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Abstract

Pedestrian detection is a fundamental task for many
downstream applications. Visible and thermal images, as
the two most important data types, are usually used to de-
tect pedestrians under various environmental conditions.
Many state-of-the-art works have been proposed to use two-
stream (i.e., two-branch) architectures to combine visible
and thermal information to improve detection performance.
However, conventional visible-thermal fusion-based meth-
ods have no ability to obtain useful information from the
visible branch under poor visibility conditions. The visible
branch could even sometimes bring noise into the combined
features. In this paper, we present a novel thermal and vis-
ible fusion architecture for pedestrian detection. Instead of
simply using two branches to separately extract thermal and
visible features and then fusing them, we introduce a hal-
lucination branch to learn the mapping from the thermal to
the visible domain, forming a novel three-branch feature ex-
traction module. We then adaptively fuse feature maps from
all three branches (i.e., thermal, visible, and hallucination).
With this new integrated hallucination branch, our network
can still get relatively good visible feature maps under chal-
lenging low-visibility conditions, thus boosting the overall
detection performance. Finally, we experimentally demon-
strate the superiority of the proposed architecture over con-
ventional fusion methods.

1. Introduction

In the field of 2D pedestrian detection, visible image-
based techniques have been well explored [1, 2, 20, 25, 26,
37]. However, an inevitable weakness of using only visi-
ble images is that they are easily affected by illumination
changes, and detection performance drops heavily under
poor illumination conditions. As a complementary data
source, thermal images are more robust in detecting pedes-
trians in badly illuminated scenes by capturing the temper-
ature information of objects instead of color information.
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Figure 1. Comparison of our pedestrian detection method to
thermal, visible, and fusion-based methods, on two datasets of
visible-thermal pair images. As shown, the detection performance
(a) of our method (c) goes beyond the previous fusion architecture
(b). Ev, Et, Eh denote visible, thermal, and hallucinated feature
encoders respectively, and LH denotes the proposed hallucination
loss.

Combining thermal and visible images, recent work on
multi-spectral detectors has tackled the challenge of com-
plex environments resulting in promising detection perfor-
mance [17, 39]. Most thermal- and visible-based fusion
architectures focus on boosting the effectiveness of multi-
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Figure 2. Illustration of the modality hallucination technique.
Examples of day and night thermal-visible image pairs are shown.
In the day image pair, pedestrians are easily recognized on both
thermal and visible images. In this way, we can learn good
thermal-to-visible mapping through the hallucination network. In
the night image pair, we can still generate useful visible features
(i.e., hallucinated features) using the learned mapping.

modal integration. For instance, previous methods usually
assign lower fusion weights to bad visible features to reduce
their impact on the fused features. However, visible images
at night usually contain no meaningful color information
for pedestrian detection, as illustrated in Fig. 2. Even with
a very effective fusion approach, the overall detection per-
formance is still adversely impacted by darkness and other
challenging illumination conditions (e.g., overexposure).

Instead of mitigating the negative impact of meaning-
less visible features, we propose to actively generate good
visible-like features from thermal images, since thermal im-
ages are always informative for pedestrian detection. Based
on this observation, we advocate using the modality hallu-
cination technique proposed in [13] to generate visible-like
features (i.e., hallucinated features) from thermal image in-
puts. The generated visible-like features can then be fused
with thermal features and improve the detection perfor-
mance when visible images are uninformative under poor
visibility conditions. As illustrated in Fig. 2, the basic idea
is that we can borrow color information from good visible-
good thermal image pairs to improve detection performance
for bad visible-good thermal image pairs. Through the hal-
lucination network, we first learn a good mapping from the
thermal to the visible domain. In the testing stage, we then
use the learned thermal-to-visible mapping to generate rel-
atively good visible-like features from inputs of good ther-
mal images. The generated hallucinated feature can be seen
as complementary color information for uninformative visi-
ble images. With the help of the relatively good visible-like
features, our network can achieve better detection perfor-

mance than conventional two-branch fusion methods which
use bad visible features, as shown in Fig. 1.

To this end, we design a novel fusion architecture, which
is simple yet effective. First, we have two backbones for
feature extraction from thermal and visible images sepa-
rately, like most of the previous methods. In addition,
we introduce another backbone, the hallucination network,
to learn the thermal-to-visible mapping. This hallucina-
tion backbone and the visible backbone are further con-
nected using feature similarity losses (i.e., the hallucination
losses). We can thus train the network so that the halluci-
nated feature maps look similar to the visible feature maps.
Finally, a multi-modality fusion module is introduced to
adaptively combine feature maps from all three branches.

The key issue here is how we can learn a good thermal-
to-visible mapping function through the hallucination loss
between the hallucination backbone and the visible back-
bone. The basic idea is to force the hallucinated feature
maps to mimic the visible feature maps as much as possible
by narrowing the distance between these two kinds of fea-
ture maps. While we found thermal images are usually in
good conditions regardless of illumination changes, visible
images excel during the day and are usually in bad condi-
tions at night. For night-time visible images, color infor-
mation is lost, and thus the thermal-to-visible mapping will
be misled by still forcing the hallucination feature maps to
mimic the visible feature maps that contain less or no useful
color information. This problem caused by the difference
between good-condition and bad-condition visible images
is defined as the domain inconsistency problem. To tackle
this problem, we further design an illumination-aware hal-
lucination loss to prevent information transfer from bad-
condition visible images. That is, we propose to assign
lower weights to the hallucination loss when visible images
are in bad condition.

In summary, the contributions of this work are three-
fold:

• We go beyond the limitation of previous fusion meth-
ods and propose a modality hallucination-based mul-
tispectral fusion network comprising three feature ex-
traction branches (i.e., thermal, hallucination, and vis-
ible branches).

• We present a Hierarchical Multi-modal Feature Fusion
module to effectively combine features from the three
branches, and an illumination-aware hallucination loss
to relieve the domain inconsistency problem.

• Extensive experiments demonstrate the benefits of
hallucination-based three-branches fusion architec-
ture. The proposed network outperforms conventional
fusion methods on both KAIST and CVC-14 datasets.
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Figure 3. The overall architecture of our proposed multi-modal fusion network for pedestrian detection. A hallucination backbone
is added to the traditional two-stream fusion network, and a Hierarchical Multi-modal Feature Fusion (HMFF) module is further designed
to fuse features from all three branches at multiple scales.

2. Related work

2.1. Multispectral Fusion for Pedestrian Detection

Most studies on multispectral pedestrian detection have
focused on developing two-branches architectures extract-
ing and fusing information from visible and thermal im-
ages [3, 4, 17, 23, 24, 33, 34, 39].

Li et al. [23] presented a two-branches pedestrian detec-
tor based on Faster R-CNN [28]. Two VGG-16 [30] back-
bones are used to extract features from color and thermal
images separately. To fuse the detection results from two
modalities more effectively, they proposed an illumination-
aware network as a side branch to estimate the illumina-
tion value from visible images and an illumination-aware
weighting layer to get the fusion weights for fusion. Chen et
al. [5] proposed a probabilistic ensembling technique to
smartly fuse detection results from two modalities. Instead
of fusing detection results, most of the related works focus
on designing mid-feature integration modules. For instance,
Zhou et al. [39] designed a Modality Balance Network
(MBNet) to tackle the modality imbalance problems when
fusing visible and thermal features. An illumination-aware
feature alignment module was also proposed to address the
misalignments between visible and thermal modalities ac-
cording to the illumination conditions. Zhang et al. [33]
designed a Cyclic Fuse-and-Refine module to iteratively re-
fine separate modality features using fused features. They
also utilized an auxiliary segmentation task to better learn
each refined modality feature. To effectively fuse features
from those modalities that are not fully aligned, Kim et
al. [17] leveraged the multi-label learning strategy to learn
more discriminative features even when one domain of the
input data has some problems. Zhang et al. [34] proposed
the inter- and intra-modality attention modules to improve

the modality feature fusion efficiency under the guidance of
ground truth segmentation masks.

Unlike the above research working on improving feature
integration efficiency from only two modalities, we propose
to extract color information from good-condition visible
image input and then generate more color information for
bad-condition visible image input, by adding a hallucinated
medi-modality (thermal-to-visible) as the third modality. To
the best of our knowledge, our model is the first work lever-
aging the hallucination mechanism to improve the fusion
efficiency for multispectral pedestrian detection.

2.2. Modality Hallucination

The concept of modality hallucination is first presented
in [13]. Taking into the fact that depth information can con-
tribute a lot to object detection but sometimes is not readily
available, Hoffman et al. [13] designed a modality halluci-
nation network to produce depth-related features from the
input RGB images by mimicking the real depth mid-level
features at training time. The learned depth-related features
can then be combined with RGB features to boost the ob-
ject detection performance at testing time when only RGB
images are taken as input. Since then, the modality hal-
lucination mechanism has been widely applied to various
tasks, such as hand pose estimation [6], video action clas-
sification [10], object detection in indoor scenes [38], vi-
sual odometry [29] and much more [21, 32]. As a follow-
up, Jiao et al. [16] also proposed a two-branch network to
jointly learn semantic and geometry (i.e., depth) informa-
tion from only RGB images for the semantic segmentation
task. Crasto et al. [8] designed a network to hallucinate mo-
tion features from RGB frames for the action recognition
task. Recently, Saputra et al. [29] utilized a visual hallu-
cination network to predict fake RGB latent features from



thermal images, and then employed selective fusion to com-
bine features from thermal, hallucination, and inertial fea-
tures to finally perform thermal-inertial odometry.

Even though the big idea of mimicking one modality fea-
ture from another modality input in this paper is similar to
the above methods, they did not consider the domain incon-
sistency problem in these methods. In this paper, instead
of simply reducing the distance between features from two
modalities like these methods, we further explore how to
effectively learn the mapping function between two modal-
ities under the problem of domain inconsistency.

3. Methods
The proposed network architecture is illustrated in Fig. 3.

Our network takes a pair of visible image IV and thermal
image IT as input, and outputs pedestrian detection bound-
ing boxes. The input images are first sent to the backbone
component (Sec. 3.1) for multi-modality feature extraction.
Different from traditional multi-modality fusion networks,
a thermal-to-visible hallucination feature extraction branch
(Sec. 3.2) is added to the feature extraction component,
forming a three-branch feature extraction backbone. Then,
a Hierarchical Multi-modal Feature Fusion (HMFF) module
(Sec. 3.3) is presented to adaptively combine features from
the three branches. The fused feature is fed into the detec-
tion head to generate detection results. Finally, the designed
hallucination loss is detailed in Sec. 3.4.

3.1. Backbone

Our network is built upon the state-of-the-art detector,
YOLOv7 [31] because of its recent excellent performance
in both detection accuracy and inference speed. Before the
feature fusion, there are three feature extraction branches.
The upper branch is responsible for visible features FV ex-
traction and the bottom branch is responsible for thermal
features FT extraction. As for the middle branch, it takes
thermal images as input and outputs hallucinated features
FH . The hallucination loss between the visible branch and
the middle branch (i.e., the hallucination branch) makes the
hallucinated features mimic the visible features from the in-
put thermal images. In fact, the hallucination branch can
be seen as a thermal-to-visible mapping function that trans-
fers thermal modality input into the visible modality feature
space. For each feature extraction branch, we use the same
backbone architecture in YOLOv7. More architecture de-
tails can be found in [31].

3.2. Thermal to Visible Hallucination

The hallucinated feature extraction branch aims to learn
a mapping function f(·), which can map the thermal image
input to the visible feature space. In such a way, we can
then generate visible-like features (called hallucinated fea-
tures FH ) from the input thermal images IT when the map-
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Figure 4. Illustration of how the hallucinated feature map
mimics the visible feature map. As the training epoch goes on,
the hallucinated feature map looks more and more similar to the
well-lighted visible feature map. Visible feature maps stay consis-
tent over epochs because the visible backbone is fixed during the
last training stage, as detailed in Sec. 4.1.

ping function is learned well. To achieve this, we propose
to establish hallucination connections between the visible
and hallucination branches. Specifically, three hallucination
connections are added in the three outputs of backbone net-
works, which are responsible for detecting large, medium,
and small pedestrian targets respectively, as illustrated in
Figure 3. Within the hallucination connections, a halluci-
nation loss is introduced to measure the similarity between
visible features FV and hallucinated feature FH , which is
described in detail in Sec. 3.4. By iteratively decreasing the
hallucination loss during the training stage, the hallucina-
tion branch can then gradually generate visible-like features
from input thermal images.

To have an intuitive understanding of the hallucination
procedure, we further visualize a set of feature maps to
show the change of hallucinated features as the training pro-
cess deepens. As shown in Figure 4, the hallucinated feature
map looks more like to the thermal feature map at the begin-
ning (see the black dotted-line box). However, as the train-
ing goes on, the hallucinated feature map becomes more
similar to the visible feature map (see the red dotted-line
box) than to the thermal feature map.

3.3. Hierarchical Multi-modal Feature Fusion

The features from the three branches need to be fused
before being fed to the detection head module. Unlike
most existing visible-thermal pedestrian detection methods
which have only features from two branches to be fused,
we have three streams of features to deal with. To make the
fusion module easily learn the relationship between each
modality, we propose a Hierarchical Multi-modal Feature
Fusion (HMFF) module to gradually fuse features from the
three branches in a two-step fashion, as illustrated in Fig. 5.
Two different fusing strategies are employed according to
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the relationship between modalities in the two steps.
Specifically, inspired by the idea of assigning different

fusion weights to different modality features under differ-
ent conditions in many other multi-modality fusion works,
we design a modality difference-aware fusion sub-module
for the feature integration from the visible and thermal
branches in the first step. The combined feature of the first
step and the hallucinated feature is fed into a SE-Layer be-
fore finally being added to form the fused feature.

In the modality difference-aware fusion sub-module, let
W l = (wl

V , w
l
T ) be the weighting vector of visible and ther-

mal branches in scale l (i.e., small, medium, and large in
Fig. 3). As in Fig. 5, this weighting vector is obtained from
the modality difference map between visible feature FV and
thermal feature FT . The Global Max Pooling (GMP) op-
eration is then performed on this modality difference map
to get a modality difference-aware vector, which is finally
transferred to a two-dimensional weight vector via a fully
connected (FC) layer with a Softmax activation function.
Overall, the fusion weight calculation procedure can be for-
mulated as:

W l = Softmax(FC(GMP (F l
V − F l

T ))). (1)

The fused feature in the first step is the weighted sum of
features from the visible and thermal using W l. The intu-
ition of this weighting strategy is that the modality weights
should be intrinsically related to the difference between the
two modalities. That is, when the features from the two
modalities are similar to each other, the fusion weights of
these two modalities do have not much impact on the de-
tection results. In contrast, when the difference between
the two modalities is large, it is crucial to determine which
modality is more reliable.

After the first fusion step, we can now ensure that the
thermal-visible combined feature and the hallucinated fea-
ture are both informative. Then, we can perform a further

fine-grained fusion strategy in the second step. To achieve
this, we employ the SE-Layer to first channel-wisely en-
hance the two features and then add them to get the final
fused feature. This fused feature is then fed to the detection
head to get the final detection results.

There certainly exist more efficient and elaborate ways
to design the fusion strategy in the second step. However,
the core idea in HMFF is the first-time application of differ-
ent fusion strategies for specific characteristics of different
modalities in a hierarchical way. We encourage the commu-
nity to further extend our current method.

3.4. Hallucination Loss

During the training stage, we simultaneously predict
bounding boxes and perform modality hallucination by
minimizing the detection loss LD and the hallucination loss
LH . The goal of hallucination loss is to make the halluci-
nated feature FH mimic the visible feature FV . We adopt
the ℓ1-loss as the basic hallucination loss first. Furthermore,
we found that visible images captured at night are usually
in bad conditions, containing less meaningful color infor-
mation, as shown in Fig. 2. In that case, it is meaning-
less and would even bring noise into the mapping function
learning procedure if we still enforce the hallucinated fea-
ture to strongly mimic the visible feature. Thus, to avoid
negative feature hallucination, we propose an illumination-
aware loss which assigns a lower weight to the hallucination
loss of images captured at night. Moreover, to increase the
hallucination efficiency, we enforce the hallucination proce-
dure to focus on the pedestrian targets by further introduc-
ing a mask weight wm to the hallucination loss. Overall,
the final hallucination loss is defined as a weighted ℓ1-loss,
which is formulated as:

LH = wi ·
n∑

j=1

wj
m ·

∥∥∥f ij
V − f ij

H

∥∥∥ , (2)



where n is the number of pixels f i
V , f

i
H in feature maps

F i
V , F

i
H for i-th image pair. wj

m is 1 if the j-th feature map
pixel f ij

V is within the ground truth boxes, whereas, wj
m is

0. wi represents the illumination weight for i-th image pair,
which is adaptively generated based on the illumination
conditions. To achieve this, we simply adopt a two-layer
MLP to predict the day or night classification of visible im-
ages using the final output vector from the visible branch.
wi is then set to be the day classification score, which is in
the range of [0, 1]. In that way, day image pairs would get
higher illumination weights than night image pairs. That is,
the dissimilarity between visible and hallucinated features
in good-light conditions is penalized more than dissimilar-
ity in bad-light conditions. We set the day weight large than
the night weight to encourage the hallucination network to
focus on mimicking good visible features.

The overall loss is then the sum of the two losses:

Ltotal = LD + λLH , (3)

where λ is used to scale the hallucination loss to the same
scale as the detection loss, which is set to 10.0 in our ex-
periments. For the detection loss, we just use the same loss
as YOLOv7, which consists of three terms: regression loss,
objectness loss, and classification loss.

4. Experiments
4.1. Experimental Setup

Datasets. The KAIST [15] dataset consists of 7,601 and
2,252 well-aligned thermal and visible image pairs for train-
ing and testing, respectively. For fair comparisons, we fol-
low previous work [17] and use the train dataset annotations
from [36] and sanitized test dataset annotations from [22].
There are 1,455 daytime images and 797 nighttime images
in the test set. Note that some papers follow the raw KAIST
dataset comprising 95,328 images [3,4], which contains im-
perfect annotations. For fairness, we only compare with
methods trained using the cleaned 7,601 image pairs. The
CVC-14 [11] dataset also encompasses both visible and
thermal images captured in the driving environments at day
and night time. We use the same training and testing divi-
sion as in [18, 36], 7,085 for training and 1,433 for testing.
Metrics. The widely used miss rate (MR) averaged over the
false positive per image (FPPI) with the range of [10−2, 100]
in [9] is adopted as our evaluation metric. With this metric,
lower values represent better detection performance. Fol-
lowing recent methods, we also separately measure miss
rates for day (MR Day) and night (MR Night) images and
then report miss rates for all images (MR All).
Training. The training procedure is divided into three
stages in our paper. In the first stage, we train two one-
branch networks for thermal and visible images respec-
tively. In the second stage, we train a two-branch fusion

Methods Day Night All
CAIN [35] 14.77 11.13 14.12

MSDS-RCNN [22] 10.53 12.94 11.34
AR-CNN [36] 9.94 8.38 9.34
MBNet [39] 8.28 7.86 8.13
UGC [19] 8.18 6.96 7.89

MLPD [17] 7.95 6.95 7.58
ProbEn [5] 9.93 5.41 8.50
ProbEn3 [5] 9.07 4.89 7.66

Beyond Fusion (Ours) 5.89 3.27 5.01
Table 1. Pedestrian detection results on KAIST dataset in terms of
missing rate (MR).

network. This two-branch network has two backbones to
separately extract thermal and visible features. Moreover,
for this two-branch network, the feature fusion module is
modified from the HMFF module by deleting the second-
stage fusion step. In this training stage, we use the back-
bone weights trained in the first stage to initialize the two
backbones here. The weights of the detection head are ini-
tialized by the weights of its counterpart in the thermal one-
branch network from the first stage. The fusion module is
initialized using the He initialization technique [12]. In the
last training stage, we train the complete network proposed
in our paper using the network weights obtained in the sec-
ond stage. Specifically, compared to the network in the sec-
ond stage, a hallucination branch is added to the complete
network, and weights in the hallucination backbone are ini-
tialized using weights of the visible backbone in the second
stage. This initialization strategy can guarantee our network
a better detection performance, as demonstrated in the ab-
lation study (Sec. 4.3). Moreover, the weights in the visible
backbone are fixed at this stage.

4.2. Comparison with State of the Art

We present our pedestrian detection results on the
KAIST dataset in Tab. 1. For this dataset, the proposed
model achieves the best detection performance in terms
of MR All, 5.01. For the CVC-14 dataset, our method
also achieves the leading performance, as shown in Tab. 2.
Except for quantitative results, we also report some vi-
sual comparisons to demonstrate the superiority of the pro-
posed method. Fig. 6 gives several qualitative results of
our method. As observed, our method can generate more
accurate bounding boxes and correctly detect pedestrians
under difficult situations compared to the baseline model.
Note that these shown cases in Fig. 6 are all in bad light
conditions. It is difficult to rely on these visible images to
detect pedestrians in these images. However, the halluci-
nation branch in our method can still generate useful color
information from thermal image inputs. Thus, the detec-
tion performance is boosted compared to the baseline model
without the hallucination mechanism.
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Figure 6. Visual comparison of the baseline and our approach. We delete the hallucination backbone to create the baseline model.
As seen, our method has better detection performance when visible images are in bad conditions thanks to the visible-like information
provided by the hallucination branch.
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Figure 7. Comparison visualization of feature maps with and without hallucination. With the hallucinated feature map, the back-
ground interference, brought by the bad-condition visible image, is significantly attenuated and the fused feature map is more focused on
pedestrians.



Methods Day Night All
MACF [27] 72.63 65.43 69.71

Choi et al. [7] 63.39 63.99 63.34
Halfway Fusion [27] 36.29 26.29 31.99

Park et al. [27] 28.67 23.48 26.29
AR-CNN [36] 24.7 18.1 22.1
MBNet [39] 24.7 13.5 21.1
MLPD [17] 24.18 17.97 21.33

LG-FAPF [3] 22.5 12.2 18.2
Beyond Fusion (Ours) 20.18 9.86 16.62

Table 2. Pedestrian detection results on CVC-14 in terms of MR.

methods Day Night All

one-branch visible 18.88 23.83 20.68
thermal 25.12 8.14 19.23

two-branch visible+thermal 11.12 6.88 9.87

three-branch
w/o LH 10.70 6.09 9.28

w LH (w/o weights) 7.40 5.34 6.91
w LH (w weights) 5.89 3.27 5.01

Table 3. Analysis of the effectiveness of the proposed hallucina-
tion backbone and the illumination-aware hallucination loss.

4.3. Ablation study

To verify the effectiveness of hallucination, we design
another network (w/o LH in Tab. 3) by deleting all the con-
nections between hallucination and visible branches. For
reference, we also create a two-branch baseline network by
deleting the whole hallucination branch, and we also re-
port the results of two one-branch networks which take only
single modalities as input. We train the new networks un-
der the exact same super-parameter and weight initialization
settings. The comparison results are given in Tab. 3.
w vs w/o hallucination. As shown, two- and three-
branch networks undoubtedly outperform one-branch net-
works since thermal+visible image pairs provide more in-
formation. Moreover, thanks to more parameters and a
wider network, three-branch networks outperform the two-
branch network. For three-branch networks, the network
without hallucination loss LH has the same architecture and
number of parameters as the proposed network. However,
the w/o LH network underperforms both of the networks
with LH , which can demonstrate the effectiveness of the
hallucination connections.
w vs w/o weights in LH . Thanks to the weighting strategy
in Equation 2, the proposed illumination-aware hallucina-
tion loss also contributes to performance improvement by
relieving the domain inconsistency problem. In the last two
rows, both of these two networks have hallucination con-
nections. However, the network with weights in LH outper-
forms the network without weights by 1.9, verifying that the
proposed illumination-aware hallucination loss can further
boost the detection performance.
Fusion visualization w and w/o hallucination. Apart
from the quantitative results, we visualize feature maps to
demonstrate the effectiveness of the hallucinated features.

Day Night All
Add 8.41 5.38 7.22

Concat 8.35 5.27 6.87
HMFF 5.89 3.27 5.01

Table 4. Analysis of the effectiveness of HMFF module.

As in Fig. 7, it is difficult to recognize two pedestrians in the
visible image, owing to the low illumination condition. The
corresponding visible feature map also contains no mean-
ingful activation, while the thermal and hallucinated feature
maps look more meaningful. Moreover, in the first row, the
fused feature map with hallucination is much better than
without hallucination in the second row.
w vs w/o HMFF. The proposed HMFF module plays a key
role in the performance boost. To verify this, we compare
our HMFF with the other two feature fusion strategies, Add
and Concat. The Add operation simply adds three feature
maps in an element-wise way, and the Concat represents
first concatenating all the three features and then apply-
ing a 1 × 1 Conv operation to restore the dimension of the
original features. As shown in Tab. 4, the proposed fusion
strategy outperforms the comparing strategies, demonstrat-
ing the superiority of the HMFF module.

5. Conclusions
In this paper, we propose a novel multi-modal fusion ar-

chitecture for pedestrian detection by leveraging the modal-
ity hallucination mechanism. Instead of simply combining
thermal and visible features using a two-branch architec-
ture like most previous works, a novel three-branch net-
work is designed. In this way, the detection performance
can be boosted by generating good visible features through
the added hallucination backbone when visible images are
in bad conditions. Moreover, an HMFF module is proposed
to selectively combine features from three different modal-
ities, i.e., thermal, hallucination, and visible features. An
illumination-aware hallucination loss is further presented to
avoid negative modality hallucination by assigning lower
weights to the hallucination losses of night image pairs.
Limitations. One assumption here is that thermal images
are in good condition so that useful hallucinated visible fea-
tures can be generated from thermal images. However, ther-
mal images could be contaminated by temperature noise. In
that way, generated hallucinated features would also be af-
fected. Hence, one limitation is that our method relies on
thermal images so much that the hallucination procedure
would fail to generate reasonable visible-like features when
input thermal images are also in bad condition.
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Pedestrian detection at day/night time with visible and fir
cameras: A comparison. Sensors, 16(6):820, 2016. 6

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026–1034, 2015. 6

[13] Judy Hoffman, Saurabh Gupta, and Trevor Darrell. Learn-
ing with side information through modality hallucination. In

Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 826–834, 2016. 2, 3

[14] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132–7141, 2018. 5

[15] Soonmin Hwang, Jaesik Park, Namil Kim, Yukyung Choi,
and In So Kweon. Multispectral pedestrian detection:
Benchmark dataset and baseline. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1037–1045, 2015. 6

[16] Jianbo Jiao, Yunchao Wei, Zequn Jie, Honghui Shi, Ryn-
son WH Lau, and Thomas S Huang. Geometry-aware dis-
tillation for indoor semantic segmentation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2869–2878, 2019. 3

[17] Jiwon Kim, Hyeongjun Kim, Taejoo Kim, Namil Kim, and
Yukyung Choi. Mlpd: Multi-label pedestrian detector in
multispectral domain. IEEE Robotics and Automation Let-
ters, 6(4):7846–7853, 2021. 1, 3, 6, 8

[18] Jung Uk Kim, Sungjune Park, and Yong Man Ro. Robust
small-scale pedestrian detection with cued recall via mem-
ory learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 3050–3059, 2021. 6

[19] Jung Uk Kim, Sungjune Park, and Yong Man Ro.
Uncertainty-guided cross-modal learning for robust multi-
spectral pedestrian detection. IEEE Transactions on Circuits
and Systems for Video Technology, 32(3):1510–1523, 2021.
6

[20] Wenbo Lan, Jianwu Dang, Yangping Wang, and Song Wang.
Pedestrian detection based on yolo network model. In 2018
IEEE international conference on mechatronics and automa-
tion (ICMA), pages 1547–1551. IEEE, 2018. 1

[21] Wonkyung Lee, Junghyup Lee, Dohyung Kim, and Bumsub
Ham. Learning with privileged information for efficient im-
age super-resolution. In European Conference on Computer
Vision, pages 465–482. Springer, 2020. 3

[22] Chengyang Li, Dan Song, Ruofeng Tong, and Min Tang.
Multispectral pedestrian detection via simultaneous detec-
tion and segmentation. In British Machine Vision Conference
(BMVC), September 2018. 6

[23] Chengyang Li, Dan Song, Ruofeng Tong, and Min Tang.
Illumination-aware faster r-cnn for robust multispectral
pedestrian detection. Pattern Recognition, 85:161–171,
2019. 3

[24] Qing Li, Changqing Zhang, Qinghua Hu, Huazhu Fu, and
Pengfei Zhu. Confidence-aware fusion using dempster-
shafer theory for multispectral pedestrian detection. IEEE
Transactions on Multimedia, 2022. 3

[25] Wei Liu, Shengcai Liao, Weiqiang Ren, Weidong Hu, and
Yinan Yu. High-level semantic feature detection: A new
perspective for pedestrian detection. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 5187–5196, 2019. 1

[26] Yanwei Pang, Jin Xie, Muhammad Haris Khan,
Rao Muhammad Anwer, Fahad Shahbaz Khan, and
Ling Shao. Mask-guided attention network for occluded
pedestrian detection. In Proceedings of the IEEE/CVF inter-



national conference on computer vision, pages 4967–4975,
2019. 1

[27] Kihong Park, Seungryong Kim, and Kwanghoon Sohn. Uni-
fied multi-spectral pedestrian detection based on probabilis-
tic fusion networks. Pattern Recognition, 80:143–155, 2018.
8

[28] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 3

[29] Muhamad Risqi U Saputra, Pedro PB de Gusmao, Chris Xi-
aoxuan Lu, Yasin Almalioglu, Stefano Rosa, Changhao
Chen, Johan Wahlström, Wei Wang, Andrew Markham, and
Niki Trigoni. Deeptio: A deep thermal-inertial odometry
with visual hallucination. IEEE Robotics and Automation
Letters, 5(2):1672–1679, 2020. 3

[30] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 3

[31] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. YOLOv7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors. arXiv
preprint arXiv:2207.02696, 2022. 4

[32] Dan Xu, Wanli Ouyang, Elisa Ricci, Xiaogang Wang, and
Nicu Sebe. Learning cross-modal deep representations for
robust pedestrian detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
5363–5371, 2017. 3

[33] Heng Zhang, Elisa Fromont, Sébastien Lefevre, and Bruno
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