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Abstract

We define “CSP-like” operational semantics in the context of LTS’s:
a severely restricted mode of describing operators which can express
every operator of Hoare’s CSP. Furthermore we show that every op-
erator with CSP-like operational semantics can be simulated in CSP
with the addition of an exception-throwing operator P ΘA Q in which
any occurrence of an event a ∈ A within P hands control to Q . Thus
any language, all of whose operators are CSP-like, has a semantics over
each of the behavioural models of CSP and a natural theory of refine-
ment. This demonstrates that the extended CSP is a natural language
to compile other notations into. We explore the range of possibilities
for CSP-like languages, which include the π-calculus as demonstrated
in a separate paper [18].

1 Introduction

While other languages for concurrent systems are often defined in terms of
their operational semantics, the CSP approach [8, 15, 19] has always been
to regard behavioural models such as traces T and failures-divergences N
as equally important means of expression. Thus any operator must make
sense over these behavioural models in which details of individual linear runs
of the processes are recorded by an observer who cannot, of course, see the
internal action τ .

Nevertheless CSP has a well-established operational semantics first de-
scribed in SOS in [3, 5], and congruence with that is perhaps the main
criterion for the acceptability of any new model that is proposed.

Operational semantic definitions of languages have the advantage that
they are direct, understandable, and of themselves carry no particular obli-
gation to prove congruence results such as those alluded to above. On the



other hand definitions in abstract models, intended to capture the exten-
sional meaning of a program in some sense, have the advantage of “cleanli-
ness” and allow us to reason about programs in the more abstract models.
The most immediate advantages of CSP models in this respect is that they
bring a theory of refinement which in turn gives refinement checking (with
low complexity at the implementation end, as in FDR) as a natural vehicle
for specification and verification.

The purpose of this paper is to devise a class of operational semantic
definitions that automatically map congruently onto definitions over the
class of CSP models, thereby giving both sets of advantages as well as freeing
the language designer from the need to prove congruence theorems.

In the next section, we remind ourselves about the CSP language and its
operational semantics. In particular we recall an operator P ΘA Q (previ-
ously described in [16]) that provides an extension in expressive power over
Hoare’s original CSP, which (like [19]) we include in the language. ([16]
referred to the extended language as “CSP+”.) As part of this exercise, we
develop an intuition about what it means to be a “reasonable” operational
semantics for a “CSP-like” language, and formalise it. This both develops on
earlier work on CSP and is related to previous specialisations of operational
semantics such as those in [1, 2, 22]. We are able to present the operational
semantics of CSP in a concise notation – combinators – that is specifically
designed for CSP-like languages.

The main result of this paper then follows, in which we show that any
operator (or class of operators) with CSP-like, or equivalently combinator,
operational semantics, can be simulated precisely in CSP. The degree of
this precision depends on whether the language we are considering uses the
CSP notion of successful termination X, and indeed we develop fully the
simulation for the X-free case before looking at the simulation of terminating
processes in the following section.

The existence of this simulation, in either case, implies that CSP-like
operators have operationally congruent semantics over all CSP’s models as
defined in [19]. It also implies that many have the same “distributivity”
property that is shared by all the standard non-recursion operators.

We can thus think of CSP as the “machine code” into which all such
languages can be compiled. In Section 7 we explore the practicality of using
it in this way, and look at an interesting way in which the results of this paper
can guide the future development of the refinement checker FDR [14, 7].

In the following section we give some examples of operators that are
CSP-like and some that are not.

A paper with this name first appeared on my web site in 2009, but this
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version is substantially different from that draft and in particular gives a full
treatment of termination (X). The draft was the precursor not only of the
present paper, but also [18] and the novel content of Chapter 9 of [19]. The
present paper, much revised from that first one, is a companion-piece to the
other two and provides their technical foundation. They, in turn, provide
further motivation and examples to support the present paper.
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2 The operational semantics of CSP

Technically speaking, this is primarily a paper about operational semantics.
Though our main result is that a wide class of languages can be modelled
using the behavioural models of CSP, this will come as a corollary to our
devising a translation into CSP that preserves operational semantics. We
do not, therefore, need to tell the full story of what these models are and
what they are all good for. Formally speaking, what we mean by “preserves
operational semantics” here is that the resulting process has semantics that
are strongly bisimilar to the original, or to an algebraically transformed
original when dealing with the termination event X. Whenever we refer to
bisimulation in this paper we mean strong bisimulation.

Readers interested the abstract, behavioural models of CSP should con-
sult [15, 17, 16, 19], and in particular the last of these. Perhaps the most
important are the simple finite traces model T and the failures divergences
model N , the latter with the addition of infinite traces U in the case that
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unboundedly nondeterministic operators are used. These respectively allow
us to specify safety properties and finitary liveness ones (e.g. after trace s,
the process will definitely accept an event from the set X if it is offered).

The language we use in this paper was termed CSP+ in [16], because
there is an extra operator that strictly extends its expressive power beyond
the language described by Hoare [8]. However, in the spirit of incrementation
and for consistency with [19], we now use the original name for the extended
language.

We now present a new notation for expressing the operational semantics
of CSP (also used in [19]), while developing an intuition for what it means
to be “CSP-like”.

The operational semantics of CSP creates an LTS, and indeed it is nat-
ural to interpret free process variables as taking values in some ground
LTS. This type of operational semantics is traditionally presented within
the Structured Operational Semantics, or SOS style. A complete SOS op-
erational semantics for CSP can be found in [15]. That book, whose oper-
ational semantics we regard as standard, will be abbreviated by its initials
TPC in the rest of this paper.

The actions of the LTS fall into three categories: ordinary visible actions
a ∈ Σ which can only happen when the observer agrees to them, the invis-
ible internal action τ and the termination signal X. Following [15, 19], we
treat this as an observable but uncontrollable signal that a process performs
to indicate that a process has terminated. When X is observed it always
represents the end of an observation: for convenience we introduce a special
unobserved state Ω to which all X actions lead.1

In SOS style we need rules to infer every action that each operator can
perform when applied to its appropriate number of arguments. Typically,
but not invariably, these actions result from one or more of these arguments
performing actions, as with the external choice operator � which gives the
environment the choice between the initial visible actions of the two argu-
ments.

In some sense the main rules for this operator say that the first Σ action
that either process performs resolves the choice:

P a−→ P ′

P � Q a−→ P ′

Q a−→ Q ′

P � Q a−→ Q ′

1While we clearly need to handle the event X if we are to give a complete theory for
CSP itself, it is likely that, like π-calculus [10, 18], some languages that our theory applies
to (i.e. CSP-like ones) will not require X. As will be apparent from the rest of this paper,
that leads to a significant simplification of the theory and a strengthening of the results.
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This means that � needs to have both its process arguments “turned on”
to allow them to perform these actions. There is an important distinction
between arguments that are on like these and ones that are off: not yet
activated so that no immediate actions can depend on them. In the first
case it would be reasonable to stipulate that any action (specifically τ or X)
that an observer cannot stop an active process from performing cannot be
prevented: if P can perform one of these actions on its own account then
so can it in any context like P � Q where it is on. We must therefore
expect that there will be SOS rules to say what P � Q does when P or Q
performs τ or X. Furthermore we must also expect that the actions that
result from these rules will be ones that an external observer cannot refuse –
otherwise the operator, by extension, would have to be able to prevent the
on argument from performing τ or X. So the result action must, in these
cases, be τ or X. In fact the SOS rules for � are

P τ−→ P ′

P � Q τ−→ P ′ � Q

Q τ−→ Q ′

P � Q τ−→ P � Q ′

P X−→ P ′

P � Q X−→ Ω

Q X−→ Q ′

P � Q X−→ Ω

There is an important difference between the first pair of rules and the
corresponding rules for the + operator of CCS: a τ here does not resolve the
choice. If P or Q performs a τ then the overall pattern of P � Q remains
completely unchanged. It is easy to argue that this is natural: if an observer
of P cannot see internal actions τ , then neither can an operator being ap-
plied to P . In fact every CSP operator follows this principle: whenever an
argument is on, that argument is allowed to perform a τ without changing
the overall state of the operator. The τ is simply promoted to the outside
as in the rules above.

That this is true is a reflection of the fact that in the theory of CSP, in
all the behavioural models used for denotational semantics, a process P is
always equivalent to the process τ.P (as it would be written in CCS) that
performs an initial τ action.

It follows that, as long as we define which arguments of a CSP (or CSP-
like) operator are on, there is no need to give the τ promotion rules explic-
itly. We do need to give X rules, however, since the result of an argument
performing a X can be either X or τ . In the first of these cases there is
(as with τ -promotion) no choice about the form of the successor state, but
in the second case there is. Consider the sequential composition operator
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P ; Q . Only its left-hand argument is on, and so has an implicit τ rule. The
other rules allow the left-hand argument to perform any Σ action, and to
terminate (promoted to τ) and start up the second argument:

P a−→ P ′

P ; Q a−→ P ′; Q

P X−→ P ′

P ; Q τ−→ Q

In general it would have been reasonable to specify that, when one ar-
gument terminates, that termination becomes a τ at the high level and
the process continues as any allowable CSP combination of the remaining
arguments. We will come back to discuss the word “allowable” shortly.

When on arguments are allowed to perform actions in Σ, the resulting
action might be the same, as in the � case above, a different visible action
as in renaming

P a−→ P ′

P [[R]] b−→ P ′[[R]]
(a R b)

or τ as in hiding
P a−→ P ′

P \ X τ−→ P ′ \ X
(a ∈ X )

[There is a further rule for P \ X covering the case of an action a 6∈ X : this
is simply promoted as itself.] There is no reason why an action a ∈ Σ in
an argument should not give rise to an externally visible X, but in fact no
standard CSP operator has this effect.

In all the examples we have seen so far there is a one-to-one relation-
ship between the actions of the argument processes and those of the whole
construct. In one sense this is true in general: each argument action that is
permitted will give rise to one result action. However in general there may
not be a single argument performing an action that underlies an external
one: there may be none at all as in nondeterministic choice

P u Q τ−→ P P u Q τ−→ Q

and prefixing:
a ∈ events(e)

e → P a−→ subs(a, e,P)

In each of these cases an operator performs actions when all its arguments
are off and then turns on one of these.
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Alternatively an operator can force several on arguments each to gener-
ate an action, which it synchronises into a single externally visible one, as
in the parallel operator:

P a−→ P ′ ∧Q a−→ Q ′

P ‖
X

Q a−→ P ′ ‖
X

Q ′
(a ∈ X )

(where there are also clauses that allow either P or Q to perform a ∈ Σ \X
independently of the other).

A formulation that works for all actions of CSP operators other than
those produced by arguments’ τs and Xs, is as follows:

• Any action x of an operator F (P1, . . . ,Pn ,Q), whose on arguments
are the Pi , may be enabled by all members of a (perhaps empty)
subset of the Pi each performing some chosen a = φ(i). (φ is thus a
partial function from the on indices to Σ, with dom(φ) being the set
of arguments participating in this synchronisation.)

• In any state where all the members of this subset dom(φ) can per-
form the respective φ(i), the component arguments synchronise and
generate x .

• The result state is any allowable process expression in terms of the ar-
guments Pi and Qλ, in which whenever a Pi appears with i ∈ dom(φ),
the process involved is P ′

i , the result of Pi performing φ(i).

In the cases of standard CSP operators, all the result states are either a
single argument (as in � above) or retain exactly the same format as before
the action (as in hiding, renaming, parallel and the non-X case of P ; Q).
We can, however, broaden this somewhat but not arbitrarily. So let us
consider what a process expression that follows an action (i.e. determining
the structure of the successor state) should look like:

• It can contain any subset of the original arguments, discarding the
others.

• There is no restriction on how an off argument can be used: it may
still be off, be turned on, or indeed appear in both sorts of places.

• However if an on argument is present, it must still be on and cannot
be copied: in other words it must appear only once.
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For example, operators whose operational semantics contained the clauses

P a−→ P ′

⊕(P) a−→ P ′ ‖
Σ

P ′

P a−→ P ′

P ⊗Q a−→ Q ; P ′

would not be CSP-like as these result states would not be allowable in the
above sense.

There is a fundamental reason why the first of these cannot be allowed:
such an operator would not be consistent with the usual behavioural models
of CSP in which each process is represented by a set of linear observations.
This representation, as discussed for example in [19], is intimately connected
with the principle that operators must be distributive over nondeterministic
choice u in their on arguments, namely

⊕(P1 u P2)
= ⊕P1 u ⊕P2

in this case. This would demand that

⊕(a → a → STOP u a → b → STOP) = ⊕(a → a → STOP) u ⊕(a → b → STOP)

The operational semantics above would not make this true, since the left-
hand side can deadlock after the trace 〈a〉, whereas the right-hand side
cannot. It has been known for many years that CSP models cannot handle
operators which can “clone” arguments in flight, and this restriction just
prevents us from defining such operators via operational semantics.

No CSP construct can suspend the execution of an argument – moving
it from a state where it is active to one where it is as though it has still
to be turned on and in particular is no longer capable of performing τs.
The theoretical problems that allowing such behaviour to be termed CSP-
like would cause are less than with copying2. However complex conditions
would be needed to ensure that no copying could be allowed in by the back

2Indeed, a semantics in all CSP models could be given to an operator suspenda(P)
which behave like P until the event a (normally outside P ’s alphabet) occurs, at which
point the only possible action is a further a which re-starts P in the same state where it
left off, before a further a and so on. During suspension the suspended P is prevented
even from performing τ and X actions. To the author there seems a much less persuasive
argument for including this and similar than there is for ΘA.
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door if we did allow suspension. And there seems to be no overriding reason
for allowing such behaviour.

Notice here that we make no restrictions about how many times an off
argument of OP can be used. This is perhaps as well, since we should
observe that constructs such as

Farm(P) = start → (P ‖
∅

Farm(P))

can actually copy the argument P arbitrarily often. (This one just inter-
leaves a “farm” of as many Ps as start events have occurred – assuming that
start is not an event of P .) There is no theoretical objection to applying
this type of construction to a process that has yet to be turned on. One
could give a direct operational semantics to this construct via the family
of operators Farmn(Q1, . . . ,Qn ,P) which runs Q1 to Qn in parallel (all as
on) and also offers start independently of its arguments before moving to a
Farmn+1 state. Thus P is an off argument: Farm = Farm0, where

Farmn(Q1, . . . ,Qn ,P) start−→ Farmn+1(Q1, . . . ,Qn ,P ,P)

Qi
x−→ Q ′

i

Farmn(Q1, . . . ,Qi , . . . ,Qn ,P) x−→ Farmn(Q1, . . . ,Q ′
i , . . . ,Qn ,P)

2.1 Combinator operational semantics

The above essentially defines what it means for an operational semantics
to be CSP-like, but we can give a clearer picture with a new notation, in
terms of combinators. To specify the operational semantics of an operator
F (P) you first define which of the arguments is on. For convenience we will
assume that these are P1, . . . ,Pm for some m ≥ 0 and that the off ones are
Q = 〈Pi | i ∈ I 〉 for some I disjoint from {1 . . . ,m}.3 There is no need to
write down anything further for the τ promotion rules of the operator we
are defining: we know that if Pi is an on argument then Pi

τ−→ P ′
i then

F (P1, . . . ,Pi , . . . ,Pm ,Q) τ−→ F (P1, . . . ,P ′
i , . . . ,Pm ,Q)

There is an arbitrary collection of Σ-rules, ones where the Pi perform
some pattern of actions in Σ. These take one of two forms. A rule of the form

3As we will show later, there can be no reasonable operator with infinitely many on
arguments. However there is no reason why there cannot be infinitely many off ones, and
CSP itself has two examples of this, namely some cases of nondeterministic choice and
prefix choice.
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((x1, . . . , xm), y), where each xi is either4 in Σ or is ·, and y ∈ Σ∪{τ,X} says
that when each of the Pi that has xi ∈ Σ performs xi and enters state P ′

i , the
combination performs y and (unless y is X) enters state F (P ′′

1 , . . . ,P
′′
n ,Q),

where P ′′
i = Pi if xi = ·, and P ′

i if xi ∈ Σ. Thus a rule of this form covers
every case (like the SOS rules of ‖, \ X and [[R]] quoted above) where a
collection of the arguments synchronise on a pattern of actions and produce
y , but where the overall shape of the program does not change. In the case
where y = X we conventionally assume that the result process is Ω, as with
similar SOS rules.

The second form covers the case where the overall shape of the pro-
gram does change. These have an extra component, namely a piece of
syntax T in which arguments are represented as bold-face indices drawn
from {1, . . . ,m} ∪ I , so 1 represents the first argument, and so on. Thus
((x1, . . . , xm), y ,T ), where xi and y are as before, has the same effect as
((x1, . . . , xm), y) except that the result state is now T with the substitu-
tions:

• An index i ∈ {1, . . . ,m} is replaced by Pi or P ′
i such that Pi

xi−→ P ′
i

depending on whether xi = · or xi ∈ Σ.

• An index i ∈ I is replaced by Qi .

To follow the principles above we have to impose conditions on T :

• No on index i ∈ {1 . . . ,m} can appear more than once in T .

• Such on indexes only appear at immediately distributive (ID) places in
T , (i.e. where the operational semantics we can derive for T makes a
process argument placed here initially on, and are never nested within
inner recursions). This is easy to define by structural recursion:

– The appearance of i in the simple term i is ID.

– If i appears ID in the term T , then it appears ID in
⊕

(. . . ,T , . . . ,Q),
where the place T occurs at an on place in the arguments of the
CSP-like operator

⊕
.

– No other appearance of i, including any in a recursive definition,
is ID.

4Note that these finite tuples of “preconditions” for the rule are simply a convenient
notation for the partial functions φ refered to above.
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It is worth remarking that these pieces of syntax can contain arbitrary
closed CSP processes at any point without restriction5. In other words,
either the whole expression or any argument to any operator can be any
process term that does not depend on process variables representing
arguments or anything else.

Drawing from examples already seen above, the hiding operator P \ X
has Σ-rules (a, a)[a 6∈ X ] and (a, τ)[a ∈ X ], using the convention that for
operators like this one with a single on argument, we write a rather than (a)
for a tuple of actions from each. In this case the result of P \ X processing
an action P a−→ P ′ is always P ′ \ X , so we can use the combinator form
without a result process. On the other hand, the resolution of P � Q does
change the process structure, so its Σ rules are

((a, ·), a,1) and ((·, a), a,2)

indicating that either side can perform any action in Σ which resolves the
choice, eliminating the �. These rules have exactly the same meaning as
the SOS ones for Σ actions in � given above.6

We present X rules in a very similar format, but where necessarily the
tuple of actions upon which the rule depends contains one X and all other
components are “·”. All such rules whose result action is X appear as a pair,
following the above convention, for example the X rules of P � Q :

((X, .),X) and ((.,X),X)

Rules in which the output action is not X always have it τ , as in the X-rule
for P ; Q where only the first argument is on and we give Q the index −1:

(X, τ,−1)

Again this means exactly the same as the corresponding SOS rule above.
Since these cases of a X leading to a τ always discard the terminating ar-
gument, such rules always have to give the syntax of the successor process
explicitly.

5In fact it is easy to show that any LTS at all is the operational semantics of such a
process, using a straightforward infinite mutual recursion and hiding to create any τs.

6As in SOS, when we present a combinator operational semantics the rules we present
are implicitly quantified over members of Σ, sometimes subject to side conditions. Thus a
single syntactic rule scheme such as the above may represent many actual transition rules.
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2.2 Combinator semantics for CSP

We have already given the full combinator semantics for � above. The only
rule that remains for hiding is the X one: (X,X) because the termination of
the only argument causes the whole to terminate. Renaming7 P [[R]], where
agains the only argument is on, has exactly the same termination rule and
the single Σ rule (a, b)[a R b].

We have seen the termination rule for P ; Q , where only the first argu-
ment is on. There is one Σ rule, namely (a, a) since P can perform any
non-τ action without changing the overall state, as set out in SOS above.

Another operator that has one argument on and one off is the (asym-
metric) sliding choice operator P BQ : only the first argument is on. There
are three rules:

(a, a,1) [a ∈ Σ] (·, τ,−1) (X,X)

where again the second and off argument has index −1. The most inter-
esting rule here is the second, since it enables an action (here τ) that is
unrelated to any action of the on process: P BQ can offer actions of P and
be resolved by a visible action of P , but until it is resolved in this way can
always be resolved in favour of Q by performing a τ . This last τ switches
Q on.

Both arguments of the parallel operator ‖
X

are on and it has the following

three rules for its Σ actions:

((a, ·), a) [a 6∈ X ] ((·, a), a) [a 6∈ X ] ((a, a), a) [a ∈ X ]

or, in other words, the two arguments progress independently when not
communicating in X , but have to synchronise over X .

Recall that P ‖
X

Q terminates when both P and Q do. Following the

rules for termination above, however, it would not be proper to insist on
the two Xs synchronising. Therefore, isomorphic to the SOS treatment of

7There is a convention, sometimes stated explicitly and sometimes not, that the re-
naming relations used in CSP are total on the events used by the process to which it
is being applied. Thus if P

a−→ P ′ then there is at least one b with a R b. Renaming
makes sense without this restriction: events P attempts to perform not in domain(P)
are simply blocked, and that is the meaning of both the SOS and combinator versions of
transition rules for this case. We will allow this generalisation in this paper, because it
makes some of the (already complex) process descriptions later more concise. Any such
extended use of renaming is equivalent to a version that does not need the extension, for
example (P ‖

Σ\dom(R)
STOP)[[R]] in the case where P never terminates.
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this operator in TPC, we make both the processes’ Xs into τs and follow
these with an externally visible one. In the following we regard the syntaxes
P ‖

X
Ω and Ω ‖

X
P as separate unary operators on P . The termination rules

are then

((X, ·), τ,Ω ‖
X

2) and ((·,X), τ,1 ‖
X

Ω)

where the rules for both of the unary constructs P ‖
X

Ω and Ω ‖
X

P are

(a, a) [a 6∈ X ] and (X, τ,SKIP)

We could also have given a semantics where the second X is passed to
the outside, rather than becoming a τ that leads to SKIP . That would not
be isomorphic to TPC, though.

In interrupt, P 4 Q , both arguments are on. The left-hand argument
can perform any series of actions but at any time, Q can perform any visible
action and take over unless P has already terminated. Its the rules are

((a, ·), a) [a ∈ Σ] ((·, a), a,2) [a ∈ Σ]

((X, ·),X) ((·,X),X)

It seems a little strange that the second argument of 4 should be on, but
of course this is necessary for it to be able to perform an initial event which
instigates the interruption. Of course in P 4 (a → Q), a very common
pattern of use, Q is initially off.

This completes the semantics of the established CSP operators apart
from one important class, namely those with no on arguments at all. These
include the various constant processes, prefixing and nondeterministic choice.
For each of these we represent the empty tuple of actions from the non-
existent on arguments as and use negative integers as the indices of off
arguments.

• STOP : no rules

• SKIP : ( ,X)

• P u Q : ( , τ,−1) and ( , τ,−2)

• a → P : ( , a,−1)
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Notice that we have only covered the binary form of u and the simple form
of prefix here. That is because general forms of each of them can have any
number – even an infinite number – of off arguments.

In such cases we have to be careful to define the indexing for the families
of off arguments that these operators have. Thus the operator u{Pi | i ∈
I }, whose arguments are parameterised by I , will simply have the rules

{( , τ, i) | i ∈ I }

and the general prefix e → P has arguments parameterised by comms(e)
and rules8

( , a,a) [a ∈ comms(e)]

in which the argument labelled a is subs(e, a,P).
Notice that even when they are infinite in number, only one of the ar-

guments ever becomes turned on in a run of prefix or nondeterministic
choice. It is not permissible to extend the notation so that there are an
infinite number of on arguments for any operator. It seems plausible that
we could introduce an infinite form of �, again parameterised by I , whose
rules (choosing to represent the partial functions as sets of pairs rather than
infinite tuples) would be

{((i , a)}, a, i) [a ∈ Σ] | λ ∈ I } ∪ {((i ,X)},X) | i ∈ I }

At first sight this seems uncontroversial and straightforward, but promoted
τ actions create a problem: imagine combining together infinitely many

8As is also true for the corresponding SOS treatment of prefixing, we would be able
to handle general prefix and generalised nondeterministic choice much more elegantly if
we were to add semantic environments that bind free identifiers to their values in the
combinator operational semantics. In fact doing so would give an even clearer distinction
between on and off arguments, as an on one must already have its environment and an
off one need not. There would still be the choice of whether to show the environment
explicitly in the semantic term. Of course if we did so then the appearance of all the
operational semantic clauses would change. However, at least for the purpose of giving a
semantics to CSP, we can use an implicit notation where it is assumed that the environment
given to each newly turned-on argument is the same as the “input” one unless we state a
modification explicitly. In this, we might write the rule for prefixing as

( , a, (1, subs(e, a, ρ))) [a ∈ comms(e)]

In other words, we now treat prefixing as a unary operator and use subs(e, a, ·) in a
modified form on a conventional name ρ for the surrounding environment. In this style

we could have two different infinitary forms of u: one with an infinite set of processes,

and the other with an infinite set of (perhaps tuples of) values to be substituted into the
environment.
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STOP processes, and infinitely many STOP u STOP processes. Since
STOP = STOP u STOP in every CSP model, the results ought to be
the same. But they are not, since the τ actions at the start of the second
process could all be promoted, one after another, through an infinite �,
creating a divergence and eliminating stability. Thus if we were to allow an
infinite form of � or any other operator with infinitely many on arguments
it could not be congruent over any model for CSP other than the traces
model T . We can be confident of this thanks to the fact that, by the results
of [19] (Chapters 11 and 12) every CSP model other than T refines either
the stable failures model F or the divergence-strict trace model T ⇓. In
neither of these models is the operational semantics of the external choice
� of an infinite number of STOP processes congruent to the same choice of
an infinite number of STOPs preceded by a single τ , even though the latter
process is equivalent to STOP in all CSP models.

There is a further operator, not a traditional part of CSP but which
plays both an important theoretical role in this and other works [16, 19] and
which has been seen in [19] to have a number of interesting practical uses.
This is the throw operator which models a process throwing an exception,
with a behaviour to follow subsequent to this: P ΘA Q acts like P until the
latter performs an event in P , whereupon it discards P and acts like Q .
Thus P is an on argument and Q (index −1) is initially off. It has the Σ
rules

(a, a) [a 6∈ A] and (a, a,−1) [a ∈ A]

and the simple X rule (X,X).
Hopefully it is clear that combinator rules for the operational semantics

of CSP are extremely concise and intuitive, while at the same time capturing
implicitly at least much of what we meant by “CSP-like” earlier.

That in itself would probably not be sufficient reason to present the op-
erational semantics in a non-standard way, as we have. The real motivation
is that we will, in the next sections, be able to show that any operator that
has a combinator operational semantics can be translated naturally into
CSP and therefore makes sense over every denotational model of CSP.

In other words, any operator defined in this way that is not already a
CSP operator is a natural extension to CSP.

Definition 1 A CSP-like operator is one over LTSs which can be defined
by combinator operational semantics.

We have not yet given the operational semantics of recursion. The term
µ p.P (the recursive solution to the equation p = P , where p is a process
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variable that can appear in the CSP term P) has two alternative operational
semantics as discussed in [15, 19]. The first is to say, in SOS, that

µ p.P τ−→ P [µ p.P/p]

or in other words that unwinding recursion generates a τ action which ex-
pands the term. This is completely unproblematic from the point of view
of evaluating the transitions of processes: when combined with the rest of
the operational semantics it yields a unique solution for the initial actions
of every term. It does, however, introduce τ actions that are frequently
inconvenient both practically and, in the present paper, theoretically.

The alternative is to re-write µ p.P to P [µ p.P/p] without introducing
the additional τ action. In fact the extra understanding brought by our
analysis of on and off arguments lets us understand exactly when this is
unproblematic: it is when every occurrence of p within the term P occurs
in an off position in P , where an off position in P means intuitively that
the term P does not depend on the initial actions of p to determine its own
initial actions.

This can easily be calculated recursively:

• A process variable term p depends directly on itself but on no other
process variable.

• The term F (P1, . . . ,Pn ,Q), where Pi are the on arguments of F ,
depends directly on all process variables that the Pi do.

• The recursion µ p.P is allowable if P does not depend directly on p.
In that case µ p.P does not itself depend on p. It depends directly on
other process variables if and only if P does.

• The mutual recursion p = F (p) is allowable if and only if the relation
on the indexing set Λ in which λ > µ if Pλ depends on pµ is a well-
founded partial order.

In this case the process denoted by pλ depends on just those process
variables q that are outside p and upon which one of the Pµ with λ ≥ µ
depends.

As has frequently been remarked, essentially all sensible CSP definitions
have all their recursions allowable in this sense, meaning that, as FDR does,
it makes practical sense to adopt the τ -free operational semantics. In doing
so it is really necessary to restrict ourselves only to use the allowable recur-
sions defined above. In FDR this is necessary because asking it to compile a
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non-allowable recursion will mean that FDR itself does not terminate. While
in theory we could still define the operational semantics of a non-allowable
term such as µ p.p to be those transitions that are positively derivable from
the inference rules implied by combinators and unwinding, this would not
correspond to the intended CSP semantics. µ p.p would have no transitions,
whereas CSP semantics demands that it diverges (i.e. performs an infinity
of τs), as in the τ -unwinding semantics of this recursion.

It follows that if we are to adopt the τ -free recursion syntax, they should
be restricted to satisfy the above conditions.

2.3 Comparisons and background

CSP-like operational semantics, as presented here, have many precursors.
Many of the ideas presented here, such as the difference between on and
off arguments, the promotion of τs, and the requirements for successor
states, were originally discovered by the author in his own doctoral the-
sis [13] (Chapter 8) about 30 years ago, before SOS started to dominate
his view of what an operational semantics looks like. It was, however, the
results of the rest of this paper that persuaded him to re-work the formal
presentation of operational semantics in this way: a form of operational
semantics that corresponds exactly with CSP.

In the interval since then, a number of authors, notably Bloom and
van Glabbeek, have investigated conditions on SOS semantics that induce
congruences (for the operators they define) with respect to a large number
of forms of equivalence on transition systems, such as branching and weak
bisimulation and a number of individual CSP-based models. This has led
them to rediscover the ideas outlined above (with τ promotion being referred
to as patience rules, and on and off being fluid and frozen. Many of the
conditions we have expressed here, for example on the form of successor
terms, are directly analogous to ones used in that work. For example in [2]
it is shown that restrictions on operational semantics which are essentially
the same as ours but without the no-copy rule ensure that operators are a
congruence with respect to weak bisimulation. These papers are typically
highly technical and explore the consequences of many alternative decisions
that might have been made.

We have here aimed to concentrate on a single clear structure of oper-
ational semantics that discovers CSP’s core structure, and which can lead
to the results set out in the following sections, and to creating a notation
which supports this structure.

There are two particular ways in which the formulation here goes beyond
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earlier ones: firstly the careful treatment of the termination signal X, and
the fact that we allow an infinite family of off arguments, following the CSP
language itself.

FDR has, to all intents and purposes, used combinators to implement
the state machines explored in its main running phase since the advent of
FDR 2 in 1995. We will examine the way it does this in a little more detail
at the end of the next section.

3 A re-working of combinators

The form in which combinators were represented above gives (at least in the
author’s opinion!) a very natural way to present an operational semantics,
where it is sufficiently rich. On the other hand the way we have allowed
successor states to be represented as pieces of syntax does not fit well with
the forms of simulation we will be developing later. Therefore in this section
we will give a somewhat lower-level representation of combinators that can
be derived straightforwardly from the notation above.

Given any immediately distributive term t , formed from a finite family of
on arguments and an indexed family of off ones, it is possible to derive direct
combinator rules for that combination from the ones of its constituent op-
erators (together with the implicit τ -promotion rules these operators have).
These can be derived inductively over the syntax of such a term, with the
fact that each on argument appears at most once in t being crucial. Suppose
t =

⊕
(t1, . . . , tm ,S), where S is a family of terms that do not depend on

the on arguments 1, . . . ,n, each of which appears in exactly one of the ti .
Then inductively we may assume that each of the ti has a combinator

semantics.
It is clear that any τ action of an on argument is promoted to a τ of

one of the ti , and in turn by
⊕

since it is CSP-like. Similarly any X of
an on argument is promoted to a τ or X of one of the ti , and hence to
a τ or X of the whole term by the corresponding X or τ promotion rule
of

⊕
. In the case where X maps to τ , the form of the successor process

is determined at the syntactic level where the transformation from X to τ
occurs: if it is within a ti (which transforms to t ′i) then the final form is⊕

(t1, . . . , t ′i , . . . tn ,S). Otherwise, when a X of ti is transformed to τ by
⊕

,
the final form is derived from a X rule of

⊕
for argument i.

Similarly any Σ-rule of any ti that yields a τ action is promoted to
a Σ rule of the whole term that yields a τ : the ith argument of

⊕
being

transformed exactly as in ti , the result of the structure of t being unchanged.
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The Σ-rules of
⊕

that have preconditions φ (with domains subsets of
{1, . . . ,m}, corresponding to

⊕
’s arguments), can be combined with any

combination of the rules ri of the ti for i ∈ dom(φ) such that xi = φ(i) (i.e.
the output action xi of ri is φ(i)). This gives a new rule whose precondition
is the union9 of those for the ri , and whose output action is that of the
top-level rule. The successor state is formed by the top-level rule from

• S (its off arguments)

• the tj such that j 6∈ dom(φ)

• t ′i , the successor states of the rules used for ti (i ∈ dom(φ)).

Notice that the successor term calculated above is itself always immediately
distributive.

For example, consider the term 1 4 ((2; Q) � 3) with three on argu-
ments and one off one (Q). We can build combinators for this from those
of the constituent operators.

• X from 1 or 3 can terminate the whole, the latter from rules of 4 and
� combined. This gives the rules ((X, ·, ·),X) and ((·, ·,X),X).

• X from 2 starts the second argument of 2; Q and generates a τ that
is promoted from the first on argument of � and the second of 4,
giving the rule ((·,X, ·), τ,1 4 (Q � 3)). This turns Q on.

• a ∈ Σ can happen in 1 without changing the overall pattern or being
changed, giving the rule ((a, ·, ·), a). This is based on the rule ((a, ·), a)
of 4.

• a ∈ Σ can happen in 2 without changing the pattern of 2; Q while
resolving both of the higher level operators. This combines the rules
(a, a) of ;, ((a, ·), a,1) of � and ((·, a), a,2) of 4 to give the rule
((·, a, ·), a, (2; Q)).

• Similarly we get the rule ((·, ·, a), a,3) to show Σ actions of the third
argument resolving both choices.

Thus the successor term in every combinator rule can be thought of as
a single CSP-like operator applied to a selection of arguments and closed
processes rather than a possibly complex term. Note that in cases like

9Note that this union construction is unproblematic because of the restriction that
each on argument i appears in exactly one of the tj .
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the last rule above where the result is just one argument, we can think of
it as the identity operator id (whose rules are (a, a) and (X,X)) applied
to that argument. This term satisfies the condition for being immediately
distributive itself.

We can simplify this further, since in every instance where an operator
introduces a closed term as an operator argument, we can add that term as
an additional (implicit, perhaps) off argument of all operators from which
this one can appear as a state.

Given a rule of operator OPα with “arity” (n(α), I (α)) (of on and off
arguments respectively) that results in a successor term whose operator is
OPβ, we can completely describe the final state once we know how the
arguments of OPα are re-arranged to form those of OPβ.

• The off arguments of OPβ are all off arguments of OPα. They are
therefore determined by a function from I (β) to I (α).

• The on arguments of OPβ are either off or on arguments of OPα.
They are therefore determined by a function from {1, . . . ,n(β)} to
{1, . . . ,n(α)}∪ I (α) (recalling that the last union is disjoint) with the
property that no j ∈ {1 . . . ,n(α)} is the image of more than one i .
This last restriction is to prevent the successor process having more
than one instance of an on argument.

If we analyse what happens to the arguments of OPα, some of them can
be discarded, off and on arguments preserved, and off arguments turned
on. It is possible that a given off argument may be preserved as an off one
and/or turned on several times. In other words there is no reason why off
arguments cannot be copied.

It follows that an arbitrary Σ rule ρ of OPα is completely described by
a tuple (φ, x , k , f , ψ, χ) where

• φ is a partial function from {1, . . . ,n(α)} to Σ. Its meaning is that, in
order for this transition to fire, each argument Pj such that j ∈ dom(φ)
must be able to perform the action φ(j ) and become some P ′

j . Note
that this imposes no condition if dom(φ) is empty.

• x is the action in Σ∪{τ,X} that OPα(P,Q) performs as a consequence
of the condition expressed in φ being satisfied.

• β is the index of the operator (i.e. in the extended class of CSP-
like operators that includes immediately distributive combinations of
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basic ones) that forms the result state of this action. For clarity, in
the examples below we will usually replace this index with our name
for the operator itself, or syntax of the same sort we used when giving
a notation for combinators.

• f is a total function from {1, . . . , k} for some k = k(ρ) ≥ 0 to I (α)
that represents, in some chosen order, the indexes of the components
of Q (i.e. the off arguments), that are started up when the rule fires.

• ψ : {1, . . . ,n(β)} → {1, . . . ,n(α) + k(ρ)} is the (total) function that
selects each of the resulting state’s on arguments. It must be injective
and include the whole of {n(α)+1, . . . ,n(α)+k(ρ)} in its range. This
says that no on argument of OPα can be cloned and that the newly
turned on processes are used once each.

• χ : I (β) → I (α) is the total function that selects the off arguments
of OPβ. Since there is no requirement that f is injective, the off
arguments can be copied at this stage.

The X rules can be written in a similar style, the only differences being:

• The φ for such rules have precisely one φ(i) = X, all the rest not being
in its domain.

• x ∈ {X, τ}.

• If x = X then β is a special value representing Ω, with empty arity.

• If x = τ then φ(i) = X implies i is not in the range of ψ.

It should be clear how any scheme of combinator rules can be re-written
into a set of tuples of the above form. In fact there is no need of an extended
set of operators for giving the semantics of CSP itself: all we need are the
operators of CSP, the two half-terminated versions of ‖

X
, and the identity

operator id. The above machinery allows us to handle much more general
languages and semantics.

In the case of Σ-rules ρ of the form (φ, x ), where the successor term
takes the same form as the initial one, we will always have k(ρ) = 0 so that
f is the empty function/set, and ψ and χ are the identity functions on their
respective domains.
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3.1 Combinators and supercombinators

As we said in Section 2.3, FDR has for many years run combinators as its
main method of state machine evaluation. However it does not work out
the operational semantics of a complex process expression (typically, but not
exclusively, the application of some parallel, hiding and renaming operators
to the perhaps many constituent processes of a network) by applying the
combinator rules for the constituent binary and unary operators over pro-
cesses. Rather it treats the complete construct as a single operator – as we
did for entirely different reasons in the re-working of combinators above –
and calculates the combinator rules for the entire composition.

These combinator rules for complex constructs have always been called
“supercombinators”. However it would be wrong to infer that the origin of
that name was as extension of the idea of combinators as used in this paper
to date. Rather that name came from the analogy with a similar idea from
the implementation of functional programming.

So the fact that CSP’s non-recursive operators have an operational se-
mantics in terms of (super) combinators has long been “documented” by
FDR. The author chose the name “combinators” for this style both because
it is extremely natural for what they are, and because they are the natural
components from which the long-established idea of supercombinator could
be derived. In fact the analogy with functional programming (where there
are a few primitive combinators from which all can be derived, but where
doing so is more expensive in terms of implementation) turns out to be much
better than the author had originally imagined.

More details of the relationship between combinators, supercombinators
and FDR’s execution model can be found in Chapter 9 of [19].

4 CSP simulation without X

The fact that all CSP operators are “CSP-like” should not seem very sur-
prising, since obviously we have defined this notion to encompass CSP. The
claim which justifies the name of this paper is that all CSP-like operators
can be implemented in CSP: there is a CSP expression equivalent to each
such operator.

In recent years the author and others have used CSP as a notation into
which others can be “compiled”, namely translated in such a way that they
can be run. Both as part of this work and in response to a variety of other
challenges, the author has often been called upon to find ways of expressing
in CSP a wide variety of operations – sometimes rather exotic.
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The most versatile technique for doing the latter is that of double re-
naming, in which some or all of a process’s events are mapped to a pair of
separate versions of this event. That then allows us to put our process in par-
allel with some regulator process which selects which of each of these pairs
can occur. This allows us to hide, synchronise etc only those occurrences of
a given event that we choose to. The reader will find diverse applications of
this idea in [19]. In this section we will use this and other tricks to construct
a CSP simulation for every CSP-like operator.

In the rest of this paper we will need to make major extensions to the al-
phabet of event names that processes are defined over, largely as the sources
and targets of these renamings. We will assume that the basic language of
processes about which we are reasoning has visible event names drawn from
a set Σ0, but we will find ourselves extending this significantly to build
Σ ⊇ Σ0. We will assume that all the additional sets added into the alphabet
are disjoint from Σ0.

We will construct this simulation in stages, developing the techniques we
need to simulate different behaviours that CSP-like operators can exhibit.
In the first stages we will disregard the possibility of processes terminating
X, and so deal only with X-free processes, setting aside X-rules for the time
being. For these stages we will be able to build a tighter simulation than
when we ultimately allow termination.

Theorem 1 Let {OPλ | λ ∈ Λ} be a family of operators over X-free LTSs
with CSP-like operational semantics (but no X-rules or rules that generate
X), then for each of them OPλ there is a CSP context Cλ[· · ·] whose argu-
ments are an n(λ)-tuple of processes Pλ = 〈P1, . . . ,Pn(λ)〉 and an indexed
family Qλ = 〈Qi | i ∈ I (λ)〉 of processes such that for all choices of Pλ

and Qλ we have OPλ(Pλ,Qλ) = Cλ[Pλ,Qλ], equality here meaning strong
bisimilarity of transition systems.

The rest of this section is devoted to constructing these simulations. To
aid understanding we will gradually build up the features we allow in the
CSP-like operators we consider.

4.1 Level 1: all arguments are on and stay on

We will first deal with the case where we neither have to turn processes on
nor discard them. In other words we will show how to deal with systems
where the set of arguments is constant as it evolves, both the states of these
arguments and the operator that is applied to them can vary. Thus the state
consists of
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• the states of these n fixed arguments,

• the current operator OPλ that is applied to them (with all OPλ having
arity (n, ∅)), and

• a permutation π that relates the indices of the fixed argument processes
to their positions as arguments of OPλ. Because it matches our later
needs better, we will record π as a function that maps each argument
of OPλ to the appropriate index in the original list of arguments.

We can model any operator OPλ(Pπ−1(1), . . . ,Pπ−1(n)) coming from this
case as

((‖nr=1 (Pr [[BRr ]],Ar )) ‖
A

Reg(λ, π))[[CR]] \ H

where the BRr are one-to-many10 renamings, Ar are process alphabets, the
images of BRr , A =

⋃n
r=1 Ar , CR is a many-to-one renaming and H is a

set of actions, all these things being independent of λ and π. Regλ,π is a
regulator process specific to λ and the permutation π that gets the various
processes to co-operate in the right way. We will call this construction
SOP(λ, π)[P1, . . . ,Pn ] (with S standing for simulated).

The first thing to notice is that irrespective of the values of the various
parameters listed above

Pr
τ−→ P ′

r

SOP(λ, π)[P1, . . . ,Pr , . . . ,Pn ] τ−→ SOP(λ, π)[P1, . . . ,P ′
r , . . .Pn ]

as a consequence of the operational semantics of the CSP operators used
to build SOP . This means that the compulsory (and implicit) τ -promotion
rules are accurately simulated by construction. This, of course, helps to
indicate why such rules are necessary.

Our assumptions here mean that every state that OPλ(Pπ−1(1), . . . ,Pπ−1(n))
can reach via the operational semantics will be of the form OPµ(P ′

π′−1(1), . . . ,P
′
π′−1(n))

for some µ and π′ and states P ′
r of Pr . What we might therefore expect is

that every state of SOP(λ, π)[P1, . . . ,Pn ] will be of the form SOP(µ, π′)[P ′
1, . . . ,P

′
n ].

Note that the three CSP operators we used in defining SOP(λ, π) (i.e.,
renaming, parallel and hiding) all have the property that every state reach-
able in their operational semantics (ignoring X) takes the form of the same

10The reader who studies the several definitions of the BRi given later will realise that
they sometimes need the extra generality we allowed ourselves to have renamings where
not all process events are in the domain, with others being blocked. BR and CR abbreviate
branching and convergent renaming respectively.
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operator (with the same renaming relation, synchronisation set or hidden
set) applied to states of the same arguments. It follows from this that every
state of SOP(λ, π)[P1, . . . ,Pn ] has the form

((‖nr=1 (P ′′
r [[BRr ]],Ar )) ‖

A
Reg ′))[[CR]]) \ H

where the P ′′
r and Reg ′ are respectively states of the Pr and Reg(λ, π). It

is clear, therefore, that we should aim to have Reg ′ = Reg(µ, π′), P ′′
r = P ′

r

and that the same actions should link these states together – something we
have already noted for promoted τs.

As the state evolves, action a from a given process Pr might find itself
in any of the following positions: prevented from happening, synchronising
with various collections of events from other Pj , and mapping to different
visible actions as well as sometimes τ . Evidently, in some way, it must be
Reg(λ, π) that decides which of these can happen when (and it is quite pos-
sible that there are multiple ways from the same state). This is only possible
if the parallel combination ‖nr=1 (Pr [[BRr ]],Ar ) gives Reg(λ, π) a sufficiently
large menu to choose from. So what we will do is have the renamings BRr

create lots of copies of each event that will naturally synchronise in different
ways with each other and map to the various target events.

In fact we will rename them to a representation of the overall synchro-
nisation and result that they produce: the combination (φ, x ) of a partial
function φ : {1, . . . ,n} → Σ0 and an event in Σ0 ∪ {tau} where tau is the
name of a special visible event in Σ \Σ0 that represents when the combina-
tion synchronises to produce a τ . The renaming BRi maps the event a ∈ Σ0

to all such pairs (φ, x ) such that i ∈ dom(φ) and φ(i) = a. Now let us
consider how the process

S = ‖nr=1 (Pr [[BRr ]],Ar )

behaves. This process cannot perform any of the events (∅, x ) (where the
function φ has an empty domain), because none of the Pi [[BRi ]] can. The
event ({(r , a)}, x ) happens whenever Pr performs a. ({(r , a), (s, b)}, x ) hap-
pens (r 6= s) represents an a of Pr and b of Ps synchronising to create x . We
can similarly synchronise any number of the Pi by using φ with an appro-
priate domain, including them all synchronising when φ is a total function.
In the result state of these actions it is clear that just those Ps involved in
the synchronisation (i.e., dom(φ)) change state, and these Ps change to any
state they can on performing the respective φ(s).

Hopefully it is now clear that, with the exception of rules that depend
on no Ps actions at all, the (φ, x ) actions in the combination S give us a

25



way of achieving every possible transition rule that we are allowed under the
assumptions of this section other than the τ -promotion ones that are already
accounted for. Similarly it should be clear that the final renaming CR will
just map each (φ, x ) to x , and that H (the set hidden in the definition of
SOP) is {tau}.

Just as the form of our simulation forces τ actions to be promoted,
the reader should note how it also forces the condition in “CSP-like” that
precisely those processes participating in an action change state.

The role of Reg(λ, π) must therefore be to do the following things

• Allow those events (∅, x ) where OPλ performs x with the participation
of no arguments. (Note that since none of the arguments will change
state, they do not need to be involved.)

• Similarly allow S only to perform those events (φ, x ) where this is an
appropriate synchronisation and result for OPλ[Pπ−1(1), . . . ,Pπ−1(n)].

• Move to a new state that takes account of which operator should be
applied to what new permutation of the Pi after such a synchronisation
occurs, and indeed after it performs an event with dom(φ) = ∅.

The permutation parameter π maps the indices of the arguments of OPλ
to those of the static group of processes P1, . . . ,Pn that make up the parallel
combination S in our simulation. Thus, when OPλ expects argument r to
perform the action a, it is the π(r)th process in the parallel composition that
has to perform an a. Or in other words, when the fixed processes perform
the events represented by the partial function φ, this must correspond to
OPλ expecting the functional composition φ ◦ π−1.

Under the assumptions that we have made in this subsection, all the
firing rules of our operator OPλ must take the form (φ, x , µ, ∅, ξ, ∅)11 where
φ are the firing conditions, x is the resulting action, µ is the index of the
resulting operator, and ξ is the permutation mapping the arguments of OPµ
to those of OPλ. It should be clear that this corresponds to the event
(φ ◦π−1, x ) of S , and that the resulting state now has the permutation π ◦ ξ
mapping the arguments of OPµ to the participants P1, . . . ,Pn of S . We

11The fact that in this subsection we are not considering off arguments means that the
4th and 6th components f and χ of each rule are ∅.
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therefore define12

Reg(λ, π) = �{(φ, v(x )) → Reg(µ, ξ ◦ π) | (φ ◦ π−1, x , µ, ∅, ξ, ∅) ∈ TR(λ)}

where TR(λ) are the firing rules of OPλ in the form set out in Section 3,
and v(x ) = x for all x ∈ Σ0 and v(τ) = tau.

Notice that, unlike S , this process can perform suitable events in which
the partial function φ is ∅ (no Pi processes participate in the action). Fur-
thermore such actions do not belong to A, the set of actions on which
Reg(λ, π) has to synchronise. It follows from this that the top-level parallel
combination in SOP(λ, π) such actions exactly when OPλ does, independent
of what the arguments Pi or cannot do.

Notice also that, for every single firing rule of OPλ, including those with
dom(φ) = ∅ precisely those Pi participating in the corresponding action
change state, as required. The following result is now clear because we
know that the processes below have exactly the same initial actions, and
that each of these leads to one or more pairs of states that are in exactly
the same relationship.

Lemma 1 For a family of CSP-like operators that are restricted to the form
considered in this subsection, the following pair of processes are strongly
bisimilar for all choices of µ, π and the arguments Pi :

SOP(µ, π)[Pπ−1(1), . . . ,Pπ−1(n)] and OPµ(P1, . . . ,Pn)

This lemma then proves Theorem 1 for the case covered in this section.

4.2 Step 2: Discarding processes

Having developed a set of techniques for handling the possibilities in Step 1,
we will expand them until they cover the full range of CSP-like operators.
Essentially there are two further things for us to worry about in the no-X
case: the facts that operators can discard on arguments, and that they can
make use of off arguments by turning them on. In the present subsection
we will handle the first of these.

We can therefore assume that every OPλ in a class has n or less on
arguments (since all those reachable from the consideration of a particular

12For this process to serve the exact purpose we intend for it, it must perform only
the actions implied obviously by this definition. The result would not hold precisely if
unfolding this recursion created a τ action. This is why we have adopted the semantics of
recursion that does not create this type of τ .
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one cannot have any more arguments than the original). As in the previous
section there will be no off arguments.

Consider the structure of the process SOP(λ, π)[P1, . . . ,Pn ] above. It
consists of a single parallel/renaming/hiding construction that has a fixed
structure throughout its evolution. At all times there will be the n argument
processes and the Reg running in parallel. We will use a similar structure
for this present step, but we will need a way of preventing one or more of the
Pi from influencing subsequent behaviour – to the extent that the discarded
process’s τs should no longer be allowed to happen.

We choose to do this by putting each Pr in a harness by which it can be
turned off and effectively discarded in two different ways. Firstly we allow
our process to be interrupted by an action in which it does not participate,
and secondly we allow events in which it does participate to make it throw an
exception. We can use a single extra event for the first of these possibilities,
but need a second disjoint copy Σ1 = {a ′ | a ∈ Σ0} for the second, since in
different circumstances the same event might either discard the process or
not. Let D be the renaming that sends a ∈ Σ0 to both a and a ′. We can
define

TO(P) = (P [[D ]] ΘΣ1 STOP) 4 off → STOP

to be the discard-able version of P in which the off event will move it to
STOP unconditionally, while the event a ′ will turn it off just when P allows
the event a. Note that in either case the state it moves to after being
discarded is STOP , which can perform no actions either visible or τ . There
is thus a slight difference here between future operational semantic terms
and their models: the discarded arguments have disappeared in the former,
but in the latter they are still present in the “ghost” form of STOP – more
turned off than discarded.

Suppose we are given the firing rule ρ = (φ, x , µ, ∅, ψ, ∅) of a general
operator OPλ with arity n, satisfying the assumptions of this middle step.
Then we can compute Discard(φ) from this, namely the set of process indices
that are discarded by it firing, either by interrupt or throw. For the first
sort we need the firing of this rule to send an off signal, and for the second
we need the rule to make TO(Pr ) perform φ(r)′ rather than φ(r).

We will therefore extend the events of our simulation to take the form
(φ, x ,B) where B is the set of arguments discarded by the corresponding
rule ρ: B = Discard(ρ). The renamings BRr need to be extended to accom-
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modate this:

BRr = {(a, (φ, x ,B)) | φ(r) = a ∧ r 6∈ B}
∪ {(a ′, (φ, x ,B)) | φ(r) = a ∧ r ∈ B}
∪ {(off , (φ, x ,B)) | r 6∈ dom(φ) ∧ r ∈ B}

The first line here covers the ways Pr can proceed normally without being
discarded. The second line covers the case where Pr participates in the event
that discards it, and the third when it is discarded by things external to it.

We will create a simulation with the same overall structure as that in
the previous subsection, except that the Pr are replaced by TO(Pr ). The
alphabet Ar of TO(Pr ) is the range of this expanded renaming, and CR will
now map triples of the form (φ, x ,B) to x . We note that triples of the form
(φ, x ,B) where no events participate in the action can still have B 6= ∅ and
discard processes.

In Reg(µ, ψ), ψ is not now a permutation, but an injective function from
{1, . . . ,n(µ)} to {1, . . . ,n}, with n ≥ n(µ) being the uniform bound on
arities discussed above. It tells us which of the original n argument processes
is playing the role of each argument of OPµ. All the original processes not
in the range of ψ will have been discarded by previous actions when this
state is reached and therefore become STOP in the simulation.

We can therefore define

Reg(λ, ψ) = �{(φ ◦ ψ−1, v(x ), ψ(Discard(ρ)))) → Reg(µ, ψ ◦ ψ′) |
ρ = (φ, x , µ, ∅, ψ′, ∅) ∈ TR(λ)}

For classes of operators covered by this the assumptions of this subsec-
tion, the model of any operator OPλ(P) (P = 〈P1, . . . ,Pn〉) with n(λ) = n
is now SOP(n, λ, id)[P], where for general n ≥ n(µ), µ, n(µ)-tuples of pro-
cesses V and ψ we define

SOP(n, µ, ψ)[V] = ((‖nr=1 (Q(V, ψ, r)[[BRr ]],Ar )) ‖
A

Reg(µ, ψ))[[CR]] \ H

where Q(V, ψ, r) = TO(Vψ−1(r)) if r ∈ range(ψ) and STOP otherwise. The
first argument (n) of SOP is needed to establish how many of the STOP
ghosts of already-discarded processes are present in the simulation it creates.

The accuracy of our model is expressed in the following lemma.

Lemma 2 Suppose we have a family of operators {OPλ | λ ∈ Λ} satisfying
the assumptions of this subsection and that n(λ) ≤ n for all λ. Suppose
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that λ ∈ Λ and that ψ : {1, . . . ,n(λ)} → {1, . . . ,n} is an injective function.
Then the following pair of processes are strongly bisimilar for all choices of
operands P = 〈P1, . . . ,Pn(λ)〉:

SOP(n, λ, ψ)[P] and OPλ(P)

The proof of this is to show that each action of one of these two processes
is mirrored by one of the other.

• We note that either process can perform a promoted τ action when
any one of P1, . . . ,Pn(λ) does. The rest of the parallel processes in
SOP(n, µ, ψ)[P] are STOP or a state of Reg , so none of these can
perform a τ to promote.

• The argument relating to actions based on transition rules is essentially
the same as in Step 1.

• Note that in either way of discarding a process, it is turned off (to
STOP) by the specific action that causes this rather than an additional
action. There are thus no intermediate extra states created by our
discarding mechanism.

• Since every action discards precisely those arguments that are no
longer required by the successor operator, we maintain the invariant
that the processes that have not been discarded are exactly range(ψ),
so that the processes running in the simulation are always TO(Vj )
(j ∈ {1, . . . ,n(µ)}) for whatever processes V are the arguments of the
current OPµ.

4.3 Turning processes on

Our full definition of a CSP-like operational semantics implies that argu-
ment processes processes can be held in reserve and turned on later, and
that constant processes can be introduced in the places of on arguments
for OPµ that are reached during a run. These processes, unlike on ones,
may be copied, but only before they have become on. This really presents
two separate challenges in extending our simulation. Of them the second
(copying) is harder to deal with, not least because we can no longer use the
static pattern of n + 1 processes that has served us until now.

If we banned the copying of off arguments, there were only finitely many
of these, and we forbade the introduction of constant processes then there
would be little problem. We could then again assume that we had a fixed-size
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finite population of process arguments: some of them on and running, some
of them already discarded, and some off ones yet to be turned on. We could
include each of the third class as a component in our parallel composition
as on → TO(Q). Notice that as long as they remain in this form they are
unable to perform any action other than on, and so in particular will not
have any τ actions to be promoted automatically through the structures of
SOP .

The process of turning the off arguments on would then be exactly
analogous to the way we discard a process using off in the previous section,
namely when the process itself did not participate in the discarding action.
In other words we would include an extra set of process labels in the main
action model of SOP so they become (φ, x ,B ,C ), where C is the set of
components to be turned on (disjoint from dom(φ) and B), and rename the
on of process r to those events where r ∈ C .

But we have set ourselves a sterner challenge, namely managing a parallel
composition that is dynamic in length. We should note, however, that these
parallel compositions never need to become infinite since no operator has an
infinite number of on arguments.

Dynamic parallel compositions can easily be created in CSP by recursing
through parallel operators. This has been done since the earliest days of CSP
[4], frequently using the chaining13 >> and enslavement // operators. In order
for it to work (in the sense of not simply creating an undefined or divergent
process), it must be impossible for an infinite chain of unfoldings of these
parallel operators to occur without an infinite sequence of visible events also
occurring. The issues surrounding this “guardedness” with chaining and
enslavement were extensively studied in [13].

Thus in our case we should expect to start with a finite parallel composi-
tion including a single process containing both all of the off arguments and
the constant processes that operator definitions use. It should be capable
of spawning off any combination of these processes that might be turned
on by a single action, so that these get added into the pool of processes
simulating on arguments. It should remain in the parallel composition after
spawning off such combinations, since it might have to do similar things on
later actions.

The reader will recall that the parallel composition inside our existing
SOP processes already has a very tangled web of potential synchronisa-
tions. The situation can only get worse when we envisage an arbitrarily
large collection of processes that might have to synchronise in any combina-

13See Section 8, where we devise a variant chaining operator, for examples.
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tion. Fortunately, however, our previous choice of finite partial functions φ
still works. Each Σ0 will now be renamed to an infinite set of actions even
when Σ0 itself is finite, since the φs may now have any finite subset of N as
their domains.

Taking account of the need for a process that can spawn off further copies
of the off arguments Q, the inner process of our simulation will now take
the form:

S = (‖mr=1 (Vr [[BRr ]],Ar )) A+
m
‖Em

Resources(I ,Q,m)

where the Vr are states relating to TO(Pr ) where Pr is either some initial
argument or a process Q(i) that has been turned on, A+

r =
⋃
{Ai | i ≤ r}

and E is the set of all tuples representing transitions. Resources(I ,Q, r) is
a process that spawns off new processes from the family Q indexed by I ,
giving each process it spawns off a unique index in the overall composition
that increases. (These indices will start from n + 1, where n is the number
of initially on arguments, and increase.)

We will use events with five components (φ, x ,B ,m, f ) where φ is a finite
partial function from {1, . . . ,m} to Σ0, x ∈ Σ0 ∪ {tau}, B is a finite subset
of {1, . . . ,m} representing the processes to be discarded, m is (as above)
the number of parallel components already created and f is a finite partial
function with domain in {1, . . . , k} for some k ≥ 0 to I , the indexing set
(which we assume is extended to accommodate an index for every constant
process that operators introduce).

The role of f is to assign indexed processes to whichever new parallel
slots this operator creates, just as it did in our re-casting of combinator
rules.

The process Resources(I ,Q,m), which plays the role of all the processes
that have not yet been turned on and where m processes already exist, may
be defined as follows

Resources(I ,Q,m) =
�{(φ, x ,B ,m, f ) →

‖m+|f |
r=m+1

(TO(Q(f (r −m)))[[BRr ]],Ar )) A#
m,m+|f |

‖E Resources(I ,Q,m+ | f |)
| (φ, x ,B ,m ′, f ) ∈ E ∧m = m ′}

where A#
k ,l =

⋃l
r=k+1 Ar and E is, as defined above, the set of all the 5-tuples

representing events.
In other words, it listens to the last two components in the next event

and splits itself into a parallel composition of newly-on processes that can
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join the existing flock and a copy of itself adjusted to start off the next group
with the correct indexes.

Notice here that a single event has the power to turn on an arbitrarily
large finite collection of processes, which may include many copies of the
same Q(i). Notice also that though Resources(·) has all events in its alpha-
bet, it allows all events that correspond to the current size of the system,
and so does not restrict what transitions are possible in the present state.
Its only role is to reconfigure the system for the next

The initial state of the as-yet unconstrained family of processes is thus

(‖nr=1 (TO(Pr )[[BRr ]],Ar )) A+
n
‖E Resources(I ,Q,n)

with the renamings BRr being extended to

BRr = {(a, (φ, x ,B , f ,m)) | φ(r) = a ∧ r 6∈ B}
∪ {(a ′, (φ, x ,B , f ,m)) | φ(r) = a ∧ r ∈ B}
∪ {(off , (φ, x ,B , f ,m)) | r 6∈ dom(φ) ∧ r ∈ B}

and Ar again being the image of BRr . In understanding how this system
evolves it is important to remember that the alphabetised parallel operator

X ‖Y of CSP is both commutative and associative under natural actions on
the alphabets. So it does not matter what order a list of alphabetised pro-
cesses appear in, or the structure of bracketing. In particular, the processes
“spun off” by Resources(I ,Q,n) have the same effect as though they were
combined directly with the already turned-on components: given that all
A∗

m and A∗
i ,j are subsets of E

(P A+
m
‖E (Q A∗

m,m+r
‖E R) = (P A+

m
‖A∗

m,m+r
) A+

m+r
‖E R

We need to extend the controlling process Reg to allow for the dynamic
network and the need to turn processes on as well as discard them. Its
parameters are now the current operator λ, an integer m saying how many
processes have already been started up, an injective function ψ that maps
{1, . . . ,n(λ)} to {1, . . . ,m} which establishes which of the m processes each
of the on arguments of OPλ is, and a function χ : I (λ) → I (λ0) which maps
each index of an off argument of OPλ to an index of one of the original
off arguments: off arguments, by their nature, have not made any progress
since the start. A consequence of our definition CSP-like operators and
the fact that we have accommodated all introduced constant processes as
off arguments is that all the off arguments of a successor operator are off
arguments of the original. λ0 is assumed to be the index of the operator at
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the root of the derivation tree, whose off operands necessarily contain those
of all other operators derived from it.

Reg(λ,m, ψ, χ) = �{(φ ◦ ψ−1, x , ψ(Discard(ρ)), χ ◦ f ,m) →
Reg(µ,m+ | f |, (ψ ∪ id{m+1,...,m+|f |}) ◦ ψ′, χ ◦ χ′) |

ρ = (φ, x , µ, ψ′, χ′, f ) ∈ TR(λ)}

The complicated construction (ψ ∪ {m + 1, . . . ,m+ | f |}) ◦ ψ′ of the new
function mapping the on arguments of OPµ to indices in the simulation says
that

• If a component has been freshly created by this transition (i.e. the
result of applying ψ′ to it gives a result greater than m) then it is
mapped directly to the result of ψ′. Here idA is just the identity
function on the set A.

• If a component was already in existence before the rule fires (i.e. ψ′

maps it to an index no greater than m) then we need to compose ψ′

with the function ψ that determines the pre-rule on arguments.

Now, given a finite list P = 〈P1, . . . ,Pn(µ)〉 of on arguments, any m ≥
n(µ), an indexed (by I0) family of off arguments Q, an injective function ψ
from {1, . . . ,n(µ)} to {1, . . . ,m} and a function χ from I (µ) to I0, we can
define

SOP(m, µ, ψ, χ)[P,Q] =
(((‖mr=1 (Q(P, ψ, r)[[BRr ]],Ar )) A+

m
‖A−

m
Resources(I ,Q,m))

‖
E

Reg(µ,m, ψ, χ))[[CR]] \ H

where A =
⋃
{Ar | r ∈ {1, 2, 3, . . .}}.

This system is intended to behave in the same way as the corresponding
processes in the previous two sections in respect of the types of behaviour
dealt with there. However this one has the capability of expanding so that
its parallel composition is of arbitrary finite size. Note that a given action
(φ, x ,B ,m, f ) can synchronise an arbitrary collection of the running pro-
cesses, close down any group of them, and start up m new ones all at once!
Since all this can happen in a single action in our definition of a CSP-like
operational semantics this is, of course, vital. The lemma that corresponds
to our earlier one is the following.

Lemma 3 Suppose we have, in our X-free case, a family of CSP-like oper-
ators {OPλ | λ ∈ Λ}, and that λ ∈ Λ, m ≥ n(λ), that ψ : {1, . . . ,n(λ)} →
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{1, . . . ,m} is an injective function and χ : I (λ) → I0. Then the follow-
ing pair of processes are strongly bisimilar for all P = 〈P1, . . . ,Pn(µ)〉 and
families of processes Q indexed by I0:

SOP(m, µ, ψ, χ)[P,Q] and OPλ(P,Q ◦ χ)

Just as with our previous lemmas, this one is constructed so that every
state a process of the above type goes through is of the same type. Further-
more the correspondences already established for the earlier lemmas, and
our constructions allowing an action to turn processes from Q on in this
section, mean that the actions of the two sides are in exact correspondence.

As in the previous section, as the SOP simulations progress they are left
with a STOP process for every argument process that has been discarded.
The difference between m and n(µ) will always be exactly the number of
such STOPs.

Setting µ = λ, m = n(µ), I0 = I (λ), with ψ and χ both being the
identity function gives us Theorem 1: Cλ = SOP(n(λ), id{1...,n(λ)}, idI (λ)).

The reader might note that the simulation created for the Farm(P)
operator (in which an off argument is run in parallel with itself an arbitrary
number of times) is, at least in the Resources process, rather similar to the
CSP definition Farm itself given earlier.

5 Simulation with X

The CSP language restricts what can be done with X, like τ is not referred
to directly in programs, so it cannot be renamed, hidden using \ X , in-
cluded optionally in synchronisation sets or introduced via prefixing: it only
occurs through the execution of SKIP . There is good reason for most of
these restrictions if we want to respect the idea that X is an observable but
uncontrollable signal: the reader will have seen the effect of these special
properties on our definition of the form of a combinator semantics.

This means that the rather amazing coding tricks used earlier, available
through the use of renaming and synchronisation with a specially crafted
process, are not available directly on the action X. It follows therefore that
a regulator process cannot be guided directly by the termination event of
one of the argument processes. Equally, if the complete simulation SOP is
to terminate, then all the components must brought to a state where they
can terminate, though they do not have X immediately available.

Consider how our simulation, at the level explained in Section 4.2, would
work for the combinator operational semantics of the operators P � Q and
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P 4 Q . In each case, either argument terminating leads to the construct
terminating, even when the other argument does not. TO(P) or TO(Q)
would, in these simulations, still be running in parallel with a regulator.
One’s initial reaction to this might be to give TO(P) the additional ability
to terminate via X even when P does not, so it can “match” the termination
of Q . We could do this by replacing it with TO(P) 4 SKIP . But for
various reasons this does not work, not least because such a X would not be
controllable by the Reg process. We therefore have to make the regulator
instruction to TO(P) to terminate be guarded by an ordinary event.

Thus, if we were to run

TO((P ; term.1 → SKIP) 4 (quit .1 → SKIP)) and
TO((Q ; term.2 → SKIP) 4 (quit .2 → SKIP))

in parallel with Reg , then P terminating sends the term.1 signal to Reg .
We can arrange that Reg , on receiving this, then communicates quit .2 that
forces the other argument to terminate, and then terminates itself. All three
parallel components would then terminate, so that the externally visible
behaviour of the simulation would be exactly what is needed.

Analysing what happens here: the X event of P is hidden by sequential
composition and followed by the event term.1 (which would be hidden, like
the other newly-introduced ones, at the outside of the simulation, therefore
becoming τ). This event would trigger Reg to send the quit .2 event – also
an external τ – followed by a chain of Xs as the three parallel arguments
including Reg (hidden by ‖ to become τs) terminate, triggering in turn the
termination of the two ‖ operators involved. [In fact other interleavings of
these events are also possible.] So what, in P � Q , would have been a single
X event, has become X preceded by no less than 7 τs at the top level. The
behaviour is in fact equivalent in every CSP model, but we have certainly
lost the strong bisimulation achieved by our previous simulations.

We can improve this a little in the sense of reducing the number of extra
τs by using the throw operator. There are two options for this. In the
first of these we replace the TO((P ; term.i → SKIP) 4 (quit .i → SKIP))
processes by TO(P ; term.i → STOP). Reg then communicates exit (not
synchronised with any other process) when it wants the entire simulation to
terminate, and the result placed in the context

(S Θexit SKIP) \ {| term, exit |}

This removes the extra τs caused by the distributed termination mechanism
in our approach above. It also simplifies the components (no longer requiring
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quit .i) and Reg (since in general Reg would, in the earlier approach, have
to issue events that synchronise with several quit .i at the same time).

We also need to consider the permitted case where a Σ rule creates a X.
Just as we introduced a new event tau as the image of rules with output
event τ , so we use exit as the image of those rules creating X.

It is possible to capture exactly what this mechanism achieves: an extra
τ is introduced before any component process terminates, and a further
extra one (i.e. the hidden exit) before the whole terminates. In addition,
when (as in P � Q) a X of an argument is transmitted directly to the
outside, we get an extra τ caused by hiding the term.i that is not present
in the original operational semantics. [The τ from hiding term.i is present
when the combinator semantics turns a X of argument i into τ – namely
this very τ .]

This lack of consistency can be eliminated if we replace TO(P ; term.i →
STOP) by TO(P ; (iterm.i → STOP � xterm.i → STOP)). In other words
whenever an argument terminates, it gives Reg the choice of it communicat-
ing one of two events: every state of Reg will allow at least one of these two
events for every on arguments (usually exactly one). X rules of the form
((. . . ,X, . . .),X) correspond to the event xterm.i (i.e. externally visible ter-
mination), and ones of the form (. . . ,X, . . .), τ,Q) correspond to the event
iterm.i (internalised termination). The external context then becomes

S Θ{|exit ,xterm|} SKIP) \ {| iterm, xterm, exit |}

Now, the event indicating that Pi has terminated becomes xterm.i if
the combinator semantics says that a X of Pi is promoted to X. This then
triggers Θ{|exit ,xterm|} and brings about overall termination.

Imagine running arguments of the form P ; SKIP in the original context
(e.g. (P ; SKIP) � (Q ; SKIP)). This introduces exactly the same extra
τ before one of the arguments terminates as in our final simulation. The
only difference is that this can then communicate X to the world when our
simulation performs hidden xterm.i which in turn then leads to X. In cases
analogous to P ‖

X
Q where the termination signals of the arguments become

iterm.i events, the execution of our simulation exactly follows (P ; SKIP) ‖
X

(Q ; SKIP) up to the point when the final X occurs, for this is replaced by
a hidden exit followed inevitably by the tick of the SKIP that follows the
Θ. Note that either case where Θ{|exit ,xterm|} is triggered, all the component
processes are closed down immediately by the exception and are no longer
even able to perform τ . It follows that the overall simulations in our two

37



cases are strongly bisimilar to

((P ; SKIP) � (Q ; SKIP)); SKIP and ((P ; SKIP) ‖
X

(Q ; SKIP)); SKIP

So we have the following generalisation of Theorem 1.

Theorem 2 Let {OPλ | λ ∈ Λ} be a family of operators over LTSs with
CSP-like operational semantics, then for each of them OPλ there is a CSP
context Cλ[· · ·] whose arguments are an n(λ)-tuple of processes P = 〈P1, . . . ,Pn(λ)〉
and an indexed family Q = 〈Qi | i ∈ I (λ)〉 of processes such that for all
choices of P and Q we have OPλ(PSKIP ,QSKIP ); SKIP = Cλ[P,Q], equal-
ity here meaning strong bisimilarity of transition systems. Here, the ith
component of PSKIP is Pi ; SKIP.

This is a generalisation because under the restrictions of Theorem 1
we would have Pi ; SKIP bisimilar to Pi , Qi ; SKIP bisimilar to Qi and
OP(P,Q); SKIP bisimilar to OP(P,Q).

Certainly we would expect the terms

OPλ(PSKIP ,QSKIP ); SKIP and OPλ(P; SKIP ,Q; SKIP); SKIP

to be equivalent thanks to one of the basic laws of CSP: P ; SKIP = P . So
the equivalence proved in the above result is exactly in line with what we
would expect.

If we knew that OPλ was a well-defined operator over all CSP models
then this law would prove that these two terms (considered as LTSs) are
indeed equivalent over such models. But we do not quite know this yet.

We do know it for operators coming under Theorem 1 over the X-free
versions of the CSP models, since if, the operator OPλ were not well de-
fined over such a model, there would be arguments (P,Q) and (P′,Q′)
equivalent over the model where OPλ(P,Q) and OPλ(P′,Q′) are not. But
we know that these two terms are strongly bisimilar, and therefore model-
equivalent, to their simulations, which certainly are model-equivalent by the
well-definedness of the operators the simulations are constructed from.

Where we are lacking in the case with Xs is the knowledge that T1 =
OPλ(P,Q) and OPλ(PSKIP ,QSKIP ); SKIP are equivalent in every CSP
model, which is the same, whatever value T2 = OPλ(PSKIP ,QSKIP ) has,
as asserting that T1 and T2 are equivalent in CSP models since in all such
models T2; SKIP is equivalent to T2.

Lemma 4 Suppose OPλ is a CSP-like operator defined by combinator oper-
ational semantics, then in every CSP model OPλ(P,Q) and OPλ(PSKIP ,QSKIP )
are equivalent.
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Proof As set out in [19], the value of a process in every CSP model is
obtained from the set of linear observations that can be made of processes.
These consist of finite and infinite sequences of visible events and acceptance
sets (sets offered by the process in stable, i.e. τ and X-free, states), perhaps
ended by a marker for divergence. There can be at most one acceptance set
between consecutive visible events, and none before a X, which is necessarily
final. The form of the recorded behaviours is simplified if we use a special
symbol • to represent the absence of the observation of a stable acceptance
between two visible events: we strictly alternate acceptances A (with the
option of •) and the events. All observations therefore take one of the
following forms, where ai ∈ Σ and Ai is either • or a subset of Σ.

1. 〈A0, a1,A2, . . . ,An−1, an ,An〉 finite unterminated observation.

2. 〈A0, a1,A2, . . . ,An−1, an , •,X〉 observation leading to process termi-
nation.

3. 〈A0, a1,A2, . . .〉 observation with an infinite trace.

4. 〈A0, a1,A2, . . . ,An−1, an ,⇑〉 observation ending in divergence.

Note that where Ar−1 6= •, necessarily ar ∈ Ar−1.
We can prove that two processes are equivalent in any CSP model by

proving that they have the same such observations.
It is clear that the only effects of replacing an argument P by P ; SKIP

in an operator with combinator operational semantics come in states where
P is both on and in one of its own states that can communicate X. Aside
from that, P and P ; SKIP have exactly the same actions that influence the
overall semantics, and proceed themselves exactly in step.

Let C [·] be the context in which these arguments sit, so we are consid-
ering the relative behaviours of C [P ] and C [P ; SKIP ].

We can identify the states of the operational semantics of C [P ] with
configurations: the pieces of syntax that the operational semantics has gen-
erated by this point in the derivation.

Configurations of C [P ] in which P can perform X are replaced by exactly
two of the version with P ; SKIP : the original one where the argument can
now perform τ rather than X, and the one where it can now only perform
X. Note that no such configuration (of the original system or transformed)
can be stable since they can always perform X or τ .

It should be clear that for every trajectory of C [P ] (i.e. a sequence of its
configurations starting from C [P ] and the top-level events that relate them)
there is one of C [P ; SKIP ] which is identical except that
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• If the configuration of C [P ] contains a state P ′ of P , then this is
replaced by P ′; SKIP .

• Any of the trajectory’s transitions Q x−→ Q ′ (necessarily with x ∈
{τ,X}) in which a copy of the argument P performs a X is replaced
by two: the first is a τ in which the configuration is unchanged except
that this particular copy of P becomes SKIP . In the second the SKIP
performs its X resulting in the overall x .

Note that if P is an off argument then C [P ] might run many copies of
it or none at all: it follows that more than one transition of our trajectory
might need the above transformation as various copies of P terminate.

It should similarly be clear that any trajectory of C [P ; SKIP ] may be
reduced to one of P by the following transformation.

• All sub-terms of the form P ′; SKIP become P ′, for P ′ a state of P .

• All sub-terms of the form SKIP , where this SKIP has arisen because
of a transition P ′ X−→ · creating the τ of P ′; SKIP that moves this
process to SKIP , is replaced by P ′. [Note that in many cases P ′ will
itself be SKIP , but could also, for example, be SKIP � Q for some
Q .]

• One or more τ actions in the trajectory may have come from the
promotion of the τ generated by P ′; SKIP τ−→ SKIP for a state P ′ of
P such that P ′ X−→ ·. Note that the first two of our transformations
make the “before” and “after” states of this transition the same. We
simply delete this transition: it is the extra one created by putting an
extra τ before the component’s X. You should notice that this will
never remove an infinite consecutive series of transitions since for this
to happen there would have to be infinitely many on copies of P active
at the same time, and this is impossible.

In each direction of this transformation the set of linear observations
that can be made, of the forms above, are identical. Certainly the series of
visible events is unaltered, and no stable state has its initial set of events
(i.e. acceptance set) altered. (Recall that no state with a X or τ available
is stable.) Finally, it is clear that any trajectory that ends in divergence is
transformed to another that ends in divergence in either direction.

We gave the above transformations based on a single argument P , but
the same would have worked for an arbitrary collection. This completes the
proof of the lemma.
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We can deduce that the value, abstracted from the operational LTS to
any CSP model, of our simulation, corresponds precisely to the similarly
obtained value of the process being simulated. This implies the following
result, which we have already demonstrated for the X-free case.

Theorem 3 If OPλ(P,Q) is a CSP-like operator then, for any CSP model
M, the M-value of OPλ applied to its arguments depends only on the M-
values of its arguments.

It is of course this result which, more than any other, justifies the name
“CSP-like”.

6 Theoretical ramifications

The fact that programs built from CSP-like operators have exact or near-
exact simulations using combinations of CSP operators tells us that they
share many long-established properties of CSP programs. The first is that,
as shown above, any CSP operator has a well-defined and operationally
congruent semantics over every model for CSP, such as traces T and failures-
divergences N , belonging to the hierarchy of behaviourally-based models set
out in [19].

This semantics is simply that implied by the simulation: we can treat
every CSP-like operator as derived in the same sense that chaining and
its generalisation, the link parallel operator P [a ↔ b]Q , are derived from
parallel, renaming and hiding. (See Chapter 5 of [19].)

In formulating the following result we need to bear in mind that each of
these models has its own fixed-point theory that is used to find the semantics
of recursive processes, and that adding a number of extra operators which
are all CSP definable makes no difference to the correctness (i.e. operational
congruence) of a given fixed-point theory. Three different such theories are
used in [19]: one for models like T based only on behaviours that can be
observed in a finite time, one for those like N that treat every divergent
process as equivalent to the least refined one (i.e. divergence strict models)
and a more difficult one for models that have infinite behaviours without
divergence strictness.

Theorem 4 Suppose we are given an alphabet Σ0 of visible actions, a set of
constant processes represented by LTSs over Σ0 ∪ {τ}, a collection of CSP-
like operators over such LTSs and recursion (whose operational semantics
includes the additional τ to avoid undefined terms). Then every semantic
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model for CSP also gives a model for the resulting language L whose se-
mantics for recursion takes the same shape as CSP’s over the same model.
Furthermore, terms of L are monotonic with respect to the normal CSP
definition of refinement over such models.

This follows straightforwardly from the fact that CSP-like operators are
equivalent to their CSP simulations in every model, and the corresponding
facts for CSP.

This is a result that will have many consequences for any such language
L. For example it means that, whether implemented via our CSP simulation
SOP or otherwise, we can confidently apply any function of FDR, including
its sometimes model-specific compression operators, to L programs in the
same way as we do to CSP. Furthermore, for the purpose of analysis in CSP
models, all the operators of CSP can be added to L. We could choose to
draw up the specification side P of a refinement check P v Q in L, and the
other in CSP, or vice-versa.

We will discuss the issues relating to the implementation of CSP-like
operators in CSPM and directly in FDR in Section 7.

6.1 Distributivity

CSP-like operators inherit other properties from those of the CSP operators
used to define the simulation. Recall that all CSP operators other than
recursion are distributive: for any non-empty set S of processes and operator
op, if all the operands of op other than one are instantiated by constant
processes to produce a function OP(P), we have

OP(uS ) = u{OP(P) | P ∈ S}

This equality holds in behavioural models and is closely related to the fact
that processes’ representations in these are derived from linear, not branch-
ing, observations. It does not hold up to bisimulation over the operational
semantics.

It is elementary to show that any composition of distributive functions
which uses each argument only once is itself distributive. What this means
is that if a term is constructed in a language in which a given argument
appears once, and every operator in the path that leads from it to the root
of the syntax tree is distributive, then the term is itself distributive in that
argument.

Our simulations SOP(m, ψ, χ)[P,Q] are trivially distributive in each
component Pr of P (namely each on argument of the CSP-like operator
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being modelled) by its process structure: TO [·], renaming, parallel and
hiding are all distributive.

However, the process Resources(I ,Q,m)) is not distributive in the com-
ponents of Q. This is because (both in a single step and via recursion)
it can put multiple copies of a given Q(i) in parallel14. It follows that
CSP-like operators are not, in general, distributive in their off arguments.
Indeed, the example operator Farm quoted earlier is not distributive: if
P = u{a → STOP | a ∈ A} then it is clear that Farm(P) \ {start} can
perform any trace of A actions, butu{Farm(a → STOP) \ {start} | a ∈ A}
can only perform traces where all actions are identical.

In order to ensure that a CSP-like operator is distributive in an off
argument, it is necessary that in every possible execution path that argument
is turned on at most once. Namely, at most one copy is turned on on each
step of Resources(I ,Q,m)), and once it has turned on it disappears from
range(χ) in the state of Reg . This is the case for all off arguments of the
standard CSP operators considered in Section 2.

Note that the distributivity of CSP-like operators in on arguments was
necessary for our simulations to work. Though it is not necessary for the
other arguments, it provides an interesting justification and explanation for
Hoare’s espousal of distributivity as a principle of CSP operators.

7 Ramifications for the present and future of FDR

There is nothing to prevent the simulations we have described being imple-
mented directly in CSPM . The only changes necessary are firstly to give a
channel name to the tuples used to represent rules and to choose representa-
tions of the functions φ, ψ and χ that allows them to be tested for equality.
The obvious way of doing the latter is to represent a (partial) function as a
set of pairs.

Of course if the operator(s) one was building did not use all of the features
we built into our simulation, we could simplify the latter appropriately. The
simpler it was, the more likely it would be to be practical.

In fact, essentially the full simulation described in Section 4 was imple-
mented in an Oxford undergraduate student project [6]. For the reasons set
out below it was not practical in a generally usable sense, but did prove a
lot less inefficient than the present author suspected might be the case.

14The fact that P ‖
A

P is not distributive in P is one of the most basic facts about CSP.

For example, the synchronisation of (a → STOP) u (b → STOP) with itself can deadlock
immediately; but those of a → STOP and b → STOP separately cannot.
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There are two great obstacles to the use practical use of our simulation
techniques. One is the size of the alphabets of event it creates in the extended
Σ: just think how many partial functions φ alone there might be event
before being multiplied by the other components of the tuples representing
transitions. Someone attempting to use our techniques might therefore do
well to avoid calculating events that are not used, and perhaps finding some
representation that uses less: perhaps the fact that our result shows that
a given operator can be represented will inspire programmers to find other,
more efficient representations.

The second, which became particularly apparent in the work reported
in [6], is the interaction of our simulation and recursion in the context of
FDR, because of the particular way FDR works.

FDR deals with a term representing a CSP process by identifying a
(typically parallel) recursion-free combination of low-level processes. It then
compiles these low-level processes into finite state machines by calculating
each of their operational semantics, together with a recipe for running them
together. For details see [19], for example. This means that any simulation
which involves our Resources process cannot work, since that is intrinsically
infinite-state. It follows that an FDR-compatible Resources must have a
(small) bound on turning on arguments: indeed, it is better to follow the
incomplete approach set out at the start of Section 4.3.

A more subtle, and practically more damaging, problem comes when a
simulated operator becomes part of one of the low-level components, and
in particular when one of then is recursed through. Consider the recursive
terms

P = a → (P � (b → P))
� c → P

Q = (b → STOP) ||| (a → Q)

R = STOP ||| (a → R)

Here ||| is the CSP interleaving operator equivalent to ‖
∅
. As we explore the

first of these there are very clearly only finitely many states found because
as soon as a visible event occurs the top-level � operator is resolved: the
operator itself disappears from the term. FDR finds this process easy to
compile into a finite state machine. There is a difference in the second: the
more a events occur, the more complex the resulting term becomes. An
infinite number of different terms are discovered as this process is explored
and so FDR can never compile it into a finite state machine. In this example
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this is fundamental: there is no finite state equivalent to this process which
effectively counts how many a’s have happened and allows exactly that many
bs.

The third is obviously equivalent to the finite-state process AS = a →
AS : it simply communicates an arbitrary number of as. However as FDR
explores its state space it will discover parallel combinations of arbitrary
numbers of STOP with S . Therefore it will not succeed in compiling S into
its finite-state representation.

Now imagine that in place of the � in the first example you have simu-
lated it using the techniques set out in Section 4.2. Then P � Q is replaced
as the parallel combination of three processes: a modified P , a modified Q
and the regulator. FDR, in exploring this simulation will never eliminate
this parallel combination as it can put the original � behind it in exploring
the original P . It will behave rather like the S recursion above, and FDR
will never succeed in compiling the recursive process: recursing through the
simulation will generate an infinite number of different pieces of syntax.

[6] developed ways of resolving this problem in limited circumstances, but
the problem of “closing” the calculation of recursive component processes in
the context of parallel composition probably means that, when used directly
in CSPM for FDR, the implementations/simulations of operators we have
developed should only be used syntactically above the level of recursions.

Nevertheless the existence of the simulations implies, as pointed out in
Section 6, that any CSP-like operator has a well-behaved semantics over any
CSP model, namely the one represented by its simulation. It follows that
any such operator can be added to CSPM and implemented as primitive in
FDR and we can guarantee that this will make mathematical sense.

Consider, for example, the operator P [T ]Q defined with two on operands
via the rules

((a, a), a)[a ∈ T ] ((a, ·), a,1)[a 6∈ T ] ((·, a), a,2)[a 6∈ T ]

((X, ·),X) ((·,X),X)

This is a sort of hybrid between parallel and external choice: events in T can
only occur when both perform them and do not resolve the choice. When
T = ∅ it is equivalent to �, and [Σ] is equivalent to ‖

Σ
for X-free processes.

Events not in T can be performed independently by either argument and
immediately resolve the choice. One instance (and the motivating one) of
this is when we are in world of timed systems with the passage of time
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represented by the event tock . Then, as described in Chapter 15 of [19]
and [11], P [{tock}]Q is the best representation of the untimed operator
P � Q and is necessary for a faithful representation of Timed CSP [12] into
a form that can be analysed on FDR.

One interesting use of [T ] is to create a time-out operator: P [{tock}]WAIT n
(where WAIT n performs exactly n tocks before X) allows P and the envi-
ronment n time units to perform a visible event, and if not forces termina-
tion.

The author believes that it is impossible to simulate [T ] in a general way
in CSP such that recursing through it will ever create a program that FDR
will succeed in terminating. Certainly the simulation this paper generates
will fail for exactly the reason set out above.

The existence of the combinator operational semantics in itself, how-
ever, tells us that it is safe to add this operator into CSPM and implement
it directly in FDR. While it is then possible to write instances of its use
where compilation does not terminate, namely ones where in terms like
µ p.F (p)[T ]Q , F (p) can start its argument p before the choice has been
resolved. At the time of writing an implementation of this operator is in
preparation.

We can be more ambitious than this, however, and look to redesigning
FDR so that all operators are described to it solely via a combinator opera-
tional semantics. We could then make this interface available to users who
wished to add new operators into its arsenal, safe in the knowledge that any
such operator makes sense in all CSP models. This would be enormously
more concise than the way in which operators need to be introduced into
FDR at present (only via programming its source code) in different versions
for compilation, high-level running, debugging etc.

As described in Chapter 9 of [19], combinator operational semantics are
very close to the way in which FDR implements high-level combinations,
namely the combinations of compiled state machines referred to above. It
is also easy to infer a corresponding SOS operational semantics from a com-
binator semantics, which is essentially what the low-level compiler uses.

8 Examples

We have seen two CSP-like operators that are not in the usual CSP language,
namely [T ] and Farm(·). A number of other examples can be found in [19]
including

• An angelic version of the external choice operator: P �Q behaves like
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either P or Q and offers the choice of their initial events. However,
unlike P � Q , the choice of an event common to P and Q does not
resolve the choice, and they both persist to offer their choices on the
next step (and so on). In other words if P and Q are both X-free
deterministic processes then P �Q is deterministic with the union of
P ’s and Q ’s traces.

This turns out to have much in common with the parallel operator:
the combinator operational semantics always, except on termination,
keeps both arguments on. It does not discard P or Q if the other
has performed some a ∈ Σ or even some longer trace t : it gives the
other the chance to catch up, and if it does perform catch-up events
these become τs. We therefore need to define a whole family of binary
operators: in addition to P �Q , Ps �Q and P �s Q for each s ∈
Σ∗ \ {〈〉}, representing the states where respectively P and Q have to
catch up by s. The combinators are:

– For �: ((a, .), a,1 �〈a〉 2) and ((., a), a,1 〈a〉� 2) for all a ∈ Σ,
plus ((X, .),X) and ((.,X),X).

– For 〈b〉̂ s �: ((b, .), τ,1 �s 2) and ((., a), a,1 〈a,b〉̂ s � 2) for all a ∈
Σ, plus ((X, .), τ,2) and ((.,X),X).

– For �〈b〉̂ s : ((., b), τ,1 �s 2) and ((a, .), a,1 〈a,b〉̂ s � 2) for all a ∈
Σ, plus ((.,X),X), and ((X, .), τ,1).

• A mobile version of the parallel operator in which communications
between processes can affect their alphabets and therefore which sub-
sequent communications they synchronise on: see Section 20.3.

In [18] it is shown that the parallel operator of CCS [9] and the π calculus
is CSP-like, and indeed that for the syntax set out in [21] the whole π-
calculus is CSP-like. As already remarked, the CCS + operator is not CSP-
like as it is resolved by an argument’s τ rather than simply promoting it.
[The usage of + in the version of π-calculus in [21] is sufficiently limited
that it is not an operator on terms, only guarded terms, and this permits a
work-around.]

The semantics of π-calculus given in that paper depends on a much gen-
eralised renaming operator, in which the renaming applied varies arbitrarily
with the trace. A somewhat simplified simulation of that is discussed there.

The author recalls Hoare saying many years ago that it would be ele-
gant to allow processes to disappear from certain sorts of parallel composi-
tion when they terminate and in particular that P >>SKIP and SKIP >>P
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should both be equivalent to P . [Recall that the operator P >>Q takes
two processes whose alphabet is {| left , right |} and connects P ’s outputs
(right) to Q ’s input (left), hiding them and creating a further process with
the same alphabet. In its standard form, which does not have the termina-
tion property outlined above, it is written in terms of renaming, hiding and
parallel.]

In other words Hoare wanted a process simply to disappear from a chain
of processes when it terminates. As our final example we will show how to
create a combinator operational semantics for the revised operator >>X: as
with most such exercises this is remarkably easy. There are of course two
arguments,both of which are on.

The “business end” of the modification is the pair of termination rules,
which are identical to those of �:

((X, ·), τ,2) ((·,X), τ,1)

These are, or course, a little simpler than the corresponding termination
rules one could infer for the usual formulation of >>, with the Σ rules being
identical to that case:

((left .x , ·), left .x ) ((right .x , left .x ), τ) ((·, right .x ), right .x )

The existence of a CSP simulation of this form of the operator therefore
follows, though it is far from easy to see how to build one in elementary
fashion. Note that one of P and Q terminating, some communications of the
other that used to be synchronised and hidden now become unsynchronised
and visible.

To see why this is an attractive operator, compare the two recursions

B1 = left?x → (B1>> right !x → COPY )
B2 = left?x → (B2>>X right !x → SKIP)

These are both processes that satisfy the failures-divergences buffer spec-
ification given in [15] etc. Indeed both are equivalent to the unbounded
determininistic buffer defined

B∞
〈〉 = left?x : T → B∞

〈x〉

B∞
s 〈̂y〉 = (left?x : T → B∞

〈x 〉̂ s 〈̂y〉
� right !y → B∞

s )

In the first there are always as many empty COPY processes as there have
been outputs so far. Therefore even if this process never holds more than one
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item, it will still grow into an unboundedly long chain as more and more
items are inserted and removed. The second, however, is always a chain
of exactly one more process than there are items presently in the buffer:
therefore it keeps itself a lot tidier!

We conclude this section with a further example of an operator that is
not CSP-like. The alt(P ,Q) operator allows P and Q to perform visible
events in strict alternation, starting with P . It is easy to create a CSP
simulation that looks correct, at least in the absence of termination:

((P ‖
∅

Q [[prime]]) ‖
A∪A′

Reg)[[unprime]]

where A and A′ are, as usual, disjoint copies of the processes’ alphabet, and

Reg =?x : A →?x : A′ → Reg

This does not, however, correspond to the (X-free case of) the SOS
semantics

P τ−→ P ′

alt(P ,Q) τ−→ alt(P ′,Q)

P X−→ P ′

alt(P ,Q) X−→ Ω

P a−→ P ′

alt(P ,Q) a−→ alt(Q ,P ′)

because the latter completely suspends the second argument, while the sim-
ulation above allows it to perform τ . This operator fails to be CSP-like for
the same reason as suspenda(P) quoted earlier. As with that operator, and
unlike +, this operator does make sense over CSP models.

9 Conclusions

We have shown that CSP is universal for expressing operators, satisfying a
restricted but central conditions, over LTSs. The immediate corollary of this
is that any language whose non-recursive constructs satisfy these conditions
has a semantics in each of CSP’s many models, and for each a theory of
refinement.

It is clear that whenever such a language contains CSP, then each such
model has exactly the same full abstraction property (if any) that it does
for CSP.

We have not shown that our “CSP-like” conditions are the most general
such, and indeed it is clear that they are not: consider the suspenda and alt
operators alluded to earlier. The author doubts that there are closed-form
conditions on operational semantics, extending our own, that can charac-
terise the property of leading to well-defined operators over all CSP models.
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Of course our results here suggest that one might try to find other lan-
guages, perhaps extensions of CSP, that would capture weaker conditions
on operational semantics that are faithful to some other notion of process
equivalence but not to all CSP models. The latter might be a specific CSP
model such as traces or refusal testing, or some notion of bisimulation. An
interesting form of bisimulation to consider, since (unlike weak bisimulation)
it is finer than all CSP models, is divergence-respecting weak bisimulation,
the coarsest relation that is both a weak bisimulation and does not identify
an immediately divergent process with a stable one.

Rather than conjecture specific results here, we leave this to future re-
search.

The major practical benefit from this work is probably the realisation
that one can reconstruct CSP-based tools such as FDR so that they are
programmable by combinator operational semantics, which makes them ap-
plicable to any CSP-like language. The author believes that this will make
both these tools and the CSP notions of equivalence and refinement more
useful.
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