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Illumination-Aware Hallucination-Based Domain
Adaptation for Thermal Pedestrian Detection

Qian Xie , Ta-Ying Cheng, Zhuangzhuang Dai , Vu Tran , Niki Trigoni , and Andrew Markham

Abstract— Thermal imagery is emerging as a viable can-
didate for 24-7, all-weather pedestrian detection owning to
thermal sensors’ robust performance for pedestrian detection
under different weather and illumination conditions. Despite
the promising results obtained from combining visible (RGB)
and thermal cameras in multi-spectral fusion techniques, the
complex synchronization requirements, including alignment and
calibration of sensors, impede their deployment in real-world
scenarios. In this paper, we introduce a novel approach for
domain adaptation to enhance the performance of pedestrian
detection based solely on thermal images. Our proposed approach
involves several stages. Firstly, we use both thermal and visible
images as input during the training phase. Secondly, we leverage
a thermal-to-visible hallucination network to generate feature
maps that are similar to those generated by the visible branch.
Finally, we design a transformer-based multi-modal fusion mod-
ule to integrate the hallucinated visible and thermal information
more effectively. The thermal-to-visible hallucination network
acts as domain adaptation, allowing us to obtain pseudo-visual
and thermal features using solely thermal input. Based on the
experimental results, it is observed the mean average precision
(mAP) increases by 4.72% and the miss rate decreases by 7.56%
on the KAIST dataset when compared to the baseline model.

Index Terms— Pedestrian detection, thermal image, modality
hallucination, transformed-based fusion.

I. INTRODUCTION

A. Background

PEDESTRIAN detection [1], [2], [3] is a vital component
for the task of perception in autonomous driving [4], and

it is an active research topic in computer vision with a wide
range of other applications as well, such as security surveil-
lance [5], [6]. Conventional pedestrian detection algorithms
widely utilize visible (i.e., RGB) images as the input data
source [7]. However, visible-based pedestrian detectors are
usually prone to miss targets due to poor visibility at night
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Fig. 1. Illustration of the proposed method, compared with multi-modal and
single-modal methods. Only thermal images are needed for our method at the
testing stage.

or under bad illumination conditions. Thus, thermal cameras
are becoming more commonplace in the field of pedestrian
detection [8], [9], [10], owing to their capability of capturing
emitted thermal radiation rather than scene appearance.

Pedestrian detection methods using thermal images can be
divided into two categories: thermal-only-based (i.e., single-
modal) and thermal-visible fusion-based (i.e., multi-modal or
multispectral), as illustrated in Fig. 1 (a) and (b). Thermal-
visible fusion-based methods make use of information from
both modalities. This category of methods surpasses the per-
formance of visible-only and thermal-only-based approaches
due to the advantageous complementary information provided
by visible and thermal images. However, these methods neces-
sitate the use of two types of sensors during both training and
inference stages, incurring additional costs and complexities.
Furthermore, these sensors must work simultaneously and
under strict prerequisites for time synchronization, alignment,
and calibration of multiple devices, further increasing the
cost of deploying multi-modal data collection devices in
practical applications [11]. Additionally, visible images are
always taken as input even when their information may be
contaminated by illumination variations and weather con-
ditions. In contrast, thermal-only-based methods can work
well across the challenging scenes discussed above. And
thermal-only-based methods are easier to be employed since
only thermal sensors are needed during inference, compared
to those thermal-visible fusion-based methods which require
both well-calibrated thermal and visible sensors. However,
a notable drawback of thermal-only-based methods is their
limited performance in certain conditions, as the absence of
visible information can impede object detection, especially
when the scene is well-illuminated and object appearance
plays a significant role.
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Fig. 2. Illustration of the hallucination mechanism [12] on thermal pedestrian
detection. The hallucination network aims at regressing visible features from
thermal image inputs. When the hallucination network is trained well, we can
then generate visible-like features from thermal images.

B. Motivation

Considering the availability of labeled datasets, there are
more visible image pedestrian detection datasets than ther-
mal image datasets. Hence, to utilize existing visible image
datasets, thermal-only-based methods usually leverage domain
adaptation to transfer knowledge from the visible domain to
the thermal domain [13], [14], [15], [16]. Domain adaptation
is a sub-category of transfer learning that aims at improving
the performance of models on the target domain (thermal
domain in this paper) by using the knowledge learned from the
source domain (visible domain). A simple example of domain
adaptation on thermal pedestrian detection is to initialize the
thermal detection network using weights learning from visible
images using the same network, rather than training thermal
networks from scratch using random initialization.

Modality hallucination [12] is a concept of generating infor-
mation for a secondary modality, given information from a
primary modality, which can also be seen as one of the domain
adaptation techniques. Specifically, hallucination stands for the
procedure of learning the mapping from one domain (thermal
domain in our paper) to another domain (visible domain),
as shown in Fig. 2. Once the mapping (hallucination network)
is learned, we can hallucinate visible features given thermal
images as input. The features from the hallucination network
are called hallucinated features. The hallucinated features
come from thermal images, but they contain visible-related
information. Hallucination mechanism has yielded impressive
results on several multi-modal related tasks, such as visible-
depth images-based segmentation [17], object detection [12]
and localization [18]. These approaches typically use visible
images to infer pseudo depth map through modality halluci-
nation to deal with challenging scenes like bad weather or
illumination where visible images do not work particularly
well. Similarly, we propose that visible features could be
learned from thermal images through modality hallucination,
specifically for the task of pedestrian detection, which is an
area that has not been extensively studied. This motivates us
to investigate an effective modality hallucination framework
for thermal-only pedestrian detection. However, implementing
this idea naively could suffer from the domain inconsistency

Fig. 3. Illustration of the domain inconsistency problem between thermal and
visible domain. Similar thermal images could correspond to different visible
images, which will hinder hallucination, as there is not a simple one-to-one
mapping.

problem due to the significant differences between the thermal
and visible domains. Specifically, while visible images can
contain highly diverse content under different illumination
and weather conditions, thermal images remain relatively
consistent, as demonstrated in Fig. 3. Therefore, two similar
thermal images may correspond to different visible images
during modality hallucination, creating a domain inconsistency
problem that can impede the learning of a useful mapping
function from the thermal to visible domains. Subsequently,
although several studies [19], [20] have focused on gener-
ating thermal images or features from visible images, none
have addressed the problem of learning visible features from
thermal images. We chose thermal images as the basis for
generating visible information due to their illumination robust-
ness. Thermal images remain in good condition regardless of
lighting changes, providing reliable information. In contrast,
visible images excel during the day but deteriorate at night.
By leveraging the stability of thermal images, our approach
ensures consistent performance and robustness across different
lighting conditions.

C. Contributions

Our approach leverages a thermal-to-visible hallucination
network to generate pseudo-visible information from ther-
mal images. In summary, this work presents three main
contributions:

• We introduce a novel approach for enhancing thermal-
based pedestrian detection performance by utilizing
thermal-visible image pairs during training and incorpo-
rating a multi-layer hallucination architecture to generate
visible information from thermal input.

• We propose an illumination-aware hallucination loss to
improve the traditional hallucination loss by weighting
the loss based on illumination levels. This enhances the
robustness of the thermal-to-visible hallucination proce-
dure, enabling it to learn visible features from thermal
images even under low illumination conditions.

• We design a transformer-based multi-modal fusion
module that integrates the hallucinated visible
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information with thermal information. The module
includes spatial-wise and channel-wise fusion blocks,
which employ self-attention and cross-attention
operations to improve the spatial feature representation.

II. RELATED WORK

Our review will commence with an exploration of the
literature surrounding pedestrian detection using thermal sen-
sors, as it aligns with our method. Additionally, since the
hallucination mechanism serves as the core concept of this
paper, it can be considered a form of cross-modal transfer
learning from the visible to the thermal domain. Therefore,
we will also investigate related works on cross-modal transfer
learning.

A. Thermal-Based Pedestrian Detection

Pedestrian detection has always been a research hotspot
in recent years. Research on visible-only-based pedestrian
detection based has achieved abundant results [21], [22], [23].
However, due to the inherent characteristics of visible images
(i.e., ineffective in low-light conditions), research on pedes-
trian detection based on thermal imaging has gained increasing
attention. As this paper primarily utilizes thermal imaging sen-
sors for detection, only related research on pedestrian detection
based on thermal imaging will be discussed. Efforts have
been made to automatically detect pedestrians in open scenes
by using thermal sensors [11], [14], [24], [25], [26]. These
methods can be divided into two categories based on the input
modalities: thermal-visible-based and thermal-only-based.

With multispectral input, methods are working on effec-
tively fusing visible and thermal information [27], [28], [29],
[30]. MSDS-RCNN [31] proposed to jointly optimize semantic
segmentation and pedestrian detection tasks, and then integrate
outputs from different branches to obtain the final detection.
Based on the observation of the differences in illumination
conditions during day and night, Guan et al. [32] and Li
et al. [33] designed strategies to learn weights of thermal
and visible modalities according to the illumination conditions.
To address the modality imbalance problem, Zhou et al. [34]
presented a Differential Modality Aware Fusion module to
make the visible and thermal modalities complement each
other. To more efficiently integrate the features from visible
and thermal streams, Cao et al. [29] designed a multispectral
channel feature fusion module to assign different attention
values to visible and thermal features according to the illu-
mination conditions. While detectors based on both thermal
and visible sensors can leverage complementary information
from both domains, their use of multiple devices can lead to
complications, making deployment in real-world applications
difficult. In contrast, our method utilizes only thermal sensors,
allowing for easy deployment. Additionally, our approach
can also extract visible information through the use of the
hallucination branch, providing complementary information
from both domains like thermal-visible-based methods.

With thermal-only input, most works focus on leverag-
ing visible information to boost thermal-based pedestrian
detection performance via domain adaptation. For instance,

Kieu et al. [25] proposed to synthesize realistic thermal ver-
sions of input RGB images through a Generative Adversarial
Network (GAN) and then mixed real and improved fake
thermal images as a way of data augmentation to relieve the
problem of limited thermal image dataset in object detection.
Similarly, Bongini et al. [35] also proposed to produce syn-
thetic thermal data by rendering 3D models using a thermal
shader in the Unity game engine, and then utilized GAN to
improve fake thermal image realism. TC Det [16] established
an auxiliary branch of day-and-night prediction to guide the
domain adaptation from visible to thermal. Although thermal-
based detectors are convenient to deploy, their detection
performance is limited due to the lack of visible information.
Our proposed method shares the same convenience as thermal-
only-based methods in terms of model deployment as it only
uses thermal sensors for inference. Additionally, the proposed
method leverages the hallucination branch to obtain visible
information from thermal images, thereby compensating for
the deficiency of thermal-only-based methods in lacking visi-
ble information.

B. Cross-Modal Transfer Learning

Cross-modal transfer learning aims to find task correla-
tions from one domain to another domain [36], [37], [38],
[39]. The majority of research focuses on visible-to-depth
domain transfer. Without depth images as input at test time,
visible images are used to infer depth information to boost
the performance of downstream tasks. For instance, Piasco
et al. [40] proposed to reconstruct the depth map in out-
door, large-scale, image-based localization. For visible-thermal
modality transfer, Devaguptapu et al. [41] proposed a ‘pseudo-
multimodal’ object detector on the thermal domain by fusing
information of thermal images and pseudo visible images
generated using Cycle-GAN [42]. Xu et al. [19] proposed to
reconstruct thermal image patches by learning a non-linear
mapping between visible and thermal domains through a
designed Region Reconstruction Network (PRN). With the
learned network embedded as an additional branch, the final
detection network can generate both visible and thermal fea-
tures with only visible images as input. Taking inspiration
from prior research, we introduce a thermal-to-visible feature
hallucination network to learn the feature transformation from
thermal to visible images. Our approach differs from existing
methods, as the goal of our hallucination network is to directly
produce pseudo-visible features rather than visible images. To
further improve the transformation process, we incorporate
multi-level feature similarity constraints.

III. METHOD

A. Main Architecture

The goal of this paper is to leverage the existing
visible-thermal image pairs as the training set to get pow-
erful pedestrian detection when supplied with thermal-only
images as input at test time. Therefore, our model has dif-
ferent architectures at the training and testing stages. The
proposed method can be implemented by adding multi-layer
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Fig. 4. The overall architecture of the proposed network. S, M, and L correspond to three feature maps responsible for detecting small, middle, and large
objects. Note that the visible branch is omitted at test time.

hallucination links and feature fusion modules into exist-
ing detectors. Thus, our method can be applied to existing
one-stage detection models, e.g., the YOLO [43] series detec-
tors (YOLOv3 [44], YOLOX [45], YOLOv7 [46], et al.).
The network architecture of our method is not limited to one
specific architecture.

In Fig. 4, we give a general architecture of our method
based on YOLO series detectors. In the following, we use
YOLOv3 as the example to explain the procedure of design
of our detection model. As shown in the figure, we have three
branches to extract feature maps from input images at the
training stage. All three backbones for feature extraction are
based on DarkNet-53 (backbone in YOLOv3), except for the
main branch in which three multi-modal transformer fusion
modules are inserted to fuse features from the hallucination
branch. The YOLO detection head takes multi-scale feature
maps and individually predicts detection results in three dif-
ferent scales (i.e., small, medium, and large), in order to cope
with the scale variation of targets. Based on the architecture of
YOLOV3, our modifications are quite simple, mainly focusing
on two parts: 1) the multi-layer hallucination network and
2) the multi-modal transformer fusion modules.

B. Multi-Layer Hallucination Network

The basic idea of this paper is to equip the network with the
ability to generate pseudo-visible features from thermal inputs.
An intuitive approach is to first generate visible images from
the input thermal images and then use a relatively standard
visual-thermal detector. However, instead of taking such a
low-efficiency solution (i.e., the thermal image I T

→thermal
feature f T

→visible image I V
→visible feature f V chain),

we propose to directly reconstruct the intermediate visible
feature maps from the thermal input (i.e., the thermal image
I T

→visible feature f V chain). Since multi-modal features are
integrated over three scales (i.e., small, medium, and large) in
YOLOV3, we thus present a multi-layer hallucination module
to better learn the visible features.

As illustrated in Fig. 4, at the training stage, we first encode
the input visible and thermal images I V , I T

∈ RH×W×3 into

feature maps through three branches, i.e., visible, thermal-
to-visible (hallucination), and thermal branches in the order
from top to bottom. H, W represent the height and width of
images, and 3 is number of RGB channels. For each branch,
we then take features at three different layers, corresponding
to three scales. Thus, we can get three categories of features
f V

= [ f V
S , f V

M , f V
L ], f T −V

= [ f T −V
S , f T −V

M , f T −V
L ], f V

=

[ f T
S , f T

M , f T
L ]. S, M, L indicate features are from small,

medium, and large scales respectively. The hallucination
process occurs between the visible and thermal-to-visible
branches, which is trained by minimizing the differ-
ence d between visible features f V and thermal-to-visible
features f T −V .

1) Illumination-Aware Hallucination Loss: In Fig. 3,
we can observe that thermal images that appear similar can
correspond to vastly different visible images, making it diffi-
cult for the hallucination network to learn an accurate mapping
from the thermal to the visible domain when working with
low-illumination images. To address this issue, we propose an
illumination-aware hallucination loss that reduces the impact
of visible images under low-illumination conditions during
hallucination. This is accomplished by assigning adaptive
weights to the thermal-visible pairs based on their respective
illumination conditions, allowing us to treat low-illumination
thermal-visible pairs as outliers.

First, we propose to encourage the hallucination optimiza-
tion to focus more on thermal-visible image pairs under good
illumination conditions by placing higher weights on their
losses. The weights are determined by the following equation:

WI =

{
α for b ≤ tb,
1.0 otherwise,

(1)

where b represents the brightness, which is the average inten-
sity of all pixels that construct the input visible image. tb is
the brightness threshold. A smaller weight α will be assigned
to those images whose brightness values are lower than tb.
In our experiments, α and tb are set to be 0.2 and 70.

Second, we adopt the Huber loss [47] considering it is less
sensitive to outliers than the generally used L2 loss. In all, our
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illumination-aware hallucination loss is defined as follows:

L = WI
1
n

n∑
i=1

H
(

f V
i , f T −V

i

)
,

H (, ) =


1
2

(
f V
i − f T −V

i

)2
for

∣∣∣ f V
i − f T −V

i

∣∣∣ ≤ δ,

δ

(∣∣∣ f V
i − f T −V

i

∣∣∣− 1
2
δ

)
otherwise,

(2)

where n is the number of elements in feature maps f V
i , f T −V

i
and δ is a threshold to make the loss function less sensitive to
outliers, which is set to δ = 1.0.

C. Multi-Modal Transformer Fusion Module

After thermal and hallucinated thermal-to-visible feature
maps f T , f T −V are obtained through the backbone network
and hallucination network, features from two branches should
be integrated together 2Fusion to generate the fused feature
f ′′, which can be formulated as:

f ′′
= 2Fusion( f T , f T −V ). (3)

Note that there is no need for a specific design for feature
matching or alignment because the hallucination branch and
the thermal branch share the same network architecture. As a
result, the hallucinated thermal-to-visible feature maintains the
same dimension as the thermal feature. Instead of performing
multi-modal feature fusion solely in a channel-wise way or
in a spatial-wise way like existing methods, we propose a
simple yet effective fusion module to integrate features from
thermal and pseudo-visible (i.e., hallucination) streams in
both spatial and channel views. In such a way, our network
is capable of explicitly modeling the relationship between
multi-modal features, rather than roughly concatenating or
adding them. As illustrated in Fig. 5, the proposed fusion
module consists of two sub-blocks: a spatial-wise fusion block
2S−Fusion and a channel-wise fusion block 2C−Fusion. This
module aims to enhance thermal features by exploring the
spatial relationship in thermal feature maps and adaptively
integrating the pseudo-visible features. The proposed fusion
procedure can be summarized as:

f
′T , f

′T −V
= 2S−Fusion( f T , f T −V ),

f ′′
= 2C−Fusion( f

′T , f
′T −V ). (4)

1) Spatial-Wise Fusion Block: As shown in Fig. 5 (b),
our spatial-wise fusion block consists of two attention mod-
ules: intra-modal attention and inter-modal attention module.
We treat the thermal branch as the primary information and
hallucinated features as side information because the thermal
information is more reliable here. Thus, the intra-modal atten-
tion module takes thermal features f T

i , i ∈ {S, M, L} as input
and captures the spatial relationship between thermal features
themselves. The inter-modal attention module takes both ther-
mal and thermal-to-visible features f T −V

i , i ∈ {S, M, L} as
input and is designed to encode the relationship between the
two different modalities.

Attention mechanisms have achieved great success in many
visual tasks [48]. In this paper, we employ the commonly used
attention mechanism [49]:

Attention(Q, K, V) = softmax

(
QKT
√

dk

)
V, (5)

where Q, K, V represent query, key and value vectors, and dk
is the dimension of key features. In our method, for the thermal
and thermal-to-visible features f T

i , f T −V
i ∈ RHi ×Wi ×Ci in the

i-th scale, Q, K, V can be denoted as vectors with size of
R(Hi Wi )×Ci , where (Hi , Wi ) is the resolution of the feature
maps, Ci is the number of feature channels. The computa-
tion of the similarity matrix between query and key tokens
results in QKT

∈ R(Hi Wi )×(Hi Wi ), which is subsequently
normalized by division with dk , the dimension of the key
matrix. This normalization enhances the stability of gradient
values during training. In the intra-modal attention module,
the three inputs are both from the thermal feature f T

i . That
is, Q = projQ( f T

i ), K = projK ( f T
i ), V = projV ( f T

i ),
where projQ, projK , projV are feature embedding operations
implemented by Linear layers. However, in the inter-modal
attention module, only the query matrix is generated from
the thermal feature, while the key and value matrix are from
thermal-to-visible features. Specifically, for the inter-modal
attention module, Q = projQ( f T

i ), K = projK ( f T −V
i ), V =

projV ( f T −V
i ). In such a way, the proposed spatial-wise fusion

block can not only encode the spatial relationship within
thermal features through the self-attention mechanism but also
capture the spatial relationship between thermal and thermal-
to-visible features through the cross-attention mechanism.
In all, this block can get the enhanced intermediate thermal
and thermal-to-visible feature maps f

′T
i , f

′T −V
i from the

input thermal and thermal-to-visible feature maps f T
i , f T −V

i ,
as illustrated in Fig. 5 (b).

It is worth noting that the input thermal or thermal-to-visible
feature maps are usually in high spatial resolution. Since
producing attention maps QKT

∈ R(Hi Wi )×(Hi Wi ) between
two high spatial resolution feature maps is computationally
expensive, we first adopt a global average pooling layer to
downsample the feature maps to a lower resolution before
feeding them to the fusion block. Here, we fix the lower
resolution as 8×8. Finally, bilinear interpolation is performed
to upsample the output features from attention modules to the
original resolution.

2) Channel-Wise Fusion Block: As known, thermal and
visible images should have different degrees of influence on
detection results under varying illumination conditions. For
instance, thermal images should contribute more to results at
night, since they can capture better features of pedestrians. For
this purpose, we introduce a channel-wise modality feature
fusion block, which can adaptively adjust weights for two
modalities. As illustrated in Fig. 5 (c), the block is fed
with the intermediate thermal and thermal-to-visible feature
maps f

′T
i , f

′T −V
i . Similar to [50], the feature maps are first

squeezed into channel descriptor vectors with the size of
1 × 1 × Ci , where Ci is the number of channels in the feature
maps. The two squeezed vectors are then concatenated to form
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Fig. 5. The architecture of our multi-modal transformer fusion module (a), which consists of two blocks: spatial-wise fusion block (b) and channel-wise
fusion block (c). In the spatial-wise fusion block, query, key, and value represent query, key, and value vectors in Eq. 5 respectively.

a unified vector of 1 × 1 × 2Ci . After concatenation, channel-
wise merging weights W = (wT

i ; wT −V
i ) are then learned

through two FC layers (2Ci → Ci , Ci → 2Ci ) with a sigmoid
activation function in the latter FC layer. Subsequently, the
input two feature maps f

′T
i and f

′T −V
i multiply corresponding

scores to achieve channel weighting. The final fused feature
map f ′′

i for the i-th scale is obtained by adding different
portions of input modality features.

IV. EXPERIMENTS

A. Datasets and Metrics

In order to validate the efficacy of our novel pedes-
trian detection approach, we conduct experiments on two
widely-used public datasets: the KAIST and FLIR datasets.
Both datasets consist of pairs of visible and thermal
images captured during both daytime and nighttime condi-
tions, presenting a challenge of domain inconsistency which
can be addressed through the utilization of the proposed
illumination-aware hallucination loss.

1) KAIST Dataset: KAIST dataset [51] is a multispec-
tral pedestrian dataset with pixel-level aligned visible-thermal
image pairs. It is captured in traffic scenes under different
environments, including different lighting conditions from
day to night. The original dataset contains 95,328 visible-
thermal image pairs with 50,172 for training and 45,156
for testing, whose pixel resolution is 512 × 640. However,
there are annotation errors (such as imprecise localization
and misclassification) in the original dataset. As is common
practice, we use the processed version dataset (with frame
sampling and annotation sanitization) that consists of 7,601
image pairs for training and 2,252 pairs for testing. In the test
set, there are 1,455 Day images and 797 Night images.

2) FLIR Dataset: FLIR dataset is also a well-known multi-
spectral object detection dataset that captures street scenes via
FLIR cameras in a car. It consists of both RGB and thermal
domain images. However, the RGB and thermal image pairs
are not all aligned well in the original dataset. Therefore,
we use an aligned version [52] in which aligned image
pairs are manually selected. Finally, 5142 well-aligned visible-
thermal image pairs are remained, of which 4129 pairs for
training and 1013 pairs for testing.

3) Metrics: To evaluate our method, we use the same eval-
uation metric for pedestrian detection proposed in [53], like
most of other comparing methods. We adopt the standard log-
average miss rate (MR) to summarize detection performance,
calculated by averaging miss rate at nine false positive per
image (FPPI) rates evenly spaced in a log-space in the range
of [10−2, 100

]. Specifically, the normal miss rate is the ratio
of false-negatives to all pedestrians:

M R = f n/(tp + f n) (6)

And the false positive per image (FPPI) is the ratio of false
positives to all the tested frames:

F P P I = f p/(number of tested f rames) (7)

Following [16], we also give results on three sub-metrics,
i.e., MR_All for all the test images, MR_Day for day images
and MR_Night for night images. Moreover, we also report
mAP (mean Average Precision) which is also commonly used
in object detection.

B. Implementation Details

As stated in Sec. III-A, our method can be applied to
many existing one-stage detection models, e.g., the YOLO
series detector. Here, we implement our method based on
three YOLO-based detectors (i.e., YOLOv3 [44], YOLOX [45]
and YOLOv7 [46]). Among them, YOLOv3 was proposed in
2018 to improve the original YOLOv1 [43] and YOLOv2 [54].
And YOLOX and YOLOv7 were presented in the recent two
years, representing the state-of-the-art YOLO series detec-
tors. Thus, these three implementations can demonstrate the
generalization ability of our method. For our YOLOv3-based
network, we implement it from scratch using PyTorch. For the
YOLOX- and YOLOv7-based networks, we build them based
on the code provided in this repository.1 For each of our net-
works, we use the same scheme to implement our method, that
is, using three backbones and adding multi-layer hallucination
connections and three fusion modules, as in Fig. 4.

Our networks are trained in two stages. In the first stage,
we train a multi-modal network without the hallucination
branch, as in Fig. 1 (a). Thus, visible features are directly
fused into the main branch of the thermal stream. In the

1https://github.com/bubbliiiing/yolov7-pytorch
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Fig. 6. Visual comparison results between the baseline model (YOLOv3) and our method (YOLOv3-based network). Note that visible images here are not
used during testing.

second stage, we insert the hallucination network and fix
weights of the visible branch that have been trained in the
first stage. In this way, the hallucination network, with thermal
images as input, can learn hallucinated visible features by
simultaneously optimizing the hallucination loss and the final
detection loss. To accelerate the training of the whole network,
the hallucination network is initialized using the parameters
of the pre-trained visible backbone. At test time, the visible
branch is totally eliminated, allowing operation with thermal-
only devices.

The size of input images is 640 × 512. As in [16], we use
weights pre-trained on MS COCO as a starting point in our
experiments. For the YOLOv3-based network, we set the
initial learning rate to 0.0001, and divide it by 10 when
the loss turns stagnant. Training stops after two divisions
on the learning rate. The batch size is set to 8. All other
hyper-parameters are identical to the original YOLOV3. For
the YOLOX- and YOLOv7-based networks, we use the default
hyper-parameters in their repositories.

TABLE I
COMPARED RESULTS WITH OUR METHOD AND BASELINE MODEL. v AND

t REPRESENT HALLUCINATION BRANCH WEIGHT INITIALIZATION
SCHEMES, VISIBLE AND THERMAL, RESPECTIVELY

C. Comparisons

1) Comparison With the Baseline Model: To verify the
effectiveness of the proposed method, we first compare our
method with a baseline model. Here, we use YOLOv3 as the
baseline detector and compare our YOLOv3-based network
with it. The reason why we use YOLOv3 as the baseline model
here is that YOLOV3 is a simple yet efficient model without
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Fig. 7. Feature maps at Scale M. During the testing stage, the thermal feature map and the hallucinated visible feature map are fused together. Note that
visible images are not used during testing.

TABLE II
COMPARISON OF DOMAIN ADAPTATION THERMAL-BASED PEDESTRIAN

DETECTION METHODS. Note That All the Methods Use Visible Images
for Domain Adaptation During Training

many intricate tricks. We do not expect complex architectures,
like YOLOX and YOLOv7, to impact the validation of the
effectiveness of the proposed modules. To get the optimal
result of the baseline model on thermal images, we first pre-
train the baseline model on visible images and save the weights
after convergence. We then use these weights to initialize the
network and finetune it on thermal images. As can be seen in
Tab. I, our method achieves 63.08 and 23.49 in terms of mAP
and MR_All, outperforming the baseline by 4.72 and 7.56 on
KAIST dataset, which demonstrates the effectiveness of the
proposed hallucination strategy in thermal-based pedestrian
detection task. A similar trend can also be seen in the FLIR
dataset, which demonstrates the pretty generalization ability of
our network on various datasets. In addition to the quantitative
results, some visual results are also given in Fig. 6. Our method
shows a clear improvement in detecting more correct targets
and generating less false detection, as compared to the baseline
model. The reason is that our method can generate hallucinated
visible information to improve detection performance even
without visible images as input during testing. It is worth
noting that, in the fourth row of the figure, false positive
detections are both in the result images of the baseline model
and our method. This is because the baseline model and
our method have no customized structure to handle crowded
pedestrians, which could be one of our future works.

As stated in [12], different initializations of the hallucination
network also affect the convergence. We further evaluate the
detection performance of our hallucination network initialized
with weights from thermal and visible branches at the first

training stage. It can be noted that both weight initialization
strategies surpass the baseline model, while the model ini-
tialized with visible weights (i.e., ours (v)) achieves better
performance, consistent with the result in [12] that using
weights from the branch to be hallucinated is a better choice.

2) Feature Map Visualizations: In order to gain a more
comprehensive understanding of the hallucination process,
we provide visual representations of the feature maps gen-
erated by each branch of our network in Fig. 7. The results
demonstrate that the hallucination network is capable of pro-
ducing visible feature maps that cannot be captured by the
thermal feature maps alone. This supports the notion that the
generated pseudo-visible features can supplement the thermal
domain branch when actual visible data is either absent or
unreliable.

3) Comparison With State of the Art: To demonstrate the
superiority of our method over the existing methods, we also
provide a detailed comparison to state-of-the-art domain
adaptation methods on thermal-based pedestrian detection in
Tab. II. As stated in Sec. IV-B, we implement three networks
(i.e., Ours (YOLOv3), Ours (YOLOX) and Ours (YOLOv7) in
Tab. II) for our method based on different YOLO detectors.
As can be seen, the proposed Ours (YOLOv3) model surpass
most of the comparing methods [13], [14], [15], [16], except
for the two recent methods [55], [56]. The reason could be
that YOLOv3 is a one-stage detector proposed in the year of
2018, which is too old compared to these two methods [55],
[56] proposed in recent two years. Thus, when we replace the
YOLOv3 architecture with the latest YOLO series architec-
tures, the detection performance increases accordingly. Finally,
the YOLOv7-based network (Ours (YOLOv7)) outperforms all
the competitors both on day and night images on the KAIST
dataset. Overall, the best performance of our method reaches
14.65 miss rate for all images (MR_All), exceeding current
state-of-the-art method [56] by 1.22. It is worth noting that all
the comparative methods use visible images to pre-train their
network, i.e., they have access to the same input information
(aligned thermal-visible image pairs) as our method.

D. Ablation Study

1) Multi-Layer vs Single-Layer vs Zero-Layer Halluci-
nation: One of our contributions in this paper is the
multi-layer hallucination scheme. Conventional hallucination
networks usually add the hallucination operation after a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on October 04,2023 at 21:01:12 UTC from IEEE Xplore.  Restrictions apply. 



XIE et al.: ILLUMINATION-AWARE HALLUCINATION-BASED DOMAIN ADAPTATION 9

Fig. 8. Hallucinated visible feature maps from scale M. As can be seen, the hallucinated visible feature with the proposed hallucination loss (c) contains
more meaningful information, compared to the visible feature with the one with Huber loss (b).

fixed single layer, i.e., single-layer hallucination networks.
However, we are trying to produce hallucinated features in
multiple layers, after which feature fusions are directly per-
formed. To verify the effectiveness of the proposed multi-layer
hallucination scheme over the conventional single-layer hal-
lucination scheme, we implement several single-layer hal-
lucination networks on the basis of both Ours (YOLOv3)
and Ours (YOLOv7) architectures. Specifically, we keep just
one of the three hallucination links in Fig. 4, forming
three single-layer hallucination architectures, i.e., Single-S,
Single-M, and Single-L. From the ablation experimental
results in Tab. III, we can see the same performance trend
for Ours (YOLOv3) and Ours (YOLOv7) architectures. That
is, a single-layer hallucination scheme can improve the result
from the zero-layer model, which indicates the hallucination
link between the hallucination branch and the visible branch
can actually force the hallucination branch to learn visible
information and thus boost detection performance. Moreover,
our multi-layer hallucination scheme achieves the highest
detection performance compared to all three single-layer hallu-
cination networks, demonstrating our multi-scale hallucination
strategy is a more efficient way to learn thermal-to-visible
mapping for pedestrian detection.

We also create a zero-layer model (Zero) by deleting all
the hallucination links (i.e., hallucination losses) between
the visible branch and the thermal-to-visible (hallucination)
branch. In that case, we just use one more branch to extract
thermal features. The worst results in Tab. III demonstrate that
the performance improvement actually comes from the hallu-
cination losses because the performance drops significantly
when all the hallucination losses are deleted (Zero). In other
words, the performance improvement is not brought by the
wider network architecture in our method because the models
in Tab. III all have the same network architecture width.

2) Illumination-Aware Hallucination Loss vs Huber Loss:
To verify the effectiveness of the proposed illumination-aware
hallucination loss, we investigate the performance with and
without the proposed hallucination loss. As seen in Tab. IV,
illumination-aware hallucination loss improves the miss rate
by 2.20 against vanilla Huber loss. Another simple idea to
solve the domain inconsistency problem is merely perform-
ing hallucination on day images, whose results are reported
as Huber (day) in Tab. IV. As seen, the results of Huber
(day) are even poorer than using both day and night images
(i.e., Huber), which further demonstrates the superiority of
our illumination-aware weighting loss scheme. There are two

TABLE III
DETECTION RESULTS OF SINGLE-LAYER AND MULTI-LAYER

HALLUCINATION SCHEMES

TABLE IV
DETECTION RESULTS WITH DIFFERENT HALLUCINATION LOSSES

TABLE V
EFFECTS OF TWO PARAMETERS α AND tb ON DETECTION PERFORMANCE

potential reasons for the lower performance of our method
on the day dataset. Firstly, some of the day images may
also suffer from poor illumination conditions. Secondly, since
the hallucination process during training does not involve
any night-time visible images, the pseudo-visible features
generated from night thermal images may not be reliable.
To gain a deeper understanding of the proposed hallucination
loss, we visualize the feature maps obtained using both the
Huber loss and our proposed loss in Fig. 8. As demonstrated,
the hallucinated feature maps generated using our proposed
loss contain fewer background noises and are more similar
to the visible feature maps, indicating the effectiveness of the
proposed loss in generating useful feature maps.

We further conduct experiments on the effects of two fixed
parameters in Eq. 1. The results are shown in Tab. V. We can
observe that the network achieves the best performance when
α and tb are equal to 0.2 and 70 respectively.
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TABLE VI
DETECTION RESULTS OF THREE FUSION STRATEGIES OF THERMAL

AND VISIBLE INFORMATION

TABLE VII
COMPARISON BETWEEN OUR METHOD AND THE

THERMAL-VISIBLE FUSION METHOD

3) Transformer-Based Multi-Modal Fusion vs Add or Con-
cat Fusion: To validate the superiority of the proposed
multi-modal fusion module, we conduct ablation experiments
with different fusion strategies, including addition and con-
catenation. For concatenation, we use a convolutional layer
to reduce the dimension to its original state, so that the
feature map can be properly fed into the subsequent network.
Results are presented in Tab. VI. It can be observed that the
proposed fusion module achieves the best result. Our fusion
module captures the complementary modality features in a
more explicit way. We believe that the superiority comes from
the carefully designed fusion module, which is more suitable
for hallucinated visible and thermal features fusion.

E. Discussion on Performance

1) Comparison With the Thermal-Visible Fusion Model:
As mentioned above, the motivation of this paper is to narrow
the performance gap between thermal-only and thermal-visible
detectors. Thus, we further conduct comparison experiments
between our method and a thermal-visible fusion method
on the basis of YOLOv3. Specifically, the original YOLOv3
and Ours (YOLOv3) are acting as the thermal-only detector
and our method respectively. For the thermal-visible fusion
model, we implement it by replacing the hallucination branch
with the visible branch in Fig. 4. The comparison results
are given Tab. VII. As shown, among the three methods, the
thermal-visible fusion model achieves the best performance
undoubtedly. Even though there still exists a certain gap
(17.75 to 23.49, in terms of MR_All) between our method
and the thermal-visible fusion model, the difference is much
smaller than the difference between thermal-only and thermal-
visible models (17.75 to 31.05), which demonstrates that our
method can actually narrow the gap between thermal-only
and thermal-visible detectors. Another notable point is that,
compared to the thermal-visible fusion model, the performance
of our method for day images (22.39 to 30.11) decrease more
than for night images (8.36 to 9.64). Moreover, without visible
data at testing time, the detection accuracy for night images of
our method (8.36 to 9.64) does not decrease as significantly
as the thermal-only model (8.36 to 15.40). That means the
hallucination mechanism has a better performance boost at

Fig. 9. Examples of failure detection results under long-distance, misrecog-
nized, and crowded scenes.

night, and our method achieves a comparable detection per-
formance to a thermal-visible fusion-based detector in terms
of MR_Night. A reasonable reason could be that night-time
thermal images are more reliable than day-time thermal images
which could be contaminated by sunlight, as showcased below.

2) Failure Cases: Although our method has shown
improvements in boosting thermal-only detectors by hallu-
cinating visible-like features, the characteristics of thermal
sensors can still result in failure detection cases. The hal-
lucination branch in our method relies on thermal input to
generate visible-like features, which may be incorrect when
the input thermal images are contaminated. For instance,
as demonstrated in Fig. 9, the detector misses the target in
the first row, as it is not clear in the thermal image when
far away from the thermal sensor. In the second row, tree
trunks dissipate heat like pedestrians due to direct sunlight,
leading to misclassification by the detector. Moreover, since
our method does not include optimization for occluded cases,
incorrect detections may occur in crowded scenes, as shown
in the third row of Fig. 9.

V. CONCLUSION

In this paper, we propose a novel thermal-only pedes-
trian detector to narrow the performance gap between
single-modality and multi-modality approaches. Specifically,
we utilize the multi-layer modality hallucination strategy to
produce visible related features from thermal images. In this
way, the proposed network is capable of incorporating infor-
mation from the visible domain even without visible images
as input at testing time. We design an illumination-aware
hallucination loss to relieve the domain inconsistency prob-
lem in the hallucination process from thermal to visible
domains. To efficiently integrate thermal and hallucinated
visible features, we present a novel multi-modal fusion module
that can adaptively fuse features from two modal streams
both in spatial and channel-wise ways. It is worth noting
that our method needs paired thermal and visible images as
training data. That means complicated synchronization setting
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of visible and thermal sensors is still required before model
training. However, only a one-time sensor setting is needed to
collect training data. After the network is trained, it can be
easily deployed into applications with only thermal sensors.
Hence, the advantage of our method lies in the high efficiency
of deployment for practical applications using the trained
network.

Future work. Our proposed method demonstrates superior
performance compared to state-of-the-art methods when using
only thermal images as input during testing. However, this
performance can be further improved in situations where
visible images are available during testing. Thus, one potential
avenue for future work is to explore the benefits of combining
visible, hallucinated, and thermal features to further enhance
detection accuracy. Another limitation of our approach is
the fixed threshold used to determine illuminance weights in
Equation 1, which is vulnerable to changes in illumination.
Additionally, this simplistic threshold-based approach may
erroneously classify some overexposed scenes as having desir-
able illumination, introducing poor-quality visible features into
the hallucination process. To address this limitation, future
work could incorporate a light sub-network to evaluate the
quality of visible images, enabling the adaptive determina-
tion of hallucination weights. Furthermore, incorporating the
hallucination branch into the network increases the number
of parameters, thereby increasing its complexity compared to
single-modal detectors. However, this tradeoff is necessary to
achieve improved performance.

REFERENCES

[1] B. Han, Y. Wang, Z. Yang, and X. Gao, “Small-scale pedestrian detection
based on deep neural network,” IEEE Trans. Intell. Transp. Syst., vol. 21,
no. 7, pp. 3046–3055, Jul. 2020.

[2] X. Liu, K.-A. Toh, and J. P. Allebach, “Pedestrian detection using pixel
difference matrix projection,” IEEE Trans. Intell. Transp. Syst., vol. 21,
no. 4, pp. 1441–1454, Apr. 2020.

[3] P. Yang, G. Zhang, L. Wang, L. Xu, Q. Deng, and M.-H. Yang,
“A part-aware multi-scale fully convolutional network for pedes-
trian detection,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 2,
pp. 1125–1137, Feb. 2021.

[4] H. Gao, D. Fang, J. Xiao, W. Hussain, and J. Y. Kim,
“CAMRL: A joint method of channel attention and multidimen-
sional regression loss for 3D object detection in automated vehicles,”
IEEE Trans. Intell. Transp. Syst., vol. 24, no. 8, pp. 8831–8845,
Aug. 2023.

[5] X. Wang, M. Wang, and W. Li, “Scene-specific pedestrian detection
for static video surveillance,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 2, pp. 361–374, Feb. 2014.

[6] M. Bilal, A. Khan, M. U. Karim Khan, and C.-M. Kyung, “A low-
complexity pedestrian detection framework for smart video surveillance
systems,” IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 10,
pp. 2260–2273, Oct. 2017.

[7] J. Li, X. Liang, S. Shen, T. Xu, J. Feng, and S. Yan, “Scale-aware
fast R-CNN for pedestrian detection,” IEEE Trans. Multimedia, vol. 20,
no. 4, pp. 985–996, Apr. 2018.

[8] D. Ghose, S. M. Desai, S. Bhattacharya, D. Chakraborty, M. Fiterau,
and T. Rahman, “Pedestrian detection in thermal images using saliency
maps,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Work-
shops (CVPRW), Jun. 2019, pp. 988–997.

[9] R. Lahmyed, M. El Ansari, and A. Ellahyani, “A new thermal infrared
and visible spectrum images-based pedestrian detection system,” Multi-
media Tools Appl., vol. 78, no. 12, pp. 15861–15885, Jun. 2019.

[10] L. Ding, Y. Wang, R. Laganière, D. Huang, and S. Fu, “Convolutional
neural networks for multispectral pedestrian detection,” Signal Process.,
Image Commun., vol. 82, Mar. 2020, Art. no. 115764.

[11] C. Lu, S. Zhang, and M. Liu, “Pedestrian detection based on center,
temperature, scale and ratio prediction in thermal imagery,” in Proc.
40th Chin. Control Conf. (CCC), Jul. 2021, pp. 7288–7293.

[12] J. Hoffman, S. Gupta, and T. Darrell, “Learning with side information
through modality hallucination,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 826–834.

[13] C. Herrmann, M. Ruf, and J. Beyerer, “CNN-based thermal infrared per-
son detection by domain adaptation,” Proc. SPIE, vol. 10643, Jan. 2018,
Art. no. 1064308.

[14] T. Guo, C. P. Huynh, and M. Solh, “Domain-adaptive pedestrian
detection in thermal images,” in Proc. IEEE Int. Conf. Image Process.
(ICIP), Sep. 2019, pp. 1660–1664.

[15] M. Kieu, A. D. Bagdanov, M. Bertini, and A. D. Bimbo, “Domain adap-
tation for privacy-preserving pedestrian detection in thermal imagery,”
in Proc. Int. Conf. Image Anal. Process. Cham, Switzerland: Springer,
2019, pp. 203–213.

[16] M. Kieu, A. D. Bagdanov, M. Bertini, and A. D. Bimbo, “Task-
conditioned domain adaptation for pedestrian detection in thermal
imagery,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2020, pp. 1–12.

[17] J. Jiao, Y. Wei, Z. Jie, H. Shi, R. Lau, and T. S. Huang, “Geometry-aware
distillation for indoor semantic segmentation,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2864–2873.

[18] N. Piasco, D. Sidibé, V. Gouet-Brunet, and C. Demonceaux, “Improving
image description with auxiliary modality for visual localization in chal-
lenging conditions,” Int. J. Comput. Vis., vol. 129, no. 1, pp. 185–202,
Jan. 2021.

[19] D. Xu, W. Ouyang, E. Ricci, X. Wang, and N. Sebe, “Learning
cross-modal deep representations for robust pedestrian detection,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 4236–4244.

[20] V. V. Kniaz, V. A. Knyaz, J. Hladuvka, W. G. Kropatsch, and
V. Mizginov, “ThermalGAN: Multimodal color-to-thermal image trans-
lation for person re-identification in multispectral dataset,” in Proc. Eur.
Conf. Comput. Vis. (ECCV) Workshops, 2018, pp. 1–10.

[21] W. Liu, S. Liao, W. Ren, W. Hu, and Y. Yu, “High-level semantic
feature detection: A new perspective for pedestrian detection,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 5182–5191.

[22] G. Li, Y. Yang, and X. Qu, “Deep learning approaches on pedestrian
detection in hazy weather,” IEEE Trans. Ind. Electron., vol. 67, no. 10,
pp. 8889–8899, Oct. 2020.

[23] J. Cao, Y. Pang, J. Xie, F. S. Khan, and L. Shao, “From handcrafted to
deep features for pedestrian detection: A survey,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 44, no. 9, pp. 4913–4934, Sep. 2022.

[24] M. A. Marnissi, H. Fradi, A. Sahbani, and N. E. B. Amara, “Unsu-
pervised thermal-to-visible domain adaptation method for pedestrian
detection,” Pattern Recognit. Lett., vol. 153, pp. 222–231, Jan. 2022.

[25] M. Kieu, L. Berlincioni, L. Galteri, M. Bertini, A. D. Bagdanov, and
A. del Bimbo, “Robust pedestrian detection in thermal imagery using
synthesized images,” in Proc. 25th Int. Conf. Pattern Recognit. (ICPR),
Jan. 2021, pp. 8804–8811.

[26] M. Kieu, A. D. Bagdanov, and M. Bertini, “Bottom-up and layerwise
domain adaptation for pedestrian detection in thermal images,” ACM
Trans. Multimedia Comput., Commun., Appl., vol. 17, no. 1, pp. 1–19,
Feb. 2021.

[27] A. Wolpert, M. Teutsch, M. S. Sarfraz, and R. Stiefelhagen, “Anchor-
free small-scale multispectral pedestrian detection,” in Proc. Brit. Mach.
Vis. Conf., (BMVC), Sep. 2020, pp. 1–12.

[28] Y. Wang, X. Wei, X. Tang, H. Shen, and H. Zhang, “Adaptive fusion
CNN features for RGBT object tracking,” IEEE Trans. Intell. Transp.
Syst., vol. 23, no. 7, pp. 7831–7840, Jul. 2022.

[29] Z. Cao, H. Yang, J. Zhao, S. Guo, and L. Li, “Attention fusion for
one-stage multispectral pedestrian detection,” Sensors, vol. 21, no. 12,
p. 4184, Jun. 2021.

[30] P. Wang, L. Zhou, M. Xiao, and P. Zhang, “Multi-spectral fusion network
for full-time robust pedestrian detection,” in Proc. Int. Conf. Electron.
Inf. Eng. Comput. Technol. (EIECT), Dec. 2021, pp. 159–169.

[31] C. Li, D. Song, R. Tong, and M. Tang, “Multispectral pedestrian
detection via simultaneous detection and segmentation,” in Proc. Brit.
Mach. Vis. Conf. (BMVC), Sep. 2018, pp. 1–15.

[32] D. Guan, Y. Cao, J. Yang, Y. Cao, and M. Y. Yang, “Fusion of
multispectral data through illumination-aware deep neural networks for
pedestrian detection,” Inf. Fusion, vol. 50, pp. 148–157, Oct. 2019.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on October 04,2023 at 21:01:12 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

[33] C. Li, D. Song, R. Tong, and M. Tang, “Illumination-aware faster
R-CNN for robust multispectral pedestrian detection,” Pattern Recognit.,
vol. 85, pp. 161–171, Jan. 2019.

[34] K. Zhou, L. Chen, and X. Cao, “Improving multispectral pedestrian
detection by addressing modality imbalance problems,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2020, pp. 787–803.

[35] F. Bongini, L. Berlincioni, M. Bertini, and A. D. Bimbo, “Partially fake
it till you make it: Mixing real and fake thermal images for improved
object detection,” in Proc. 29th ACM Int. Conf. Multimedia, Oct. 2021,
pp. 5482–5490.

[36] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, “Zero-shot learning
through cross-modal transfer,” in Proc. Adv. Neural Inf. Process. Syst.,
2013, pp. 935–943.

[37] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko, “Simultaneous deep
transfer across domains and tasks,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Dec. 2015, pp. 4068–4076.

[38] S. Gupta, J. Hoffman, and J. Malik, “Cross modal distillation for
supervision transfer,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 2827–2836.

[39] M. R. U. Saputra et al., “DeepTIO: A deep thermal-inertial odometry
with visual hallucination,” IEEE Robot. Autom. Lett., vol. 5, no. 2,
pp. 1672–1679, Apr. 2020.

[40] N. Piasco, D. Sidibé, V. Gouet-Brunet, and C. Demonceaux, “Learn-
ing scene geometry for visual localization in challenging con-
ditions,” in Proc. Int. Conf. Robot. Autom. (ICRA), May 2019,
pp. 9094–9100.

[41] C. Devaguptapu, N. Akolekar, M. M. Sharma, and
V. N. Balasubramanian, “Borrow from anywhere: Pseudo multi-
modal object detection in thermal imagery,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2019,
pp. 1029–1038.

[42] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2242–2251.

[43] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788.

[44] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv:1804.02767.

[45] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO
series in 2021,” 2021, arXiv:2107.08430.

[46] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
2022, arXiv:2207.02696.

[47] P. J. Huber, “Robust estimation of a location parameter,” in Break-
throughs in Statistics. Cham, Switzerland: Springer, 1992, pp. 492–518.

[48] H. Gao, J. Xiao, Y. Yin, T. Liu, and J. Shi, “A mutually supervised
graph attention network for few-shot segmentation: The perspective of
fully utilizing limited samples,” IEEE Trans. Neural Netw. Learn. Syst.,
early access, Mar. 14, 2022, doi: 10.1109/TNNLS.2022.3155486.

[49] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

[50] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[51] S. Hwang, J. Park, N. Kim, Y. Choi, and I. S. Kweon, “Multi-
spectral pedestrian detection: Benchmark dataset and baseline,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1037–1045.

[52] H. Zhang, E. Fromont, S. Lefevre, and B. Avignon, “Multispec-
tral fusion for object detection with cyclic fuse-and-refine blocks,”
in Proc. IEEE Int. Conf. Image Process. (ICIP), Oct. 2020,
pp. 276–280.

[53] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
An evaluation of the state of the art,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 34, no. 4, pp. 743–761, Apr. 2012.

[54] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6517–6525.

[55] J. U. Kim, S. Park, and Y. M. Ro, “Robust small-scale pedestrian
detection with cued recall via memory learning,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 3030–3039.

[56] J. U. Kim, S. Park, and Y. M. Ro, “Towards versatile pedestrian detector
with multisensory-matching and multispectral recalling memory,” in
Proc. 36th AAAI Conf. Artif. Intell., 2022, pp. 1–12.

Qian Xie received the B.Sc. and Ph.D. degrees in
electrical engineering from the Nanjing University
of Aeronautics and Astronautics (NUAA), China,
in 2015 and 2021, respectively. He is currently a
Research Associate with the Department of Com-
puter Science, University of Oxford, U.K. Prior to
the University of Oxford, he went to Cardiff Univer-
sity, U.K., as a joint-trained Ph.D. Student, in 2019,
for 18 months. His current research interests include
3D vision, point cloud processing, deep learning, and
scene understanding.

Ta-Ying Cheng received the B.Eng. degree in com-
puter science from HKUST. He is currently pursuing
the D.Phil. degree in computer science with the
University of Oxford, U.K. Prior to this, he was
a Research Assistant with the Computer Vision
Laboratory, Academia Sinica. His current research
interests include deep learning approaches for 3D
computer vision tasks, with a strong passion for
single and multi-view reconstructions under difficult
settings.

Zhuangzhuang Dai is currently a Lecturer of com-
puter science with Aston University. Before joining
Aston University, he was a NIST Software Engineer
with the Cyber-Physical Systems Group, University
of Oxford, working on simultaneous localization and
mapping (SLAM) systems for emergency responders
and robots. His current research interests include
sensor fusion, embedded systems, machine learning,
computer vision, propagation modeling, the IoT, and
urban data science.

Vu Tran received the bachelor’s and M.Eng. degrees
from the Ho Chi Minh University of Technology in
2009 and 2012, respectively, and the Ph.D. degree
in computer science from Singapore Management
University in 2020. He was a Post-Doctoral Research
Associate with the Cyber-Physical Systems Group,
Department of Computer Science, University of
Oxford. His current research interests include mobile
and wearable sensing, wireless communication and
sensing, and indoor localization.

Niki Trigoni received the D.Phil. degree from the
University of Cambridge in 2001. She is currently a
Professor with the Department of Computer Science,
Oxford University, and a fellow of the Kellogg Col-
lege. She became a Post-Doctoral Researcher with
Cornell University from 2002 to 2004 and a Lecturer
with the Birkbeck College from 2004 to 2007.
At Oxford University, she is currently the Direc-
tor of the EPSRC Centre for Doctoral Training
on Autonomous Intelligent Machines and Systems,
a program that combines machine learning, robotics,

sensor systems, and verification/control. She also leads the Cyber-Physical
Systems Group, which is focusing on intelligent and autonomous sensor sys-
tems with applications in positioning, healthcare, environmental monitoring,
and smart cities.

Andrew Markham received the Ph.D. degree
from the University of Cape Town, South Africa,
in 2008, researching the design and implementation
of wildlife tracking systems, using heterogeneous
wireless sensor networks. He is currently a professor
working on sensing systems, with applications from
wildlife tracking to indoor robotics to checking
that bridges are safe. He works with the Cyber-
Physical Systems Group. He designed novel sensors,
investigated new algorithms (increasingly deep and
reinforcement learning-based), and applied these

innovations to solving new problems. Previously, he was an EPSRC Post-
Doctoral Research Fellow, working on the UnderTracker Project.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on October 04,2023 at 21:01:12 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TNNLS.2022.3155486

