPs t}.
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Further, let R, the class of real-time computable functions, be

the set

R = ‘{fP: p(x) 4 x}.

The main theorem of Section 2 then says: there is a simple 2-place
functional F, such that if t is a strictly increasing superhonest

function, then

feT[t] if and only if F(f,t) eR.

v

The import of this result ,is‘ that to a large extent (more precisely,
to the extent that the superhonest functions form a sufficiently
embracing class of ﬂm&tions), the study of time limited computation
on register machines cén be reduced to the study of real-time
computation. In order to show that a given function f is or is not
computable within time t, it is sufficient to show that F(f,t) is

or is not feal—tizre computable. This remark motivates Chapter 5, |
wherein methods, more subtle than crude size argiments, are developed :

for showing that functions are not real-time computable.

Further sections clarify the relationship between the honest
and superhonest functions and the running times of programs (Section 3),
and explore some of the closure properties of these classes (Sections "

b and 5).

§1. Honesty and linear speed-up

In this section, we show that no instruction set I can have

- a better than linear speed-up property.



Suppose I does possess such a speed-up. This means, in
particular, that given any program P, one can find an equivalent
program @ for which

Let P be an honest program which computes a non-ultimately linear
function (the existence of such a program is guaranteed by the fact
that I always contains I ), and let Q be the speeded up version.
Since fQ = f,, we have x ¢ tQ(x) by the minimal growth rate theorem.
But now,

Q by the size theorem,
q tP by hypothesis,
g5 since P is honest,

= fQ since Q is equivalent to P.

Thus fQ<3 fq,: which is impossible; hence Q cannot exist.

The same idea ;‘6311 be stated differently.
,// ’ ‘
Theorem ll.]/./ Suppose f 1is an unbounded honest function, and g

is arbitrary. Then

Tlf] € T[g] if and only if f 4 g.

The proof makes use of the following lemma, which is also used

in subsequent sections.
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letma 4.2 If f is honest and f(x)d x, then £ is

ultimately periodic.

Proof. By definition, there is a program P computing f for
which tp d f. If f(x) 49 x, then tP(’.c) 4 x, and so f is
ultimtely linear, by the minimal growth rate theorem. But since

f(x)<9 x, £ must in fact be ultimately periodic.

Proof of Theorem li.l

The fact that f¢ g implies T[f]l < Tlg) is obvious by the
transitive property of 9 . For necessity, suppose g4 f. We
show that there is some function h e T[f] - T[g].

Case 1. x ¢ g(x). Clearly, f ¢ T[f] since f is honest. If
feT[g], then f9 g by the size theorem and the fact that
x 4 g(x). This contradicts the assumption that g 4 f.

Case 2. g(x)<4 x. In this case, T[g] is just the class of

ultimately linear functions. The function a, where

a(x) = (x even + x, 0)

is not therefore in T[g ]: The function a can be computed by a

I - program P (since I contains IO),.for which
tP(x) 9 x.

Now, since f is unbounded, it is not ultimately periodic, and

so xg f£(x) by Lemma 4.1. Hence a ¢ T[f].



Corollary 4.3 If £ and g are unbounded honest functions, then

tlf] = 7Tfg] if and only if £ g

Proof. Immediate from Theorem 4.1.

§2. The real-time characterisation

In order to prove the main result of this section, we need
to consider certain properties of the output function eP of an
on-line program P. It will be recalled from Section 2.7 that

0p(x) total number of work register instructions
executed by P, on any sufficiently large
input, prior to the execution of the (x+l)st

output instruction,

undefined, if no such output occurs.

If P is on-line and fP

total function. (If P is not on-line, then 6

is unbounded, then 6, is a well defined

P is not well

- defined, since the definition depends on the particular input chosen).f

Theorem 4.4 If f is unbounded and superhonest, then there is
an on-line program P computing f, for which
B,P(x) 9 x.

Proof. There are two cases to be considered. First, if f is
ultimately linear, then there is an on-line program P compu’cing
'f for which eP(x) = 0 for all x, and in this case the theorem

follows at once. Accordingly, we suppose for the rest of the proof,

i
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that £ is not ultimately linear.

Since f is superhonest we can assume, by the almost
everywhere theorem and the composition theorem, that there is an

on-line program Q computing cf, for which

tQ(x) £ cf(x) for all x,

where ¢ 1is some integer greater than zero.
Below, we construct a program R, Vfor which.

fR(x) = cf(x) and GR(x) d x.

R can be converted into the final program P by permitting only

one out of every ¢ outputs to be given. We have

bp (x) eR(cx) d x,

£(x),

and fp(x)
giving the desired result.

The program R is a modified version of Q, in which

(supposing A and B are two registers not appearing in Q):

(1) after each work register instruction of Q is

inserted the code:
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Y;=Y+1
B:=B+1

:=A-1

(ii) each (original) output instruction of Q is

replaced by the sequence

1Y+l
A:=A+l

B:=B-1
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First, it is immediate that R is an on-line program if Q is.

To show that R has the desired propefbies, Wwe compare the_conpu;
tation sequences of R amd Q on some sufficiently large input,
and examine the contents of the registers A, B and Y at those points
in the computation sequence of R which correspond to points in

the computation sequence of Q immediately prior to an output or |

~ work register instruction. We refer to the nth such point as point

n, allowing point O to designate the very start of the computations.

Suppose that at point n, t, work register instructions of R
have been executed, and a s bn, ¥y, denote the contents of A, B, and
Y. At the corresponding point of Q, suppose t work register

instructions have been executed, and y is the contents of Y.
It is immediate that

£ = 3t + 2y. Q)

Moreover, we claim: -

(1) ir yzt,thenan=y-t,bn=0,yn=y

(ii) if y<t, thena =0, b = t-y, y, = t.

The proof is by induction. (i) and (ii) trivially hold for n=0,
since all registers are zero at the stéft. Suppose (i) and (ii)
~hold at point n. Between point n and point (n+l) the computation
sequence of Q contains exactly one output or work register

instruction. These two possibilities are examined separately.
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et y/ andt/ be y and t for point (n+l).

(a) an output instruction. Here, y/ = y+1 and t'=t.

(i) if y3t, then y” >t’. By inductive assumption,
bn = 0, ard so by definition of R:

B S¥-t+l = vy -t

. -
Ypsp Y FL V0.

(ii) if y<t, then y ¢ t’. By assumtion b, # O and so:

an+l=0

bn+l=t-y-1=t’-y(
- - &7

yn+l't"t"

(b) a work-register instruction. Here y” =y and t7 = t+4l.

(i) ify>t, theny’ 3 t/. Since a, #0:

bn+1 =0
= = y'
. yn-l-l y

(ii) if y € t, then y' <t'. Since an=0:

%na = 0

_ | !
bnﬂ—b--y*l:t -y
y -t+1='.



The induction step is complete. It i:nxlediately follows that

fR(x) = max (tQ(x), fQ(x)) = ef (x)

-

for all x.

By an argument similar to that used in the size theorem, we
also have
¥ € k(1+t), ()

since fQ is not ultimately linear. Here, k is the number of

distinct output instructions in Q. From (1) and (2) we have

tn € (3 + 2Kt + 2k,
whence

t,m2k
Yy 2 =pR 0
n 3Rk

since V, ° max(y,t). By definition of Op» We have

eR(yn-—l) <t,

'cn—2k

whence ’ 0 (W -1) g €, s (3)

since eR is monotonic.

Finally, let x be arbitrary. By choosing a sufficiently

large input, we can find an n, such that

(2k+3)x < - (Bk+3) < (2k+3)x + 3,

10

-

i




since t < tn+l £ tn+3. Hence, using (3),

GR(x) €t 9 x,
and the theorem is proved.
We can now prove
Theorem 4.5 An unbounded function f is superhonest if and only
if £* is on-line real t:me computable.
Proof.

Suppose f - is superhonest, so that by Theorem 4.4, there is an
on-line program P computing f, for which eP(x) 4 x for all x.
By the inversion theorem of Section 2.7, P* computes f* with a

running time given by

tP*(x) = eP(x) Q x.

Thus f* is on-line real time computable. Conversely, suppose P

is an on-line program computing £* and

tP(x) 4 x.
Using the inversion theorem again, P* computes f** = £, and

Upa(X) € tp I (x) 2 f3(x) = £(x),

whence f is superhonest.
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The main characterisation can now be stated.

Theorem 4.6 Let t be a strictly increasing superhonest
function, and p be the function p(x) = x-1.
Then
(i) f e T[t] if and only if f-p-t* e R,
(ii) f e Ty[t] if and only 1f f£:p.t* € Ryy.

(where TON[t] = {fpitp 4 ¢, P on-line} ete.)

Proof. (a) necessity. Suppose P is a program for which

fu=f and t.4 t. (1)

P P

Since p is ultimately linear, we can find an on-line Q for

which

fQ=p and tQ=O. : (2)

Since t 1s superhonest and unbounded, we can find an on-line

program R, by Theorem 4.5, such that

fR = t* and tR(x) 4.x. (3)

By the composition theorem of Section 2.6, the program P-Q-R
which is ‘on-line if P is, computes frp-t* with a running time

tP,Q,R(X) = tp(x) + tQ-fR(x) + by fQ- £(x)
g x + tepet*(x),

using (1), (2) and (3). By definition of t*, we have




t(t*(x)-1) € x for all x 3> t(0), and so

tp.q.8® ¢ x

(b) Sufficiency
Iet P be a program such that

fp = fepet* and tP(X)SJ X ()

Since t is superhonest, we can find an on-line Q such that
£ =t and 'tQ_gt. | (5)

By composition, the program P+Q which is on-line if P is,. computes

f-p-t*-t with a runing time

g =t ttfg ¥

using (4) and (5). However, if t is strictly inereasing,
t*(t(x)) = x+1,

i.e. pet*et(x) =x. Thus P-Q computes f, and the theorem

is proved.

It is worth noting that the statement of Theorem 4.6 cannot be

sinmplified to read:
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f e T[t] if and only if f-t* e R,

as this assertion is false. Consider f(x) = t(x) = x! It can

be shown (Exanple 11.17)) that the factorial function is Io-superhonest

so that f e T[t]. However, f.f*(x!) = (x+1)!, which shows that
f.£*(x) § x, so by the size theorem, f£*f* carmot be real time

computable.

Corollary 4.7 Suppose t is strictly increasing and superhonest.
Then

fe Tylt] if and only if t.f* is

superhonest..

Proof. Immediate, from Theorems 4.5 and 4.6, since by Lemma 2.10

(t-£*)* = f**.pot* = fop.t*,

§3. Honesty and rumning time

In this section, we examine the relationship between the
honest functions and the ruming times of programs. It turns out
that for IO - programs these classes are identical. The following
theorem is the register machine analogue to the main result of

Fischer [15].
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Theorem 4.8 Iet £ be an arbitrary honest function and P
a program for which tP 4 f. Then there is a
program Q equivalent to P for which tQ =cf

for some constant c.

Proof. The proof is very similar to that of Theorem 3.11.

Suppose R is an honest program which computes f, i.e. tRS f.

In fact, using the almost everywhere theorem, we can assume that

tr(x) + t5(x) € kf(x) for all x,

for some positive integer k, with equality holding only when f(x) = O

We 'modif‘y these programs as follows:

(i) program R is formed from R by replacing every
output instruction of R, by a sequence of k instructions
of the form A:=A+l, where A is some register not

appearing in P and R.

Moreover, R’ remembers in its label structure whether such a
sequence is ever executed. In addition, an instruction A:= A-1
is inserted after each original work register instruction of R.

Thus R’ computes kf - t, in register A, and has

R

fRI =0 and tR/= 2tR+kf.

(ii) Program P/ is formed from P by inserting an

instruction A:zA-1 after each work register instruction.



The final program Q is formed by following the program
P' +R’ by the code

t
which is only executed when R indicates that at least one
sequence of A:= A+l instructions has been executed. Since the

effect of P + R is to leave kf - ¢ - to in register A, the

R
ruming time of Q is given by

t + 2(kf-t

Q=2tR+kf+2t

P g tp)s

since, by supposition, kf 3 tR + tP. Thus tQ = 3kf and fQ=fP,

proving the theorem.

Corollary 4.9 If f is Iyhonest, then f is the rumning

" time of some Io-program.

Proof. For I, -programs, we can speed up the Q of Theorem 4.8

by exactly % .

f
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Lemma 4.10 The running time of every (on-line) program is honest
(superhonest).

Proof. let P be an arbitrary program. Delete all 6utput
instructions from P and insert new ones after each work register
instruction. The resulting program Q has

fQ=tP and tg = tp,

showing that ¢, ‘is honest. If P is on-line, Q will be also,

and so t, is superhonest.

P

Corollaﬁ 4,11 A function is I, -honest if and only if it is
"~ the running time of some IO program.

The proof of Theorem 4.8 does not carry over in the case of on-line

programs and superhonest functions.

lemm 4.12  The function h, where h(x) = [vx]?, is superhonest,

but for no integer ¢ is ch the running time of

any on-line program.

Proof.

We have h(x) = S(S*(x)-1), where S(x) = x2. Since S is
superhonest (Example 4.15), h is on-line real time computable.

Hence h is superhonest, as x 9 h(x).

Suppose that P is an on-line program with tp

= ¢h, for

¢
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some integer c¢. Suppose P has k distinct input tests, and
consider the computation of P with an input of the form x2+2x s

where 2x > k. Since P is on-line and
tp(x2+2x) = tp(x) = ch(x®+2x) - ch(x?) = 0,

the last 2x input tests of this computation wére executed on the
same contents of the work registers, and so some input test was
obeyed twice with the same work register configuration. This means
that for any input y 3 x2+2x, tp(y) = ’cp(xz) and so h is bounded,
which is clearly false. |

For on-line programs, the best result is:

Theorem 4.13 Suppose Af is honest and P is an on—ling
program for which AtP @ Af. 'Then there is
an on-line program Q, equivalent to P, such
that t, = cf for some constant c. (For I, -programs

we can take c=1).

Proof, Once we prove that if Af 1is honest, then there is
an on-line program R computing f such that Atp g Af, the
rest of the proof follows along the same lines as Theorem 3.11.

There are two cases to be considered

(1) Af(x) 4 x. In this case Af must be ultimately
periodic by Lemma 4.2, and so f is (monotone) ultimately linear.

Here, we can take AtR = Q0.
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(2) x ¢ Af(x). Suppose S is an honest program which

conputes Af. Modify S to read its input from a new register

A, and let R be the program

J

Y:=Y+£(0)

.———- A§=B .

where B is another register not appearing in Q. R is an on-line

program which computes f, and

AtR(x) =2 +kx + ts(x) for some k
$ Ar(x),

since S is honest and x ¢ Af(x).

Corollary 4.14 If Af is honest, then f is superhonest.

Example 4.15 Let S(x) = x2. Since AS(x) = (x=0 + 0, 2x-1),

AS is ultimately linear and so honest. Thus S is superhonest.

Restated, the last corollary says that if f is horiest,
then If is superhonest. We end this section by showing that

if f is honest, then NIf is superhonest, where



(M) (x) = £(0) x £(1) % ... x £(x).

Theorem 4.16 If f is honest and f > O, then

IIf is superhonest.

Proof. There are two cases to be considered.

(i) f£(x) 9 x. In this case f 1is ultimately periodic.
Suppose f(x+c) = f(x) for x 3 Xg

It follows that for x 3 X5 '

£(x) = £(x, +[x- XO,Q—J):

whence

x+C X, te
I f(y) = 0 f(y) =4 say.
y=x+l y=xo+l

Thus, if 0If = h, then

h(x+c) = dh(x) for x 3 X,

and so
Ah(x+c+l) = dAh(x+l) for x 3 X,

It follows from this that the following on-line program computes h:

12




x_ times
(o)

. ¢ times

}

Y:=Y+£(0)

X=0

B 4

X:=X-1
Y:=Y+Ah(1)

1]
»

X =

h 4

Y:=Y+Ah(xb)

{:=X-1

L

A:=A+1

A
{

-
X=0

o

=D

X:=X-1

Y:=¥+AxAh( xo+1)

Y

X:=X-1

Y;=Y+AxAh(xo+c)

!

A:=AHd
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When the instructions involving rrultipliéation of A by a constant
are replaced by I 0" subprograms, it is possible to verify that
the resulting program P has a running time tPS h, whence h is
superhonest. The details are omitv;ted. |

.(ii) x 4£(x). In this case, suppose P is a program which
computes f honestly. Q is a modified version of P in which the
input is read from a new register A. In addition, for each input
X, Q computes f(x) into some work register, and outputs the quantity
b(f£(x)~1), where b is ‘che:ml‘clal contents of another register B.
Fina.lly, before halting, Q stores the value b’f(x) in B. Now let R

be the following program:

{

Y:=Y+£(0)
| B:=f(0)
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“where C is yet another registef hot appearing in Q. It is
easy to verify by induction that the contents of B immediately
prior to the execution of the (x+l)st input test of R is just
h(x) = (If) ~ and so

00 = £(0) + £(0) x (F(1) = 1) + ...

+ £(0) x £(1) x ... x £(x-1) x (f(x) - 1)

h(x).
Moreover, the running time of R satisfies

X
tg(®) 4 ] (v +hy) 2 (h)(x),
y=o

since y ¢ £(y) 4 h(y). It remains to show that Ih 4 h.

We have
(zh)(x) _ 1 | 1 1
h(x) = 14 T ¥ toxe-1y Yoot fx)x...x £(1)
< X
l+ m) .

Since x 9 f(x), the conclusion follows.

Exanple 4.17 The factorial function is superhonest.

Clearly x! = (If)(x), where f is the ultimately linear function

C£(x) = (x=0 > 1, x).
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§4. Closure under composition

The honest functions are not closed under unrestricted composition

as we can easily show.

let [ be the function

f(x) = 2x+1 if x is square,
= 2X otherwise.
We have _
‘ £(x) = 2x + Asq*(x),

where sq(x) = x®. Since sq is superhonest, sq* and hence Asq*
are real time conpubabie. It follows from the addition theorem that
f is real time computable and hence honest, since x € f(x). let g

be the ultimately linear, and so honest, function
g(x) = (x even » 1, 0).

The function g.f, whose values are

(g-£)(x) = (x square + 0, 1)

is not honest by Lemma 4,2

Theorem 4.17 (). If £ and g are honest and f 1is unbounded

then f.g is honest.
(ii), If f and g are superhonest, then so is f-g.

(iii). If f is honest and g is ultimately linear,

then f.g is honest.
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Proof. First, suppose g 4is bounded in each case, whence bot.hr g

and f.g are ultimately periodic. This shows that f-g is honest in -
cases (1) ard (iii) and superhonest in case (ii). Supp'osin‘g g is

not bounded so x g g(x), and P and Q are honest (on-line) programs
which compute f and g, so that P-Q is an (on-line) program computing
f.g: |

(1) We have tP-Q = tQ + tP-fQ 4g+f.gg f.g,

if £ 1is unbounded, since we have x ¢ f£(x) by Lemma 4.2.

(ii) Similar to case (i) if f is unbounded. If f and g
are monotone, and f is bounded, then f.g is constant

almost everywhere and so superhonest. '

(iii) If g is ultimately linear, then ty =0, and so

tP-Q Q f.g.

The above theorem can be generalised to prove certain othef closure

properties of the honest functions. Just for the reﬁainder of this j
section we introduce functions of more than one argument, and say that |
a n-place function f is honest if there is a program P, with n |

input registers Xl’ X5s ey Xn’ which computes f with

tP(xl, X5s eees xn)il f(xl, Xps oo xn).

It is easy to see that each of the functions
AXyexdy, Ayexry,  Axyed

are honest in this extended sense.
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Theorem 4.18 Suppose 81> Bs g, are l-place hongst
functions, and f is a n-place honest function.
Then the function h defined by

h(x) = £(g)(x), g,(x), ..., g (x))

is honest, if either

(a) each function g; is bounded,
. A
or (b) Ix; € f(xl, Xps sees xn).

Proof. Foreach i, 1< i <n, let G; be an honest progrem
which computes 8 but stores the result m a new regis’cer Al
Iet F be a program which computes f, but reads the input from
registers Al’ A2, cees An. By the addition theorem, the program

Gl + G, MEITI G, = G say, computes gi(x), for each input x,

in register Ai for 14 i ¢n, and has a running time

n
ta(x) 4 ] g (x).
G 4 8
Iet H Dbe the program G foilowed by program F. H computes h,
and

ty(x) @ ) g (x) + £(g;(x), ..., g (x)).

In the case that each gj is bounded, the right hand side of this
inequality is bounded and so h is honest. If at least one gj
is unbounded, then x g gj(x), and so ) X 8 £0g, Xy, eeey X))

inplies




119

£y (x) g (%) ..vs gn(x)).
Hence h 1is again honest.

Corollary 4.19 If f and g are honest, then so are

(1) f+g,
(ii) fxg, provided >0 and g0,

(iii) r®, provided £>2 and g>0.

Proof. (i) is immediate..

(i) If f and g are honest, with £,g>0, then the

functions f~1 and g-1 are honest by Theorem 4.17 (iii).

Since
x+y < (x+1)(y+l) for all x,y,
and Axy.(x+1)(y+l) is an honest function, we have

fxg = (£-1+1)x(g-1+1)

is honest.

(iii) If f and g are honest with f32 and g0, then

so are the functions f-2 and g-1l. Since
Xty € (x+2)y+l for all x,y,

and )ocy.(x+2)y+l is honest, the conclusion follows.

Note that the conditions in (ii) and (iii) are necessary. Both f

and g are honest, where
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"
»

£(x)

(x even > 1,0),

~and g(x)

but neither fxg or f® are honest.

-

§5. Subtraction of honest functions

- In this section, we show, under certain conditions, that

the funetion f-g is honest if both f and g are. This result
enables us to state more clearly the relationship between the
honest and superhonest functions. The following subsidiary result

is needed.

Lemma 4.20 Suppose that f is honest and g=f almost everywhere.
Then g is honest.

' Proof.

Suppose X is such that x 3 Xy implies g(x) = f(x). If

we define h by

h(x) = f(x+xo),

then h is honest, by Theorem 4.17. Suppose P is an honest

program which computes h, and let Q be the program:
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X=0 ¥:=Y+g(0) —

Y:i=Y+g(x,-1) ""

It is clear that fQ(x) (x<x° + g(x), h(x-xo))

= g(x),
and tQ(x) = (x < X;* 0, tpﬁ(x-xo))
g(x),
and so g is honest.
Theorem #4.21. If f and g are honest with f)g andhmmf 27(%-> 1,

X200

then the function f-g is honest.

Proof.

The theorem is proved by constructing a program R for which
tR(x) = k(£(x) - g(x)) + 1 almost everywhere, where k 1is some
positive integer. Since the running time of any program is honest,
Lemma 4.20 shows that the function k(f-g)+l is honest, and the final
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result follows by using Theorem 4.17.

By Theorem 4.8, we can suppose that there are pmgrféms P. and

Q such that

f,=f, t,=c¢f and fQ=g,tQ=cg,

P

for some positive integer c¢. By hypothesis, we can find an integer
'n so that nf(x) 2 (n+l)g(x) almost everywhere. Wé modify
programs P and Q, by replacing every output instruction of P by
| a sequence of n assignments A:=A+l, and every output instruction
of Q by a sequence of (n+l) assignments A:=A-1, where A is a
register not appearing in P and Q. The resulting programs are
added, giving a program R’ with a running time

tpr = (c4n)f + (cintl)g,

and which leaves in A the quantity nf-(n+l)g. The final program

R consists of R’ followed by the code

t=A-1
:=B+1

L3 2 BN Y 4

W e

B:=B+1




where m is a positive integer that will be determined in a moment,
and B is an arbitrary register. As long as nf 3 (ntl)g, i.e.

almost everywhere, the ruming time of R is given by.
tp = (cn)f + (cintl)g + 1 + (m2) (nf - (ntl)g).
We now choose m to satisfy

(mt2)n + ¢ + n = (m+2) (n+l) - (cin+l),

¢

which gives m = 2¢ + 2n-1, With this value of m,
tg = k(f-g) + 1,
. where k = 2n(n+c+l)+c, and the theorem is proved.

The following example shows that the cordition

lim inf f(x)
Xebco g(x)

> 1

is, in general,necessary.

Exanple 4.22 ILet f and g be the honest functions

£(x)

(x even + x, 2x)

and g(x)

n
»

we have f > g and. o0 r63) =1, but f-g is not honest.
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Corollary 4.23 Suppose f is a monotone honest function for
which

liminf f(x#l) ,
X0 £(x) )

Then f 1is superhonest.

—

Proof. Immediate from Corollary 4.14, since the condition implies

,Af is honest.

In Chapter 5, we show the existence of a monotone honest function,

which is not superhonest.
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CHAPTER FIVE

- NECESSARY CONDITIONS FOR ON-LINE COMEWTATION

The size theorem of Chapter 2 gives a simple condition that
a function f must satisfy in order to be computable within a
time bound t; namely, £ t. However, thiis condition does not
give any information on the computational eemplexity of Ol-valued
or siowly increasing functions. In this chapter we develop a
sharper condition, but one that only pertafims to on-line computation
(Sections 1-3). Using this _condition it is possible to show the
existence of functions f, with f monotome and f(x) ¢ x, which

are not on-line real time I - computable. Tn the case of a general

¢
instruction set I, the coﬁdition can only be used to construct
ﬁ‘mctibns f such that for any on-line I-program P computing f,

we must have tP(x) 2 €x, where € > 0 1is a constant independent

of P. (Section 4). Supposing f is such :a function, this means
that if f is on-line real time I-computable, then I cannot possess
the speed up property of Chapter 3. In Section 5, we use this fact

to show that certain instruction sets do moft possess speed up.
Section 6 shows that there is a montonic homest but not superhonest
function - answering a question raised in Chapter U4, and Section 7

gives a structural characterisation of the real time I-computable

functions, in terms of a certain type of programming language.

The basic necessary condition turns om two equivalence relations,
one associated with functions, and the other with on-line programs.
Sections 1 and 2 define these relations and Einvestigafes their

properties.
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§1. The equivalence relation =

Let f be an arbitrary (total) function. For each integer
n 2 0, we define the equivalence relation 2, (md ) on N by

the condition: -~

for 211 x, y € N, xEny(modf) if

for all z«¢n, P(x+z) - £(x) = £(y+z) - £(y).

It is easily_ verified that =, 1s an equivalence relation. We are
interested in the number of equivalence classes induced by 5, on

N. Taking S(x) = x?, it is clear for any n > O that x =, ¥ (mod S)
if and only if x = y, so that each integer stands in an equivaleﬁce
class by itself. On the other hand, if E(x) = x, then x =y (mod E)
is satisfied for any integers x, y, and n, so there is only one

equivalenée class.

For m2 n, we let J f(m,n) denote the number of equivalence

classes induced by En(mod ) on the initial subset

{0, 1, ..., mn}

of N. Clearly, J f(m,n) is always finite, and the following two

properties of J p are immediate:

(i) 1 ¢ Jf(m,n) < men+l,

(ii) Ie is monotone in each argument.

Moreover, the bounds given in (i) can be obtained for n > 0, since
JE(m,n) =1 and _JS(m,n) = mn+l, where E and S ‘are the
functions defined above.
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It may be mentioned that the reason we do not define J P
over the, possibly more natural, initial subset {0, 1, ..., m}
_of N, is simply because the above definition enables certain

properties to be stated more elegantly.

The definition of Jo(m,n) means just that we can find a

Sequence

x]-’ xz’ ..', XJ

of integers X5 where O ¢ Xy € mn for 1g Jgd-= Jf(m,n),

such . that

j#k dimplies 'szn ){k(nbd ).

This sequence is not necessarily unique, and we want to be able
to choose one with, rdughly speaking, minimum density. Define
Sf(.l)(m,n) for 1 <1< J, by the condition

~sf(.i)(m,n) = size {xk: Ixi—xkl < n}.

In words, Sf(.l)(m,n) is the number of elements of the above
‘sequence which lie within distance n of the element X Ir

T = {xl, Xps sees xJ} is chosen so that

is minimised, we refer to T as a spanning set with minimum density,

and define the density S £ to be

S min max o (i)
S¢

Sf(m,n) = T 1< (m,n).




It is easily verfied that S depends only on f,m and n, and
1 & Sp(myn) < 2n-1

for all m and n, withn > O,

We consider one example to see how these definitions work out in
practice. This example turns out to be important in the following

sections.

Example 5.1 Suppose D = £§, where & is the function whose

sequence of values

8(0), 6(1), ... ete.,

is identical with the sequence of dyadic integers, written one

after the other. The first few terms of this sequence are
0100011011000001...

D is clearly monotone and satisfies D(x) ¢ x. The first few values

"of D are.

0111123345.,.,

Since every binary pattern of length n > 1 has appeared after at

n . n .
most )} j2J terms of §, i.e. by &(} jo! - 1), it follows that
j=o .

) n .
gy 1322 +n-1,0) =2" forall nj 1.
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n . .
‘Since 7} j2d = (n—l)znﬂ + 2, we therefore have

Jp ((n-1) @M i) ez, m = ‘

Moreover,

s; (1™ +1) +2,n) =1,

since we can choose a spanning set T with minimum density, by
taking
, n-1 .
T = {(} j2)+m:0<k<2®-1}
J‘:l -~ -~

The following five lemmas summarise the inportanﬁ properties of J P
-and  S,. The first is an analogue of the Nerode theorem for regular
sets (Rabin and Scott [34] ). '

Lemma 5.2 IfJd £ is bounded, then f is ultimately linear.

Proof. If Jg¢ is bounded, then for some constant k, the

equivalence' relation =, whei’e
XSy if forall z3> 0 f(x+z) - £(x) = £(y+z) - £(y),

induces just k equivalence classes on N. This means that among

the nunbers
0’ 1’ 00" k

there exists i,j with i< j such that i = j. Suppose j = ite,

where ¢ > O. It follows that

f(i+z) - £(i) = f(i+c+z) - f(i+e)
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fora]lzao; Taking y = z + i, we have

f(y+c) - £(y) = f(it+e) - £(1) =d° say,
for all y > i. Herice' f is ultimately linear.

Lemma 5.3 Forall m and n (withm 3 n), we have an(m,n) sm Sf(m,n).
Proof. Let m and n be fixed. Choose a spanning set T = {xl‘,...,xJ}

with minimum density S = Sf.(m,n) . Suppose without loss of generality

that X; < xj for i< j. The definition of S implies that

ij+1} X, + jn 2 jn, for j=0,1, ... etc. Since X; ¢ mn, it follows

~that

m-n m
Js (———n)S'i'lS'r-{ S,
‘since Sz 1.

Lemma 5.4 x':'ny(modf) ifandonlyifforallz,lf zg n,

we have Af(x+z) = Af(y+z).

Proof. Suppose X -En y (mod f£). Since

z
f(x+z) - £(x) = ] Af(x+r),
L

it follows that

z z
} Af(x+r) = ] Af(y+r),
r=l r=l



for all z ¢ n. Taking z = 1,2, ... in succession, we have
Af(x+z) = Af(y+z) for 1<z gn.

Conversely, this condition ensures that x =Y (mod f).

Lemma 5.5 Suppose k = size {Af(x): 1 ¢ x ¢ mn + 1},
Then |

JAf(m+l, q—l) < Jf(m,n) < kJAf(mi-l, n-1).

Proof. By lemma 5.4‘x§ny(n‘od f) if and only if

Af(x+z) = Af(y+z) for 1l g z. < n.

In turn, this condition is equivalent to:

(i) Af(x+l+z) - Af(x+1) = Af(y+l+z) - Af(y+l) for O ¢ z < n,

and (i) Af(x+l) = Af(y+l).

Therefore, a necessary and sufficient condition that x En y (mod f) is

(x+1) E(n—l)(,yﬂ) (mod Af) and Af(x+l) = Af(y+l),

from which the estimates follow.

Lerma 5.6 Suppose f is monotone. Then there exists a constant c

‘such that for a1l m and n with

* log, Jf(m ,1)

n

sufficiently large, we have
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Jf(m,n) log, Jf(m,n) < ef(m).
§fim,n)

Proof.

Iet m and nbe given, and let J = Jf(m,n) and S = Sf(m,n)
for short. It follows from Lemm 5.4 that we can find a spanning
set T = {xl, Xps eee xJ} with minimum density S such that the set
of sequences

Af(xl+l) > soes Af(xlm)

Se st sestoesocstronnnaecs

Af(x. +1), ..., Af(x.+
(x3#1), ...y DECxpm)

are pairwise distinct. Let

' n

g, = § Af (x.41).
J r=1 J

Since each term in any sequence can occur in upto as many as S-1

of the other sequences, we have

J

(¢ JPN
j=1 !

1
f(m) 2 'S-

. The proof is now completed by putting an appropriate lower bound

to
%

O..
j=1 4




Let Yn(j ) denote the number of distinct integer sequences

8ys 8ys ++. & Where  a; 3 0, '

_with Zai = j. Since the set of such sequences can be deséribed,

recursively, as the union from k = O to j of sequences of the form
ays 8y +e05 8 15 K where Zai = j-k,

it follows that

Y = Zo Y1 () (W

for all n > 1. Since Yl(j) = 1, the recurrence relation can be

solved to give -

W o= emh. @)

The sum Xoj will be minimised by having distinct sequences

Af(xi+l) s soe Af (xi+n) s

with as small sums as possible. Since f is monotone, no term

is negative and no sum o, is negative. Thus
J B B

oo ] gy )+ BLE - T v G, (3)
il Y j=o j=o

where B is defined by the condition

13
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B+l
gov(a)‘ J< Z 1,(3),
J=
that is |
n+1(B)< J< vy el (B+1), , (W)

Using (1). '

In order to evaluate the right hand side of (3), suppose, conventionally,

that y (x) =0 for x< 0. Using (1), we have

n+l

B B
j_X__o v, () = j);oj (g @) = Yy G-1)

§ 31 G Jgo (5-1) ¥y, GG-1)

f Ye1 G-1)5

o= BY 1(B) -Yn+2(B-1).

| _ B
Now from (2), we have Yn+2(B'1) == ynﬂ(B). Thus
_ bBn
X @) = o Yo B )

j=o
Substituting (5) into (3) and using (1), we obtain

B+n+l

Loy (BT - S5 v, ).




135

Hence using (4)

Bn (B+1) -
Xﬂjhm Jd 3 5 J,

provided B 3 1. To estimate B, we have from (4) and (2), that

J < (B+3.l+n)

It can be shown, using Stirlings approximation, that

(B+3.1 +n) < eB+1 fn

3
whence
B+l > logeJ-n 2 élogeJ,
log.J

provided is sufficiently large. Thus the lemma is proved.

§2. The equivalence relation 'Cn

The second equivalence relation on N is defined with respect
to an arbitrary on-line program P. Let P be given and, for each
x320 and n 3> 0, let CP (x,n) denote that subsequence of the
computation sequence of P with infinite input, which begins with
the instantaneous description at the point where the (x+1)st input
test is obeyed and ends with the instantaneous ‘description inmediately‘
prior to the point where the (n+l)st next work iegister instruction

is executed. We now define




XV ¥ (md P) if CP(x,n)’ = CP(y,n).

The nunber of equivalence classes induced by «'n will be denoted
by Ky(n). Since x v ¥ implies x v, it is clear that L
is monotone. Moreover, as the following lemma shows, KP is always

well defined.

Lemma 5.7 Suppose P 1is an on-line program (defined over an
arbitrary instruction set) and has ¢ distinet input
tests. Then

KP(n) g 2"

for all n.

- Proof. It is sufficient to put an upper bound to the number of
distinct sequences of the form Cp(x,n) for some x. If two such
sequences begin with the same input test, they can only differ after
the execution of some work reéister test. Since each test can yield
at most two poséible continuations, the number of such sequences
is no gr'éater than 2. If there are c possible input tests to
begin with, then the number of distinct sequernces is no greater than

e,
This bound can be much improved if P is an IO- program.

‘Lemma 5.8 If P is an on-line IO- program which refers to

just k work registers, then

KP(n) g nk.

136




Proof.  We can write the instantaneous description IP(x) at the

point where the (x+1)st input test is obeyed, in the form

(2, xls yl’ a-ls az; veey ak) .

where & labels the (x+l)st input test to be obeyed, and 4 a5,
sees B denote the contents of the work registers at this point.

Suppose, similarly, that IP(y) is of the form
(my X55 ¥p5 bys byy eees bk).

Now if P is an ;- program, then cch,n) and Cp(y,n) can only

differ if either:

G) 2 £m,

©or (ii) there is a j, where 1 € j € k such that

- . . . #b..
” nsaJ,bJ< n and aJif 5

Since the number of distinct instantaneous deseriptions satisfying
(i) or (ii) is at most c(2n+2)k, where c¢ 1is the number of imnput

tests appearing in P, we have
Kp(n) < c(2n+2)k,

from which the conclusion follows.

137




138

8§83, The basic conditions

The fundamental relationship which connects the two equivalence

relations can be expressed as follows.

Lemm 5.9 ILet P be an on-line program.. Suppose n 3 0 is
givén, and T 1is a set.of integers such that

x#y implies xiny(modfP)
for all x, y € T. Then
size (1) < Kp(t),

where ¢t = max {tP(x+n) - tP(x)}.

Proof.

The proof follows immediately from the fact that
X% y (mod P) implies x z, ¥ (mod fP)

for a1l x, y € T.

Corollary 5.10 If KP is bounded, then fP is ultimately 1in§ar.
Proof. It follows, from Lemma 5.9, that the size of T is

bounded if Ky is. But this means that J £ is bounded, where £=1;,
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arnd so, by Lemma 5.2, fP is ultimately linear.

From now on, we write J, for J and S, for S, to
P fp P. o
avoid messy subscripts. If fP is not ultimately linear, the

function KP-l defined by
K, (%) = miny [x & K]

is total. This follows from Corollary 5.10. Moreover, we have

KP-l(KP (x)) € x.

Lemma 5.11 Suppose P is an on-line program and fP is not

ultimately linear. Then for all m and n,

o
> 1 Kp - (ISpm,n)),

JP(m,n)
where R = 'S?_m,_n) .

Proof. ILet m and n be fixed and let J = JP(m,n) and S = SP(m,r;).

By definition of SHp there is a spanning set Tl with minimum

density S, ard containing exactly 'J elements, such that
X #y implies xi:‘ny (mod fP)

for a1l x, y € Tl‘ Choose X, € Tl so that




mx {t (x+n) = t_(x)} = £t (x, ) - t,(x,),
xeT, P ' pi ™) = tplXy

and let tP(xl+n) - tP(xl) be denoted by t, for short.

Applying Lemma 5.9, we have

J < KP(tl) .

Remove x. from T. and also all y for which le-yI <n.

1 1
By definition of S, the remaining set T2 contains at least J-S

members. In a similar fashion, we can now choose X5 € T2 so that
J-S ¢ KP(tz) where t, = tP(x2+n) - tP(xz).

Proceeding in this way, we can choose a sequence X)s Xpy 05 X,
where O ¢ x;¢ mn and r =-[J/8] + 1, such that for1 ¢ j ¢ r

we have

. where tj = tP(xJ.+n) - tP(xJ.).

Moreover, by construction, |x1 - xJ.[ *»n for i # j, whence

r
tom) > § t..
P 51 J

Now

-1 -1 .
b 2 Ky (Kp(t)) 2 Ky (3-(-1)9)

since KP"l is total and monotone if fP is not ultimately linear.
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Therefore

(m) ?"1( )
t,(m) 3 A + jS),
P It Kp J

where R = [J/S] and A = [7,§]. Since Kl;-l is monotone, the

conclusion follows.

The.next task is to simplify the lower bound given in the statement
of Lemma 5.11 by using the estimates on KP given in the last
section. These lead directly to the following two theorems.

Theorem 5.12  Suppose P is an arbitrary on-line program,
where f'P is not ultimately linear. Then for
all m and n such that JP(m,n) is sufficiently
n
large, we have
Ip (m,n)

tp(m) > m) 1og2JP(m,n)
Proof.

Lemma 5.7 states that KP(x) ¢ ¢2X for some ¢, whence KP-l(x) 3
> log, (%), since KP-]‘ is total. Using this estimate in Lemma 5.11,

it follows that

R .
tP(m) 3 j§=:1 log2 (J—cs-) = 'logz (R! (%)R).

Now by Stirlings approximation,

R
R! 3 (-g) provided R is sufficiently large,

and also
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R:[—Jg]a%,

B ,J8 , i
and = 37 3%,

provided % is sufficiently large. Since S.< 2n, this means that

provided % is sufficiently large,
to(m) » e log, J
P I5 98 9>
and the theorem is proved.

Theorem 5.13 Suppose P ‘is an on-line IO- program which uses

k work registers, and fP is not ultimately

linear. Then for some € > O,

14
Wp(m,n))

tp® ¢ 5y

forall m and n.

Proof. Lemma 5.8 states that KP(X) £ exX for some constant ¢ ,

whence Kp-l(x) P xllk for some € > O. Using this estimate in

Lemma 5.11, we have

=i

R
(m) 3 ¢ 615)
o xe LG

Since 1
R 1/% (l.kﬁ.)
}] i 2 6R for some 6§ > O,
j=0




we have

(1)

P(m)aeds [ ]

and the conclusion follows.

The foliowing corollaries are immediate from Theorems 5.12 and 5.13

by using the estimate SP(m,n) < 2n.

Corollary 5.14 Under the hypotheses of Theorem 5.12,

tP(m) 3 %—r-l- JP(m,n) log, JP(m,n).

Corollary 5.15 Under the hypotheses of Theorem 5.13
‘ 1
tP(m) > ¢ {JP(m,n)} .

§4. Applications

Theorem 5.13 can be used to show the existence of slowly
increasing functions which are not on-line real-time I~ computable.

We consider, as an example, the function D defined in Example 5.1.

Theorem 5.16 If D is computable by an on-line IO- program P,

then for some § > 1

. 8
('1'6523?)

4 tP(x).
In particular, it follows that D is not real time

on-line IO- computable.

143




Proof. From the discussion in Example 5.1 we know that
Jp(h(n),n) = 2°

and SD(h(n) ,n) =1

for all n, where h(n) = (n-1) (2n+l+1) + 2. Thus, if P is an on-line
« Ip= program which computes D, then there isane >0Oanda 6§ > 1
such that
tp(h(n)) > 2.

Iet x be arbitrary and suppose n is such that h(n) € x < h(n+l).
This gives |

ns logzx - logzlogzx - 3,

whence

(log,x-1og,log, x~3)6 8
tp(x) 3 tp(h(n)) > €2 " e > (1022x> ,

proving the theorem.

Later on we shall show that there is an on-line Iy~ program P which

computes D for which

0 < (i)

2]
- (Theorem 5.19).

Unfortunately, Theorem 5.12 cannot be used to show the existence

of a monotone function f with £(x) ¢ x, which is not on-line I -
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corputable for any instruction set I. This can be seen by showing
that the lower bound given by Theorem 5.12 satisfies

JP(m,n) A
SEw Ol en O

There are two cases to be considered:

(1) I1f longP(m,n) £ cn for some constant c¢, then (1)
follows by using Lemma 5.3. |
(ii) If, on the other hand,

1og2JP (m,n)
n

is sufficiently large, we have

Ip
'S; 1°g2JP Q f(m)

by Lemma 5.6. Since £(m) ¢ m, inequality (1) holds in

this case also.

However, Theorem 5.12 can be used to give some sort of lower bound.

“Theorem 5.17 If D is computable by an on-line program P, then

tp) > g

for sufficiently large x.




Proof. Suppose P 1is an on~line program which computes D,

~ From Theorem 5.12, we have

tp(hn)) » 22,

where h(n) = (n—l)(2n+1+l)+2 as in Theorem 5.16. From this estimate,

we can deduce that

(logzx-logelogex—S)

tP(x) > (logzx - log,log,x - 3)2 R
whence , _
tp(x) 3 %E

for sufficiently large x.

This result has the following interesting consequence:

~

Theorem 5.18 If I is any instruction set such that D 1is
on~line real time I-computable, then I does not

possess the speed up property.

Proof'. If I does possess the speed up property, we could use

it to produce an on-line program P which contradicted Theorem 5.17.

We now give two examples of this theorem.
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§5. Instruction sets not possessing speed up

let I, be the instruction set which includes I, and

has, in addition, the instructions

assignments Aj :=Aj +Ak AJ. = J.-Ak
tests Aj 2 Ak .

Iet 12 be the instruction set which includes I0 and has, in

©  addition,
assignments As ':=Aj +1 Agi=As-l Aj :=0
Jeizj+l Ij:=j-l Jj:=0’
tests AJ. =0 Aj 30 j=0 j20

That is 12 consists of IO together with the possibility of referring
to the work registers Al R A2 s ++o indirectly through an index

register j.

Theorem 5.19 (i) D is on-line real time Il - computable.
(ii) D is on-line real time I, - computable.
(iii) D is on-line I, computable within time

y L 2
AX. (1-5'8?).

Proof. The proof in each case is by direct construction of a

program P to compute D.
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(i) In the first case, P works by determining, between

successive input tests, the next symbol in the sequence

0100011011 ...

and incrementing the output register if the next symbol happens
to be 1. P does this by extracting the binary representation of
the odd numbers 5, 7, 9, ... one after the other. The binary

representations of these numbers are
101, 111, 1001, 1011, ... etc.,

and the sequence formed from the interior digits of each number
(i.e. every digit except the first and iast of each number) is just
the sequence we want. The interiér digits of the odd nuwber n are
extracted Vas follows. Initially, register N contains n. and’
register KA contains 2k, where 2k §nc< 2k+1. The first digit
of n is removed by subtracting K from N and leaving n—2k in N.
To extract the next digits, the contents of N are successively
doubled and compared against K. If N < K, then the next digit is O
and no output is given. If N > K, then the next digit is 1 and Y
is incremented. If N = K, then the processing of N is conplete,‘
and the next odd number is set up for processing. With these

remarks, we now give the complete program P.







Since fp =D and tP(x) € 18x, part (i) is established.

(iii). Program P can be modified into an I,~ program

- that computes D. Instead of doubling N ard comparing against

K, the modified version Q halves K and c&pms against N.
Thus during the processing of the number n, no nunber greater
than 2n is stored in any register. The various instructions of Q
can be expanded as macros defined over I, and it is possible to
verify that the resulting program R processes n (l.e. extracts
the interior digits of n) within cn steps for some constant c.
Since this processing produces a further [1ogzn] -1 values of D,

we have
tR(,)‘f ([ log,(2j+1) ] - 1)) @ § j for all y,
J=2 J=2
which simplifies to
te (i [10g,i 1) ¢ 2.
Jj=1
Iet x be arbitrary, and suppose y satisfies
V oeglex<’t Bogl,
log,j | € x < log. il ,
J':]_ ng j:]_ ng
whence it follows that y 4 (l %, ) and so

2

t(x)st (Z [1082J])1(Y+1) ‘(1og2x

This establishes part (iii).
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(ii) The I,- program P which computes D, evaluates for
n =12, ..., the dyadic expansion of n in the registers
Al s A2, A[ logzn]' Generating the expansion for n+l, given the
expansion for n, can be achieved in c[ log;n ] steps for some
coﬁs'cant c. As a result of expanding n, a further [1og2n_'] values
of D are computed, so that P operates in real-time. The details

are left to the reader.

Corollary 5.20 Neither Il nor 12 possess the speed up property.
It is worth mentioning that Theorem 5.19 also shows that both Il and
1, are strictly more powerful instruction sets than I » 1n the sense

that on-line real-time Il and Iz-programs compute a strictly larger
class of functions than on-line real-time IO- programs.

§6. Further results

The techniques of Section 3 can be used to settle some of the
questions raised in previous chapters. In particular, we can now
establish the existence of a monotone IO- honest function which is

not IO- superhonest.

Theorem 5.21. Iet § be the; 0-1 valued function described in

Example 5.1, and let E be defined by

E(x) = x + 8(x).
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(1) E is a monotone Iy~ honest function, but is

not IO- superhonest.

(ii) E is real time Io- computable, but not on-line

real time Iy~ computable-.

The proof makes use of some of the closure properties enjoyed by
the real time Io- computable functions. The following lemma can be
verified by direct construction of the appropriate programs:

H

0
so are each of the following functions:

Lemma 5.22 If £ and g are real time I.- computable, then

(i) f.g,
(ii) f+g,
| (iii) f-g provided g,
(iv) [trg],
W [f,g].

Proof of Theorem 5.21

E is clearly total and monotone and

x € E(x) € 2x.

It~ follows that, if E is real time computable, then it is honest,
and if it is superhonest, then it is on-line real time computable.
Hence it suffices to prove the sedond assertion only. In order to
show that E is not on-line real time I.- computable, it will be

0
enough to prove




JD(m,n) ¢ JE(m,n) for all m,n,

where D = I§ 1is the function used in Section 4. By definition,
Xy (md E) if and only if

E(x+z) - E(x)

E(y+z) - E(y)
for 0¢ 2z ¢€n, i.e.

8(x+z) - 8(x) = &(y+z) - &(y)

. for O0< z ¢ n. In other words,

JE(m,n) =J AD(m,n).

Lemma 5.5 now shows

: JD(m,n) £ 2JE(m+l, n-1l) g 2(JE(m,n)+l),

and the demonstration follows.

In order to show E is real time IO— computable, it is sufficient
to show that 6§ 1is. This is accomplished by deriving a closed

formula for ¢§ and using Lemma 5.22.

. For each x 2 0, we characterise the xth position in the
sequence S of dyadic integers’, by three quantities a(x), b(x) and
p(x). The first, a(x), is a positive integer and denotes the number
of the area into which x <falls, where the jth area is that
subsequence of S which consists of all the dyadic integers of length

a(x) and denotes

J. Next, b(x) is an integer in the range 0 € b(x) < 2
the number of the block in area a(x) into which x falls. A block

is just the subsequence of S consisting of a single dyadic integer.
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- Finally, p(x) is an integer in the range 0 € p(x) < a(x) and denotes

the position in block b(x) of area a(x) at which x occurs.

Given these three quantities, §(x) can be determined as follows:
if p(x) = a(x) - 1, then 6(x) will be O or.l‘ depending on whether
b(x) is even 'or'not; similarly, if p(x) = a(x) - 2, then ;S(x) will be
O or 1 depending on whether [b(x), ll] < 2. In general, the condition

is

6(x) = 0 "if and only if

Eb(x), 2a(x)-p(x)] < 28.()()—p(x’)—]_ .

Thus, in order to compute 8(x) for a given x, it is sufficient to
determine a(x), b(x) and p(x) and see whether the above condition
holds. The ﬁmctions a, b,and p are determined as follows. Since
the jth area is of length sz, a given x falls in area 1;,. where

K
Qz sz
J=1

Ak-1) € x < A(k) and A(k) =

In other words,

+
xl+

a(x) = A*(x), where A(x) = (x-1)2 2.

Furthermore, it is easily seen that

b(x) = [x—A(z(z)—l}

and p(x) = [ x-aGat)-1), a(x)] :
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At this point, it is only necessary to remark:

(1) A is a strictly monotone Io- superhonest function,
whence by Theorems 4.5 and 4.6 both a and A(a-1) are

on-line real time IO— computable.,

(2) From (1) and Lemma 5.22 we have that b, p and also a-p

are real time IO- computable.

(3) Since Ax.2* is superhonest, the function 227P is

Io- computable by some program P

for which tp(x) ¢ x + 22(x)-p(x)
However,
2&)Ppx) o ak) Aa(x)-1) € x,

which shows that 227P is ‘real time Io— computable.

(4) It follows that the truth value of the condition

[b(x), 26.(X)‘P(X)] < 2a(x)-p(x)-1
can be computed within real time.

Thus & 1s real time Ib— conputable and the theorem is proved.
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§7. Structural characterisation of real time functions

Because »the real time computable functions are so important,
it is interesting to obtain some sort of structural characterisation
of the class. In this flna.l section a programming language is
described, relative to a given instruction set I, whose programs
compute exactly the real-time I- computable functions. This language
is a ﬁndified version of the language LOOP first described by Meyer
and Ritchie [317].

Suppose I is a given instruction set. The language LOOP(I), which
we shall write as LOOP whenever I is implicity understood, is

defined recursively as follows:

(1) Each assignment in I, but not X:=X-1,
standing by itself is a LOOP program. -

(2) If P, ad P, are LOOP programs, and t is

1
some test in I, but not X=0, then the conditional

(t -+ Pl’ P2)

is a LOOP program. This is equivalent to the

Algol:

~if t then P

1- else P2.

(3) I B and P, are LOOP programs, then so is

Pl; P2




The meaning of this program is: first do Pl then do P2.

(4) If P is a LOOP program, then so is |

loop X Pend,
where X denctes the input register. This program is
equivalent to

‘P; P; vou3 P (x times)
where x is the initial contents of 5(, i.e. the input.

(5) By convention, the program E of no instructions is a

LOOP program.

For example, the following LOOP (Io) program computes AX. [ vx]:

A:=1;
loop X
A:=A-1;
B:=B+l; L -
(A=0 + A:=B; Y:=Y+1;A:=A+“2)
end

- For each n » 1, we define DOOPn(I) to be the class of LOOP(I)

programs which have a depth of nesting of loop ... end statements

no greater than n.

15




Theorem 5.23 For an arbitrary function f and instruction set I,

the following two statements are equivalent:
(i) £ is IOOPn(I)'- computable.

(ii) f is computable by some I - program P
for which tP(x) g <.

In particular, the LOOPl(I) programs compute just
the real time I -~ computable functions.

Proof. (1) = ({i). It is straightforward to translate LOOP(I)
programs into I - programs using additional registers to control

the number of times a loop is executed. Since the prdgram

loop X loop X ... Pend ... end (n times),

where P contains no loop instructions, is equivalent to
P3Py .3 P ta times),

and the execution time of P is bounded, the simulation by a I
program can be carried out within ¢ Ax.f] steps. Purther details

are omitted.
(ii)=p (i). Suppose P is an I-program and tP(x) < X

Let P have k instructions with labels 1, 2, ..., k and let

label O denote the termination condition. P is translated into
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a LOOPn(I) - program by making use of new regisfers A, FO, Fl’ vens Fn ‘
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and translating the instructions of P as follows:

(1) All references to X are replaced by references to A,

where A does not appear in P.

(2) An instruction %: a-+m of P is translated irb

the program L,Q,’ where
Lz = (F£=O + E, a; Fz:=05 Fm:=l)

(3) An instruction %: t » m, m, of P is translated
into Lz, where |
Lz = (F£=0 +E, (t + F£:=O:le:=1, F,:=0; sz:=l).
Let L(P) denote the program Ls L2; cee} Lk and L°(P) denote the

program L(P); ...; L(P) (c times), where ¢ is such that tP(x) < e

for all x. We now claim that the pmgréxn

A:=0; loop X A:=A+l end; loop X ... loop X L°(P) end ... end

is equivalent to P. The first part merely ensures that register A
contains the input x. The second part guarantees that the program

L(P) is executed eX® times. The flag registers Fos Fl’ cees Fk |
appearing in L(P) control the flow of computation to follow that of P. -
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It is possible that the above characterisation can be used to
show that certain functions f, for which f(x) ¢ x, are not real
time I- computable, at least for I=I,. It is worth noting, in
this respect, that Tsichritzis [38 ] has characterised the functions
computable by LOOPl(IO) - programs which do not use the conditional
statement, showing them to be just the simple functions. A fimetion
f is simple if there exists numbers x, and c and a function d
such that

f(xte) = £(x) +a([x, ¢]) for x> x,.

The simple functions therefore represeml; a slight generalisation of
the ultimately linear functions. The function Ax.[ vx ] is not
simple, but is computeble by a LOOP, (I,) program, thus showing that
the presence of conditional statements in LOOP yields \a definite

increase in capability.
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APPENDIX A

MATHEMATICAL BACKGROUND FOR CHAPTER ONE

In Chapter 1, the basic objects under consideration are partial
functions. A partial function £:D + D’ can be extended to a total
function by introducing a new element Q, standing for the undefined,
into both D and D’, and defining A'

f(x) =0 if x=Q or f(x) is urdefined.
A partial ordering L , on functions with the same domain s can then
be set up according to the rule

f Cg if for all x, f(x) #Q implies f£(x)=g(x).

It follows from this that
f=zg ifandonly if fC g and gC f.

If £:0+ D and D’ is a'subset of D, we say that £ maps D/ into D’

to mean that for all x e D', if £(x) # Q, then f(x) e D’.

- New partial functions are either defined explicity, or by making

use of one or more of the following operations:

(1) Composition. . The composition fsg of two functions £ and g
is that function which is defined by the equation

fog(x) = £(g(x)) for all x.
Implicit use is made of the fact that composition is associative,

and the following deductive rule is used:




itrtct” and gCg’ then f-gCf/-gl.
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(2) Conditional expressions. - If P is a predicate, and f ad g

are functions,.then (P + f,g) denotes the function defined by

f(x) if P(x)

(P + £,g)(x) true,

g(x) if P(x) = false,

 otherwise. -

The following facts about conditional expressions are used:
(a) if £C £/ and gL g, then (P> £,2) L (P » £,g').
(b) (P+hef,hg) =h . P+ 1, g).

(¢) (P.h~+ f<h, g-h) = (P~ £,g)h.

(3) Upper bounds. If S is a set of functions with

disjoint domains, i.e. if
for all £, g e S and all x, either f(x) = Q or
g(x) = Q@ or both, then a unique function L.[ f is

feS
defined by the condition

(LIf)(x) = £(x) if £(x) #Q for some feS,
feS

s

=  otherwise.

If S 1is a set of functions with disjoint domains, so

is the set {h-f : feS} for any function h, and we have

he (Le) = Uner.

e feS fes




It is of course possible to take upper bounds of a
more general tybe of set, but we shall not need to
do so. '

(4) Recursion. If E(f) is some functional expression
involving the function letter f, then a unique function

f is specified by the conditions:

(1) £ =E(f),

(ii) for all functions g, if g = E(g), then f C g.

In such a case, we say that f is recursively defined by the

equation f = E(f).

In order to prove statements ‘about recursiveiy defined functions,

use is made of the following induction principle, which is justified

-in Morris [42] or Manna [141]:

to prove that a certain statement S(f) holds s

it is sufficient to prove by induction that
S(fk) holds for all integers k > O,

where the sequence £y f 12 +ee O functions is

defined by

fo(x) = Q@ forall x,
fep = B
This principle is not applicable to all possible statements

involving f, as can be seen from consideration of the statement
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@A) (£x) = Q). However, all statements which are assertions
about inclusion, e.g. f g, can be proved in this way, and these

are the only ones needed.
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APPENDIX B

LIST OF SPECIAL SYMBOLS

The following list of special symbols used frequently in the

text, supplements that given in Apperdix A.

Symbol Meaning
fP function computed by
program P (section 2.1)
tP ruming time of program P
(section 2.1)
N the set of natural numbers
{O’l’ . e .}
[x] the integral part of x
x, v] the (non-negative) remainder
when x 1is divided by y.
[x]| the absolute value of X.
Ax.£(x) Church's -Lambda notation for

fag, fag,fng
f.g, f+g, £*

denoting functions.
defined in Section 2.3

defined in Section 2.6-2.7.




In

Sy_rrgol

l lSl l s, Size(S)

Ix ...

f

Veaning

-two notations for nunber of

elements in a finite set

there exists an x such that ...

denbtes function h, where
h(x) = £(0) + £(1) + ... + £(x).
denotes function h, where

h(0) = £(0)

h(x+l) = f(x+1)-f(x)

set theoretic inclusion and

union notation.
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A NOTE ON DEFINITION BY CARES
" . by RicmaRD BED in Reading, Berkshire (Great Britain)
The usual proofs that the function 4 defined by the conditions
by |1 2 2@,
" lg(x) otherwise,

can also be defined using the operations of primitive recursion and substitution in
" terms of f, 7 and the characteristic function of P, are incorrect if it is not assumed
that f and g are total functions. According to the natural mterpretatlon of the
above cqndltlons the value of A{z) is defined to be f(x) if P (x) is true (whether or
not the value of g (x) is defined), and g () if P (x) is false (whether or not the value
of f(x) is defined). The most common translation into a primitive recursive definition
of this function is to define %, by

I - k@) =5 (p= ))Xf(x)+p( )Xg(x)
Here, 57 is the primitive recursive function that satisfies
_ 1 ifz=0

@ =10 ita>o, - |
and p is the characteristic function of P, which takes the values 0 or 1 depending-
on whether P(x) is true or not. However %, which is primitive recursive in f g,
and p, only coincides with % if f and g are assumed total. This is because in the
semantics of the operation of substitution which specifies k by
B k(@)= r(51(2), %(2), . ., (@)

k(x).is only defined if all of s, (x), sa (), . . ., 8, (x) are defmed It follows by (l), that
if either f(z) or g(z) is undefined for some x, 50 is Ay (x), and this is not necessa,nly

true of the original function %.
As another attempt at giving a correct pnmltlve reeurslve def]mtaon of h, we

" can deflne A by ,
which represents a degenerate case of the operation of primitive recursion, and set:
ha(z) = A(z, p(2)).
- However this attempt' also fails because of the way the operation of primitive
recursion is defined. The equations (2) are not to be regarded as an instanceé of defi-

nition by cases (otherwise we would be admitting definition by cases as a primitive
operation), but rather as the special case of .

in which k(z,v,2) = g(x).
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The values of A(x,y) are defined inductively from the equations (3). It follows
that if f(x) is undefined so are the values of 4 (x, y) for every y. Therefore, according
to the definition of 4 by (2), if f(«) is undefined so is A, (v), and once again this is
not necessarily true of the original function 4.

However; by using & not too obvious trick, it is possible to give a proper primitive
recursive definition of . We define two functions 4 and B by primitive recursion
as follows. '

B(x,0) ==, B(@,y+1)={(B,y)
and

A(w,y,0)=B(x,y), A(W,?/7z+1)‘—"!](A(x’y’Z))-
The function %; which is defined by

hy(w) = A(w, 59(p(x)), p(x))
can now be proved to coincide everywhere with 4. There are three cases to be con-
sidered:

(a) p(x) is undefined. In this case, A4(x) is undefined, and so Ay(x) = A(x).
(b) p(z) = 0. According to the inductive definition of 4 and B,
hy(#) = A(%,1,0) = B(z,1) = {(B(z,0)) = f(@)
s0 that Az(x) = h(x). )
(c) p(x) = 1. Again, according to the inductive definition of 4 and B,
| hs(@) = A(x,0,1) = g(4(z,0,0)) = g(B(x, 0)) = 9(a)

so that hs(x) = h(x) and the proof is complete,

It may be mentioned that the author arrived at the difficulty mentioned in this
note, while attempting the apparently straightforward task of arithmetising & class
of algorithms in terms of the functions corresponding to the atomic steps of the
calculation. These unspecified functions were not assumed to be total. The usual
arithmetisation procedure does assume that the atomic stepg of the algorithm
correspond to total functions (as in the case of Turing machines), and so the primi-
tive recursive definition of the next-step function, which implicitly uses definition
by cases, causes no trouble. That such an artificial trick has to be employed for the
more general situation, argues the case for adopting a recursive function formalism
based directly on conditional expressions such as that given by McCarTHY in [1].
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INTEGERS WITH GIVEN INITIAL DIGITS
R. 8. Brep, Institate of Computer Science, Londoen, England

Consider the following situation. Two mathematicians called X and Y are talk-
ing, and X announces that he has just cemputed a. large prime, which he begins
to- recite to Y digit by digit. There are two possible responses open to' ¥.. He can
either wait until X has finished and then check the assertion, or he can interrupt X at
some point in the recitation with the information that no prime-cas begin with those
digits. The problems we are interested in are these:

(1) Assuming that Y knows his primes, can we prove that there is no sequence
of digits that allows Y to interrupt X?

(2) Can the same be said about other sets of integers such as the squares, the
factorial numbers, or the powers of 2? »

To make things precise, suppose that S is an (infinite) set of positive integers.
We shall say that S is extendable in base b if for each inieger x = 1, there are in-
tegers y and n, with p < b*, such that xb" + y isin §.

If S is extendable in base b and consists of the integers sqy 51, -+, then: ,

(1) for each integer x > 1, there are integers m and n such that b"x < s,
S b(x+1).

Conversely, (1) implies that § is extendable in base b, as we can take y to be
S, — b"x. .

If we use the prime number theorem, the proof of the extendability of P, the set
of primes, in every base is fairly easy.

THEOREM 1. Let nig(n) be the number of members of S less than n. A sufficient
367 |
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condition for S to be extendable in every base is that if ngn)/ns(An)— (1) for
all real 1 satisfying 1 £ 1 <2, then @A) =1 only if A =1.

Proof. Assume that S is not extendable in some base b. Then by (1), there
exists an x such that 7y(b"(x + 1)) = ng(b"x) for all n. Let 1, = (x + 1)/x (whence
1<4<2), and m, = b, so that

ng(m,)/ns(dom,) = 1 for all m,.

It follows that if ng(n)/ng(An) — 6(1), then 6(1;) = 1 for some A, # 1, which
contradicts the hypothesis of the theorem.

Now the prime number theorem asserts that np(n)~ nflogn, whence
np(n)[np(An) — 1/4, which is 1 only if 2 = 1. Therefore P is extendable in every
base. A similar argument shows that for each k, the set of kth powers is extendable
in every base. However, in other interesting cases the ratio wg(n)/ns(in) fails to
converge, or converges to 1, for all 4, and a sharper condition is needed. The follow-
ing theorem effectively characterises the extendable sets of numbers and reduces
the question to a problem of Diophantine Approximation.

THEOREM 2. A necessary and sufficient condition for the set S = {sg,sy,*+}
of positive integers ta be extendable in base b is that the set of fractional parts of
the real numbers log,sy, 10g,s,,-+ be dense in the unit interval.

Proof. 1n the following, all logarithms are taken to the base b. _

(a) Necessity. Suppose S is extendable in base b, so that condition (1)-holds.
Take logarithms and write u,, = logs,,, « = logx, and §(«) = log(1 + 1/x). Then,
by assumption, for each « of the form logx, there exist integers m and n such that

@ 0 Su,—n—a<da).

If we write (z) for ‘the fractional part and [z] for the integral part of the real num-
ber z, then (2) can be expanded to

@ =) S (]~ (6] = 1< 8@ + @) — () £ 50+ @.

Since (&) — (u,,) > —1, and 8(«) + (&) = log(x + 1) — [logx], which has a max-
imum value of 1 (obtained when x is of the form b* — 1, for some k), the above
inequalities imply that [u, ] — [«] = n, whence (2) can be simplified to

“) 0 = (u,) — (@) <5(0).

Let & be any positive real number, and x any integer. Define o, = logb*x. Clearly
(%) = (logx), for each k. Let n be any integer such that

8(x,) = log(l + 1/b"x) < &.

For such an n, there exists, by (4), an m such that 0 £ (u,) — («,) < (a,); i.e.,
an m satisfying
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(5) 0= (u,) —(logx) <.

Given g, we can also find an integer x, such that 0 # (logx,) < &. The sequence
of points

(logx5), (2logx,), (3logxg), -

therefore marks a chain across the interval (0,1), where the distance between con-
secutive points is less than ¢. Hence, given any 0 in (0,1), one can find a number
x = x¢, for some k, such that 0 £ 0 —~ (logx) <¢. It follows, using (5), that a
number m exists such that

(6) |0~ (u,)| <e.

Since 0 and ¢ were arbitrary, (6) is just the condition for the set of fractional parts
of logsy,logs,, -« to be dense in the unit interval.

(b) Sufficiency. Suppose that (6) holds for arbitrary 8 and ¢. Let x be any
positive integer, and take 0 = (logx). Then there must be an infinite number of
integers m such that

0= (u,) —logx)<e,

for otherwise, we can construct an interval to the right of (log x) that contains no
point of the form (u,), contrary to assumption. If we take an & < 6(«) and an m
such that u,, > o, where o« = logx, then n = [u,,] — [«] is a non-negative integer
that satisfies condition (1). Hence S is extendable in base b.

The following lemma is based on a proof by J. W. S. Cassels [1].

LemMa. Let U be a sequence ug,uy,+++ of real numbers of increasing size.
A sufficient condition for the fractional parts of U to be dense in the unit interval
is given by either
(i) Au, — 0, where 0 is either irrational or zero, or

(ii) Au, = oo, and A’u, —» 0. (By definition, Au, = t,; ~ u,.)

Proof. To begin with, assume that Au, — 0, and let ¢ be an arbitrary real
number. Since u, — 00, it is easy to verify that, given any ¢ > 0 and any integer m,
there exist integers p and ny such that

) |u, — & — p| <& for all n satisfying ny < n < no+m.

In particular, it follows that the fractional parts of U are dense in the unit interval.
Actually (7) asserts slightly more, and this is used below.

In the case Au, - oo and A’u, — 0, it follows from (7) (with u, replaced by
Au,) that, given ¢ > 0 and m, there exist integers p and n, such that

]Au,,—-qb—-p! < gfm for all n satisfying no S n < ny+m.
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The above statement (with p = 0 and ¢ = 6)also holds true in the third case Au, — 6,
so that in either case, given ¢ and m, there exist p and ny, and some irrational @,
such that

k—1
(8) ‘uno+k_uno—k0'-kp| §2;|A‘uno+r—0_p|<s
r=0

provided that 0 < k £ m. 7

Next, one version of Kronecker’s theorem asserts that if @ is irrational, then
given ¢ > 0, there is an ny, such that for any real o there exist integers ¢ and k,,
with 0 < ky < ny, such that |k09—oc—q| <e.

In substance, this says that the set of points {(6),(20),---} is dense in the unit
interval. For a proof see Cassels [2], or Hardy [3].

Now, if in (8) we take m = n,, let f be arbitrary, and set & = f —u,, then
Kronecker’s theorem asserts the existence of integers ¢ and k,, with ky £ n,,
such that

]koe—ﬁ+uno—-q] <g.
Setting s = kop + g, it follows that
|u"0+ko__ﬁ—s| = ‘uﬂo+ko—uno—kop—k00| + |k00_ﬁ+uno—q| <2e.
Since f and & were arbitrary and s is an integer, the lemma is proved.

THEOREM 3. A sufficient condition for the set S = {sg,5y,--} of positive
integers to be extendable in base b is that

either (i) 8,4./8,— 8, where 8 = 1 or 8 is not a rational power of b,
ar (ii) Sy+1/8, = 0 and s, Su42/52., = 1.

The proof is a straightforward consequence of the lemma and Theorem 2. The
second condition is independent of b, and so asserts the extendability of S in every
base.

Now we can show, for example, that the set of powers of a given integer p is
extendable in base b, provided that p is not a power of b, as the first condition is
satisfied. Also, the set of factorial numbers is extendable in every base as
(n+DYnl=n+1-0 and nl@+2)Yn+ D = (n+2)j(n+1) > 1.
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