
Or""cj t ";"~r~'~1 Com:~I_I~'n'J L~~c:c'~ry
~.' ~ ,I i , I j

I '. I .jj .

OXroH.I ox J 3Ud

REPORT

ON THE PROGRAMMING NOTATION

3R

Andrew P. Black

Technical Monograph PRG-17

August 1980

Oxford University Computing Laboratory.

Prograrnning Research Group,

45, Banbury Road.

OXFORD. OX2 6PE

o
-1=

"
'l

jC

6­
><

(.

Jl

'J

><

H

:"

0
~

I,
:to,

o

0<
,

0
:::J

2.
r ~

 6

s'
::

l;:
;

n;
u

;:
;

c,

~

~

1-
'.:

:;

'3

:::J

r"
c.

,;
0"

,
-.:

:

" >
<
7
J
~
'
j

 "
,
,
~

0

I1
l

(II

e,

re
[f

l
1-

'.
I
-

m

(\
'

(0

r-
llJ

>
[
J
~

llJ

'<

;
0

tT
l

'i

""

0
0

eT

O

t:
~

G
;'L

:

"
0

o " rt

~"

'd

" " C
" o ~ o " U
 '" ~

'<
 "

Contents

r:Jceworc (bj Brian Shearing)

O. Intrcduc-::ion
0.1. Cr. =mplementat:'ons
0.2. An Overview

1. 'l::-"e >lethod 0:: Desc:riptior.
1.1. Technical Terms
1.2. Syntac~ic Description
1. 3. ::;emantic Desc!"'i;n:i:Jn

;;otation

2.	 Programs
:'.1. Context-free Syntax
i. 7.. Exarnples
i. 3. Com::ext Res1:rictions
2.4. Semantics

b:="OCKS and b.J..ocKlets
3.1. Blocks
j.2. block let s

4. Ar-gurnents
4.1. Context-free Syntax
4.2. Context Restrictions
4.3. Lxarn:;:Jles
4.4. Semant ics

S. Sta1:erner,ts
5.1. ueclarations
S. 2. Commands
S. 3. The choi ce ~(Jr.unand

5.4. :;uards
S.S. The Tested Invocation

E>. Sililple Commands

E.:. :he Junmy Conmand

6.2. The Fail Command
5.3. Invocations
5.4. Substitutions
G. S ..;ssii;nments

'7 lXflressions

.1. Und!'y ?orrr,ulae

3inary r'orcL.lae

.3. l'ernat'j" Formulae

.4. ;.l~'ir.,arieS

?age iii

v

1

1

2

4

4

4

8

8

10

10

10

10

11

12

12

15

17

17

17

18

18

19

19

22

22

23

25

27

27

27

28

30

31

33

33

35

37

38

Contents

i'a.;e iv

8. MxioDatic Semantics 41
3.1. :Jctation 4:
a.2. :T::;';r'CiP.'l5 4 J
8.3. ol:;:lcy.s ar.d blocklcts 43
S.4. Argur:lents 44
oS. S. :::tatements 44
8.5. Simple COlJU;'1ands 47
8.7. ?ro~erties o~ w? 49

9. Terminal Symbols 50
9.1. :\el'resentation of Tokens 50
9.2. :;;yntax and Semantics of thr;; Lexemes 51
9.3. :::cliullen1:S and Continuations 53

10. ;"cknm:le-igements 55

11. References ;s

Index to :;rarnmar and Technical Terr:ls S7

Forev.'ord (by Brian Shearin~)

If an e:l o ineer' jesi..;ns a Driobe liS ing a com~Jter :;Jroora... wri ";:<:en

by sorr,eone else, the: person responsible if the bridee falls down is

1:ne en.;,ineer, nOt the a_thor cf t~e ?r~gra:.. Si!~.ilar s~ateT:ler.i::s

cdn De made in most professio~s. It is essential that responsible

users or pro~r~ms Sll~uid be able to ins~ect them and be satisfied

tllat t:Jey are sound and ...iD1-,iicable.

The ;:rcE,rarr,minr; languat;es Qf today are so ~oor "chat few

IJt"'ogramners can understand another prograJ:lmer' s work, or even their

0wn work after a few months; it is not reasonable to expect an

intellibe~t ~ser tc ~ndersta~d it.

The traditional response to this (and ether) :;:Jroblems has been

to desi 6 n high-level =-ar:guages of iLcc'eo::sini; ;?ower. In 2ontrast,

this report is part of a contirluing experiment to discover

;..;roE:;ramci:-"g notations whose em~hasis is 0)") si!Tl;J':"icity rather than

l-'0wer for its own Selke. The eventual aim of the eXf)erimen: is that

a :;:,rogram shOUld be understandable nOT ~ ust to other programmers but

dl.SC to tnose with only a laynan' s KilOwled,t;e of ThE esser.tials of

progrdmr.linb ·

The :irst publisiled version of 3R (December 1977) was created by

Alcock Shearing & Partners to fulfil a contract with the Design

Office Cons0rtiumt. The rec;.uirement was the product':on of a

"publishable: program" for use in the Construction Industry. That

program - the Forpa Program - is published as a book in whieh the

iirst part "describes the notation used throughout t"he rest of the

manual" [10J. This notation is 3R. It was most encour'aging that

the Prograrr~in£ Research 3rou? at Jxford took an interes~ in 3R.

Andrew Black has here produced a concise but rigorous defi;'li tion of

the syntax and semantics of a notation ca.pable of descr~bing non­

tri v iai pro;:;rams with great c=-ari ty.

t The Design Office Consortium is an association supported by the
Departments of Environment and Industry, and aims to encourage the
use of computers in the ~uilding Industry.

Foreword

2a6= vi-

we have be~n usint;; cin evolving 3R £01'. arnon55T 0ther' thin6s, d

pr01::,raI:l 0120 O'JO Fortran statements [l:J. dnd we <ire confident thdt

tne prCbr~nL ooes ,...1".at i..;: shoulc. ;"e a.re d~SO conf=-der.":: "that we

could con·"ince a modest~y '..,rel~ ~nformed '.lser that tile progr,.'lT;] dOGS

what it shoulJ. simply by "~eading him ;:hrough" the 3R descrijHion.

The ~':ea 0::: a notation based on simp'::-ici ty :"1as been prese~~tE:d

informally to se veral conierences and also in writing [1] [8 J . The

re5~::)nse "[0 these presen::ations, cur own use of the notation and the

work at Ox":ord have resulted in some six didlects. The Oxiord

dialect presented here is the most rigorously defined and mares the

fewest co:,cessions to translation into currently aVaila:.J:Le computer

languages.

MUch remains to be done. At th~ moment the t'... o characters 11 3R"

stand Xor an idea. The idea is tai<:in& shape. r.ow it wiLi- Turn

out no one can tell. But this report is an iJ:lporTant milestone ill

its development.

Brian Shear i.n~,

AlCOCK Shearing & ?artners.

Foreworo

?a~e :l

O. IntroJuctlon

The first version of ~](Cmerltioned in ~;Je fOi"<::',;')rc.) WdS

::.::.esc:r:;.~,;;, ~ 'IS !'": b:-,:eilj, bl~1: ",uf:ic~e=--.':: cieta.i::'- t~ .-:-.a;';'e ~he FG,'~a

Fr'.::gran -''-lambi~uous. nO'",'ever, Gone parts of the ~anl:uij.ge '~'ere le£"t

ir. r:ee'~ ·-:t clar-ifica"tion; we no:?e ~his re~ ort :;rovices it. In the

:;:;r·.::ce5::; ,)f conple-ting the deiiniti-o;l further .si:T":?.:cificati:ms h.)'.1'O:

been maLk; the sequel defines "':"he Oxford version of the nc,tatiGn de:;

it 3"ta~~ itt l:overnbe, :978.

0.1. On ImlJlementations

:.. .." is a r:=:,tation for describing solv[ions to I)roble!:ls which

rceq:..lirt< the use o.f com:Vclting machinery. The '...;se of sorr.e foroal

llctation is necessary because a ~,roceS3 IT,ust be ~'iborou3:Y defined

berore iT can be ;lIecnCl.ni.5~-"d. IT: SilOU::'-d nO"L be i~;ferrec.i, however,

tl\at the process definitie-n, i.t<. the pro/3rur:1, must be ir. a form

'wIiich ca.;; :::e L.sed directly to instrl..ct a muchine. The ma~n part of

the prol,jrarnmillg problem is solved once the tJrogram is written in a

iJlacni.:1e independent, easily ~r;derstanja:Ole notation such as 3R.

There re~ains the problem of ~oding~ of creating a realisation

O.I the program Cir, sooe computer .ianguage) which can ce used to

control the hardware. The [orr,a Program WdS transliterated into

Fort::::,an by har..d, and realisatioTls iTI other COIIlputer lan[;:.ages a:c"e

under construction.

rtowever, because 3? is a very simple notat~on and programs in it

specify every detail of the problem solving procedure, there lS no

reason why this transliteration shou=-d nOT be mechani~ed. The

resul.ting cod", may not be as efficient i:lS that produced by an

ex~er~er.ce·-::.; ;::oder, b..:.t this is beccn:ing ,) less ioportant

consiQcTdtion as COJrl;.)uter hardware becomes cheaper. So ~eel free

l:C ·...T~te a QOr'.;::-ler =:::>~' .)i\.

The iJilyOI'tant I-,oint is the: oonverse, however: lack of a compiler

(lees neT ':'i;~,it "the :...sefclr:ess cf 3R .:..,. any' serioL.S wuy. :It ;la.S

been anG will be used in real, large scale, projects. The

In troJuct-lOTI ;';ection 0

Page 2

separation of these projects into a programming and a coding stabe

facilitates a useful set:Jaration of co:"cerns. l'ihen writing in 3R

attention can be concenl:rated on 'the problem and tie alboric:hm Losee.

to solve it. Considerations of eiflciency can be dealt with later,

when realising the program in some more machine 0rientej com?uter

language.

D. z. An Overview

'fhe name 3R is the well-known acronym for reading, wri tint: and

arithmetic, and summarises 'the main features of the notation. It

is designed ior readability; ease of writing co.':",es c:.. poor secvnd.

3R is distinguished by its lack of "features" and novel ideas: it

has been produced by extracting common factors from other current

programmin~ langua,ses, designing a uniform nota"':ion for them, ane

ruthlessly throwing out any constructs which were obscure.

ambi~uous. dangerous or unnecessary. Those t:hat remain fO~~111 the

minimal set necessary for writing large ~rograJ:1s, or so we

conjecture; the object of publishing this definition is to enable

this conjecture to be validated by wide-ranging experiment. The

most obvious attributes of the notation are:

(i) Support for program development by stepwise refinement [12];

(ii) Acceptance of Dijkstra's alternative construct [2J;

(iii) Avoidance of defaults [7J;

(iv) Absence of a loop constr~ction [5].

These features are now discussed in a little more detail.

(i) 3R does not have an Algol-like structure of nested blOCKS.

Instead the structure is Ilflat": if any complicated action is

requireu it is necessary to invent a name for that action and later

define, or rather l'efine, the n~e. J:r, tnis way the probrammer is

encourali,ed to make the design process obvious from the "text. It

also Decomes unnecessary for a reader of the prograJ.1 to have a.n

arbitrarily deel) stack of defin~tions ir. his hea.d: instead he r.eeG

remember exactly two levels. Although there will be more names

visible at each level. "the result seems to be more readable than

conven t ior.al block structure.

Page 3

(~~) ihE: :haice Ccc.manc of 3? is c:Cosely modelled on Li~kstrals

al ternat i ve con3 t ruc"C, and thus Ci.llows non-determinism. In our

nctati2~ u~~ks"C~a's classic exaD?le beccrnes

wile re se t f'lax imum is

-ii.x.,;y ­

maxinum := :)

i.i..x?-d

maX-l,T7Um ; = x

oti,el'wiae chaos

(iii) De::a·..lits may make proi;l~ams easier to write, but --.:he price

paid when the)' later come to Le r'ead is unacceptably hibh. We aim

:e,r everyth~ng to be obvious feom the text. That is why Dijkstra's

[i DdS been repJaced by othel'uise chaos~ Wllich WE: ho?e i.ilplies the

consequences of failing to ensure that at least one of the

ccncitions ~s satis=ied.

(iv) There is no loop construction in 31".. Instead, since the

piece of peoilram we r.li::ly require to repeat will invarial:lly have a

nar.le, -:::ne repetic:ion is o:;tained simply by using that name. We

hesitate to use the tE:rm recursion as this has come to imply an

imp~ementation in terms of stacks and calls, which is u;'Jnecessary

an::; ulwesirab:Le in hJost circuDstances.

Introrjuct ion Section 0

E'ag", !.l

1. The Method of Description

'"Zoe "':.::;le of 3; cS de:inec '::'r, -::;-,i:; re:;:'C'!~t, \.ih~ch takes T['.e

llnUSUdl (bLlt in JIlany ways more natur,ll) step of descr",,-bing; the

l6r,guCi G e ::':)[;1 The -:0:;: ;:o;.;m-iar·=s. ?:'rs":: we de=>ie -:he n'::.c:icn 0f a

prograrll) in terms of its (as yet I-':TJdefi"ed) suL'cor<lp·)nents; Then come

the dc='init~on5 o~ those SUDcoI:1;;or.ents, and 0: t~ei, ::JlJ.boompor,ents,

unTil ever':Ja::"":':-i ever::r[hint; is Gef':"ned ':"n 7.:erI:15 of -::ne Zexef.7es and

<;;okens (q.v. Section :1.2), wl--..ich arc the basic u:,i t:::; fron which

iJrograT:1S a~'e ;)-.:.'::'1.;:. Si;--;ce "::!1C strL:.2tJ.re of 3?, i:o l1:)t re::':drsive

(except f.::;r such thi.ngs as expressions), this re?ort L'lakes 0;--',.1-.,/ a

small numb",,:, :Jf back references but a large nunber o~ forward

references. ;';e ds not fee::' t:"a'[tnis irr.?dirs rcadab::':"iL:-,' because

it is ce.ntr3l to the design of 3R that every construct m'2<3ns wilat it

a:??ears to llean. =:n first acquainti~nce there ~s 11:::' n<::e(~ ~o l,'ok \I:::
the forwar(J refeI'ences: they are there to reassure rat}jtO:·r' than to

perplex. :>iJ.lilarly we have not hes:'tated to use as yet undescribed

constructio~s in the examples.

1.1. Technical Terms

In ar e::fort to aVG~:::' t:~e eXJ'."''::;,s:\I~--' ;J5e of o.~breviati,:)r,5. SOT::le

long and turgid ?hrases have L'e-::n u;,:;ed in the text. j!owever, this

has not been take;--I to ext:l.'e:T.es, ar.d '''':-ler-'-~ necessary' a technical 'term

"as been ir.troduced, ir,Jicated b:J' it:: name a;Jpe2.ring :n ito.1.ics.

All the ":echnicdl terms a!'8 defined at an appropria te place in the

text; t'L<o locatio;: of an} ~)",-:'t~2'_ldr jef::'ni~ion can be found frol:!

the index ,jn paGe 57.

1. 2. Syntactic Description

l.'le s~·'.tax wi:"i be describe::: b:..' u r~:et ..!.:.cl.;~0'-'.:!ge ,oJ}, ~::!l represents

,J, context-free grammar [3J [0]. Th:'s [';ranmar gere:c2.te.s a langua[e

larg~r t}l~n 3R, and is accoD?anied by c~ntcxt re5trictisr~~ exrlressed

in .Lr.~liS:I. h3 h,J,s been ir.dic2.ted ai::<:v<", ";:"e -:ct'~:,::'nal S:;T_DO::'S of

the /3r'ammar are tokens and 7..exeT"es.

SectioT' 1 The t-1cthod of Description

Page 5

1. 2. 1. The Tokens

h. token aDs-:rac-cs frolT. a basic sj:r.bol; 'Nithin the grar..-:iar it is

easily recognis ed by its name, which ends wi th token.

e. 6 . let token. T:'le re:;Jresent2.tion of a token is r:le3.ningless

excet:Jt in so :ar as the symbol chosen has a mnemonic qua.i.i t/.

below dre listed the representations of the tokens whic~ will be

used in this report, and

token

abs token
arctangent token
array token
at token
be token
becomes token
char of token
c10se parenthesis
comma toke n
conjunction token
cosine token
degree toke n
di ffers from token
disjunction token
di vi ded by token
dummy token
e to the power of
end block token
end choi ce token
end test to ken
equa1s token

in a few

token

token

exponentiation token
fai 1 token
failure token
fi ni sh toke n
if token
integer from real token
integer token
invariable token
is at least token
is at most token
is greater than token
is less than token
is token
length of token
let token
log base e token
log base ten token
mi nus token
modulo token
negation token

The He1:hou of Des cript ion

cases suggested al ternat~'Jes.

representation

abs
arctan
aI'I'al{
at
be
: '"
char o-f"
-)-­

, and
COB
deqI'ee
•
v 0"

div
~ skip
!!E'.
end 9..i. block
otherwise chaos
end 9..i. te8~

t
fai 1
on fa~Z lure
finish
il
integeI' from
integer
invaI'iable
> ,
> ,
is
length 9..i.
Zet
Zn
!..'!JL

mod
~

I'eal
---­

not

Section 1

Page 6

newline token

of token £1.
Open parenthesis token (

over token /
parameter token ::>arameter
plus token +
radian token radian
real from integer token ~rom integer
real token I'e a l
result token I'ea ... lt
sine token gin
success token on g ... cceS6
test token tea t
text token text
l:i rnes token

upto token

uses token U8e8

variable token ~abZ.e

where token where

wi th token with

ze ro token zero

1. 2.2. Tn" ~exemes

A ~lexeme is an abstraction of a class of user-defined objects,

l2dch mem~E:r being similar to but distinct f:-om the others.

e.g. integer denotation. The representation of a lexeP.1e lS

structurea, and the structure conveys information.

The fG~lowin& me~a-variables are lexemes.

name
name wi th arguments
text denota ti on
integer denota ti on
real denotation

Names :;.re usee. to label values. The only pr,-'perty required of

tiler., is that it be ~ossib:ic: ~o determine if a!lY two names are

identical. The following arl2 examples of names.

!r.lme
Pattern
mCl'e to first month of n<!xt year

Names with arguments are used to ~arne an~ refer to blocks. The

argu~ents are always o~tional, so ~he class name with arguments

Section 1 The !-1ethod of Description

i,~21udes the c:'as s name. ;::xa;.,;..J:-cs:

print['Answer is']
pos-ition of [xJ in [tableJ
chal'acter [3J of [HeadingJ
tab to column [?J of [tdpelJl'iterJ
ran com

The argument li.s t of a name with arguments is the list of

expressiuns (q.v. Section 7) withi:J the brackets. The argurr.ent

lis-:s O"7.~ "[he first fc~r exam?~es are thus

,Answer 'i,s

x tab le

J Headi.ng

? ti./peLJriter

wnilst (random 'I has an empty ar;;ument list.

Text denotations. integer denotations and real denotations are

tne conSL:ants of the ianguage. Examples are

'This is a text denotatiolz'

57

49.35

which Jllean just what they appear to mear.. All the lexemes are

de.fined formally in Section 9.2.

1. 2 • .3. The Productions

The production rules of the context-free grammar will be

presented in the same form as the following examples.

vehicle:
bus;
car;
bicycle;
lorry.

convoy:
vehicle. vehicle;
vehicle. convoy.

safe convoy:
man with red flag. convoy. man with red flag.

The words in gothi c type are the symbols of the gramr,ar. The

remaining marks are connectives and have the following meanings.
means "consists of"
means "or"

The Method of Description Section 1

Page 8

means "followed by"
means "end of production!!

Thus the exaf:lple::; define a vehicle as either' a bus, car. bicycle or

lorry, anCi <.l convoy as a sequence 0: -:1-.•..] cr mc:'e vehicles. A

safe convoy is d convoy preceded and followed by a

man with red flag.

line 0e:'ini "tion which is used continuous::'y :hrc'~ghc:,ut tt"le s:,.'ntax

of 3R (an8 logically ought to be g~ven a"t tne end) is given here to

avoid unnecessary suspense. It is

empty:

{i.e. the empty sequence of grammatical symbols.}

The Star't Symbol of the grammar is program. The production

defining a given non-terminal symbol can be found us ing the index on

page S7.

1. 3. Semantic Description

The se~antics of 3R are described with the aie of a notation

similar tC i~edkes: Precondition pred::'cate transf:::rmers [2] . For

those meeting bo'tn predicate transformers and 3R for' the first time,

the combined effect may be a little overwhelming,. For this reason

the semantics of each construct are giver, infornally when it is

first enc::un'Cere:1 and the ~redicaLe tranformers ar-'e reser'ved 'Gnt il

Section E,

1. 4. Notation

The meta-linguistic variab~es are used in ~he TeX"t to denote the

objects which can be derived from them; we have allowed ourse:·lves

the freedom to capitalise their initial letter::; a:ld make them plural

where this is required by ,:he English language.

Cer'Cd~:1 t:Jassuge,:; of -'::hi::; re:?ort 2.~;Jear betw~':'n the b:oaces ((

and) , The mean ing of the re~ort is unaffected ny their

presence. {They are included 'to help 'the reader unders'tand the

Section 1 The !1e~hod of Descripticn

Pa,L;e 9

i .. ::e:--.-::.ic. 13 6.;-.:1 iIll::i:=-~2a-;:::;.;:s ~~ e ::eZl:-.l"C:l:=;:-:.

In 0.11 the examples, lines s-:arc:ing ac: the lefc: ;,ar-bin ar-e

comments.

The Method of Description Section 1

(la-be 1J

2. Programs

2.1. COntext-free Syntax

program:
argument declarations option, program body, newline token.

fi n; sh token.

program	 body:
program element, newline token, program body
program element.

program	 element:
block;
program statement.

program	 statement:
statement.

2.2. lxamples

The f~llowing are com~leTe, if trivial) programs.

2.2.1.

p'~il~ .
ttnt.8n

2.2.2.

pl'cmeter input is integer'

l'~suZt output i8~nteger

invariable three -["s 3

output~input +-;hree

[inioh

2.:5 • Context Restrictions

2.3.1. The global list of a program is the concatenation o~ ~ts

r~rametel' Zist, result list, variable Zist ana inuariable list (~.v.

Sections ~.L a~j 5.1.2.1). it is requ.irec -r,'1a: ':'t contain nc, naDe

;;L0re -rnar. once. {The globa: Ust of a program CQLca::'ns d..L: ::--.e

ndmes declared in its program body and argument decl arations option.

Tne requirement enSUI'es that eacl, name means exacTly one thing.}

2.3.2. The bLock List of a program consists of all the

formal block names (q.v. Section 3.1) which occur in that program;

it may not contain two names which match.

Two names wi th arguments match if I after the express ions wi thin

the brackets in both names {if there are any} have been deleted the

resultinb names (including the empty brackets) are identical.

2. :3. 3. l~o name may appear in both the gZ oba l li8 t and the

block list of a pro5ram.

2.;).4. The scope of a name in the gZobal List extends from the

declaration which introduces it until the end of the program,

incluclinb blocks whose usage listB (q.v. Section 3.1.2.2) contain

the name, but excluding all other blocks.

2.3.5. The scope of a fa rma 1 block name is the whole prDgram~

excluding those blocks which have an iden tica Z name in their

local Lists (q. v. Section 3.1.2.1).

2.4. Semantics

The meaning of a program is obtained from the meaning of the

argument declarations (if any) and the program body of which it is

composed.

Programs Section 2

Pali,e 1 ~

3. Hlocks and B10cklets

3.1. Blocks

M. 31Z block associaTe.:; ct naJ:le w~Lh sy;", stater;18'-::S in c:,rd2r that

tnese s"tatEments may be re.:;:erenceci, :OJ ;;c.me, fre", 2L:}le:c- ;:>accs of t'le

proLraffi. The statements IT.dke u:;:- tne block tail; 'the: oHler pareS

of the block supply corroborative deTail.

3. 1. 1. Cor.text-free S~ntax

block:
block head, block body, block end.

block head:
let token, result list option, formal block name, be token,

newline token.

block body:
usage list option, argurlent declarations option, block tail.

block tail:
statement;
statement, newline token, block tail.

block end:
newline token, blocklets option, end block token,

newline token.

fornlal block name:
l1~me wi th arguments.

result list option:
empty;
joined name list, becomes token.

usa!::le list option:
emp ty;
lJses token, joined name list, newline token.

j a i ned n arne 1i s t :
n~me ;
name, comma token, joined name list.

3.1. c;. Context Restrictions

3.1.2.]. The Zoc::aZ List of a block is the concaten.:l.ti')n of its

[Jarametel' list re3L<.Zt List, invariable list ",n:::' vC!.piabLe USI; (q.v.j

3ec-:::io"s 4.2 and 5.1.2.1). It must not contdirJ any name rnor'e. than

Oi'ce.

3.1.2:.2. :'he usage Z-Zst ,-,I a block COfl::;i~~ts of all The names in

t-ne usage list option of tnat Dloej; if it is empty the list is

eIl\.?tj. The concatendtioTi ,.:;f t),(O locaL List and the usage Zis t is

tr,e name Zist 8.J. the bl'.:;cr:: i -::. :';T:; t ;lC': contain any nari_e mere than

once.

,L1.2.3. The a:pgi.<me~lt:; :ist ':::lr the formal block name ,1:'~st be

identical in both content and ord-=r to the pal'ametel' List (q.v.

Sectior. ~.i) of the ~lock.

3.].2.4. The joined name list of the result list option must be

ideTltical ~n both conten~ and order ~o the pesuZt list (g.v. Section

~.2) of the block.

3.1. 2. S. A:il names in the usage Z-ist of a. block rlust als') be in

tJie globc:.l Li.9t of the program which contains tint block.

3.1.2.6. Tne scope of a name in the loea l UE t extenClS irom its

declaration to the end of the block.

J. 1. 3. ExampLes

3.1.3.1.

l'atio :'" ta~l[thetaJ be1.£.i.
Dal'ame tel' tht? ta ie 0­ 2xpi
l'esutt ratio is peal
ratio : = (sintheta) / (cos theta)

end 9.i. block -­

Blocks and Blocklets Section 3

Page 14

3.1.3.2.

let	 line from [Start Column] to [E'nd Column] be
parameter Start Column is 1 .. 80
parameter rnd Column is-Y. . 80
variable number of dashes is 0 •• 80
Tab to [Start ColUMn] - ­
number of dashes ;= 1 + End Column - Start Column
Write dashes

Now we need to define "Write dashes"

where Write dashes 1,8

-i.f number of daShes = 0

pass

i.f number of dashes) 0
Write[' 'J
number of dashes ::; number of das hes - 1
Write dashes

otherwise chaos

That was a blocklet (see Section 3.2)

end	 £i block

J. 1. 4. Seman tics

The association between a formal block name and its block body

is permanent and holds everywhere in the program body. The

statements in the block tail are executed when required by means of

an in ocation (q.v. Section 6.3). In particular it should be noted

tnat an invocation of a block may textually precede, succeed or be

contained in the block itself.

Section 3	 Blocks and Blocklets

Page 15

3.2.1Hocklets

A 3R blocklet associates a name with some commands. It is thus

less general than a block; blocklets do not have arguments or

contain	 declarations.

3.2.1.	 Context-free Syntax

blocklets OptiOll:
emp ty.
blocklet~ blocklets option.

blocklet:
where token, blocklet name. is token. blocklet body,

newline token.

blocklet body:
command chain. newline token.

command	 chain:
command.
command. newline token, command chain.

blocklet name:
name.

3.2.2.	 Context Restri~tions

The blo~klet list of a block consists of all the blocklet names

which occur in that bloc k. No name may occur more than once in the

blocklet list, nor may it occur in both the blo~klet list and the

name liet of the same block.

The s~ope of a blocklet is the whole of the block in which it

occurs,	 including the blocklet itself.

3.2.3.	 Example

where 8ele~t a range is

This blo~klet will never be used when table at middle value
it table ~ middle < value - ­

bottom : = middle
it table ~ middle value

top ::;; middle
otherwise chaos

Blocks and Blocklets	 Section 3

?",E;e lG

:). 2. ,,'. Semantics

TJJ(C commands whicn make up the command cnai n of the bl'='cklet

jescriLe some process. The ~";lrpose D1' tne blocklet is to enable

that i-'roctss to be per:LOrr.,ecl anyv.,nert:: within its Scope simp:'; b~/

using "tIle blocklet name in a substitution (::.. \'. SectisG 6.1..).

Section l blocks a"G E:;lockl~t;:;;

?at;e 17

4. Ar pUl11ent5

:JC Q.:':"'~UILE::-l1:S ;:Ji d block .Jrovicie -;:.1.e Deans by ~"!1icn it

comll(;Jr•..i.ca-<::es '...Ji tll its en'; ironI7leJ',t, that is, the piece of 3R pr0i;ram

'...-nic:, ,·;c:,J.-:ed -::~'2 ;,,'_scr..

'n",,:, a.:':"'£'..l.:.v,.:nts 01: a program)'2riorm a similar function, but in

lni.:.~..:!sr~ -= ',':0 c3~ v ir-:n:len '- ~~ :.;~ tside -:::-,e ;r0E.ra~. -=:'[-',e '...Jay in WJlich

these val usc; are tr<1nsfer-r-ed is thus beyond the scope of this

~',=~<t'T.

4.1. COlltext~free Syntax

drgumellt declarations option:
emp ty;
argument declaration. newline token.

aryument declarations option.

argument declaration:
result declaration;
paralileter declaration.

result decldration:
result token. name, is token. type indicator.

parameter declaration:
pdrameter token, name, is token, type indicator.

4.2. Context RestrictiollS

The parameter list (result Zist) of a block or program consists

of a:~ the names in the parameter declarations (result declarations)

oi the argument declarations option of that block or program.

,;,) :-jar.e r..a/ vCCl..r Y"GTe tba:-J ence ljj the cencatenati:J:; 0::: the

pa~ameter list and the result list.

Arguments Section 4

Page 18

4.3. Examples

result t is integer

pa~ameter line ~ text

pa~ameter Page ~ array ~ 66 9..I. te;ct

4.4. Semarltics

4.4.1. Re3ults

A result declaration occurring in a block body, or directly in a

proyram, introduces a name in the same way as does a

variable declaration (q.v. Section 5.1). {Such a name may appear

to the left of the becomes token in a computation, and its value may

thus be changed.}

If result declarations occur outside of all blocks, i.e.

directly in a. program, the output of the program is the list of

values of the names. If result declarations occur in a block the

names are used to establish the result of an invocation of that

block, as described in Section 6.3.4.

4.4.2. Parame ters

A parameter declaration occurring in a block body or directly in

a. program associates a name with a value; the association cannot be

changed "ithin the scope of the name. Different invocations of a

block, or runs of a program. may initialise a parame ter to different

values. The type of the value must correspond to the

ty pe i nd i ca tor in the dec larat ion. (The name of a parameter may

not appear to the left of the becomes token in a computation.)

If parameter declarations occur in a block. the values to be

associatec with the names for the duration of a particular

invocation are obtained from the argument: list of the

actual block name in that invocation (q.v. Section 6.3.4). If

parameter declarations occur outside of all blocks. i.e. directly in

a program, the values associated with the names are the input of the

program.

Page 13

5. Statements

Statements are the primary constituents of 3R programs. They

:~ay be declarations. \·:hich describe the objects the p~··ogram

manipulates, or commands, which specify whdt actions are to be

~erformed on these objects.

s ta temen t:
declaration;
command.

S.l. Declarations

;5.1. L Context-fI'ee S:::ntax

declaration:
variable declaration;
invariable declaration.

variable declaration:
variable token, name. is token. type indicator.

invariable declaration:
invariable token. name. is token, expression.

type indicator:
integer token;
real token;
text token;
subrange 1 ndicator;
array indicator.

drray indicator:
array token, array bound, of token, base type indicator.

array bound:
zero token, upto token, expression.

base type indicator:
ty pe i ndie a tor.

5ubran'::je indicator:
expression. up to token. expression.

Stdtements Section 5

Page 20

5.1. 2. CO'ltext Re8trictions

5.1.2.1. The invariabLe Li8t (variabZe List) of a b:ock or prograD

consists ~f all the names introduced by invariable declarations

(variable declarations) in its block body or program statements.

If there are no such declarations the list is empty. A name is aTI

invariabLe name (variabLe name) if it occurs in the ~~II')aI'iable list

(vaI'iabLe Liat).

No nane may occur more than once in tne co~catenation of the

invariabLe list and the vaiable list of d £iveh block or program.

5.1.2.2. The expressions in a subrange indicator must both be of

the same typE.

5.1.2.3. The expression in an array bound must be of type ir.teger.

5.1.3. E:i:amples

variable i is integer
irlvariab le Page Size i8 66
variable Line Nu.mber ia o•• Page Size
variable Page is array ~ .. Page Size 9L text

5.1. 4. Seman ties

{As mentioned above (q.v. Section 1.2.2), names are used to

label Values. This usage is a little different from "that of many

programming languages. A graphic description of the usage of names

in 3R is given in [4 J. Each type corresponds to a data space

containing all the values of that type, e.g. intege!' corresponds to

the numbe~ line, array zero .. 1 £f.. real to the cartesiar. plane,

etc •. h 3R one speaks about "assi,E,ning a name to a va:iue". This

may be ,isualised as "the act of ~inning a Ci..a8 bearing the name to

the point in rhe value space represen"ti~g the val1le.} A declaration

indicates that a name may be assigned only to values of a specified

type. {It corresponds to the manufacture of a new flag, which can

be attached on:Ly to values in the appropriate value space. }

5.1.4.1. The name ~ntroduced by a variable declaration is not

initialised. It !nust be assigned "to sor~,e va::ue :Jefcre it can ve

Sect ion S :'·tatements

Page 2:

used in an expression. {This is achieved by a computation in which

tIle name a;:;?ears to the left of a becomes token, which corY'esponds

to moving the flag bearing Hie name '(0 a place in the value space.}

05.1.4.2. The name i;.troc<..:ced by an in'Jariable declaration is

assi.sned to a value obtained froD the expression accordirJg to the

rules ~iven in Sectior. 7. The type of the name is the samE: as that

of the expression. {An invariable name may no"[appear to the left

of Ll becomes token in a computation. Thus the flag bearing the

ndme canr,ot be moveG.}

[j. 1. 4. 3. VaZ,ws and Types.

This section describes the types corresponding to the various

type indicators. Integer token corresponds to the countably

infinite set of negative, zero and positive integral values.

Re d 1 token corresponds to the continuum of real numbers.

Text token corresponds to values in the set Char"'~ where Char is

some {implementation defined} set of characters. t

A subranye indicator corresponds to the type of the ex?ressions

which make up the indicator. It also makes manifest an ?ssertion

on the part of the programmer that the first express ion has a value

less then the second expression and that the value of the variable

introduced by the declaration will always lie in the closed interval

defined by these expressions. {An implementation may ~se this

information (for example to save store by packing values asserted to

be slr,all) or it may ignore it dltogether. In either case, provided

the dssertion is correct, the meaning of the progra.Q is the same.}

If the assertion is ever false, chaos results.

An array indicator specifies a base type B corresponding to the

base type indicator and a domain size n+l where n is the value of

the expression in the array bound. n must not be negath2. The

type corresponding to the array indicator is the cartesian product

t C'" denotes the Catenation (or Kleene) Closure of the set C, i.e.
II en. See [9J. Thus Char'" includes all finite sequences (of

n=Q
length zero or more) of characters.

Statements Section 5

Page 22

of n+l replications of B, i.e. the set Bn +1 • {Since the

base type indicator may i1:self be an array indicator this definition

is recursive.}

5.2. Commands

1)1 addition to simple commands, which describe a single

imperative action, there a.re two compound commands which enable a

choice tCJ be ma.de between different sequences of simple commands.

The choice command is used to express the solution of a problem by

cases; the tested invocation is used to detect (and possibly

recover	 from) program failure.

command:

simple command;

choi ce command;

tested invocation.

5.3. The Choice Command

5.3.1.	 Cvntext-free Syntax

choice cOlilmand:

g~arded command chain, newline token, end choice token.

guarded	 command chain:

g~arded command;

g~arded command, newline token. guarded command chain.

guarded	 command:

if token, guard, newline token, simple command chain.

simple command chain:

simpl e command;

simple command, newline token, simple command chain.

5.3.2.	 E:ramp le

ila>b
Compute results .for case where a is larger

ila<b
Compute results for case where b is larger

!:1a=b
lail Print['a 0']

otherwise chaos

Section	 5 Statements

Page 23

5. 3. 3. Semantics

t\ choice command is cOT:1posed of several guarded commands, each

of ,...hic"h is appropriate in di.fferent circumstances. A guarded

command can only be executed when its guard evaluates to tr~e (q.v.

Section ~.4). A choice command s?ecifies execution of exactly one

Sluarded cummand from its guarded command chain. If it is

impossible to do thi3 because all the guards are faZae ther. chaos

results. [If more than one of the guards is true then it is not

s;-.ecifiec which guarded corrunand is chosen.}

5.4. Guards

The guards in a choice command yield truth values. represented

below by ~ and faZae.

5.4.1­ Context-free Syntax

yuard:
conjuncti ve formula;
di sjuncti ve formul a;
negation token, boolean;
boolean.

conjunc"live formul a:
boolean, conjunction token. conjunctive formula;
boolean. conjunction token. boolean.

disjunctive formula:
boolean, disjunction token, disjunctive formula;
boolean. disjunction token, boolean.

boolean:
relat;ona1 expression;
parenthesised guard.

relational expression:
expression. relator, eXf1ression.

parenthesised guard:
open parenthesis token. guard. close parenthesis to~en.

relator:
equals token;
di ffers from token;
is greater than token;
is at least token;

Statements Section 5

?a~E: ~4

is at most token.
is less than token.

5.4.2. Context Restrictions

In ~ relational expression. both the expressions m~st be of the

same tj?e (q.v. Section 7) and the relator ,":1us"'.: be definel for that

type (q.\'. Section 5.4.4 ••:).

5.4. J. Examples

/"uthol" <: 'zzzz'

~bs toleranoe <: 0.000 001
 ,o ~ theta ~ theta $ 90 p s 1

(x <: 1 A X) -3) v (li 7 Y 5)
 ,
(i <: 2 y J ~ 2) ~

(page length = line number v page lenqth 0)

{Note th~t the syntax requires tne parentheses i~ both of the last

two E:xdlTlples.}

5.4.4. Semantios

5.4.4.1. The conjunction token and disjunction token represent

ordinary logical conj unct ion and disjunction; the negation token

represents logical negat:ion. This meaning is given in the

following table.

left: operand b1 true
ribht operand b2 true

c:nJ unction: b1 c" true, "< I
,"~s~ u.nction: bl v D2 trueI
r'~bat:ion : ,b2 .~~aZseI,

true false
false falsetrue f":;~ I,

I,false f'·a7-ae falee I
Itrue true false I

true false true
I ii I

Since ~,"e operands must be evaluated befol'e tl1ese definitions can be

applieG , if either operand is undefined the value 0f the formula is

also undefined.

5. 4.4.~. A relational expression is evaluated by first evaludtin~

t:he expressions (~.v. Section 7) an~ then evalu~ting the re:ation

Section 5 Statemen-rs

Page 2 S

according to the ordinary mathematical meaning conveyed by the token

w;-,icn :::orIT.s ~~'le relator. Ail the relators are def-;ned for

integers, but the relations denoted by the equals token and the

differs from token arE nor defineci :::or reals. All the relators are

also aefined for text values; the equals token and the

differs from token have their obvious meanings and the !'emaining

relaTions test lexico6raphic ordering of the text. {Thus

',;:' , :za' ~ faa' 'ab'~ etc .. } The relations denoted by the

equals token ana the di ffers from token are defined for arrays

:f:.'r'ovided t:-,ey are defined for the base type, but the other relations

are not.

5.4.4. J. 'i.'he value of a parenthesised guard is the value of the

guard it contains.

5.5. The Tested Invocation

The tested invocation is used in conj uction with the

fail command (q.v. Section 5,2); it enables failure to be detected

and appropriate action to be taKen.

[;.5.1.	 Syntax

tested invocation:
test token, invocation, success and failure clauses,

end test token.

success	 and failure clauses:
success clause. failure clause.
failure clause, success clause.

success	 clause:
success token. simple command chain.

failure	 clause:
failure token. simple command chain.

i-'age 26

5.5.2.	 ExaT'lp Zes

test object code := (!ompiZe[expression]

0'1 su(!cess

- evatuateLobject code]

~ failure

Print['Syntax errors prevent evaluation']
end £.i. tes t

test 71 : = integer from text[number]

£!:!. fai lure

pas£:

We have	 r.ow dealt with an the numbers and go on to look at the words

en success
-- Sum := Sum + n

Sum of Squares := Sum of Squares + (nt2)
Item count := Item count + 1
(!ontinue summation of numbers

end £f.. test

5.5. J.	 Seman tics

The execution of a test construct commences with the execution

of the invocation it contains (q.v. Section 6.3.W). Subsequently,

either t~e failure clause or the success clause is ~xecuted: the

choice	 ,jepends on whether the invocation was t~rminated b'l a

fail command (,q.v. Section 6.2) or was successfully completed.

Exec.Jtion of a failure clause or SUCcess clause consists of the

execution of its simple command chain. {After completion of a

tes ted invoca ti on, execution continues with the statements which

follow it. A fail command within the success or failure clause

will, of course, cause the ""hole tested invocatlon to be terITlinatec

as described in Section 6.2.}

Section S	 Statements

Page 27

6. Simple Comraa"lHls

simple cOmmand:
dummy command;
fail command;
computat; on.

computation:
invocati on;
substitu tion;
assignment.

6. l, The Dummy Command

6'.1.1. Syntax

dummy command:
dummy token.

6.1.2, ExampZe

pass

6'.1,3. I:emantics

A dummy command performs no operation. {It is used when the

synt"ax demands a command but no action is required.}

6.2. The Fail Command

6'.2.1. SynL,J.x

fai 1 command:
fail token. computation;
fail token.

<'3.2.2. Examp Ze s

fail with Message['Output too big foY' field ']
f"ai Z

SinlbJle Commands Section 6

Pabe :::8

e. 2.3. .s",'u.).ntic:s

The fail command is used for handling err'ors: it causes ecirly

tE;rr:lination of all or part of t:-te program. If the fail command

contdins computation this is executed befL'!'e the terr.1ina"tion takesCl

pldce.

If the fail command is a program statement, execution of the

pt'oGY'am i.s terminated. If!-t occurs wi1:hin a block, the invocation

of triaL b~ock is termir.a"ted Cq.v. Sec"tions 5.5 and 6.3).

6.3. Invocations

B.3.1. Ccntext-free sifntax

invocation:
invocation without results;
invocation with results.

invocation without results:
actual block name.

invocation with results;
joined name list. becomes token. actual block name.

actual block name:
name wi th arguments.

6. ,L 2. Context Restrictions

Tn~ actual block name in an invocation mus1: match the

formal block name cf somE; block. whie:' will be refereed to 25 the

invoked bLock. {Section 2.3.2 ensuees that 1:11e actual block name

matahes at most one formal block name.}

6.3.2.1. the invocation is :;:act a block, t~len -:::le"'
usage l '~st 0: that blOck mus1: include all the names in the

usage Zi·zt of the invoked block.

6. J. 2.2. Tile argurwnt List: ::.:f the actual block name oust have 1::,,=­

sarr.e nUOL2l." of entries a3 c:he Farameter list of -<::he invokei block.

6. J. 2 ..3. The invoked block of ~n invocation without results must

:~ectior. [Sir.qle Cor.m:ands

have CiE em:oTy roesuZt list.

6.3.2.4. For an invocation with resul ts it is required tha.t:

Ca)	 Tbere aye a.s n:2nj' Jld",eS i", ~he joined na~e list as in the

resu~t Ust of "the invoked block;

(b)	 T~,e invocati on is ·",ithi:-, the sCOtJe of these names;

(c)	 Each such name is a variab~e name j

(J)	 '.lhe tjpes ,:,f these names correspond to the ty'pes I)f the names in

the re8u~t ~~Bt of the invoked block.

6.3.3. i::xamp ~e3

Lh;e from [margin + 10] to [margin + 10 1" ~ength £i. itemJ

ali?ha~ beta := Roots of [6J xsq [1"5] x [-1]

t := tan [psi]

6.3.4. Semanti~s

An invocati on calls for the execution of a block, which has the

effect of the following algorithm {but may be ir.::pleP.1ented

differently. Ir. particuL:ir l the method by which an impleJ:lentatiClTI

passes its parameters is not specified}.

:Cirst, the expressions in the Clrgunent list of the

actual block name are evaluated (q.v. Section 7) to yield a list of

\ldl",es. The names in the paY'ameter Zist of the invoked block are

as:;igned to these values by taking the entries of the TWO lists in

the sal,l'" :Jr<Jer. {Section 6.3.2.2 ensures that the lists have the

S<llhe nUI;il.l~r of en:ries, Hhich may be zero.}

Secondly, the statements which comprise the block tail of the

invoked b~ock dre executed in order.

Subsequent actio~ :.lepenGS on whether the executL of the

invoked b~ock was successfully completed or was terrJ1in3.ted by a

fail com,nand.

?rovidin..:; -rhe execution was successful, the final stage ;'".If the

invocation is the transfer of results, and occurs on~y in the case

of an invocation with results. A list of values is cons~ructed by

Silllj)le Cor:mands	 Section 6

?aLe 30

t<..lK~n& iL order -::he vallJ.es of the ndmes in the res ... I t list of the

-invoked block. The ndmes in the joined name list of" the invocation

wi th results dr~ the:1 assii;ned to the corresjjcnding elements of this

list of v(,~",es, the corres?ondence bei:1g obtaineu by tdKing the

entI'ies i,. the same order. =~ any of the names ~-'l the result list

do :10t ha'ie defined values (e.g., becduse they havE. never been

assiLned to a value or because of the effect of this section) then

the cc..'rre~;)Q'lding names in -rhe joined name list are likewise not

defineG. {Section 6.3.2.~ ens~res that the lists have the sa~e

number of sntries.}

If the execution was terminated by a fail command, the names in

tne joined naflle list are not assigned to aLy values. Thus, no

<..lttempt cay be made to use these names in an expression. Values

which haw been assigned names in the global list before execution

or the fail command retain those names. Other...'ise ~ the i nvoca ti on

as a wi101e behaves as if it were a fili1 command.

{ihus the invocation (Execute some block) has dn effect

identical to that of the followine tested invocation.

test Zxecute some Blo~k

Oi; su~~ess

pclSS

or: fai ~ure

fai l
erid £i.. te s t

l>. 4. Substitutions

6.4.1. Context-,j''"l·ee Svntax

substitution:
name.

6.1.2. C~11text Restri~tions

sub~titution may only occur iG a block: it may not forIll a

prO:Jrarn statement. '1';-\12' name ,....hic:h c:or.lpri:;es a substitution must be

;:;ectior. Simple C:ornman-::s

?abtC -'-'­

irl the bZookLet list of that block. {7his incllJces the reatrictian

tf1<1t "'[;112 substitution ::lUS~ occur wi-chir. ~:'e sco?e sf it::: na;;::e.}

6.4.3. Exam"jJZe

seZeot a l'ange {q.v. Section J.~.J}

6.4.4. Seman tic s

The restrict~on of Section 6.4.2 means tllat, within the block in

which the substi L u--:: ion occurs l there ..lUst exist exactly on.:: b locI<. 1et

whose blocklet nlilile is identical to the name comprising the

subs"'[it\..ltior.. The effect of the substitution is to i:13ert tht

blocklet body of tr,at blockle-c in place of the substitution arld to

execute it. {It is left to the im:?lementation to decide: whethtr

this effec-c shoulG be achieved by in-line code or' rou"Linl2 23.11.}

b. 5. l\ssignr.lent s

6.5.1. Context-fre2 Syntax

assignment:
name, becomes token, expression.

6.5.2. Context Restriotions

An ass i gnmen t must occur \.·,i thin the scope of the name which

appears to the left 0f the becomes token. The name must be a

variable name, an~ the ty~e of that na~e must correspo~d tc the type

of the expression (~.v. Section 7).

6.5. J. E:xamp les

TitZe ;= 'i?eport on the Notation JR'

li ... mbet' of laoe~s := Su"be~' of labeZs + 1

Vector; = arra'! (0. - 1)

Simple Commands Section 6

v,

ro n
~

 c:
"ro m

'" 0

,
"' " "

~

~

"
CO

~
,

0 "
" ro "

c"

~

~
1

;T

ro
~

", ~
< "

ro
 "

"
c
'

c
.,

~
 ,

~
 "

CO

or

ro

"
~
,

~

~

m

~

e

,

"
0 ,

0 .,
m

m

'"

~
,

m

" "
CO

0

<

ro
"

"
~

C , ~
m

ro

c

"
'U

 m

"

"
"

m

"

ro
 "

~

m

or

m

ro

"
,

"
w

'<

3 ro

'U
 "

e
'

CO

< ,", a

(,
~ ~

c
m

",,,
m

m

~
,

3 'u

0 "
~
~

 "
r

m

ro

co
r
'

c,

"
"

"
0

"
~

"
ro

0
3

"
"

~

"
~

~

~

or

0
ro

"

?a~c 33

Expressions

An expression is a rule for calculatin;:; a vOllue) which will be

of one vi "[:-Je tdP,;:a (jescr~Led i.n Sect:on 5.:.!.l.3, i.e. inte~er)

real, t12XC: or a,j ill'ray type.

expression:
unary formllla;
binary formula;
ternary formula;
primary.

i .1. Unary formulae

? 1.1. Context- fl>ee Syn tax

unary formula:
unary operator) primary;
unary operator, unary formula.

unary operator:
abs token;
plus token;
minus token;
sine token;
cosine token;
arctangent token;
degree token;
radian token;
log base e token;
log base ten token;
e to the power of token;
length of token;
real from integer token;
inteyer from real token.

;'. 1. 2. Context Restl'icr;ions

T:v:- operand 0:' a unary formula is the object which f':·llows "':h'C!

unary operator: it is thus either d primary or arL(t.~,er unary

fOrlllula. It is re~uirej t~at the ope~ator be defined far ttle type

0= tne operand.

Lxpressions Section 7

b'uge 34

? 1. ::'. E::'lmples

sin - the ta

~abs x

Zfn;,th £i 'Repopt on JR'

? 1.';. S~""anti.as

The vJlue of a unary forMula is obtained by finding the value of

the opeJ'Q",d and performing the operation denoted b'" the

unary operator. The following table specifies these operations,

and 6ives the type of operand for which each operator is defined aTld

tile ty"pe (,f the result.

operator
token

operation denoted operand
type

J'eeu U
t'J[.."e

!

abs token moaulJ5 (absolute va:Je) pea Z
integei'

re(; i"

i",tet.'er

plus token null operation pea Z.
integer

real.
integer

minus token neLatlon pea Z.
integep

peal
integer

sine token trigonometric sine
(0£ angle in raGians)

pea Z- real.

cosine token trigonometric cosine rea Z- real

arctan~ent

token
principal value
of arctar,r;ent

pea Z­peaL

aeg ree
tOken

conversion
to degrees

of radians pea Z­peaZ

~rad i an
token

conversion
to radians

of degrees rea Z. real.

lo~ base
token

e natural logarithm rea l. rea l

lo~ bd-se lo£arithm ~o base ~e~ I rea Z reo:: l-
ten token I

::jection [x:)res s ions

I

I

:i-'a;::;e 3':;

e to th €
power of
to ke n

len~th of
token

rea 1 f rOfll
inte~er

token

integer
fror,) real
token

e x;.,ur.er; ~ ia: function (ex)

n;..!C'.ber of characters
.i r, t :-,e. teXl:

L.J?e COT, 'Jers ion

rcunding tuwarc:s
(a.pplicdble only

zerG
to

non-negative operands)

I veal rea:
I

i>jtegertext

integev !'ea Z

ir.tegeY'rea l

7. Z. Binary formulae

Formulae in 3R differ from those in mathematics in several ways.

'ihere is no ?recedence of operators: one car,not w:cite atb"e in 3R

but must specify either (atb)x~ or a+(bxc) as required. lJ",ithep is

left to ri~ht evaluation assumed: a/bx~ is not allo;ed, only

(a/b)xc or a/Cbxc). 11here trle operutors are associat i ve.

1-'arentheses can be omitted without aJ71big,uity. Thus 3R allows

atDTc~ aTb+c-d~ ax~xc una a"b"c/d.

7.2.1. Context-free SJntax

Di nary forrllul a:
additive formula;
additive formula, minus token, primary;
primary. mlnus token, primary;
multiplicative forr:1ula;
multiplicative formula, over token. primary;
prir.lary. over token, primary;
primarj. exronentiation token. prifilary;
pril'1ary. divided by token, primary;
primary, modulo token, priMary;
primary, at token, primary;
primary. char of token, pr1l:1ary.

additive forlilUl d:
additive formula, plus token, prifilary;
primary, pl us token, primary.

Lxpressions Section 7

1 '-'",,12 J l

~)ultipllcdti",e fOrll1u1a;
Iil'Jltiplicative formula, times token, prirlary;
rrirnary, times token, primary.

? ::. ::;. n~2xt Res~l'~~~ions

t'<. b~:1arj 0iH,rdtor :'1aa t\'Jo oper'c3.nds. dnG ir, JR all t,inary

u: cra~ors are written L~_n~ infix ~DtaTion. i.e. the sj~bol den0tin~

L C 0~;e~::-.:,r' ",,;;ea,l-s :>et:'.-lesn =-t5 .::::~era:--,c.:s. ~he biL.ir:;. o;;e!-at~)",::;

<.11-'':: lis::ej i:: :3ec-rion 7.i.L.~ ':;'1: is requir'ej that an o~eratcr be

de,J·'ined '::or iL, Di.JerilTids.

? . :3 • ,::.=ar~2i "-eoS

SeJ'i·aL 0/ i·faster + .7
i!'1; t Name t SU1'YlW"18

~'lmt!'-ibutor~J factor" f'ays i'l l10ntllj - EaS1:e Rat2
ear mod 4
:rt2)-'-(2xaxb) + (fJt:::)

i"I~H<Zu.l· t '$'

? :2 • .j. Semant',:cs

~11S vdl~e of a binary formula is ~bt~ined by findine the va!ues

or c:j-,~,: J~ eran-:s of t:l,~ jirar:,' o,;;erator ar.cJ I'e~'forJ.,inb or. the;.] t;,e

0::,''2 1'tlt iorl :Jt=rLotes. Th'2se operands '.'-iill either be primaries,

whOse vdlucs Qre obt~incd ciS ~escribed in Section 7.4.U, or

multiplicative or additi",e formulae, whose values are obtained by a

recursive 3.~'p":"i2a.~ion of triese rll:"es. ':"he bina:,y ope rators ""i ':h

:..h·,:: ir Jnca::,i: /:'" dnj l::-i€ types for wh~ch the:' are def'ined .al'e as

IGllows.

:iu.l'ie,'i.ca: C;,erc;.fo!·.'l

plus to ken	 ~nte:;ers I1ac.lJ':"ti'jn /1' del~l'ed betwee:~
j ,s-,-VlJJg oW lnteger 1'esu~t, anJ

Inllnus tu ken S.'~LtrcJ.cti0n. \- betweer any Ut;}181' combination I

::::~ lnteLers arid reals
iti1nes tok ell !:~.t..~t.>~~ca.t':-C::_jI ~_.'l-L a lee.:' re5·Jl-:. I

, .

,

to ken I:li'Ji:::iJri	 c:..ef~riEd bet'..een .ir't~be::'s. ':In':: I
rea--,-s '.-n dny comb:.-natlon g-,-Vl:'0

lover

a rea2.- result.I

PuL:e .~ 7

I

exponentiation I cx~v,er.~ cetlOn	 tr.e righc: oper2nd Dust be an I
to ken	 ir,-::Et;er aile: r.-L'-'S-: :-,ot be nega- I

tive. 'l'he reslll;:: is of the
same ty?C as the left uJet'a.nd)
""hie::' IT.ay be real or inte;er.

divideJ by integer	 defined between inteGers, whieh
token div'::'sivn	 r.lUSt not be negcJtive.

I

modU10 token i)csi-cive defined jetween i"teger's, whien "
remaind~r.. must not be ne£ative. I
a.ILer ~.iV1510n

I i

'l'ext 0i-"el'atol'3

.". d·	 ip I us to k en	 conca"tenat::-on, ae-Llne De~"Jeen t"i,lO text "'alues.

times token	 re~l'::'cu.:ion, ~ef=-ne-1 bet'-.:een aL iTlte[,er aIle a
tcxt value in Dcth ccr:L~ir"..ltions.

char of token	 selection. 'The left operand is u positive
integer not ..ex~eeding t~e _ lenbth rn of be ~'ig~lt
operand, wh::.e.'1 lS a text Va.lU8. lhe re.SUl-t 1S

a text vaiue of length 1, beinb the appropriute
character.

I

Al'I'ay OpeI'atOl'

'selection af an array elerr.ent, defined bet.-.:eenIat token
an al'!,(l;) ze1"O •• n 9....! at~'-Ipe value and an integerI,i, ylelds t}le v~lue of the ith eleme~~ of the
drray (co r.t.:ng freD zero). The result is of
type ar;ype. i must not be negative or greater

Ii than n.

7 • .3 • '1 crnari [orrlulae

f\. tern2ry o;:crator -rakes three o~)erands. Thel'i2 is only one

5~ch c?e~atol '::'n 3~; i-: is re;)rese~~ted by t1..'2 tokeLS w"hie:: se;>a:c'ate

tne ~llr'ee o)eran~s.

Ex.t=>ressions	 Section 7

?dbe 38

7.3.1.	 Context-free Syntax

ternary	 formula:
ternary formula. with token. primary. at token. prir.taryo
primary. with token. primary. at token. primary.

7.3.2.	 Co"!text Restrictions

The ~e.ft ope:,and (whicn is either a ternary formula or a

primary))f,ust yield some array zero •• n £i. atype value. The inner

operand (tne pr;r.1ary between t:-Je with token and the at token) must

yield an atype vaLle .. The r"'igh-;: operand must yield an integer.

7. J. J.	 Ezamples

buffer wit~ 'ileZZo' at 0

vector witt: 1 at 2 UJith 2 at 1 with J at ()

tpanscende~tal~able with ~14159265 at J

7. J. 4.	 Seman tics

The ternary formula constructs a new array value from an old

one. First the operands are evaluated: let their values be A, i

aile x resiJective=-y. The value of the formula is the same as that

i thof A exce;,t that the component of the tuple (countin6 from zerQ)

has value x.

{lwte that the second example is unambiguous: 2 with 2 £! 1 is

meaningless, so it is clear without inspectine the grammar that

association is to the left.}

7.4. Prir:Jaries

Primaries are the basic data objects from which expressions are

constructed.

7.4.1.	 Context-free Syntax

primary:
denotation;

n~me ;

arraj expression;

parenthesised expression.

Section	 Expressions

Page 39

parenthesised expression:
open parenthesis token. expression, close parenthesis token.

denotation:
text denotation;
inteyer denotation;
real denotation.

array express i on:
array token. open parenthesis token, joined expression list,

close parenthesis token.

joined expression list:
expressi on;
expression, comma token. joined expression list.

7.4.2. context Restriotions

7.4.2.1. A name forming a primary must occur ..,ithin its soope.

7.4.2.2. In the joined expression list comprisin£ an array

expression, all the constituent expressions must yield values of the

same type. The type of the array expression correspunds to the

cartesian product of as ~any repljcations of the set corresponding

to this type as there are expressions in the joined expression list.

7.4. J. Examples

57
'Mary I

a2'ralt (J.14159~ 2.71828, 1.4142)

array (' doubtless', 'no doubt', 'undoubtedZy')

((Stook number + increment) x percentage / 100

7.4.4. Semanti.cs

7.4.4.1. The value of a denotation is apparent from it:;

representation (q.v. Section 9.~).

7.4.4.2. The value of a name is the value to which that name is

assigned. In the case of an in'Jariable name the na~e wi 1:;' have

been assigned to a value when i~ was declared. and this assignment

cannot ohange. In the case of a varial>le nane the nal!\~ may have

been assigned tc r.tany differer.t values, but we are only i:lterested

Lxpress ions Sectiun 7

f'<J.~'2 40

ir1 the ~ut'rent (:;..~. most recent) assigr:m~:Lt. {The typ~ of the

Vd~ue i3 .[)i:::,J.j:~e::: ciS ~escribet in Section 5.1.'.. J :f ~~e na[~e is ~ct

... s~ib;lec.. 1:0 Co Jalue. ~he res~it ~r <J.tte=?~ ~~~ tc eva~~dt~ it is

,-~nJefine,].

? 1. 4. 3. 'fhe value of an array expression is the tu?le rrjrr:Jed by

tdki~~ i~ crj~r the ~aiues of the constituent expressions.

7.1.4.-1. The value of ~ parenthesised expression is the v<.Ilue of

Lhc eXl-lr(!1siQIl it contai:ls.

,-}/.::c:~i');l , ~,._;::,r'~s s iO,,-5

?a6 E

Q••-\XiOr:latic Semall1::ics

Tflis sec1:ion defines the .o;~lIiantic:" of 3F Elore iOY'lJldlly -'J r;''O'dns

c.:: a. '::unctior. '..,;}~, close~j! rela1:es :2 :;--,21: :)~- J~ :<:3-::0. [2J. i,.r~) f:12! 3

each cons~ruct in tile language into d ;?redicdte tTdn:;fcl'lcP which

cescr'::'bes t,.e e~-~ e:::~ vi -::bat COnSTY'-.1ct.

The principle af defi~in~ semantics by me,lns of ,)redicat2

tl~dr.siorrr.er3, and "t:len ... sin,s tnese 1:ra:-,3f:H;:,~rs tc aic: "[ice lJT'o...:;r'a.;·I

dl2si b n process, lS ex)ounded in man/ placc=, (incluchn['; the abo\!>::

relel-er:ce) . This re;or: ~i~: not ce?eat the expos::' t'::':::·r.)UT '..; i II

lilnit itself to a brief summary of ttle proper-:ies ()f wI-' and its

~c:in'::':i~n for 3R.

,) .1. ;';otatioll

,2 .. R ane 5di 11 be used to repre.sent predic::ltcs. AlJ the

O.=ljects ir. tne 3yntac"tic class guard (~.~. Sect'::"on ~.:..,.) a~-e

preoicat,=s, but we also include other' connectives of the predicate

ca";'Cul,j3 '...li"th their- usudl F.,caning C;,articu::"ar"li f0r mCit'..::r'~a~

implieation), the cons'tants tpue <.lnd ('alee, and the sYJ,lbl f(li,.,,~

~hi,=-rl '::"s used to define tr.e sS'r.t<3.ntics of the fai 1 cOfTlmand.

[e -~ x]R (read: e for ~ in R) denc~cG d pr~dicate 0b~ai.necl by

s:.lbsti "Cuting e ,for ali free occurrences 0: x P. T;-,us

[I -+ JJ(.:r :> y} = (x > 7). x occurs free '::"n R if it OCClJ!'S in R

a.fter :..,il s~t~ti~u:ions have 1ee~ iT.ade. En [7 ~,J x >:J), x :..3

free but d is not. Similarlj [~' .. r x .. yJi? denotes si':tllltaneous

substi-;::'jtio:L ;:,1 e and -? for x and J.

EV0:ntually, ror the .llredicate tr2n.sfC!r~l\ers to be of an)" USE:., the

~)re-:ic<J.tes :"Ll::;-;: bE. biv2:"'l sane ::1.eanin,s; ':';"1 terr"s ':Jf 1:::e ob'e,cts 'tne

pcobramlner ;ndnipu::'Lites, i.e. the vd:"ues of l)Y'0brdm '.;ar'::"Cl[·.l020. i'ie

'.... i.L-'- .:-'.0: ir.troJucE: eXi<.. i=:it evaludtisr ~urJc:ic;j, a"b,---,if" in~teaj_L

ti'l<.lt lIiuch of tIlE: :L)o;.... er ()f the F.Lec::hoG. COrie::; fT,:;r:~ L"w edse ".:. th wr,'::'cn

it is ;:;ossibJ.2 1...~ .J.":' ter:iaLe bet ..."een rebar-'dinE; x ? a~ a pure 1:.,'

Sj'nti;l.C1..ic ;,'rcJica-ce and as an asserti=:>D t.1a: L:,'C.' "·~l._U'" C'::'L"8Spon,::::i,iL

to tLt::: ndTfie x ":'s Lrea"Cer than

Page 42

The syi.lbol r ~ ') is used to J:lean (is defined to be equivaleTJt

Te,) A will be used to represent ~)art of a tJrograJ:l, defined iTJ

terms o~ The ~ramnar and the context restrictions on it.

1.0.':» A is a function which maps ;Jredicates to j.)!~edi::ates, the

;;redicate Transformer :or A. A itse~f mibht be, for exaLlple,

simple command or choice command. '.'ie argue thaT w~ A ca:?tures the

semanTics of A> so of course the function re;Jresented by

wp simple command depends on the com~ositicn of simple command.

Thus w:) ':or 3R is defined by first givir,g \o,'p program and so on for

all The classes in the syntax. wp itself can be considered a.s a

family of functions; each member describes the semantics oi a

particular construct in 3R and is obtained by applying wp to that

construct.

Suppose a program is required to achieve fl, some condition on

its parameters and results. Addi t~onally, suppose that S is

specified as being true before execution commences. A program such

that

wp program R = S

will achieve the desired result. wp A R can be interpreted as the

weakest precondition under which program A is guaranteed to

terminate with !I satisfied.

It is obvious thdt the syntax of 3R given in Sections 1 to 7 of

this re;ort contai ns many redundant productions: extra prcduct ions

:nave beer. deliberately introduced so that ea.ch construct referred to

in the tExt has a name. for example, cons ider

command:
simple command;
choice command;
tested invocation.

simple command:
dummy command;
fail command;
computation.

In the dEfini~ion of w~ which fo:~ows, there are re=ere~ces tc

wp command but no d~rect definition. The reader is eX;Jected to

examine the command in question and to decide if it is a

Section S Ax.iomatic Semant i cs

simple command, d choice command ::,r d tested invocation; it it is

the iil,:>t he must d~cide whetllef' it is d dummy command, fai 1 command

·=;,r computation. :='he definition of w~ for these c:::ms:ructions wil:

tne~. we found. in Se:.tiD,. :).5.

In order to make this pattern rnatchiLg easier. the gt'dl"mar has

DeeE re;;:r'Ci,j ...ceJ :?r:Jduct~o:1-b:}-?rojLict~::;~. where reC;L.::':r-ed. Klsc,

edcn sub-::;ec~ion correspor.d3 numericdlly to the secti0n oi the

report which deals with the Same cons-rruction, e.&. Sectlcm 8.6.1

d~C ~ection 5.1 bot~ deal wi:h the dum~y command.

ti. 2. Programs

program:
argument declarations option, program body, newline token,

finish token.

Wi' (argument decl arations option, program body, newline token.
finish token) R

~ [fal-se -.. failedNp (argument declarations option)
('.vp (program body) H)

program	 body:
program element. newline token, program body;
program element.

wp (program element. newline token, program body) R

~ W1) (program element) ('.vp(program bOdy)R " i/ailed)

\I wp (program element) (R A failed)

program element:
block~

pl'ogram	 5 tatement.

program	 statement:
statement.

S.3. Blocks and Blocklcts

block:
block	 head, block body. block end.

g

wp (block head, block body. block	 end) R R

[The declaration o~ a block dOes not affect the state.}

Axiomatic Semantlcs	 Sect ion 8

8.4. Arguments

{Th~ si~ni~ica~ce C~ Ar~~me~ts is eX~laineJ in ~ec~io~ 3.5.3

:;:nVL<::.:o.L~-:':.:::;.}

8.5. Stdtements

s ta tement:
declaration;
command.

8.5.2.	 JeaZal'Qf;·i:onG

declaration:
variable declaration;
invariable declaration.

variable declaration:
variable token, name, is token, type indicator.

wp (variable token, name, is token, type indicator) R R "
provi dec. name does not occur free in R. {Thus no assu:nptions can

be made	 about uninitidlised varL.ibles.}

invariable declaration:
invariable token, name, is token, expression.

·wp (invariab1e token, name, is token, expression) R

~ [expression + name] 11

8.5.2.	 :;om7and3

command:
simple command
choice command
tested inYocat on.

,3.5. ,~.	 T;le eno i:ce Cor'1r;and

choice cOllimand:
guarded command chain, newline token, end choice token.

9uarded	 cotflttland chain:
guarded command;
guarded command, newline token, guarded command chain.

guarded	 command:
if token, guard, newline token, simple command chain.

Informally ~ the structure of this command is

it.. guard 1

s i mpl e co mma n d c ha i n

!:..i. guard 2

simple command chain 2

i1. guard n

simple command chain n

otherwise chaos

for all "Che construc-cs encount'S!red so far it has been ?ossible

to define wp by a recursive ru:le mirroring the recursive syntax.

This is	 not so for the choice commandt. Instead we have

wp choice command R

-" (guard 1 'I yuard 2 'I ••• v guard n)

A gua rd 1 ~ wp (simple command c h a i n 1) R

A guard - wp (simple command chain 2) R
2
A

A guard n w~ (simple command chain nJ R

n

.V (guard i) ~ A guard i - wp (simple command chain i) R
'1.-=1 i=1

Altnough n is arbi trarily large, it is fini te and there is no

complicdtiOr1 in introducing the quantified connectives: n
isV

i=1
simply a shorthand for something which, if written o'..1t itl ':ull,

w0u~d occupy an arLi~rarily large (but finite) piece of p3.~er •

It will	 be seen that if a:1 the guards in a choice command al'e

faZS£l wp choice command R ~~ Le. there i3 no pre-condit:'on

t ':'.t least, it cannot be done without introducin~ a ~ot more
nctation, ·which is less desirab=-e tJ"LJ.:J the use of t~le ell':::Jsis.

0:

This is becduse the recursive rule we wish to unravel jefi~es a
guarded command chain as a succession of guarded commands and
guarded command chains, and these syntact':'c en"Cities ha,'e no
semantics. It is not ?ossible to split off One th~ guarded
commands and describe tile semantics of a guarded command chain in
-:er;;-,s oi the t'wo ;::ar-:s -;:::L.S f8rT.'l.ec: ~:-r Going so we irrevccably lose
the non-determinism of the choi ce command.

Axioma1:ic Sel;ldntics	 Section 8

Page y€:,

wilier, e~:aDles '(he desired post-condi'(ion to be reached. This is

the I:"lear.in£ vi" C'h,~os: it is not possible to prove anything about a

probram	 ~Gntainir;g such a choice command.

simple command chain:
simple command;
simple cOlnlnand, newline token, simple command chain.

'''';j) (simple command, newline token. simple command chain) R

~ w;' (simple command) h"':;:J(simple command chain)R " Ifailed)
'Ip (simple command) (H I' failed)

8.5.4.	 Guards

Guaras are evaluateJ to yield truth values as descI'ibed in

Section	 ~.4.

8. [; . .5.	 Tee ted Invocations

tested invocation:
test token. invocation, success a.nd failure clauses,

end test token.

success	 dnd fai lure clauses:
success clause. failure clause.
failure clause, success clause.

wp (test token. invocation, success and failure clauses,
end test token) R

~ '-'P invocation (wP success clause R) A IfaiZed)

, wp invocation ((w:? failure clause R) A fai le,f)

success	 clause:
success token, simple comlnand chain.

wp (SUCCESS token, simple command chain) R

~ [~-+ failed] (wp simple command chain R)

failure	 clause:
failure token, simple command chain.

wp (fai lure token, simple command chain) R

~ [;'alse -+	 failed] (w:;:J simple command chain ,1')

?a;::;'2 ~

S.b. Simple Commands

simple command:
dummy command;
fail 'comll1and;
computati on.

computation:
invocation;
substi tut ion;
assignment.

8.6.1. Dummy command

wp dummy command R ~ R

8.6.2. Fail Command

fail command:
fail token, computation;
fail token.

wp (fail token, computation) R

~ wp computation (wp fail token F/)

gwp fai 1 token R [true fai led J R

8.6. 3. Invocations

invocation:
invocation without results;
invocation with results.

actual block name:
name wi th arguments.

8.6 . .J.1. Invocations without pesults.

invocation without results:

actual block name.

'....p dctual block name R

~ [argument list papameter list]wp block tail R

Argument list is that extracted from the name with arguments which

forms the invocation. Block tail, paPQmetep Zist and resuZt Zist

are those of the invoked block (~.v. Section 6.4.2).

Axiomatic Semantic5 Section 8

t'age 48

8.6 .•L;;;, InvQcations with J'esulta.

i nIJoca tion wi th resul ts:
joined name list, becomes token, actual block name.

wp (joined name list, becomes token, actual block name) R

~ [~rgUl'7er:t list ~ parameter Z·£"stJwp block tai 1
(Lreeult List -+ joined name list]R II ifaiZed) v (R 1\ faiZed))

previdec that the value of (if 1\ failed) is :'nde?endeno.:: of the va~ues

or the names in the joined name list. {This forbids any

assumptions about the result of a failed invocation.}

block tail:
statement;
statement, newline token. blod tail,

wp (statement. newline token, block tail) R

~ w? statement (wp block tail R " if'ailed)

I wp statement (R 1\ failed)

8.6.4. Subs ti tt.tion

substitution:
name.

wp name ,'t ~ wp command chain R

where co:nmand chain directly derives frOl:1 the blocklet body whose

blocklet name is name (q.v. S""C1:ions 3.2.1 and 6,'-J..4).

3.6.5. ,4.ssignmerd;

assignment:
name. becomes token, expression.

w? (name, becomes token, expression) R ~ [ex[)ress ion -+ name]R

Sl2ct:,on 8 Ax iOl:1atic Semantics

8.7. Proverties of~~I

The wp function defined above haS the folluwing pro;erties.

which nGij' be ~roved fron the de'::::'n':tion.

8.7.1. Stl'ic:t1:esS

for all constr'u:::ts A

wp A false = faLse

8.7.2. Distribut~on over A

For all constru:ts A and predicates 9 and R

(wp A ;;n A (wp A R) WpA(QAR)

8. ? .). Continuity

Given an infinite sequence of predicates Qi' i ~ O. :,uch that

:':'i ;';i+]

w~ A (V <;!.) V (wp A Qi)'
i~O 1- i ~O

(rom property S.?:: it is easy 1::0 prove the following ?roper1::y

of ~lonotonicity: ii Q ~ R then w~ A Q wp A R. No1::2 that in

general '..,Ip does not d=-stribute Qve!' v, i.e.

(wp A Q) v (wp A R) wr~ A (Q v R).*
(:n particular. cOTlsider wp choice command.) However, tie wcay.et'

condition

(wp A Q) v (wp A R) wpA(~vR)

follows 'Crivially from monctonicity.

Axiomatic Semantics ~ection 8

Page SO

9. Termmal Symbols

~his secti0n con"Cdins -::he s/ntax and seDantics of t~e le:r:emes

a.:J;::;' out=-~r,es d cOIT.:T.ent mnver.tion .

.:.... J:\ ?!'ograr:: cor,sis-::s of a sequence of s,:-n-bu:s. '='he tokens arc

sdmbols, as are tile letters and digits ane ar,y oc::heI' char-acters we

;..l~sf:: 1:2 .i.:c:,:;'ude because :hey a:OE avai:;'able on:yc:" ts'pe,,'riter or line

~r.inteY", In I:-,ost representatior;s the tokens ",:i=-l ::>e cOD~osed of

ffiultiple characters, e.~. the suggested representation for the

where taken is y;lerB, and the newline token migh-: be represented as

the pa.lr of characters carriage return and line feed. ,~io

difficulty should aI'ise so long as the designers of representations

ensure that it is easy to map multi-character sequences into the

appropriate tokens.

9.1. Representation of Tokens

Where two tokerJS are juxtaposed they sh0uld te seiJarated by at

least o~e space; ddditional spaces before or after a t0ken are

optional and Inay be used to improve readability.

The list of recommende.j representatior:s given in Section 1.? 1

uses underlining to create rJew symbols. Underl ined words have the

advanta~e of standing out from the page. F0ssi-ble alternatives, if

u:Jderlir.ing is unavailable. are the use of bold face 0:' caJ.)ital

lettE'rs. Stro?ping with quotes or :;:Joints ~.s not ~ecommendecJ.

Stro?pi~5 has the effect ~f reducing readabil~TY rather than

enhanci'_e; ~t. J:f capita:' letters a~e used to creaTe new symbols.

the te~:l Zetter should be understood to ex:::lud.e the:;.. ~:t rrl,Jst

a~ways je clear whether a Given sequence 01 cha,~cte~s is a ~~ken or

a name.: The terr.'. d'i?i t nea:Js ah/ ,:of the ord'::' 3.ry dec'::':-;;21 cig':;' -:s.

Section 9 Terr.linal Symbols

9.2. Syntax anu Sel7.antics of the Lexemes

The fQllo'win[; symbols, in addition to letters and digits, are

used in tne constructior. of the lexemes.

sy:ob8l re?resentation

point symbol

times ten to the power symbol
 "- '" minus syr,lbol

plus symbol +
,quote syrnbo 1

escape symbol

open bracket symbol

close bracket symbol

9.2.1. Text denot;a;;ionc

text denotation:
quote symbol, item sequence, quote symbol.

item sequence:
item, item sequence;
emp ty.

i tern:
any character other than that representing nel'Jline token

escape symbol or quote symbol;

newline representation;

quote representation;

escape representation.

The ldst production will not be lilade more formal. To ::ivoid a

multiplicity of conventions, newline representation will be "n,
quote representati on ...,ill be ", and escape representation will be ..

The value of d text denotation is the sequence of c.",aracters

obtai"ec. bj' replaci:1f, the newline. quote and escape representations

by the aPi-lropriate characters.

Usin<..> "(:'1e re?resen--::ac:ions ..;i ver. above, ti1e fG:L~o.:ing dre

text denotations.

'This is Text'

'EverythinG""s been said'

''''l,lZ wO:r'C3 are peqs to hanG ileas on."'''n(H.fl.Beecner)'

Terminal Symbols Section 9

i'd6e ~2

~ote tha- it is no~ pwssible for a text denotation -;:0 extenG over

;ncr'E: ti-:-o.,l one :l~;-,e.

. 2'. 2'. :~;R~2P i~n~~ati~·.~

i;j-:::-o.-e~s c;l;:'c .:.:e ...;'(v..: ;.;~. a se'i-ience ;)f dii..~i:s in :: e nc,~'r>"_':'" SC~l'"

8: ~herE ar~ ~8 ce;.8:aTiu;,G :8r ne~~'(i~e i~te~e~5.

J. 2. J. ';e:;,; rie>::Jt'.:;.t{:Jnd

l;--,e der,;J"talior. IT,ust C811~ain e~tne~ a point symbol cr d

times tE:n to tfle power symbol or batn; d point symbol rnus~ a::"',liljS

De iollc ...'ed b:./ a Jig:'t. 'l'ne ir.~e6s;:, eX,iJonent £0 1 1 0\<1 i rl':; the

times ten to the power symbol rna:.,' be precede,-=: by a plus 5Yr:lbol or d

minus 5ymbol if required. Thus tl,e fo.1.J.Gwing a:o:-'E'. equivalent

real denotations.

,. 1

5710-1

.57 10 +1

O. 57 1 n 1

9.2.4. Hames

K name consists oi a Letter follm-Jed by a (possibly eDpty)

sequer;c~ of letters, chgits, spaces and any other syn~bol:~ a

repl'eSI;::.tdtion cz,r, ,-3,110'>"'; without intr'..JC;c;.cing dlr,biguity. {Thus the

mi r,us tuken cou~::J not ~e us'_·u I but (8. ::light LC ",llowabl""

~:e~,er,di.~ eli ;:hc re:?r~se:Jt£:1.:i8n J[t:-:e -::OY"2I.S.)

-T-",'c :.a.rnes d:rC; iJell:i~a.Z if the/ ::iiL':er 0;-1';')- in thou :ene na.me

cc..:-:-:::a.ii: ;;~c;_i:':';J::'e S;)dCC:: ·..,':;ere t:'e o-::;ler :::or,C:a.ins d s::.. -';;:::'12 sj)ace.

,,~;er 2" ~:"'I-!E:l' ~a3E lc.tc:~r ..:.:ce jiff'r'c·'- ;':X2.Elp::'es:

~~cta.

StaI't Co~~nn

:ine ;rin:el'

Section 9 Terminal Symbols

g. 2.5. :lQF'1F;r; ,-':-r; r1 .H'g;,ne",ts

.6.. name wi th a rgulllents con::::ists of a name together wi;::h zero or'

8:=Jre arguments, ·...ill"'!'e

ar!jument:
open bracket s/li1!Jol, expression, close bracket symhol.

The aryuments may Drecede, intersperse or succeed the characters of

tile na~e. =xal~?lE~:

Li~.-? fl'om [Star't Co~umllJ to [End Columnl

[.1J m{llus [bJ

tJJ' [t;,et;a.~

:f.'!ds one h'1pre~'8 to haiJe no arguments

Aekerrnann[JJ[;:!]

The argument List; of a name wi til arguments is the list of the

expressions taken in order.

9.3. Comments and Continuations

The syntax does not explicitly permit comments. This is not

meai,t t:.l discourdge "'[(,eir use, b',Jt reflects the vi"". that the

commentary on a program is not itself par't of t]-lat 1-)rG~I'am.

Since the newl ine token is both part of 'the syntax and ,he (.)nly

means whereby a newline may be star'ted, a r:1eans of breSlY:.ing

inconveniently lonh lines is provided.

The fol~owinE conve~tions are reccmner.ded for cor-::-.ent and

layout; they do not apply inside denotations. The sym:·;,;ls usee:

are:

symbol repre.ser. tat iorl

start comment symbol
end comment symbol
continuation symbol

(i) 'I,le start cOl<1ment symbol, the matching end comment symbol

ar:...:: a1---'- the s:/:-:.;)ols Detween the:n a:::'e equivalent t;) a s~,ace. 2:,.'

"matchinG" 'de intend to allow ni?'sted comments.

Termindl Symbols SectiorJ 9

~dge 54

(ii;, ~1ultiple spaces are ec;uivalen"t to a single space.

(iii) 'i.Jhere a nE.'wl i ne token is iIT~ediately followed by a sy~bol

wnicl~ is not a space. that newl; ne token and all succeeding symbols

up tu c.nd including the next newline token are equivalent to a

newline token.

Civ) Multiple newline tokens are equivalent to a single

newline token.

(v) A newline token preceded by the conti nuation symbol is

equivalent to a single space.

{Nots that it is possible fur m0re than one character to

represen: "space u , e.g. in a particular repcesentation

1Thorizor;tal tabU Inay be consider'<:,d as a space. }

Section 3 Terminal Symbols

Pa[,e 5E'

10. Acknol,1edgernent s

;"'S was J:Jentione':: in the [oreHor-d, the orh,ir1a~ desiGn 0: 3R was

a b:;rproduct of a contract let by the 'Jesign Office Consor:ium. who

helve consented "tc the ~ublication of a r.,odified versij:-, of tIle

notation. The chanGes have been initiated by both the search ror

s::'r;-J:;"le ioru'Ul ser:lantics and the experience of usinl~ the ~anouabe;

reassuringly after. these two avenues led to the same des!:ination.

::. ali. 6rateful to Brian ShearinL for oivin(; fr'Oel~r of his tir.le so

that this report could benefit from his experience of 3R.

Throughout the development process Frofessor C. f-... R. !-iJdre has

~rovideG helpful s~5gestions and constructive criticisJil, and a.ll the

members of the Programming Research Group have played their ;Jart by

6cnerdtin~ an atnosphere in which all th8 drawbacr.s of an idea are

rapidly exposed. J. Mack Adams I !1alcolm [larrer', Andr'e",,' lle..lffian. and

uoe Stay have all provided special helr~. from proof-r'ea::lin.:;: and

clssisting with the text-processine system to discussin/3 issues of

formal semantics.

AcknOWledGements ~'Oction 10

11. References

[lJ i'_l~ock, D. G. Readai:'iZitj of Design P1'0e1'CiJl/S. Proceedings
'Jl CoL_oquiL:.J.1 on Inter:dce BetloJeen :::oD?ut:nt; anc Jesibn in
:::;t::uctural l.:nginccr:':1g, ppI::::::.::' - II:::.1:J) 3ergalT.o; September
1 S-­ 8

l 2 J DijKstra, L. ;"'1. iJual'JeJ Commands, Nondeterminacy and Formal
Der,'.tlation of Prog1'ams, Comm ACt1 Vol B Nr 8, pp4S3 4 S 7.
Also Dijkstra, L. TtJ. A Disr::ipZi1,e of P1'ogramm-ing.
Prmtice-nall, 1976

[3 J ":;r' c", D. Compile~ Construction for Digital Cor'IFu te 1'B.
Ct,~;"'::f'r ~p12 - 48; ~~iey, 1~71

[4]	 r-fsimer, L. C. R. On Removing the Mar::hine from the Language.
Ac:a Inf. Vol 10 rase 3 pp 229 - 243 (1978)

[S]	 dehner. E. C. R. do Conside1'ed od: A contribution to the

PrJgramming CalculuS: Acta InLVol 11 rase L

p~~87 - 304 (1S79)

[6J	 HC;:Jcrcft. J. E. and Ulirr.an, J. L. Pormal Languages and their
Re:at'i:cm to Automata. AdGis0n-'\~esley, 1969

[7 J	 Ua:ional Standards Institute, American. American Nat,:onal

Standard Programming Language PL/I. X3,53, 1976

[3]	 :2.3.A. JR _ A notation for Desr::ribing COT'1puter P1'c1r/rams.

:J~:'ecc:orate of Architectural Serv ices) Property Services

":'.iency) Oepartme:1t of Lnvironrner,t; April 19 7 8

[9 J	 :.:ialomaa. A. F01'mal Languages. Academic Pre3s, 197 S

[1 () J	 Shearint':, B. n. Th.e Forpa Programmer's Manu.at.
Desi~n Of-fice Consortium. Guildhall Place, Cambridce, 1977

[11] SJ:",aring;, B. tL Nustress Programmer's Manual (Part 1).
S.LA. Ltd .• 23 Lower Belgrave Street) :"ondon, SW1'...' Oin.,:;
Jctober 1'378

[12 J	 Wirth, N. Systematia Prog1'amming: An Introduation.
Prentice-Hall. 1973

Index to GramT.lar and Technical Terms

TfJis ir,cex lists a:Cl the technica=- -;:crr,s Jefir,e::::' ~iL t>' Y'e:;::ort

(~rir.ted in 'i.taLics) dnrj dll the nor.-c:ern::'nal symbols of the Br'affiJnar

(?rint:ed in gothic), :<':..lch listing 6ives t:e seCticrJ G.cJO pd5e

i1<lltlDcrS on which the d~;'ro:;n'idte def~nition may be to'..'rJd. Jses of

"tne "terns dre not l;''sted.

actual block name § 5 . 3 . :l ?28
additive fDrmula §7.:.:'. ::- p3S
argument declaration 9 LI • 1 p17

_, ~ '7
./argument declarations option §i.J. ; - ,

argume rt t Ii s t §9.2. S pS3
array bound §S.1.: pig
array expression §7. -,..; p39
array indicator §5.1.1 pig
assignment E.S.2 p31
base type indicator § S . ::. . 1 ;; 1 ~

binary formula §7.2.1 p35
block §3.1.1 p:~

block body 93.1.1 p:~

block end § 3 . -: • 1])12
block head § 3.1. :. p12
bLock Ust §? 3.2 pi1
block tai 1 §3.1.1 ~J 12
blocklet § 3 . 2 . 1)15
blocklet body § 3 . 2 . 1 piS
blocklet name § 3 . 2 . 1 piS
blocklets option § 3 . ! . 1 ;. ~. S
boolean § 5 • lj • 1 ~::'3

chaos § 8 • 5 • :~ p46
choice command § 5- • j • i ;::.:::;:'
command § S . ::' pCC
command cha in n. ::'.1 1'15
compu ta t i all § b • 0 ?
conjunctive formula § S . ~ . 1 p23
declarati an § S .~ • :: :?1~

Qef~;ned (binap!} operators) § "7 • 2 . J..J p:36
defi-ned (reZator'S) §S.4.4.2 p25
defi-ned (;,mar'~' operators': §7 • 1.. L ?3 4

denotati on §7.1..; .1 p39
dii/1',t § 9.1 pSG
disjunctive formula § S. lJ • 1 ~23
dummy command 36 .1.:: p27
empty § 1. 2.:3 p8
express; on j ;:33• C
fail command ; .2. p27
failure clause ; .5. p25
formal block name ; ·..
';.7LobaL liet § • j • pH
gu a rd j .4. r ~ ::
guarded command j • j •

guarded command chain § • 3 • PLL

index to Gpillr.mar ar.d Tec)JrJ~:;al T2r'lrtS

Page 58

identrZcal
invariable declaration
invariable lis t
invariable r.ame
invocation
invocation with results
invocation without resu 1ts
invoked b1..ock
joined expression 1i s t
joined name 1is t
let t f; l'

Zexeme
Zoca l Us t
mat~h

multiplicative formula
name 1..is t

operand

parameter declaration
parameter Ust
parenthesised expression
parenthesised guard
primary
program
program body
program element
pro~ram statement
relational expression
relator
result declaration
res u I t 1£3 t
result list option
scope (g1..oba'l)
scope (ZocalJ
scope (of blo(!kJ
scope (of block let)
simple command
simple command c ha i n
statement
subrange indicator
substitution
success and failure clauses
success clause
symbo 1..8
ternary formu 1a
tested invocation
token
type indicator
t,Fpes
unary formula
una ry operator
ueage 1..is t
usage list option
variable declaration
variabtc t'ist
variabte name

§ 9 • ? . J..

b.1.1
§5.1.2.1
§5.1.2.1
§ 6 . :; • ::
§ 6 • 3 • ~

§ 6 . 3 • ::.
§ 5 • 3 . 2
§7 . 4 • 1
§.L1.1
§ 9 . 1
51.2.2
§3.1.2.1
§2 . 3 • 2
§ 7 . '2 • 1
§3.1.2.2
§7.1.2
94. :'..
§4.2
97.4.1
§s . '+ • 1
§ 7 . 4 . 1
§ 2 . 1
§ 2 . :'..
§ 2 . 1
§ 2 • 1
§ 5 . 4 . ::.
§ S . 4 . 1
§ 4 . 1
§ 4 .2
93.1.1
§ '2 • 3 . Ie.

§3.1.2.6
§ 2 . 3 . S
§ 3 . 2 . ?
96 . 0
§ 5 . 3 .1
§ 5 . C
§5.1.1
§ 5 . 4 . 1
§ 5 . 5 . 1
§ s . 5 • 1
§ 9 • 0
§7. 3.1
§ 5 . 5 . 1
91.2.1
§5.1.1
95.1.~.3

§7.1.1
§7.1.1
93.1.2.2
§3.1.1
95.1.1
3:.1.2.1­
35.1.2.1­

;>52
p19
?20
p2=:
p28
;;28
p28
p28
p39
P 12
pSO
pE
p12
p11
p36
;>13
pB
p17
p17
p39
p23
p33
plO
piG
~-dO

p1D
p23
p23
pI7
p17
p12
p11
pI3
pll
p1S
?27
;)22
p19
p1':l
p3CJ
p2 S
p~5

pSO
p38
p2S
pS
p19
p21
['33
p3i
? 1 j
;=;:iL
['1?
:?2lJ
p20

