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Abstract

Millimeter-wave (mmWave) radars have emerged as a promising technology for sens-
ing humans in diverse environments, owing to their ability to easily obtain 3D informa-
tion in the form of point clouds. However, mmWave point clouds are typically charac-
terized by sparsity and irregularity, which may limit their potential for certain applica-
tions. To address this issue, we propose mmPoint, the first model capable of generating
dense human point clouds from mmWave radar signals. Specifically, mmPoint takes a
single radar frame of a human as input and generates a dense point cloud that accu-
rately reflects the shape of the detected human as output. The proposed model consists
of a novel Encoder-Decoder architecture that utilizes a Multi-Modal Encoder (MME)
to extract features from both the radar signal and a point cloud template. A Multi-
Resolution Decoder (MRD) is then utilized to gradually infer a dense point cloud in
a three-step fashion, with a Lift-and-Deform Module (LDM) employed at each step to
increase the number of points and deform the point cloud based on the radar feature. Ex-
perimental results demonstrate that mmPoint achieves excellent performance on dense
point cloud generation from mmWave radar signals. Code and dataset are available at
https://github.com/NUAAXQ/mmPoint.

1 Introduction

The proliferation of human-centered intelligent applications such as surveillance [36], smart
control [34], AR/VR [26, 41], and fitness tracking [28] has created a pressing need for robust
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and non-intrusive sensing technologies. While cameras have been the predominant sensing
modality for such applications [8], they are vulnerable to harsh environments (e.g., poor
illumination, smoke, and fog), privacy concerns, and intrusive user experiences. In contrast,
wireless radio frequency (RF) signals have emerged as an alternative that is impervious to
adverse environments, privacy-preserving, and non-intrusive to users [29].

In particular, single-chip millimeter wave (mmWave) radar is a low-cost sensor that can
provide 3D information (i.e., 3D point cloud) of detected targets, making it a promising sens-
ing modality for human-centered intelligent applications. However, the sparsity of mmWave
point clouds has limited the accuracy of mmWave radar for some high-precision applica-
tions [3, 18, 21, 24, 25]. The sparsity issue in mmWave point clouds arises due to the in-
herent limitations in angular resolution, both in the azimuth and elevation dimensions. This
limitation is primarily attributed to the utilization of low-cost radars equipped with a limited
number of antennas, typically on the order of 3x4. Consequently, the classical processing
approach known as Constant False Alarm Rate (CFAR) operates as a peak detector, result-
ing in the generation of highly sparse point clouds comprising only 64 ~ 128 points. Such
sparsity poses significant challenges in terms of interpretation and is unsuitable for accurate
human-related tasks.

To the best of our knowledge, there is currently no existing research on dense human
point cloud generation from mmWave signals due to the above-mentioned challenges. To ad-
dress this gap, we draw inspiration from point cloud generation from single images and for-
mulate the point cloud generation problem from mmWave signals as a mmWave-conditioned
point cloud deformation task. As illustrated in Fig. 1(a), our proposed method takes a tem-
plate human point cloud as input and predicts the corresponding movement for each point
to drive the template point cloud to transform into the target human point cloud. mmWave
signals are used as control conditions to predict the corresponding movement. To reduce
the learning difficulty, we further propose a multi-resolution approach in which we adopt
a three-step strategy, as illustrated in Fig. 1(b). Through steps, we use fewer points in the
initial steps of the decoder and gradually increase the number of points through steps. This
scheme can help to relieve the problem of the slow training procedure compared to one-step
methods. The three-step strategy enables our method to progressively refine and enhance the
generated point clouds, leading to more accurate and densely populated human point clouds.

The key contributions are summarized as follows:

e We introduce a novel task of generating dense human point clouds from mmWave
radar signals, which has significant potential for various applications but has received
little attention in the research community.

* To address this task, we formulate the point cloud generation problem as a point cloud
deformation problem, and propose mmPoint, the first model that focuses on this task
to the best of our knowledge.

* We create a new dataset of training pairs, consisting of mmWave signals and their
corresponding dense human point clouds, to facilitate research in this direction.

2 Related Work

Point Cloud Generation. Pivotal work in deep learning-based methods on point cloud can
be dated back as early as 2016 [19, 20] when per-point local features are introduced to
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Figure 1: (a) We formulate the problem of point cloud generation from mmWvae radar

signals as the problem of point cloud deformation with the condition of mmWave radar

signal. (b) We design a three-step deformation strategy to gradually shift the points of the

template to the target positions. The learning difficulty of the proposed three-step strategy is

lower than the traditional one-step strategy.

i % mmWave radar signal
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modern MLP architectures. These pioneering architectures led to numerous soon-followed
works, particularly in the task of reconstructing dense point clouds. Prior literature point
cloud reconstructions span across various inputs from images [12, 14, 15] to point clouds of
various forms (e.g., manipulate shape from one dense point cloud to another [2]; complete
full point cloud given only parts [27, 37]; generate a dense point cloud from sparse and noisy
inputs [7]). The majority of the work utilizes a variation of encoder-decoder architectures
[12, 38]. For example, Lin et al. [12] applies the latent features of an image encoder into
a 2D decoder to obtain renderings at multiple viewpoints. On the other hand, some recent
arts incorporated generative techniques such as diffusion models [13, 15]. Some work also
focused on mining out the critical features used for point cloud reconstruction [6, 9].

While various modalities of inputs have been well explored, the emergence of millimetre-
Wave radar is very recent and therefore under-researched. The direct transfer of previous
methods is not possible due to large domain gaps, and the few works on this task are all in
traditional non-deep-learning methods [21].

Human-oriented mmWave Processing. Owing to its better generalization towards dif-
ferent lightings, there exist many works using mmWave for human processing with tasks
of human pose estimation [22], action and gait recognition [11, 24], human detection and
tracking, [39] and so on. Chen et al. [5] established a benchmark in mapping sparse human
point clouds from mmWave to 3D meshes. Nalci et al. [16] derived a pipeline to use raw
Frequency Modulated Continuous Waves (FMCW) signals to recognize human actions. An
et al. [3] derive a method to combine meta-learning and representation of multiple frames for
a fast human pose estimation method. Nevertheless, all these methods require a complicated
backbone owing to the noisy and sparse characteristics of raw mmWave data.

In light of this, we propose to develop the fundamental intermediate step of inflating and
denoising mmWave inputs into dense and accurate point clouds. This would amortize the
training cost for complex architectures on different objectives, while simultaneously bridging
many already-matured networks on dense point clouds for downstream tasks.
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Figure 2: Overview of mmPoint. Given a single mmWave radar signal and a template human
point cloud as inputs, mmPoint first transfers the inputs into representative features via MME
and then generate the target point cloud via MRD.

3 Method

3.1 Problem Formulation

Given a single frame of mmWave radar signal 7, the objective of the proposed model Mg
is to predict a dense point cloud Q € R¥*3, where N is the number of points. The whole
method can be formally formulated as:

Q= Me(ln) ey

In fact, it is quite hard to directly predict a new point cloud (i.e., the target point cloud) from
a feature vector. However, it is much easier to predict the deviation from an existing point
cloud (i.e., the template point cloud) to the target point cloud. Thus, we reformulate the
above problem into a conditioned point cloud deformation problem. That is, a new point
cloud can be generated by shifting the existing point cloud P with the predicted deviation
AP C RK*X3 S0 the problem is now transformed to predict deviation AP, that is,

AP = M@ (I, P) 2)

3.2 System Pipeline

Given one single frame of human mmWave radar signal I, and a standard human point cloud
P as the template, our network is expected to output a dense point cloud Q of the detected
person. The generated point cloud should not solely encapsulate the contours of the indi-
vidual, but also possess an evenly distributed and sufficiently dense attribute for seamless
applicability in further downstream processes, such as 3D pose inference and mesh recon-
stitution. As shown in Fig. 2, the proposed approach is in an Encoder-Decoder paradigm.
Specifically, the input point cloud and signal first undergo a transformation into feature rep-
resentation vectors through a Multi-Modal Encoder (MME), which is composed of a radar
signal encoder and a point cloud encoder. Subsequently, a Multi-Resolution Decoder (MRD)
is employed to gradually infer a dense point cloud that accurately captures the human shape.
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In each step of the MRD, a novel Lift-and-Deform Module (LDM) is proposed to augment
the number of points and deform the point cloud with regard to the radar feature. Upon
completion of three steps, our network can output the final dense human point cloud.

3.3 mmWave Radar Signal Pre-processing

In this paper, we use the mmWave radar signals from the HuPR dataset [10], in which the
authors collected over 200 sequences of radar signals using the TI IWR1843BOOST radars.
We will discuss more details of this dataset in Sec. 4.1. In general, raw radar signals collected
from mmWave radar devices comprise a set of frequency signals that bounce back from
the targets [1]. Usually, radar signal processing methods, such as Fast Fourier Transform
(FFT), need to be performed on the raw IF signals for estimating the motion information of
the moving target, e.g., the range, Doppler, Angle-of-arrival (AoA). We use the same pre-
processing method in [10], and finally get a complexed-valued tensor I, with size 16 X 64 x
64 x 8, where the four dimensions refer to Doppler, Range, Azimuth AoA and Elevation
AO0A, respectively.

3.4 Network Architecture
3.4.1 Multi-Modal Encoder (MME)

To handle inputs from both mmWave signals and point cloud, our MME consists of two
encoders: (1) mmWave encoder E,, and (2) point cloud encoder E, as illustrated in Fig. 2.

mmWave encoder: Following [10], we first reduce the dimension of the input mmWave
signal I, from (16,64,64,8) to (16,64,64) by mean-pooling along the elevation channel.
Here, the mmWave signal can be seen as a 64 x 64 image with 16 channels. Then, we
employ MNet [30], which is designed for mmWave radar signals, to extract information.
After that, we can get an intermediate feature with the dimension of (D,64,64), where D is
the number of the output channels in MNet (we set 32 in our experiment). We finally adopt
four 2D convolutional layers with strides to further aggregate information in this intermediate
feature, resulting in a feature map with the size of (512,8,8). A max-pooling of size (8,8) is
then adopted, followed by a fully-connected layer with an output size of 128. We, therefore,
get the final mmWave feature vector f,, € R1*128,

Point cloud encoder: Since the subsequent lift and deform operations are both local-
structure related, we adopt EdgeConv [31] to act as the point cloud encoder E,. An Edge-
Conv layer, just like an MLP layer, can be used to embed points into feature space, while it
can also capture local geometric structure via constructing graphs with local neighborhoods
of points. With a 4-layer EdgeConv encoder (3,32,64,128), a point cloud P with the size of
(N,3) can be transformed into a feature map of (N, 128).

3.4.2 Multi-Resolution Decoder (MRD)

In the decoder component, we introduce a three-step strategy to address the challenge of
learning displacement vectors for individual points. However, this strategy comes at the
expense of increased computational complexity due to multiple iterations. To mitigate this
issue, we propose MRD that aims to reduce the computational overhead. This is achieved
by initially processing a smaller subset of points and gradually increasing the point density
in subsequent steps, resulting in dense point clouds with a larger number of points. Each
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Figure 3: Architecture of the proposed Lift-and-Deform Module (LDM). Under the con-
dition of the mmWave feature, the lift operation makes the point denser and the deform
operation makes the point cloud closer to the ground truth.

decoding step comprises two fundamental operations: [lift and deform, which contribute
to the overall decoding process. Take a point cloud P C RVY*3 as input, the lift operation
can increase the number of points by r times, resulting in a new point cloud P’ C R™V>*3,
Given this lifted point cloud P’, the deform operation first predicts a displacement tensor
AP’ € R"™ >3 and then outputs the deformed point P” = P/ + AP'. r is the lifting rate and is
set to 2 in our paper.

Lift operation: As shown in Fig. 3, given the input point cloud P, we first increase the
number of points via a simple upsampling operation, resulting in the initial lifted points.
To predict the displacement for the initial lifted points, P is also transformed into a high-
dimension point feature map f, by a point cloud encoder E,, which is then added to the
mmWave feature f, to get the combined feature f,,. Consequently, we use Upsampling
and MLP-ConvTranspose operations to get two lifted features, respectively. These two lifted
features are then added together, followed by another MLP layer to predict the displacement
tensor. With the initial lifted point cloud and its corresponding displacement tensor, we can
finally get the final lifted point cloud P'.

Deform operation: Given the lifted point cloud P’ and the mmWave feature f,,, the
deform operation aims to predict the deformed point cloud P” which should be close to its
corresponding ground-truth point cloud. This is also achieved by computing the displace-
ment tensor for P’ with the condition of mmWave feature f,,. Specifically, we first employ
a point cloud encoder E, to transform the input point cloud into a high-dimension feature
map f,,. Another route is directly concatenating the input point cloud and the repeated f,,
followed by an MLP layer to generate a feature map with the same size of f,;. These two
feature maps are then added together to form the displacement feature map, which is then
taken as input by another MLP layer to output the final displacement tensor.

3.5 Loss Function

The training loss of our mmPoint is a joint loss that comprises two parts: 1) reconstruction
loss and 2) uniform loss. Reconstruction loss penalizes the shape difference between the
generated point cloud and the ground-truth point cloud. Uniform loss is used to encourage
the generated points to be distributed evenly.
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Figure 4: Our method can generate dense human point clouds from mmWave radar signal.
Compared to sparse and scattered point clouds generated by mmMesh [33], our generated
dense point clouds contain more geometry information and are easier to recognize the human
pose. Note that images are only displayed for reference, and not used in our network.

Reconstruction loss. Following most of point cloud generation works, we adopt the
commonly-used Chamfer Distance (CD) as our reconstruction loss £,... That is,

Em_za Z mm [|x— x*Her Z 1;11n||x —x||2, 3)
-x* Q*

which computes the average closet point distance between the generated point cloud Q and
the ground truth point cloud Q*.

Uniform loss. Minimizing £,,. can make points in Q close to their corresponding points
(i.e., closest points) in Q*. However, many points in Q can correspond to the same point
in Q*, resulting in a non-uniform generated point cloud. To address this issue, we adopt a
uniform loss [35] L, form to make the generated point cloud distribute evenly. Specifically,
our uniform loss is expressed as:

Luiforn =Y, Y, n(lp—alhw(lp—al), @)

q€Q peN(q)

where N(g) is the point set of the k-nearest neighbors of point g, and ||-|| is the L2-norm.

7N (x) = —x is the repulsion term, and w(x) = e/ s a decaying weight function.

4 Experiments

4.1 Experimental Setup

Implementation details. We train mmPoint using the Adam optimizer. The initial learning
rate is set to be 0.0001, and is decayed be 0.5 after every 40 epochs. The point number of
the input human template point cloud is 256.

Evaluation metric. Following works in the point cloud generation field, we adopt the
L1 version of Chamfer distance as the evaluation metric to quantitatively measure the per-
formance of the proposed method.

Dataset. Dense human point cloud generation from mmWave has not yet been exten-
sively researched due to the challenges involved. One of the main difficulties is obtaining
ground truth data for human point clouds. Two possible methods include a whole-body scan
and a high-accuracy motion caption system, both of which are complicated and expensive. In
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Methods Average | Scene#1 Scene #2 Scene#3 Scene#4  Scene #5
mmMesh [33] 10.65 9.68 13.21 11.39 10.26 8.73
mmPoint(Ours) 292 2.78 3.06 3.25 2.88 2.61

Table 1: Quantitative comparsion on the proposed dataset in terms of per-point L1 Chamfer
distance x 102 (lower is better).

this work, we propose a novel approach to obtain pseudo-ground truth data for human point
clouds from single images using 3D mesh reconstruction techniques. This method is both
simple and effective, and it enables us to generate pseudo-ground truth data that can be used
for training our model. Specifically, we establish our own dataset by building on the HuPR
dataset which includes human 2D images and their corresponding mmWave data. We select
58 out of 276 scenes from the original dataset to ensure diversity and representativeness. To
obtain the ground-truth human point cloud, we adopt a two-step preprocessing strategy. In
Step 1, we utilize Openpose [4, 23, 32] to extract human poses from 2D images. In Step 2,
we use the Expressive Body Capture [17] method to generate human meshes from the 2D
images and detected poses. With the generated 3D meshes, we can then sample 3D points
on them and finally get dense human point clouds.

The resulting dataset contains both the human point cloud and mmWave data, enabling
researchers to train and evaluate their models on this task. Compared to other methods that
use expensive human motion capture systems to generate ground-truth data, our proposed
approach for generating pseudo-ground-truth human point clouds is cost-effective and effec-
tive, allowing for broader access to the dataset and accelerating research in this direction.

4.2 Qualitative Results

In this study, we present a novel deep learning approach, mmPoint, for generating dense and
high-quality human point clouds from mmWave signals. To demonstrate the superiority of
our method, we compare it with an existing approach called mmMesh [33] which uses the
traditional method to generate point clouds from mmWave signals. The qualitative analy-
sis is shown in Fig. 4, which reveals compelling differences in the generated point clouds.
Specifically, the human point clouds produced by mmPoint exhibit remarkable density and
exhibit a high level of detail, resulting in a more accurate representation of human subjects.
In contrast, the point clouds generated by mmMesh are characterized by significant sparsity
and noise, leading to a compromised depiction of human forms. These findings unequivo-
cally establish the superior performance of our mmPoint in terms of generating dense and
high-quality human point clouds from mmWave signals, highlighting its potential for various
applications in computer vision and human sensing.

4.3 Quantitative Results

Table | presents a quantitative comparison between our proposed method, mmPoint, and
mmMesh in terms of per-point L1 Chamfer distance on our proposed dataset. To establish
an appropriate testing protocol, we carefully curated a subset of 5 scenes from our dataset.
These selected scenes were designated to serve as the testing set for evaluating the perfor-
mance and generalization capabilities of our proposed method. The results highlight the
superior performance of mmPoint in generating more accurate and detailed point clouds. On
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Methods Average
mmPoint (1-step) 3.83
mmPoint (3-step) 2.92

g
ground truth
Figure 5: Ablation study on the proposed three-step generation strategy. Both quantitative

and visual comparisons are presented.

template Step 1 Ground truth

Figure 6: Visualization of generated point clouds via three steps. The number of points is
increased by an order of (256,512,1024,2048) through three steps.

average, mmPoint achieves a significantly lower per-point L1 Chamfer distance of 2.92, out-
performing mmMesh by a margin of 7.73. This improvement is consistently observed across
all four scenes, where mmPoint consistently achieves lower L1 Chamfer distances compared
to mmMesh. Notably, in Scene #2, mmPoint achieves a remarkable L1 Chamfer distance
of 10.15, indicating its exceptional ability to generate highly precise and dense human point
clouds. These quantitative results provide strong evidence of the superior performance of
mmPoint over mmMesh, demonstrating its effectiveness in generating high-quality point
clouds from mmWave signals.

4.4 Ablation Study

Figure 5 presents the results of our ablation study, where we compare the performance of our
mmPoint method using a one-step model (mmPoint (1-step)) with a three-step model (mm-
Point (3-step)). For mmPoint (1-step), we use just one LDM and delete the lift operation in
it. Moreover, the number of input points is 2048 for mmPoint (1-step). The purpose of this
study is to assess the effectiveness of our proposed three-step strategy in generating dense
point clouds. The results demonstrate a clear advantage of the three-step model over the
one-step model in terms of accuracy and density. The mmPoint (3-step) achieves a signifi-
cantly lower score, outperforming the mmPoint (1-step) model by 0.91. This improvement
in performance highlights the benefits of our three-step strategy, which allows for a more
accurate and gradual generation of dense point clouds. To have a deeper understanding of
the three-step deformation strategy, we further visualize the generated point clouds of each
step in Fig. 6. This figure demonstrates the procedure of point cloud deformation which is
consistent with the design intention of the three-step deformation architecture.
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5 Conclusion

In this work, we introduced mmPoint, the first model that generates dense human point
clouds from mmWave radar signals. Dense human point cloud generation from mmWave is
an important and challenging task that has not been extensively researched. We proposed a
point cloud deformation approach that simultaneously takes a template human point cloud
and mmWave signals as inputs and predicts the corresponding movement for each point to
drive the template point cloud to transfer to the target human point cloud. We further estab-
lished a new dataset consisting of training pairs for the task, which will be made public to
accelerate research in this direction. our work presents an important step towards generating
dense human point clouds from mmWave radar signals, and we believe that our proposed
method and dataset can serve as a valuable resource for future research in this direction.
Limitations. Our proposed approach, for the first time, shows promising results in gener-
ating dense human point clouds from mmWave radar signals. However, there are still some
limitations that need to be addressed in future research. First, it does not utilize temporal
information, which may be important for certain applications involving human motion anal-
ysis [40]. Second, the current method is designed to generate a dense point cloud for a single
person, which may limit its applicability in scenarios where multiple people are present.
Third, although we propose a method to obtain pseudo ground truth for human point clouds
from single images, the accuracy of the generated point clouds may be limited by the quality
of the input images and the assumptions made during the 3D mesh reconstruction process.
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