0¥t (i
ety Comn ;s
VLT OmMting ((Aboeas
';A.' .li‘,_.u__? i

Py
Cxioid Ox; Ko

REPORT
ON THE PROGRAMMING NoTATION
3R

Andrew P, Black

Technical Monograph PRG-17

August 1980

Oxford University Computing Laboratory,
Programming Research Group,
45, Banbury Road,

OXFORD,

0X2 6PC

& Andrew 7, klack

JXIord University Computing Laboratory,
Programming Research Croup,

45, Banbury Road,

Uxforg, 22 BFE

Contents
roreword (by Briamn Shearing)

1, Intreducticn
0.2. On Implementations
0.2. An Qverview

1. The Method of Description
1.1. Technical Terms

1.2. Syntactic Description

1.3. Semantic Descriprtion

. -. Lotation

2. Programs

2.1. Context-Tfree Syntax
¢.Zz. Examples

#.3. Context Restricticns
2.4, Semantics

locks and biocklets
2,1, Blocks
3.2. Blocklets

4. Arguments

4.1. Context-free Syntax
4.2. Context Restrictions
4.2. Zxamples
4.4, Semantics

5. Ctatements
£.1. Declarations
5.7. Commands
5.3. The Choice Command
5.4%. 3uards
L.5. Tne Tested Invacatiaon

o™

. Simple Commands

t... The Dummy Command
6.2. The Fail Command
6.3. Invocations
6.4. Substitutions
G.3. Aassignments

7. bExpressions
7.1. Unary Tarmulae
. 3inary raorn.iae
. Ternary Formulae
frimaries

<

(SRR

omE FFE

27
27
27
z28
30
31

33
33
35

38

Contents

8. Axlomatic Semantics

Z.1. 4ctation

. TroErams

Blocks and Blocklets
Arguments

ctatements

Simple Commands
Properties of wp

. PR

N

o G R OO Qo
~ g oo N e

(=33

9. Terminal Symbols
9.1, Representatiaon of Tokens
9.2. Syntax and Semantics of thie Lexemes
9.3. Camments and Continuations

10. Acknowledgements

11. References

Index to Zrammar and Technical Terms

Foreword (by Brian Shearing)

If an engineer Jdesigns a oridge using a computer progran writren
by scmecne else, the persen rezponsible if the bridge falls down is
tne engineer, not the a-thsr <f tne progran. Similar szatements
can Dbe made in most professions, It 1s essential that responslible
users oI programs shouid be able to inspect them and be satisfied

that tney are sound and applicatie.

The ;chramﬁting languages nof today are 50 poor that few
programrers <an understand another programmer's work, or even their
own work after a few menths; it is not reasonable to expect an

intelligernt user te¢ understand it.

The traditional response to this (and cther) osroblems has been
to desiagn high-level Zanguages of ircressing power. In czontrast,
this report 1is part of a continuing experiment toc discover
grogramrming notaticns whose emphasis is on gimplicity rather than
power Ifor its own sake. The eventual aim of the experiment is that
a zrogram should be understandable not (ust to other programmers but
4ALse to those with only a layman's knowledge of the essentials of

programming.

The Zirst publiciied version of 3R (December 1577) was created by
Alcock Shearing & Partners to fulfil a contract with the Design
0ffice Congortiumt. The requirement was the production of a
“publishable program” for use in the Construction Industry. That
program - the Forpa Program - is5 published as a book 1in which the
first part "describes the notation used throughout the rest of the
manual™ (107, This notation is 3R. It was most encouraging that
the Programming Research Group at Jxford took an interest in 3R,
Andrew Black has here produced a concise but rigorous definition of
the syntax and semantics of a notation capable of describing non-

trivial programs with great clarity.

+ The Design Cffice Consortium is an asscciation supported by the
Departments of Envirconment and Industry, and aims to enceurage the
use of computers in the Building Industry.

Foreword

Page vi

We have bean using an evolving 3R for, amongsTt other things, 4
program of 20 000 Fortran statements {1.1], and we are confident that
tne programn does what LT should. we are a.so confidernt that we
ceuld convince a modestiy well informed user that the program does

what it should, simply by "reading him through™ the 3R description.

The Izea o©f a notation based on simpiicity has been presented
informally to several conferences and alsc in writing [1] [837. The
response To these presentations, ocur own use of the notation and the
work atr Qxiord have resulted in some gix dialects. The Oxford
dialect presented here is the most rigorously defined and makes the

fewest coscessions To Translation inta currently available computer

languages.

Much remains to be done. At the moment the two characters "3R"
stand for an idea. The idea is taking shape. few it will turn
cut no one can tell. gut this report is an lmportant milegtone in

its development.

Brian Shearing,

Alcock Shearing & Fartners.

Forewora

0. Introductlcn

The first wersion of oR (mentioned in <the Tforcwiré) wdas

descrive: wer: briefls, but ln sufiicient detail to make the Forrna
Frogram wnambijuous. dowever, zomne parts of the Languuge were left
irn ree. of clarificatien; we nooe this report provides it. In the

srocess of completing the definition further simplificatisns have
been made; the sequel defines <he Oxford version of the notation as

it stoo. 1o Hovember 1975,

0.1. On Implementations

:x 15 a rnztaticn f{or describing solutions to problems which
require the use of computing machinery. The use oI some TIformal
netation 1s necessary because a Lrocess must be rigorcusiy defined
bercre 1t c¢an be necnanised. It shou_d not oe Llnferred, however,
that the process definiticn, i1.e. the program, must be ir a form
wnlch cain be used directly to instruct a machine, The main part of
the programming problem is solved onoe the program is written in a

machine independent, easily understandable notation such as 3R.

There remains the problem of geding, ol creating a realisation
a1 the program (in sSome coemputer languagel) which can te used to
control the hardware. The Ferpa Program was transliterated into
Fortran by hand, and realisations in other computer languages are

under construction.

fdowever, because 3R is a very simple notation and programs in it
specify every detail of the problem solving procedure, there is no
reason why this transliteration sheuld not be mechanised. The

resulting code may not be as efficient as that produced by an

experiarces coder, bat this is becoming a less important
congldacration as womputer hardware becomes cheaper. 30 Ieel free
To write a gongller 3R.

The important point is the converse, however: lack of a compiler
dces not Linit the usefulrness of 2R In any serious way. It has

been and will Dbe wused 1in real, large =scale, projects. The

Introduction Saction 0

Page 2

separation of these projects into a programming and a coding stage
facilitates a1 wuseful separation of concerns. vhen writing in 3R
attention can be concentrated on the problem and tie algorithm used
to solve it. Considerations of eificiency can be dealt with later,
when realising the program irn some more machine oriented computer

language.

0.2. An Overview

The name 3R is the well-known acronym for reading, writing and
arithmetic, and summarises the main features of the notation. It
is designed for readability; ease of writing cches < poor second.
3R is distinguished by its lack of "features" and novel ideas: it
has been produced by extracting common factors from other current

programming languages, designing a uniform notatlion for them, and

ruthlessly throwing out any constructs which were cbscure,
ambiguous, dangerous Or UNNECESSATY . Those that remain forin the
minimal set necesgary for writing large programs, or 30 We

conjecture; the object of publishing this definition is to enable
this conjecture to be validated by wide-ranging experiment. The
most obviocus attributes of the nctation are:
(i) Suppert for program development by stepwise refinement [127;
(ii) Acreptance of Dijkstra's alternative construct [2];
(11i) Avsidance of defaults [7];
(iv) Absence of a loop construction [5].

These features are now discussed in a little more detail.

(i) 3R does not have an Algol-like structure of nested biocks.
Instead the structure is ''flat": if any complicated action 1is
required it is necessary to invent a name For that action and later
define, opr rather refine, the name. in this way the programmer is
encouraged to make the design process obvious from the text. It
also pecomes unnecessary for a reader of the pregram to have an
arbitrarily deep stack of definitions in his head: dinstead he neeua
remember exactly two levels. Although there will be more names
visible at each level, the result seems tc be more readable than

conventiorai block structure.

Page 3

(1i) The <Ihoice Commanc of 32 is clecsely modeliled on Liikstra's
alternative construct, and thus allows non-determinism. In our
notation Lifkstra's classic exanple hecomes

whnere set maximum ig

i =T £y
martrium =

1oz 4
marimum 1= I

otherwise chaos

(ii3i) Defaults may make programs easier to write, but the price
paid when they later come to be read is unacceptably high. We aim
-or everything to he obvious from the text. That iz why Jijkstra's

v nas been replaced by othervise chacs, which we hope i1aplies the

[

consequances of failing to ensure that at least one of the

ccnéitinans 13 satislied.

(iv) There 1s no loop construction in 3R. Instead, cince the
piece eof program we may require to repeat will Invariadly have a
narme, The pepetition is obtained simply by using that name. We

hesitate to use the term recursion as this has come to imply an
inpiementation in terms of stacks and calls, which 1s vuinecessary

and wnaesirable in most circumstances.

Introduection 3

i

ction @

Page 4
1. The Method of Description

The whzle of 3R 13 delinec in Thiz report, whiczh takes the
uanusual {(but in many ways more ratural) step of describing the
langu&,e Irom TNe 16D COWRWArds. Tiret we define the noticen of a
program, in terms of its (as yet undefined) subcompinents; Then come

the deinitions ¢f these subcomzorents, and of their subcomponents,

until evertially everything is gefined in terms of the lememes and

the

basic unitz fron
of
such things as expressions), this report

af back but

not feel that tnis impalrs

vokens (g.v. Section 1.2), which arc

DYCEIanS are oullt, Since *the structurs IR i3 nat recursive

{except for makes on.y 4

zmall number references s large number of forward

because

it

readah

-

rerercnces, We d ility

what
.].\‘-D](
than

it is central to tne design of 3R that every construct means

appears tto mnean. neecd o

the

Zn first acquaintance there is nz uz

forwara references: they are there to reassure rather o

perplex. Similarly we have nct hesitated to use as yet undescribed

constructions in the exampies.

1.1. Technical Terms

Some

this

In ar fort to ase ol abbreviations,

long and turgid phrases hav the text. llowever,

has not besen taken to extremes, and wners necessary a technical term

nas been irtroduced, itz name acpearing In itaiies.

A1l the

indicated by

Technical terms ara defirned at an appropriate place in the

text; location of any sarticilar definition can be found from

Ths

tne index on page 57.

1.2. ©Syntactic Description

&

The symtax will be described Dby metilangu2ge wh.ch represents

a

countext-free grammar (3] [6]7.

larger than 3R, and is accormpanied

in Znglisn, A5 has been irndicated

the grammar are tokens and fexemes.
Section 1

This

by

grammar gererales 4 language

conText restrictlcons expressed

abwve, tne Tersninal sytbols of

The Method of Description

Page 5
1.2.1. The Tokens

A tokenm avstracts Irom a basilc symbol; within the grarmar it is
easily recognised by its nane , which ends with token,
e.s. let token. The representation of a token is meaningless

=

except in so far as the symbol chosen has a mnemonic quaiity.

Beiow are listed the representations of the tokens which will be

used 1in this report, and 1n a few cases suggested alternatives.

token reprecentation
abs token abs

arctangent token aretan

array token array

at token at

be token be

becomes token =

char of token char of

close parenthesis token)

comma token 5

conjunction token A and
cosine token eog

degree token degree

differs from token =

disjunction token v or
divided by token + div
dummy token passe skip
e to the power of token ex

end block token
end choice token

exp
end of block
otherwise chaos

end test token end of test
equals token =
exponentiation token 4

fail token fatl
failure token on failure
finish token finish

if token 7

integer from real token
integer token
invariable token

is at least token

tnteger from real

integer
invartable

:

W

is at most token <

is greater than token >

is less than token <

is token is

length of token length of
let token let

log base e token in

log base ten token Lo

minus token -

modulo token rod
negation token B not

The Method of Description

Section

Page

i.2.2

A
each
e.g.
struc

The

Names are used to label values.

then

identical

Names with arguments are used to

ATgUments are slways optional,

newline token

of token

open parenthesis token
over token

parameter token

plus token

radian token

real from integer token
real token

result token

Sine token

success token

test token

text token

Times token

uptao token

uses token

variable token

where token

with token

zerg token

. The Leremes

~lazeme 1s an abstraction of a class

Memser belng similar

integer denotation. The

~TR

rarameier

T

radian

regi from integer

uaeg
varighle
where
with
2e8ro

distinct from

representation of a

tureq, and the structure conveys Iinformation.

name

name with arguments
text denotation
integer denotation
real denotation

is that it be possibil=e

frame
Pattern

following meta-variables are lexemes.

The only property required
determine 1f any two

The following are examples of names.

move to first month of next pear

name and refer to blocks.

of user-defined objects,

others,

is

of

are

The
the c¢lass npame with arguments

The Methoc! of Descriptiecn

includes the ciass nane. Ixamples:

printl["Answer is']

position of [zl in [table]
gharacter [3] of [Heading]

tab to eolumn [?] of [typewpriter]

random
The argument lZst of a name with arguments is
expressions {g.wv. Section 7) within the brackets.

ii13Ts o1 the first fc.r examples are thus

'dnswer 18 '

x table
3 Heading
7 typewriter

winilst [pandom) has an empty argument list.

the 1list of

The argument

Text denotations, integer dencotations and real demotations are

tne constants of the language. Examplies are

'This 1 a text denotation'
o7
43,35

which mean just what they appear to mean. All the

defined formally in Secticn 9.2.

71.2.3. The Productions

lezemes are

The production rules of the context-free grammar will be

presented in the same form as the following examples.

vehicle:
bus;
car;
bicycle;
lorry.
convoy:

vehicle, wvehicle;
vehicle, convoy.

safe convoy:
man with red flag, convoy, man with red flag,

The words in gothic +type are the symbols of the gramuar, The
remaining marks are connectives and have the following meanings.

: means "econsists of”

H means "or™"

The Method of Description

Section 1

) means "fallowed by"

. means "end of productien®
Thus the exanples deiine a vehicle as either a bus, car, bicycle or
lorry, ans « convoy as a sequence of Twd <or more vehicles, A
safe convoy is a canyay preceded and iol lowed by a

man with red flag.

Une celinitien which 1s used continuous.y threighout the syntax
of 3R (anz logicaily ought to be given at tne end) is given nere to
avoid unnecessary suspense. It is

empty:

{i.e. the empty sequence of grammatical symbols.}

The Start Symbol of the grammar is progranm. The preducticn
defining a given non-terminal symbol can be found using the index on

page 57,

1.3, Semantic Description

The semantics of 3% are described with the ai? of a notation
similar tw Weakest Precondition predicate transfcrmers [2]. For
those meeting botn predicate transiormers and 3R for the first time,
the combined effect may be a little overwhelming. For this reason
the semantics of each construct are given infornally when it is
first enciuntered and the predicate traniormers are reserved until

Section 3,

1.4. Notation

The meta=-linguistic variables are used in the text to dencte the
objects whlch can be derived from them; we have allowed ourselves
the freedom to capitalise their initial letters and make them plural

where this is required by the English language.

Certain passages of *“his report appear betwesn the braces [{)
and [}, The meaning of the report is unaffectec by their

presence, {They are included tg help the reader understand the

Section 1 The Method of Descripticn

b

1In all the examples, lines starting at the left targin are

comments.

The Method of Description Section 1

2. Prograns

2.1l. Context-free Syntax

program:)
argument declarations aoption, program bady, newline token,
finish token,

program body:
pregram element, newline token, program body s
program element.
program element:
bleck;
program statement.

program statement:
stitement.

2.2. Examples

The following are complete, if trivial, programs.

Z.8.1.
5a3s
finign
.58,8,

rarameter input is integer
result output L& integer
invarighble three is 3
output = input + three
Jinish

2.3. Context Restrictions

o, 3.1, The global list of a program is the concatenation of ZIts
parameter list, result I[ist, variable list anc invariable list (g.v.
Sections -,z and 5.1.2.1). it i1s reguired that it contain no name
nore Tnar onee, {The giczal iist of & program cohtains asl the

names declared in its program body and argument declarations option,

Tne requirement ensures that each name means exacily onre thing.}

2.3.2. The block liat of a program consists of all the
formal block names (q.v. Section 3.1) which eccur in that program;

it may not contain two names which mateh.

Two names with arguments mateh if, after the expressions within
the brackets inm both names {if there are any} have been deleted the

resulting names (including the empty brackets) are {identical.

2.3.8. Ko name may appear 1in both the giebael Iiet and the

bivek list ofi a program.

£.5.4. The scope of a name in the gleobal list extends from the
declaration which intreoduces it wuntil the end of the program,
includin, blocks whose usage 1Zste (g.v. Sectien 3.1.2.2) contain
the name, but excluding all other blocks.

2.3.85, The scope of a formal block name 1is the whele program,
excluding those blocks which have an {dentical name in their
loeal lists (g.v. Section 3.1.2.1).

2.4. Semantics

The meaning of a program is obtained frem the meaning of the
argument declarations <(if any) and the praogram body of which it is

compeosed.

Prograns Section 2

Page 1t

3. Blocks and Blocklets

3.1. Blocks

A 3R bleck assoclates 4 name with sone statemer-s in crder *hat
tnese statements may be rerferenced, b, name, Irom ciher zarts of the
proJran. The statements mdke up tne block taily tThe other parts

of the bleck supply corroborative detail.

3.1.1. Cortext-free Syntax

block:
block head, block body, block end.

Bleck head:
let token, result list option, formal block mame, be token,
newline token.

block body:
usage 1ist optien, argument declarations opticn, block tail.

block tail:
statement;
statement, newline token, block tail

bleck end:
newline token, blocklets option, end block token,
newline token.

formal blsck name:
name with arguments.

result 1ist option:
enpty;
joined name 1ist, becomes token.

usage Tist option:
emptly;
uses token, jeined name list, newline token.

Jjoined name list:

name ;
name, comma token, Jjoined name 1list.

.12, Contert Restrictionsz

3.1.2.1. The loeal iiZst of a biock is the concatenation of 1tz

garameter List, rezult list, invariagble {13t ani wartable ligz (q.v.

Secticns 4.2 and 5.1.2.1). It must not contdain any name more than

Shice.

3 1.5.2. The usage list oI a block consists of all the names in

tne usage list opticon orf tnat oploc<; LIf it 1s empty the list is

enpty. The concatenation of the local Iist and the wsage list 1is
thz name 1ist of the block: it must net contaln any nare mere than
once.

3.1.2.3. The argumens List oL the formal block name pust be

identical in Dboth content and order to the parameter list (q.w.

Section «.2) of the block.

2.1.2.4. The Joined name 1ist of the result Jist option must be
n btoth content and o»der tTo tne resuit list (g.v. Section

he block.

—
[
T
o
[
Il
0
- -

J.1.2.4. 211 names in the usage liet of a bleock must alss be in

the glebal list of the program which contains that block.
g p

4

3.1.8.6. Tne scope of a name in the tpecal list extends Irom its

declaration to the end of the block.

4.1.3. Ezxamples

2.1.3.1.

let ratio := tanl[thetal be
parameter thata is ¢ .. Zxpi
result ratic ig real
ratio := (sin theta) / {cos theta)
end of block -

Blocks and Blocklets Section 3

Page 1u

let line from [Start Column] to [End Colum] lbe
parameter Start Column is 1.,80
parameter End Column is 1..80
vaptable number of dashes ia 0..80
Fab to [Start Column]
number of dashes ;= 1 + End Column - Start Column
Write dashes

Now we need to define "Write dashes”

where Wpite dashes is

1f number of dashes = 0
pass

if number of dashes > ¢
Wpitel[' ']
number of dashes := number of dashes - 1
Write dashes

otherwise chaos

That was g blocklet (see Section 3.2)

end of block

3.1.4. Semantics

The association Dbetween a formal block name and its block body
is permanent and holds everywhere in the pragram body. The
statements in the black tail are executed when regquired by means of
an invocation <{g.v. Section 6.3). In particular it should be noted
that an invocation of a block may textually precede, Succeed or be
contained in the block itself.

Section 3 Bliocks and Blocklets

Page 15§
3.2. Blocklets

4 3E blocklet asscciates a name with some commands. It is thus
less general than a black; blockliets de not have arguments or

contain declaraticons.

3.2.1. (ontext-free Syntax

blocklets optign:
empty;
blocklet, blacklets option.

blocklet:
where token, blocklet name, is token, blocklet body,
newline token,

blocklet body:
command chain, newline token,

command chain:
command;
command, newline token, command chain.

blacklet name:
name.

3.2.2. C(ontext Restrictions

The blocklet l1ist of a block consists of all the blocklet names
which occur in that block. No name may occur more than once in the
blocklet list, nor may 1t cccur in both the bloeklet Iist and the

name liat of the same block.

The ecopa of a blocklet is the whole of the block in which it
occcurs, including the blocklet itself.

3.2.3. Ezample

where gelect a range is

Thie bloeklet will never be used when table at middle = value
if table at middle < value

bottom := middle
if table at middle > value
top := middle

otherwice chacs

Blocks and Blocklets Section 3

d.2.4, Semantics

Tine commands whicn make up the ¢ommand chain of +the blo

describe some process.

The

that process to be periormed

using tne blecklet name in 4

Section 3}

c
ourpose of tne blocklet 4is to =znatle
anywhere within its seeope simply by

substitution (z.v. Sectian £.4),

flocks and Blocklets

4. Arguments

Tne arjuments 2i a block provide tne neans by wnlen it
communicates with its environnment, that is, the pisce of 3R program

wnicn lnvored The o_ooor.

The argaments of a progrdm periorm a similar function, but in
tniz wase oz anvircrmeni s outside the frogran. The way in wnich

these wvaluss are rransferred 1s thus beyond the scope of this

4.1. Context-free Syntax

argument declarations option:
empty;
argument declaration, newline token,
aryument declarations option.

argument declaration:
result declaration;
parameter declaration.

result declaration:
result token, name, is token, type indicator.

parameter declaration:
parameter token, name, is token, type indicator.

4,2, Context Restrictions

The parameter 1list (result I{ist) of a block or program consists

2. the names in the parameter declarations {result declarations)

[

L

oi the argument declarations option of that block or pragram.

45 nare may ©ccur more than cnce In the concatenatior of the

parameter iist and the result ilist.

Arguments Section &

Page 18

4.3. Examples

result ¢ 1s integer
parameter line ia text
parameter Fage ?,_E array zero .. 66 of text

4.4. Semantics

4.4.1. Fesulte

A result declaration occurring in a block hody, or directly in a
program, introduces & npame in the same way as does a
variable declaration (gq.v. Section 5.1). {Such a name may appear
to the left of the becomes token in a computation, and its value may
thus be changed.}

If result declarations occur outside of all blocks, 1i.e.
directly in a pragram, the output of the program is the list of
values ¢f the names. If yvesult declarations occcur in a block the
names are used to establish the result of an invoecation of rthat

block, as described in Section 6.3.4.

d.4.2. Parameters

A parameter declaration occurring in a plock body or directly in
a progranm associates a name with a value; the asscciation cannot be
changed within the gcope of the name. Different invocations of a
block, or runs of a program, may initialise a parame ter to different
values. The type of the value must correspond tc the
type indicator in the declaration. {The name of a&a parameter may

not appear to the left of the becomes token in a computation.)

If psrameter declarations occur in & block, the values tc be
asscciatec with the names for the duration of a particular
invocaticn are obtained from the argument list of the
actual bleck name in that invocation (gq.v. Section 6.3.4). If
parameter declarations occur outside of all blocks, i.e. directly in
a prggram, the values assoclated with the names are the input of the

program.

5. Statements

Statements are the primary constituents of 3R programs.

may Dbe declarations, which describe the objects

the

Page 13

Thevy

program

manipulates, or commands, which specify what actions are to be

oerformed on these objects.

statement:
declaration;
command.

5.1. Declarations

d.1.1. Context-free Syntax

declaration:
variable declaration;
invariable declaration.

variable declaration:

variable token, name, is token, type indicator.

invariable declaration:
invariable token, name, is token, expression.

type indicator:
integer token;
real token;
text token;
subrange 1ndicator;
array indicator.

array indicator:
array token, array bound, of token, base type

array bound: .
zero token, upto token, expression,

base type indicator:
type indicator,

subrange indicator:
expression, upto token, expression.

Statements

indicator.

S

]
[#]

tion 5

Page 20
6.1.2, C(Context Reetrietions

f.1.2.2. The fnvarigble liet {variable 1ist) of a block or progran
consists f all the names introduced by invariable declaraticns
(variable declarations) in its blcck body or program statements.
If there are no such declarations the list 1s empty. A name 1is an
invartabie name (variable name) if it cccurs in the <nvariable list

(variable liet).

No nane may occur more than once in tne concatenation of the

tnvariable 1ist and the wvaiable Iist of a giveh block or program.

5.1.2.2, The expressions in a subrange indicator must both be of
the same type.

5.1.2.3., The expression in an array bound must be of type integer.

S.1.3. Eramples

variable 1 is integer

invartable Page Size s 66

variable Line Number is 0..Page Size

veriable Page is array zero .. Page S5ize of text

5.71.4. Semanties

{As menticned above (g.v. Section 1.Z.2), names are usead to

label wvalues. This usage is a little different from that of many
pProgramming languages. & graphic description of the usage of names
in 3R is given in [H7. Each type corresponds to a data space

containing all the values of that type, e.g. integer corresponds to

the number line, array zero .. I of real to the cartesian plane,
ete. ., In 3R one speaks about "assigning a4 name toc a vaiue™, Tnis

may be visualised as the act of pinning a flag bearing the name to
the point in the value space representing the value.l A declaration
indicates that a name may be assigned only to values of a specified
type. {It corresponds to the manufacture of a new flag, which can
be attached oniy to values in the appropriate value space.}

$.1.4.1, The name intrcduced by a variable declaratian is not

initialis=d. It must be assigned tc some wvalue sefcocre 1t can Se

Section g Statements

Page 21

used in an expression. {This is achieved by a computation in which
tne name coears to the leftr ¢f a becomes token, which corresponds

to moving the flag bearing the pame to a place in the value space.}

1.4.8. The name introcuiced by an invariablie declaration is

assigned to a value obtained from the expression according to the

rules given in Section 7. The type of the pame is the same as that
of the expression. {An invariable name may notT appear to the left
of & becomes token 1in a computation. Thus the flag bearing the

name cannot be moved.}

5.1.4.3. Values and Types.

This section describes the ¢ypes corresponding to the varicus
type indicators. Integer token corresponds to the countably
infinite set of negative, zerc and positive integral values.
Real token corresponds to the continuum of real numbers.,

Text token c¢orrespcnds to values in the set Char*, where Char is

some {impiementation defined} set of characters.ft

A subrange indicator corresponds tc the type of the expressions
which make up the indicator, It also makes manifest an assertion
on the part of the programmer that the first expression has a value
less then the second expressicon and that the value aof the wvariable
introduced by the declaration will always lie in the closed interval
defined by these expressions. {An implementation may use this
information (for example fo save store by packing values asserted to
be small) or it may ignore 1t altogether. Tn either case, provided
the assertion is correct, the meaning of the program is the same.}

If the assertion is ever false, chans results.

An array indicator specifies a base type B corresponding to the
base type indicator and a domain size n+! where n is the value of
the expression in the array bound. n must not be negative. The
type corresponding to the array indicator is the cartesian product

+ denotes the Catenation {(or Kleene) Closure of the set ¢, i.e.
cm, See [9]. Thus Char* includes all finite sequences (of

=]

n=4a
length zero or more) of characters.

Statements Section 5

Page 272

of n#! replications of B, i.e. the set I {Since the

base type indicator may itself De an array indicator this definiticn

is recursive,}

5.2, Commands

In addition +to simple commands, which describe a single
imperative acticn, there are two compound commands which enable a
choice to be made between different sequences of simple commands.
The choice command is used to express the solution of a problem by
cdses; the tested invocation 1is wused +to detect (and possibly

recover from) program failure.

command:
simple command;
choice command;
tested invacation.

5.3. The Choice Command

5.3.1. Contexti-free Syntaz

choice command:
guarded command chain, newline token, end choice token.

guarded command chain:
guarded command;
quarded command, newline token, guarded command chain.

guarded command:
if token, guard, newline token, simple command chain.

simple command chain:
simple command;
simple command, newline token, simple command chain.

5.3.2. Erample

if a » b

Compute results for sase whepre a is larger
ifa <b

Compute results Jor case where b is larger
if a - b

Fail Print['a = b']
otherwise chacs

Section § Statements

Page 23

3.3. Semantics

[
.

A chojce command is composed of several guarded commands, each

of which 1s appropriate in different circumstances. A guarded
command <can only be executed when its guard evaluates to true {(q.v.
Section 5.4, A choice command specifies execution of exactly one
guarded command from its guarded command chain. If it is

impossible to do this because all the guards are false thern chaoss
results. (If more than one of the guards is ¢rue then it is not

sreciriec which guarded command is chosen.}

5.4. Guards

The guards in a choice command yield truth wvalues, represented

below by true and falsge.

5.4,1. Context-free Syntaz

guard:
conjunctive formula;
disjunctive formula;
negation token, boclean;
boolean.

conjunctive formula:
boolean, conjunction token, conjunctive formula;
boolean, conjunctian token, boolean.

disjunctive formula:
boolean, disjunction token, disjunctive formula;
beolean, disjunction token, boolean.

boclean:
relational expression;
parenthesised guard.

relational expression:
expression, relator, expression.

parenthesised guard:
open parenthesis token, guard, close parenthesis totken,

relator:
equals token;
differs from token;
is greater than token;
is at least token;

Statements Section 5

is at mast token;
is Tess than token.

5.4.2, {ontext Restriciions

In . relational expression, both the expressions must be of the
same T;e {g.v. Section 7) and the relator must be defined for that
type (q.v. Section S.4.4.%).

5.4.3. [Ezamples

Author < 'zzzz'
abs tolerance < 4.000 001
J < theta A theta s 90 »+» pr =1
lz <1 A x» =3y v (y <7 A y » &)
(t <2 v J =22y A~ ..
(page length = line number v page length = 0)

{Note th2t the syntax requires the parentheses irn both of the last

twe examples. }

6.4.4., Cemantics

5.4.4.1, The conjunction token and disjunction token represent
ordinary logical conijunction and disjunction; the negation token
represents logical negation. This meaning 1s given in the

following table.

left operand bl true true fatise falee
right operand b2 true false | true false

|
cenjunction: bl oa D2 true False i False falce |
dizjunction: bi v b2 true true | true false
rigation: b2 false true : false true

Since ire operands must be evaluated before tnese definiticns can be
appliec, i either cperand is undefined the value of the formuia 1s

also undefined.

S5.4.4.¢. A relational expression 1s evaluated by first evaluating

tne expressions {g.v. Section 7} and then evaluating the relatien

Sectilon § Statements

Page 2%

according te the ordinary mathematical meaning conveyed by the token
wnlch ZIorms +the relator. 411 the vrelators are defined for
integers, but the relations denoted by the equals token and the
differs from token are not defined Ior reals. All the relators are
also gefined for text values; the equals token and the
differs from token hnave their obvious meanings and the remaining
relations test lexicographic ordering of the text. {Thus

fag " < 'ab', etc..! The relations dencted by the

'a’ < 'aa’,
equals token ana the differs from token are defined for arrays
provided they are defined for the base type, but the other relations

are not,

5.4.4.2. The value of a parenthesised guard is the value cf the

guard it contains.

5.5. The Tested Invocation

The tested invocation is used in conjucticon wWith the
fail command (g.v. Secticn £6.2)3; 1t enables failure to be detected

and appropriate action To bhe taken.

b.0.1. Syntax

tested invocation:
test token, invocation, success and failure clauses,
end test token.

success and failure clauses:
success <lause, failure clause;
failure clause, success clause.

success clause:
success token, simple command chain.

failure clause:
failure token, simple command chain.

9.6.28. Examples

test object code := compilelexpression)
on Buccess
evaluatelonbject code]
cn fatlure
Print['Syntax errors prevent evaluation ']
end of test

test n 1= integer from text[numben]
en failure
passe

We have now dealt with all the numbers and go on to leok at the words
in success

Sum = Sum + n
Sum of Squares := Sum of Squares + (n+2)
Item count = Ttem count + 1!

continue summation of numbers
end of teat

5.5.3. 3demantics

The execution of a test construct commences with the execution
of the fnvocation it contains (q.v. 3ection 6.3.4). Subsequently,
either the failure clause or the success clause is executed: the
choice depends on whether the invocation was terminated by a

fail caommand (ﬁ.v. Section §.2) or was successfully completed.

Execution of a failure clause or success clause consists of the
executicn of its simple command chain. {after completion of a
tested invocation, execution continues with +the statements which
follow it. A fail command within +the success or failure clause
will, of course, cause the whole tested Invocatiopn to be terminated

as described in Section €.2.}

Sectlien § Statements

6. Simple Commalids

simple command:
dummy co mmand;
fail command;
computat ion.

computation:
inyocati an;

sybstitu tion;
assignment.

¢.1. The Dummy Command

6.1.1. Syntaz

dummy command:
dummy token,

6.1.8, Example

ass
6.1.3. JSemantics
A dummy command performs no cgperation. {It is

syntax demands & command but ne action is required.}

6.2. The Fail Command

6.8.1. Syntax
fail command:

fail token, computation;
fail token.

(o)
b
=]

Erample s

fatl with Messagel 'Output too big for field']

;T
fail

Sinple Commands

used when

the

Secticn 6

€.2.3. Eevantics

The fail commard is used for handling errors: it causes early
termination of all or part of The program. If the fail command
CONtAains o camputation this is executed kefirre the termination takes

place,

If the fail command is a program statement, execution of the
program is terminated. I it occurs within a bleck , the invocation

of thnat block is terminated (g.v. Sections 5.5 and 6.3).

6.3, Invocations

§.3.1. Centext-free Syntax

invocation:
invocation without resuits;
invgcation with results.

invocation without results:
actual block name.

invocation with results:
jeined name list, becomes token, actual block name.

actual block name:
name with arguments,

g.3,2. Context Restrictioneg

Tne actual block name i an invocation must mateh the
formal block name cf some block, which will be referred to as the
tnvoked block. {3Section 2.3.2 ensures that the actual bloeck name

matcehes atk most one formal bBlock name.}

= the dnvocation i1s gpart oI a block, then e

G:
DJ
P\:
[
.

age l+vst o©f that block must inciude all the names in the

Lzt of the Znvoked bilock.

$.2.2. The argurent Iist ¢f the actual block name must have 1he

Same nunier of entries as the parameter Iigt O the invoked block.
6.3.28.3. The <nvoked biock of an invocation without resuits must

Lection Simple Commands

have an empty reswuit list.

§.3.2.4. For am invocation with results it is required that:

(a} Thers are as mapy names in *he joined name list as in the
result list <©f the invoked block;

(b) The invocation is within the scope of these names;

(c) Each such name 1s & vartable name;

(d) The types of these names correspond to the types of the names in

the pessult 1Lst of the invoked block.

£.3.8§. Exzamples
Line from [margin + 101 to [margin + 10 + length of item)
aipha, beta := Roots of (6] xsq (+5] = [-1]
t 1= tanlpsi]

§.3.4. Semantics

An invocati on calls for the execution of a block, which has the
effect of the following algorithm {but may be irplemented
differently. Ir. particular, the method by which an implementatian

passes its parameters is not specifiedl].

rirst, the expressions in the aragurent list of the
actual biock name are evaluated (g.v. Secticn 7) to yleld a list of
values. The names in the parameier I1igt ©of the invoked block are
asszigned to these values by taking the entries of the two 1lists in
the sane order. {Secticon 6.3.2.2 enzures that the lists have the

same nutiber of eniries, which may be zero.}

Secondly, the statements which comorise the block tail of the

inyoked bloek are executed in order,

Subsequent actiorn depends on whether the executisn of <the
invoked bloek was successfully completed or was terminated by a

fail comimand.

Providing the execution was successful, the final stage of the
invocation is the transfer of results, and occurs only in the case

of an invocation with results. A list of wvalues is consiructed Ly

Simple Commands Section 6

Page 3¢

Tdking irn order the values of the names in the presuit list of the
invoked block. The names In the joined name list of the invocation
with results are then assigned to the correspocnding elements of this
list oI wvs_ues, the correspondence being ohtainea by taking the
entries in the same order. 7 any of the names in the rpesuit List
d% nut have defined values (e.g.,, Decause they have never been
assipned te a value or becauwse nf the effect of this section) then
the corresponding pames in the joined name list are likewise 0ot
definea. {Secticn 6£.3.Z.- ensures that the lists have the same

number of wntries.}

If the executicn was terminated by a fail command, the names 1in
tne joined name list are not assigned to any values. Thus, no
dttempt ray Dbe made to use these pames in an expression. Values
wnich have been assigned names in the global iist Dbefore execution
oI the fail command retain those names. Otherwise, the invocation

as a wihicle behaves as if 1t were a fajl command.

{Thus the jpvocation | Ezecute some block) has an effect
identical to that of the following tested invecation.
test Execute scme Hlooek

o suceess

pacs

or Yatlure
fail

end of test

t.4. Substitutions

6.4.1. Context-ree Suntax

substitution:
name.

6.4.2. Cintert FReatrietions

+ substitution may only occur in a block: it may not form a

program statement. The name which comprises a substitution must be

section 6 Simple Commancs

U
%)
s

dge

in the plpakiet Zist of that block. {This incluces the reztriction

tnar The Ssubstitution must ccour within the gcope <f 1ts nawe.]

6.4.3. Ezxample

select a range {g.v. Section 3...3}

£.4.4. Semantics

The restriction of Section &.4.2 means that, within the bleock in
wnich the substitution occurs, there must exist exactly onz blocklet
whose blocklet name 1s identical to the name comprising the
substitution. The effect of the substituticon 1z to inzert the
blocklet body of +that blocklet in place of the substitution and 1o
execute it. {It is left to the implementation to decide whether

this effect should be achieved by in-line code or routine 2all.}

0.5, Assignments

£.8.1., Contert- free Syntax

assignment:
name, becomes token, expression.

f.58.2, Contert Restrictions

An assignment must occur within the secope of the name which
appears to the left of the becomes token. The name must be a
vartable name, an< the type of that name must correspond tz the tvpe
of the expression (g.v. Section 7).

§.0.3. Eramples

Title ‘Report on the Netation &R’
Fumber of labels := Yumber of larels + 1
Veeter ;= array (4, 7, -1)

5imple Cemmands Section 6

£.a8.4, Semantics
The expression is evaluated and the name iz assigned to the

result. This assignment susersedes any previous assignment to

ancther wvalige,

Section ¢

|5
s

mple Commands

7. Expressions

|
I
i,
[}
[]
3]

An expression is a rule for calculating a value, which will be

real, texti or an array type.

expression;
unary formuila;
binary formula,
ternary formula;
primary.

7.1. Unary Formulae

7.1.1. Context-free Syntax

unary formula:
unary operator, primary;
unary aperator, unary formula.

unary operator:
abs token;
plus token;
minus token;
sine token;
cosine token;
arctangent token;
degree token;
radian token;
locg base e token;
log base ten token:
e to the power of token;
fength aof token;
real from integer token;
inteyer from real token.

7.1.2., Context Restricrions

Tne pperand o a unary formula is the object which

L]
of one ¢I the fiypea descrilbed in Section 5.1.4.3, d.e. inte,.=r,

follows +ha

unary operator: it is thus either a primary or anctaer uynary

formula, It is required that the operator be defined for the type

oz tne operand.

Expressions

Section 7

tength of 'Report on iR!

The wvalue o a unary formula is obtained by finding the value of
the operand and performing the operation denocted by the
unary aperator, The following table specifies these operations,
and pives the type of operand for which each operator is defined and

tne type ¢f the result,

]
operatgr operation dencted operarnd regult
token type tyre
abs token modulas (absolute wvaliue) real resl

integer integer
plus token null operation reatl real

integer integer
minus token negation real real

integer integer
sine token trigonometric sine rea? real

(of angle in radians)

cosine token |trigonometric cosine real real
arctancent principal wvalue real real
token of arctangent

degree conversion of radians reat real
taoken to degrees

radian conversion of degrees recal real
token te radians

loy base e natural logarithm real real
token

loy base logarithm tTo base Ten reatd rezi
ten token

section 7 Expressions

e to the expornential functien (™) real real
power of

token

Tenyth of nimber 5 characters text titeger
token ir tne text

real from Tt,pe conversion tnteger real
inteyer

token

integer reunding towWards zerc real irteger
fromn real (applicable only to

token non-negative ocperands?

7.2. Dlinary Formulae

Formulae in 3R differ from those in mathematics in several ways.

inere is no precedence of operators: one cannot write athrxe in 3R

but must specify either (a+b)xe or ag+i{bxe} as required. Heither 1s
left to right evaluation assumed: a/bxe 1is not allcwed, only
la/bl*e or a/f(bxe). Where the operatcrs are associative
parentheses can be omitted without amblgulty. Thus 3R allows

atpre, atb+e-d, a=ixe and axbxe/d.

7.8.1. Context-free Syntax

pinary formula:
additive formula,
additive formula, minus token, primary;
primary, minus token, primary;
multiplicative formula;
multiplicative formula, over token, primary;
primary, over token, primary;
primary, exponentiation token, primary;
primary, divided by token, primary;
primary, modulo token, primary;
primary, at token, primary;
primary, char of token, prikary.

additive formula:
additive formula, plus token, primary;
primary, plus token, primary.

V)

LXpressions Sectian 7

Lage ot

multiplicative formula:

myltiplicative formula, times token, primary;
primary, times token, primary.
7Ll0 8,
& blaary operdator nas two operands, 4nd in IR all Linary
Ul CTaTOrs are wrltten us infix setation, i.e. the symbol denoting
Tie operator nears setwesn 115 snerands. The Dbirary ozerators
dre listed in Segrion 7.z.b: IT is required that an onerator be
dejined ‘or its coperands.
A tzarees
Serial 1
First Wame + Surwnars
{Contributory factor x Days in Month) - Basie Fate
rear med 4
(2t2) + (Zxaxb) + (btl)
Jtnguiar + s
Zoi.d. femantiecs
The value of a binary formula ic sbtained by finding the values
oI The sierands oF tie Sinary oferator ard performing on them the
cperation it denctes. These operands will either be primaries,
Wwhose valucs are obtainsd &g described in Section 7.4 4, or
multiplicative or additive formulae, whose values are obtained by a
recursive arpiication of these rules. The binary coperators wi*h
their meanings and Lhe types <for which they are defined are as
rollows.
Jurmerica. Jnerators
| -
o r - - .
)(ﬂus token addotiun , delined petween integsers
i giving an integer result, and
minus tuken subtraction ! between any other conmbination
J | =5 ¢nte;;er~u and reals
| tTmes token fmuitls Licatio:)i Jing a reai resualt,
i
over token |iivisi;n ned between iNhtegers and
‘ 5 in any combination givin,
| al result.

|exponentiation
token

divided by
token

|
moduloc token

exponentiation the i
irTege na
i tive. The
same typc as
which may be

mnust be
muesT not be
result 1s o©of the
the left ooerand,
real or integer,

operand an

ght
e nega-

defined petween integers, which
nust not be negative.

integer
division
ned Detween Iintegers, whicn

pcsitive
not be negative.

1
remalnder must
afrer civision

Text Operators

pius token

times token

char of token

concatenation, defined between two text values.

replication, Jefined between an inteper and a

text value In poth cembinations.
selection. The left operand 1s a positive
integer not exceeding the length of the right
operand, which is a text value. The resuit is
a text vaiue of length 1, being the appropriate
character.

Array Operator

‘at token selection af an array elerment, defined between
an grray Fero .. n of atype value and anLlnteger
'z, wvilelds the wvalue of the ith elemert of the
array (courting frcom zero). The result is of
type atype. ¢ must not be negative or greater
;than ¥,
7.5. lernary Fornulae

Expressions

operator

takes three operands.

Section

There 1% only one

iz represented by two tokens which separate

7

Pa,e 38

7.3.1. Context-free Syntax

ternary formula: . .
ternary formula, with token, primary, at tgken, prinary;
primary, with token, primary, at token, primary.

7.38.2. Context Restrictions

The left operand (whicn 1is either a ternary formula or a
primary) must yield some array zersc .. n of atype value, The inner
operand {tne primary between the with token and the at token) must

yield an gzype valie.. The righi operand must yield an integer.

7.3.3. ramples

buffer with 'dello' at 0
vector with 1 at 2 with 2 at
transcendental table with

7.5.4. Semantics

The ternary formula constructs a new array value from an old
one. First the operands are evaluated: let their wvalues be 4, <
anc =z respectively. The value of the formula is the same as that

,th

of 4 except that the ¢ component of the tuple (countin, from zero)

has value g,

{wote that the second example is unambipucus: 2 with 2 at 1 is
meaningless, so it is clear without inspecting the grammar that

association is to the left.)

7.4. Priparies

Primaries are the basic data obJects from which expressions are

constructed.

7.4.1. Clontext-free Syntax

primary:
denctation;
name;
array expression;
parenthesised expression.

Section 7 Expressions

Page 39

parenthesised expression:
open parenthesis token, expression, close parenthesis token.

denctation:
text denotation;
integyer denotation;
real denotation.

array expressiogn:
array token, open parenthesis token, joined expression 1ist,
¢lgse parenthesis token.

joined expression list:
expression; o .
expression, comma token, joined expression list.

7.4.2, Context Restrictions
7.4.2.1. A name forming a4 primary must occur within its scope.

7.4.2.2. In the Jjoined expression list comprising an array
expression, all the constituent expressions must yield values of the
same type. The type of the array expression corresponds to the
cartesian preoduct of as many replications of the ser corresponding

to this type as there are expressions in the joined expression 1ist.

7.4.3. FEzamples

57

"Mary'’

arragy (3.14159, 2.71828, 1.4142}

array ('doubtless’, 'no doubt’, 'undoubtedly')

{ (Stock number + increment) x percentage / 100)

7.4.4. Semantics

7.4.4.1. The value of a denotation is apparent from its

representation (g.v. Section 9.1).

7.4.4.2. The wvalue of a name is the value to which that name is
assigned. In the case of an invariagkle name the name will have
been assigned te a value when it was declared, and this assignment
cannot ohange. In the case of a variable narme the name may have

peen assigned tc many different wvalues, but we are oniy interested

pXpressions sectian 7

inn the current (i.e. most recent) assignment, {The typ=s of the

ve.ue 13 Drtalinec as described in 3ection S.1i.0.3} Zf <ne name is not

15

ab3ignes. To & wvwalue, <the result zr ing te evaluate it 13

7.4.4.3. The value of an array expression L1z the tuple Iormed by
takir; in crder the values of the constituent expressions.

7.4.4.4. The wvalue of & parenthesised expression is the wvalue of
Lhe expression it contains.

QST Ion m¥oraessions

A
W
o
i)
-

[

3. Axlomatic Semantics

Tnis section defines the szmantics of 31 more formally o maans

cf a function wp, closely related o tpat i Dijxstra [2]. W mans
edch construct in the language into a predicate transicrier which
gescribes tne effect of that construct.

The principle af defining semantics by means of jredicats
r

transformers, and then using tnese transfarcers to aid IThe progran
design process, is exbounded 1n many places (including the above

reference). This rezort will not repeat the expeosition 3uT will
limit itself to a brlief summary of the properties of wp and its

Zerinitizn for 3R.

3.1. XNotation

2, B and 5 wilil be used to vrepresent predicates. A1l the

odjects in tne syntactic class guard {(5.v. GSection i.-) are

preaicates, but we alsc include other connectives of tha predicate

caiculus with their wusual meaning (rarticularly =
»

implication}, the constants true and false, and the symbol failael

whizh is used to define the szemantics of the fail command.

[e + z]R (read: e tor =z in R) denctes a predicate obtained by

substituting e Zfor al: Iree occurrence of =z in 7. Thus
[7 + 4)ix =y} = (x> 7). x oocurs free in F if 1t accuwrs din R
ziter ail cubstitutions have bLeer made. In [7 + #1f=z > 4), = is

ot. Similarly [e,f + x,y 1R denotes siwltanccus

free Dbut , 1is n
a

T
substitution 2l g and § for x and .

Eventually, for the predicate treansformers to be of any use=, the
srecicates must be given some nmeaning In terms of the oblects tne
programner manipulates, i.e. the values ol program variables. we

wisi not dntroduce an expllicit evaluaticor Zuncticn, arguir, instead
that much of the power of the methoa comes from the edse with wnlcn
it is possibie Lo alternate betwsen regavding x » 7 a: a purely

syniaciic predicate and as an asserticsn tnat T

Vioue CIYresSoonG

to thée name x s greater than 7,

Page u2

PR - . - - -
The symbol 21 is used toc mean (is defined to be eguivalent
o) . 4 wlll be wused to represent part of a program, defined in

terms I the grammar and the context restricticns on it.

wp A iz a function which maps predicates tc predicates, the
predicate transformer Ifor A, A itseif might be, for exantcle,
simple command or choice command. We argue that wip A captures the
semanTics of A, so of course the functicn represented by

Wwp simple command depends on the compositicn oI simple command.
Thus wp for 3R 1s defined by first giving wp program and so on for
all the classes in the syntax. wp itself can be «considered as a
family of funetlons; each member describes +the semantics of a
particular aonstruct in IR and is obtained by applying wp to that

construct,

Suppose a program is requirsd to achieve F, some condition on
its parameters and results, sdditionally, suppose That § is
specified as being true before executicn commences. A program such
that

wp program ' = S
will achieve the desired result. wp A F can be interpreted as the
weakest precondition under which program A 1s guaranteed to

terminate with p satisfied.

It is obvious that the syntax of 23R given in Sectlions 1 to 7 of
this rezort contains many redundant productions: extra preductions
nave beer deliberately introduced so that each construct referred to
in the text has a name. For example, consider

command:
simple command;
thoice command;
tested invocation,

simple command:
dummy command;
fail command;
computation.

In the definition of wp which follows, there are references tc
wip command but ne direct definition. The reader is expected to
examine the command 1in question and to decide If it is a

Section & Axiomatic Semantics

simple command, a choice command Zr a tested invocation; Ir it ig
the Iirst he must decide whether it is a dummy command, fail command
or computation, The Jdefinition of wp for these consiructions will

tnan oe found in Seztion .5,

In order to make this pattern matching easier, the grasmar has
peen reczrodaced produetion-by-productisn where reguired. Alsc,
each sub-section corresponds pumerically to the gectiocn of the
report which deals with the same constructicn, ¢.g. Section 8.6.1

and dection §.1 both deal with the dummy command.

a.2. Programs

program:
argument declarations cptien, program body, newline token,
finish token.

wp (argument declarations option, program body, newline token,
finish token) &

£ [faise + failedlwp (argument declarations aption)
(wp (program body) &)

program body:
program element, newline tocken, program body;
program e lement.

wp (program element, newline token, program body) R

A
= wp {(program element] (wp{program body)r » Wailed)
v wp {(program element) (F & failed)

program elemnent:
block;
program s tatement.

program statement:
statement.

3.3, Blocks and Blocklets

block:
block head, block body, block end.

11

wp (block nead, block body, block end) » b

{Tne declaraticon of a block does not affect the state.}

Axiomatiec Semantics Section 8

&.4. Arjuments

v
(]
d
e

wi
i
i
v
o
14
c
™
]
¢
L
]
A
i
o
o
o
m
[4%)

1

{The signiricance 3I Argaments

TnvoTatiins. }

8.5. Statements

statement:
declaration;
command.

g.&. 1, DJeglarations

declaration:
variable declaration;
invariable declaration.

variable declaratign:
variable token, name, is token, type indicator.

4

wp (variable token, name, is token, type indicator) F R

providec name dees not occur free in 7. {Thus no assumptions ¢an
e made about uninitialised variables.}

invariable declaration:
invariable token, name, is token, expression.

wp (invariable token, name, is token, expression) R

A .
= [expression - name] X

8.58.2, Zommandsz

command:
simple command;
choice command;
tested invocation.

3.5.3., The Cholce Command

choice cowmand:
guarded command chain, newline token, end choice tcken.

yuarded command chain:
guarded command;
guarded command, newline token, guarded command chain,

guarded command:
if token, guard, newline token, simple command chaisn.

Informally, the structure of this command is

i gquard 1

simple command chain 1
guard 2

simple command chain 2

.
-k

b

if guard n
simple command chain n
athargise chaoe

Yor all the constructs encountaered so far it has been cessible
to define wp by a recursive rule mirrcring the recursive syntax.

This 1s not so for the cheoige command+t. Instead we have

wp choice command A

= { guard T v yguard 2 v ... v guard n

an guard 1 = wp (simple command chain 1) ®

A guard 2 = wp (simple command chain 2) R

A . . .

A guard n = wr {simple command chain n) R

= G {guard i} A R guard i = wp {simple command chain i) R
i=1 1=1
Altnough »#n is arbitrarily large, 1t idis finite and there is no
complication in introducing the gquantified connectives: 3 is
=1

simply a shorthand for something which, if written out in full,

wou.d occupy an arbitrarily large (but finite) piece of pajer,

It will be seen that if &all the guards in & choice command are

false, Wp choice command 7 = “glse, i.e. there I3 no pre-condition

+ At least, it cannot be done without introducing a lot more
nctation, which dis less desirable than the wuse of the elilpsiz.
This 18 because the ©recursive rule we wish to unraval defineg a
guarded commend chain as a succession of guarded commands and
guarded command chains, and these syntactic entities #ave no

gemanttes. It 1s not possible te split off one oi th: guarded
commands and describe the semantics of a guarded command chain in
Terms ©I the twe parts thus formed: In doing so we irrevecably Zose

the non-determinism of the choice command.

Axiomatic Semantics Sectlior 8

m

Fage 4

whicn enables the desired post-condition toc be reached. This is

the meanling
program wontaining such a choice command.
simple command chain:
simple command;
simple command, newline token, simple command chain.

wp (simple command, newline token, simple command chain) R

4 wy (simple command) (wp(simple command chain}g » Tfailed)
v wp {simple command) (A » failed)

8.5.4. lfuards

Guargs are evaluated to wield +truth wvalues as described

Section .u.

. 5. fested Imveocations

£

5.
tested invocation:

test token, invcecation, success and failure clauses,
end test token.

success and failure clauses:

success clause, failure clause;
failure clause, success clause.

wp (test token, invocation, success and failure clauses,
end test token) R

& wp invocation ((wp success clause R} 4 Tfafied?
v wp invocation (iwp failure clause R) &~ Failed)

success clause:
success token, simple command chain,

wp {success token, simple command chain) &
&l [false + faiied] (wp simple command chain 7>

failure clause:
failure token, simple command chain.

wp (failure token, simple command chain) &

4 [Jalse + failed] (wp simple command chain #)

wi ehace: 1t 1s not possible tou prove anyvthing about a

in

§.6. Simple Commands

simple command:
dummy command;
fail -command;
computati on,

computation:
invocation;
substitution;
assignment,

§.8.1. Dummy Command

wp dummy command & 4

8.56.2. Fail Command

fail command:
fail token, computation;
fail token.

wp (fail token, computation) &

£ wp computation (wp fail token 3)

wp fail token R ¢ [true + fatledl R

8.6.3. Invoeations

invocation:
invocation without results;
invocation with results,

actual block name:
name with arguments.

§.6.5.1. Invocations without results.

invocation without results:
actual block name,

WP actual block name =

& [argument list =+ parameter 1list]wp block tail R

Argument liat 1is that extracted frem the name with arguments which
forms the invocation. Block tail, parameter 1igt and result List

are those of the <nvoked bleck (g.v. Section B.4.2).

Axiomatic Semantics Section 8

vage us

8.8.3.0, Invocations with results.
invecatien with results:
joined name list, becomes token, actual block name.
wp (joined name list, becomes token, actual block name) R
< lergument Iist + parameter Iist]wp block tail
({‘regult list -+ joined name listlR a Nfatiled) v (F a Ffailed))

providec that the vaiue oi (R a failed) 1s iIndependent of the values
ar the names in the Jjoined name 1list, {This forbids any
assumptions about the result of a failed invocation.}
bleck tail:

statement: .

statement, newline token, block tail,
wp (statement, newline token, block tail) =

4 w) statement (wp block tail B A 7fagiled)

¢+ wp statement (B A failed)

8.8.4, Substitution

substitution:
name.

A -
wp name 3 = wp command chain 7

where conmand chain directly derives from the blocklet body whose

blecklet narne is name (gq.v. Sections 3.2.1 and 6.4.4).

3,6.5. lssignment
assignment:
name, becomes tcken, expression,

wp [(name, becomes token, expression) R 2 [express Ton - namelR

Section & Axilomatic Semantics

8.7. Properties of wp

The wp function defined above has the folluwing properties,

which may be oroved from the delinition.

8.7.1. Strictness

For all construsts A

wp A false = false

§.7.2. Distributzon over a

For all construsts A and predicates g and R
(wp A) » (wp A R} = wp A (@ A R)

8.7.3. Continuity

Civen an infinite sequence of predicates Qi’ i 2 ¢, such that

f = o
e i+
wp A (oy Qi) = y (wp A g.J.
i 120 -
I'rom property §,7.2 it is easy to prove the following property
of Monetonicity: if 2= F then wp A § = wp A R. Motz that in

genaral wp does not distribute cover v, i,e.

(wp A @Y v (wp A B + wp A (@ v R,
(In particular, consider wp choice command.) However, tie weakar
condition

(wp A) v (wp A) = wp A (7 v &)}

follows trivially from monctonicity.

Axiomatic Semantics

a

tion 8

C
el

FPage 50

9. Termnal Symbols

. . - - - .
thils section contains the syntax and semantics oI the [lezeémes

and outilnes a comrment convention.

A 3n progran consists of a sequence of syrbois. The tpkens are
symbols, as are the Ilgtters and digttes and any other characters we
wish To Lnclude because +hey are available on ocur typewriter or line
rinter. in most representations the tokens will ©Se composed cf
multiple characters, e.g. the suggested vrepresentation for the
where tgken is where, and the newline token might be represented as
the palr of characters carriage return and 1line feed, Mo
dif ficulty should arise so long as the designers of representatlions
ensure that it is easy to map multi-character sequences into the

appropriate tokens.

G.1. Representation of Tokens

Where two tokens are juxtaposed they should be separated by at
least one space; additional spaces before or after a token are

optionai and may be used to improve readability.

The list of recommended representations given in Section 1.7.1
uses underlining to create new symbols. Underl ined words have the
advantase of standing out from the page. Fussible alternatives, if
underliring is unavailable, are the use of beld face or capital
letters, Stropping with quotes or points is net recommended.
Stropping has the effect of reducing readability rather thah
enhancing it. if capital letters are used to ¢reate new symbels,
the tern leifter should be understood toc exzlude ther. 2t muast

aiways e clear whether a jiven sequence of

a name. : Trie term digit means ahy of the

Section 9 Terminal Symbols

9.2. Syntax and Semantics of the Lexemes

The following symbols, in addition to lefters and digits, are

used in the construction of the lexemes,

symbol resresentation

point symbol

times ten to the power symbol
minus sy ibol

plus symbaol

quote sywmbol

escape synbol

open bracket symbol

close bracket symbol

LI

-+

[Y

9.42.,1. Text denotaiions
text denotation:
quote symbol, item sequence, quote symbol.

item seguence:
item, item sequence;
empty.

item:

any character other than that representing newline token

escape symbol or guote symbolj
newline representation;
quote representation;
escape representation.

The last preoduction wiil not be made more formal,

multiplicity of <©onventions, newline representation

To avoid a

will be #n,

quote representation will be #' and escape representation wiil be

Ak

Tne vaiue of a text denotation is the sequence
cbtainecd by replacing the newline, gucte and escape

by the appropriate characters.
Usin,, The represenvations given above, the
text oenotations.

'This i3 Text'
'Everything*'s beern said’

of cnaracters

representations

rfocilosln

o

'YLl words are pegs to hang ideas on.*'*n{H.K.Beegcher)'

Terminal Symbols

Section 9

i
o
)

dote that it is not pussible for a text denotation <o extend over

mere than one 1ins.

InTigers arc ZejoTes by a seqguence of digizts in 5021
i LI, There ars n& Ge:;sravlluns Ior negstive integevs
JeEL 2. feze dewaotations

Ihe denstatlon must contaln eitner a point symbol cr a

times ten to the power symbol, or botna; & point symbol must always
pe Icilesed by a Jdigit. Tne dnteger exponent following the
times ten to the power symbol may be precedez by a plus symbol or a
minus symbol if required. Thus the folilewing are equivalent
real denotations.

5.7

§710-1

LO710 412

G.87 101

9.2.4. FWNames

A name consists o a letter followed by a (possibly empty)

I

sequeling of letters, digits, spaces and any other symbols a
represeitation can allow without Introducing amblguity. {Thus the
minus tuken coula not e usca, but ¢V zaight Le allowable,

on the representation »i the tokans.)

conTalr: amu-tiple space:

vpoerY & . lower lase loeuters zre difrorenz. Lxemp_€s:
trngia
Start Colurn
Zine printen

Section 9 Terminal Symbols

2.2.5. damzs vitn arguments

4 name with arguments consists of a name together with zero or
more arguments, where

argyument:
open bracket symbal, expression, close bracket symheol.

Thne aryuments may precede, intersperse or succeed the characters of

tne nane. Cxanples:

oy Ly

Lina from [Start Column] to [EZnd Column]
[al minus LB]

tan [tieteal

This ome haprens to have no arguments
Ackermann [3]0 2]

The agrgument iist of a name with arguments is the 1list of the

expressicns taken In order.

9.3, Comments and Continuations

The syntax does not explicitly permit comments. This is neot
meant to discour4ge their use, but reflects the view that the

commentary on a program is not itself part of that program.

Since the newline token is both part of the syntax and the aonly
means whereby a newline may be started, a means of breaking

inconveniently long lines is provided.

The Zfollewing conventions are reccmmended Tor comment and
layout; they do not apply inside denatations. The symiuls used

are:

symboil repressntarion

start comment symbol
end comment symbol
continuation symbol

(1) The start cowment symbol, the matching end comment symbol
ars daii. the symicls between them are eguivalent to & s-hace, By

"matching™ we intend to allow nested comments.

Terminai Svmbols Secticn 35

Fage 5S4
(ii; Multiple spaces are equivalent to & single space.

(111} Wwhere a newline token is immediately focllowed by a symbol
wnich 1s not a space, that newline token and all succeeding symbols
up to «nd 1neluding the next newline token are egquivalent toc a
newline token.

(iv) Multiple newline tokens are equivalent to a single

newline token.

(vl A newline token preceded by the continuation symbol is

equivalent to a single space.

{Nots that it is possible for more than one charagter to
represen: "space', e.g. in a particular representation

"horizortal tab'" may be considered as a space.}

Section 3 Termiral Symbols

Page o

o

10. Acknowledgements

A3 was nentionei in the Foreword, the original desipn of 3R was
a by-product of a contract iet by the Design Cffice Consor:ium, who
have consented T2 the publication of a nodified versis cf the
notation. The changes have been initiated by both the search ror
s3imple formal semanties and the experience oI usin, the language;
reassuringly often these two avenues led to the same destination.
L an grateful to Brian Shearing for ,iving freely of his time so

that this report cculd benefit from his experience of 2R,

Throughout the development process Frofessor C. A. R. Hiare has
srovidea helpful suggestions and constructive criticism, and all the
memkers of the Programming Research Group have played their part by
senerating an atmosphere in which all the drawbacks of an idea are
rapidiy exposed. J. Mack Adams, Malcolm Harper, Andrew lewman, and
Joe Stoy have all provided special help, from proof-reading and
assisting with the text-processing system to discugsing issues cof

formal semantics.

Acknowled, ements jeetion 13

11.

References

[1013

(111

[121

Alock, D. G, Feadabiitty of Design Progrums. Proceedings
=i Colloquivm on Interiace Between CZomputing anc Jesign in
Structural Engineering, ppill.l - ITI.13, Zergarc; September
1278

Lijkstra, E. W. Fuarded Commands, Nondeterminacy and Formal
Deripation of Programs, Comm ACM Vol B Nr B8, ppu53 = 457,
Also Dijkstra, E. W. A Discipiine of Programming.

Prenticge-kHall, 1976

ariez, D
Chagter

. Compiler Construction For Digital Computers.

I, wpl?2 - 48; wWiley, 1271

Hekner, E. C, R. On Removing the Machine from the Language.
Acza Inf. Vol 10 Fasc 3 pp 229 - 243 (1578)

tiehner, E. C. R. do Considered od: A contribution to the
Programming Calewulus. Acta Inf. Vol 11 Fasc L,
pp)87 - 304 (1875)

Hepereft, J. E. and Uliman, J. L. Formal Languages and their
Relation to Automata. Adcison-Wesley, 1969
lHazicnal Ztandards Institute, American. American Natignal

Standard Programming Language PL/T. X3,63, 19786

2LELA. 3R - A notation for Describing Computer Programs,
Directorate of Architectural Services, Froperty Services
Agancy, LDepartment of Lnvironment; April 1978

salomaa, A. Formal Languages. Academic Press, 1975

Ghearing, B. d, The Forpa Programmer's Manmwual,
Design Office Consortium, Guildhall Place, Cambridge, 1977

ring, B. d. Nustress Programmer's Manual (Part 1),

I.A. Ltd., 23 Lower Belgrave Street, London, Swlw QNW;
t

Wirth, N. Systematie Programming: An Introduction.
Prentice-Hall, 1973

Index to

Grammar and Technical

Terms

(printed
{orinted

numbers on wnich the approoriate definition may

The

Tnis index 1listsz ail the

in i{talics!
in gothic). Zach

Terms are not listed,

listing

technical terms

and all the nor-terminal symbols of
the

Zives

actual block name §5.3.1
additive formula §7.0.%
argument declaration fu.l
argument declarations cption salt
argument liat §9.,2.5%
array bound §5.1.¢
array expression §7.-.1
array indicator 55.1.14
assignment EE .5,
base type indicator §5.2.1
binary formula §7.2.1
block §3.1.1
block bady §3.1.1
block end §3.1.1
block head 2.1.1
bloek list .2
block tail .1
blocklet L2
blocklet body .1
blocklet name .1
blocklets option .1
boolean .1
chaoe .3
choice command W1
command

command chain .1
computatiaon

conjunctive formula !
declaration Ll
defined (tinary operators) §7.2.4
de fined (relators) §5.4.4,2
de fined (unary operators; §7.1.L
denotation §7.5.1
digit §9.1
disjunctive formula §o.u. 1
dummy command §6.1.1
empty §1.,2,3
expression 7.0
fail command §6.2.1
failure clause 65.5.1%
formal block name §3.0.1
global Iist §7.3.1
guard Fh.b4.1
quarded command 35.3.1
guarded command chain 65.3.1

Index to Grammar and

secticn

be found.

defirned In the

the 1
end

Js

23
L6
S5
15

QG R a1 2 R
[ISR=N S W R

:
P
-
p -
o
b
p
>
p

.
b}

RIS
LIPS

VNS
ry

s B & B

Techniocal

resort
ramimnanr
Lpage

of

es

Terns

Fage 58

identical §9.72.¢ P52
invariable declaration 5.1.1 P19
invariable list 5.1.2.1 228
invariable rame §5.1.2.1 pZc
invecation §6.3.1 =28
invocation with results §6.3.° cl8
invocation without results §6.3,1 P24
invoked block §6.3.7 pia
joined expressiocn list §7.u,1 P39
joined name 1list §3.1.1 plz
letter §9.1 pso
lexeme 51.2.2 pé

local list §3,1.2.1 pil2
mateh §2.3.2 pll
multiplicative formula §7.7.1 P36
name List §3.1,2.2 p13
operand §7.1.72 p33
parameter declaration gu.1 pl7
parameter list §u,2 pl7
parenthesised expression §7.u.1 P35
parenthesised guard §5,4,1 pIs
primary E7.4.1 P38
program £2.1 plo
pragram body §2.1 plc
program element §2.1 nlo
proyram statement 52.1 pld
relational expression §5,L,7 p23
relator E5.4.,1 p23
result declaration 4.1 pl?
result ligt §4. 2 pl7
result list option §3.1.1 pl2
scope (global) §7.3.¢z pll
scope (loeal) §3.1.2.6 pl3
scope {of block) §2.3.5 pil
scope fof blockiet) §3.2.2 pls
simple command §6.0 027
simple command chain 5.3.1 p22
statement 55.0C rla
subrange indicator §5.1.12 pl3
substitution §6.4,1 p30
success and failure clauses §5.5.1 p2t
success clause §5,5,1 R

symbols §o.0 ps0
ternary formula §7.3.1 p3B
tested invocation £.5.1 P25
token §1.2.1 PS5

type indicator §5.1.1 pl1g
tipes §5.1.,4.3 p2i
unary formula 7.1.1 33
unary operator §7.1.1 pdi
usage list §3,1.2.2 pls
usage list option 53.1.2 giz
variable declaration §5,1.1 pla
vartabie list 55.1.2.1 p20
variakle name §5.1.2.1 p20

