ISSN 2186-7437

NIl Shonan Meeting Report

No. 203

Effect Handlers and
General Purpose Languages

Jonathan Brachthauser
Youyou Cong
Jeremy Gibbons

September 25-29, 2023

=O\ HETEH
NIl SHONAN MEETING

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan

Effect Handlers and General Purpose Languages

Organizers:
Jonathan Brachthauser (Universitdt Tiibingen, DE)
Youyou Cong (Tokyo Institute of Technology, JP)
Jeremy Gibbons (University of Oxford, UK)

September 25-29, 2023

1 Background and introduction

Algebraic effects and handlers are a uniform abstraction for expressing compu-
tational effects. The abstraction enables modular development of programs in-
volving sophisticated control-flow patterns, while (optionally) guaranteeing the
absence of certain undesired behavior. Effect handlers have been implemented
in diverse programming languages, ranging from functional languages such as
Haskell and OCaml, to imperative languages such as C and JavaScript. In par-
ticular, the next release of OCaml will be the first production-level language
with built-in support for effect handlers. There are also industrial applications
of effect handlers. As a representative example, the Pyro programming lan-
guage of Uber has a library of effect handlers, which allows the user to easily
implement inference algorithms for probabilistic programming.

In response to the growing use of effect handlers, researchers have been ac-
tively studying the theory and implementation of effect handlers. Of particular
interest are the reasoning, performance, and typing of effect handlers, which
were the main topics of Shonan Meeting 146/ on “Programming and Reasoning
with Algebraic Effects and Effect Handlers” held in 2019.

At the same time, researchers have also been working on the practice of
effect handlers. In particular, the goal of a prior Dagstuhl Seminar 18172 on
“Algebraic Effect Handlers Go Mainstream” was to bring effect handlers to
existing languages.

We believe that it is a good time to revisit the above theoretical challenges,
but from a different perspective. Specifically, in addition to sharing new results
about effect handlers, we hope to transfer the knowledge from research on effect
handlers back to designing languages with specific built-in effects, such as excep-
tions and concurrency. In particular, we investigate how recent advances in the
field of algebraic effects and handlers can improve the reasoning, performance,
and typing of languages, even if they do not include effect handlers themselves.

Reasoning: Handlers and equations both serve as a means to specify the
behavior of algebraic effects. The former are well-suited for everyday program-
ming, while the latter are useful for formal reasoning. Researchers have been
attempting to give an equational account of effect handlers, but little progress
has been made on integrating equations into existing languages with effect han-
dlers. In this meeting, we explore practical approaches to equational reasoning
of effect handlers that can be used for optimization purposes. In particular, we
improve on the recent approaches that use types and fusion. We also plan to
discuss how to adapt the approaches to general-purpose languages with excep-
tions and concurrency. In particular, we expect that many reasoning techniques
for effect handlers will scale straightforwardly to exceptions, as effect handlers
are a generalization of exception handlers.

Performance: There are several sources of inefficiency in running programs
with algebraic effects and handlers, such as the runtime search for handlers and
the process of capturing continuations. The past few years have seen various
techniques for reducing inefficiency, but each of them has certain limitations in
terms of applicability and performance. In this meeting, we aim to find general
and effective techniques for efficiently executing algebraic effects and handlers.

https://shonan.nii.ac.jp/seminars/146/
https://www.dagstuhl.de/seminars/seminar-calendar/seminar-details/18172

To achieve this goal, we reuse ideas from various program transformations pro-
posed recently. We also intend to discuss how to adapt such techniques to
general-purpose languages with primitive effects, such as exceptions and region-
based memory management. For instance, we conjecture that the similarity
between handler lifetimes and object lifetimes would help us derive optimiza-
tions for memory management from those for effect handlers.

Typing: Many languages providing algebraic effects and handlers are equipped
with an effect system, which prevents undesired behavior during execution of
programs. There are a variety of effect systems in the literature; some of them
focus on expressiveness, while others prioritize ease of use. In this meeting, we
seek a sweet spot among different aspects of effect systems. Specifically, we
compare type systems that enforce lexical handling with those that enforce dy-
namic handling, and type systems that are explicit about effect polymorphism
with those that are implicit. Based on the insights gained from effect handler
studies, we are also interested in developing and improving effect systems for
parallel, concurrent, and probabilistic programming languages. Specifically, we
believe that the discussion of lexical versus dynamic handling and explicit versus
implicit polymorphism would help us increase the efficiency and user experience
of these languages.

Solving these problems has two potential outcomes. First, it fosters uses of
effect handlers and thus increases modularity and safety of real-world programs.
Second, it leads to better implementation of effectful languages in general. We
believe that having face-to-face discussions among effect handler experts is cru-
cial to advance in this research area.

From the above problems, we draw the following specific topics for discussion
at the meeting:

e effect handlers and delimited control operators (shift /reset, control/prompt,
fcontrol/run);

e effect handlers and morphisms (mutumorphisms, futumorphisms, histo-
morphisms);

e effect handlers and parallelism;
e effect handlers and quantitative types (linear types, affine types);
e lexical handlers versus dynamic handlers;

e user experience of effect systems and effect polymorphism.

2 Overview of the meeting

The first day of the meeting was structural. The first session consisted of a
round of introductions: one slide per person, collected in advance for smooth
presentation; three minutes for each to speak, including saying how they got into
effects and handlers. The second and third sessions consisted of an extended
tutorial on algebraic effects and handlers, in theory and in practice; this served
to get all participants “on the same page”. The final session was spent planning
the rest of the week.

Each of the second, third, and fourth days was devoted to one aspect of effect
handlers in general-purpose languages: matters of implementation, application
areas, and programmer-facing issues. The middle one of these was only half a
day, because of the excursion (to Hokokuji and Jomyoji) and banquet.

The second and fourth days each ended in a panel discussion, held in a
fishbowl format: an initial selection of panellist fish in the bowl, but anyone
else can speak, thereby becoming a new fish and evicting one of the current
fish. The topics were “concurrency and distribution” and “will effect handlers
replace monads?”; some notes are recorded in Section

The final morning was spent in summary: discussing plans for a book, the
next meeting in the series, a final presentation that had been bumped due to lack
of time, and so on. The outcomes of this discussion are recorded in Section [G]

Check-in Day: September 24 (Sun)
e Welcome Banquet
Dayl: September 25 (Mon)

Session 1: Opening
Session 2: Tutorial
Session 3: Tutorial
Session 4: Planning & Puzzles

Day2: September 26 (Tue)

Session 5: Implementor-Facing Aspects

Session 6: Implementor-Facing Aspects

Group Photo Shooting

Session 7: Current Status of Effect Handler Languages
Session 8: Panel “Concurrency and Distribution”

Day3: September 27 (Wed)

e Session 9: Applications

e Session 10: Applications

e Excursion and Main Banquet
Day4: September 28 (Thu)

Session 11: Programmer-Facing Aspects
Session 12: Programmer-Facing Aspects
Session 13: Programmer-Facing Aspects
Session 14: Talk & Panel “Will Effect Handlers Replace Monads?”

Day5: September 29 (Fri)

e Session 15: Summary, Book, Next Meeting
e Session 16: Talk

https://en.wikipedia.org/wiki/Fishbowl_(conversation)

3 Abstracts of talks

Introduction to Algebraic Effects and Effect Handlers
Sam Lindley, The University of Edinburgh

T’ll give an introduction to algebraic effects and effect handlers as a general ap-
proach to programming and reasoning about effectful computation. I'll present
the notion of a computation over an algebraic effect as a command-response
tree over an effect signature quotiented by some equational theory. I'll consider
how to interpret command-response trees and motivate effect handlers as the
reification of such interpretations as an object language feature that provides a
generic implementation strategy for algebraic effects. I'll give examples to show
that it can be useful to interpret the same command-response tree using dif-
ferent interpretations which may not respect the same equational theory. Thus
effect handlers can provide an expressive programming feature independently of
any non-trivial algebraic theory.

Regions in Effekt
Philipp Schuster, University of Tiibingen

We demonstrate a feature of Effekt, which is uncommon in other languages with
effect handlers: regions. We start with an introduction to and discussion of the
basic features and design decisions in Effekt. The complete lack of return clauses
in handlers is rather controversial. We then motivate the need for mutable
references to live in regions with the difference in backtracking behavior in
presence of multiple resumptions. Finally, we explain how Effekt maintains
region safety when users abstract over and return regions.

Operational Semantics of Effects and Handlers

Jonathan Brachthauser, University of Tiibingen

In this tutorial, we look at the different ways of giving operational semantics
to effects and handlers. We start with a calculus with effects and handlers and
introduce fine-grain call-by-value.

We then show a first operational semantics, sometimes referred to as bub-
ble semantics: effect operations also have an additional continuation argument
do op e (x. s). Reducing an effect operation proceeds by growing this con-
tinuation argument bottom-up (“bubbling”) collecting all frames and unrelated
handlers on the way. The most essential rule is that of algebraicity which pushes
the immediate context of a let binding into the continuation.

Next, we show a dual approach which could be called sinking semantics. In-
stead of growing the continuation bottom-up, handlers are operationally pushed
down and aggregate computation in their return clause. When the handlers sink
to an effect operation, the continuation is available as part of the return clause
of the handler.

We then look at a third semantics making use of evaluation contexts. This
semantics is more coarse grained as it captures the whole context between an
effect operation and a handler in one step.

Furthermore, we see how to describe the semantics of effects and handlers in
terms of abstract machines. A machine state is a pair of a computation (or state-
ment) and a stack. To capture the continuation, the machine transitions into
a new state, represented by a triple, which the last component is the captured
continuations. We discuss how, depending on the concrete choice of representa-
tion of the stack and the continuation, continuation capture can either be linear
in the number of frames or linear in the number of effect handlers.

Finally, together with the attendees of the seminar, we collect several aspects
of implementing effects and handlers, resulting in a mind map.

Search Combinators:
Now with Algebraic Effects and Handlers

Tom Schrijvers, KU Leuven

In this talk I look back on my earlier work on modelling Constraint Program-
ming and modular Search Combinators. Monadic Constraint Programming was
based on a free monad to write both a model and its search tree, and to in-
terpret it using a structurally recursive evaluation function. By means of open
recursion (functional mixins) the search tree can be modified by various basic
transformations that can be combined to form sophisticated search heuristics.
In follow-up work we turned these transformations into a combinator language
that could either be interpreted dynamically or in terms of code generators.
Looking back on the work, much of the work could have been expressed more
succinctly and systematically in terms of algebraic effects and handlers. I also
identify an open challenge to set up the code generation approach by means of
staging of handlers.
References:

e Tom Schrijvers, Peter J. Stuckey, Philip Wadler, “Monadic Constraint
Programming”. J. Funct. Program. 19(6):663-697 (2009).
DOI 10.1017/S0956796809990086

e Tom Schrijvers, Guido Tack, Pieter Wuille, Horst Samulowitz, Peter J.
Stuckey, “Search Combinators”. Constraints. 18(2):269-305 (2013).
DOI 10.1007/s10601-012-9137-8

Multiple Prompts: In Little Steps

Paul Downen, University of Massachusetts Lowell

Systems for effect handlers often use a name-based system for connecting opera-
tions with their handling code, which helps to improve compositional reasoning
by prevent unwanted cross-talk between different parts of the program. How-
ever, control operators for finding the correctly-named prompt, and abstracting
over the context between it and the operator, are very complex, leading to many
different design proposals which are difficult to compare. Which one should the
implementors of effect handlers base their language on?

To better understand the different aspects of multiple prompts, we break
down the problem into a series of little steps. Starting from a well-understood
foundation based on common CPS transformations, several extensions are made

https://doi.org/10.1017/S0956796809990086
https://doi.org/10.1007/s10601-012-9137-8

to extend a language with increasingly expressive operations, capturing the con-
trol operators call/cc, shift, and shift0, before finally reaching multi-prompt de-
limited control. By taking little steps, we can decompose the large and complex
operations into smaller ones, which compose together to express a variety of
multi-prompt control operators that have been proposed in the past.

Equivalence of Expressive Power between
Labeled Effectful Calculi

Kazuki Tkemori, Tokyo Institute of Technology

Effect handlers and control operators are uniform abstractions for handling com-
putational effects. Their labeled variations of effect handlers and control oper-
ators can express different instances of the same effect, such as exceptions and
multiple state. Our goal is to show the equivalence of expressive power between
labeled effect handlers and labeled control operators. To show this, we define
the typed macro translations between these labeled effectful calculi and prove
the type and meaning preservation properties.

One-shot Algebraic Effects as Coroutines

Yukiyoshi Kameyama, University of Tsukuba

We present a direct translation of one-shot algebraic effects and handlers to
asymmetric coroutines by de Moura and Ierusalimschy. Compared with exist-
ing translations for delimited-control operators and coroutines, our translation
is simple and macro-expressible, does not use states or other effects. We imple-
mented our translation as a library in Lua and Ruby, that allows one to write
effectful programs in a modular way using algebraic effects and handlers.

Interleaving Effectful Computation

Philipp Schuster, University of Tiibingen

How can we connect a push producer, for example a lexer that emits tokens,
and a pull consumer, for example a parser that reads tokens? We have to
interleave the two effectful computations. We demonstrate how this is done in
Effekt. The trick is to allocate a mutable reference that contains a computation
which will overwrite the mutable reference with a new computation. We then
demonstrate some preliminary work on translating these kinds of programs to
continuation-passing style. This leads to mutually negatively recursive types.
The terms, however, are not recursive, which could make them amenable to
partial evaluation.

Lexical, Bidirectional Effect Handlers:
Design & Implementation

Yizhou Zhang, University of Waterloo

Pressed by the difficulty of writing asynchronous, event-driven code, main-
stream languages have recently been building in support for a variety of ad-

vanced control-flow features. Meanwhile, experimental language designs have
suggested effect handlers as a unifying solution to programmer-defined control
effects, subsuming exceptions, generators, and async-await. However, despite
these trends, complex control flow—in particular, control flow that exhibits a
bidirectional pattern—remains challenging to manage. We introduce bidirec-
tional algebraic effects, a new programming abstraction that supports bidirec-
tional control transfer in a more natural way. Handlers of bidirectional effects
can raise further effects to transfer control back to the site where the initiat-
ing effect was raised, and can use themselves to handle their own effects. We
present applications of this expressive power, which falls out naturally as we
push toward the unification of effectful programming with object-oriented pro-
gramming. We pin down the mechanism and the unification formally using a
core language that makes generalizations to effect operations and effect han-
dlers. The usual propagation semantics of control effects such as exceptions
conflicts with modular reasoning in the presence of effect polymorphism—it
breaks parametricity. Bidirectionality exacerbates the problem. Hence, we set
out to show the core language, which builds on the existing tunneling semantics
for algebraic effects, is not only type-safe (no effects go unhandled), but also
abstraction-safe (no effects are accidentally handled). We devise a step-indexed
logical-relations model, and construct its parametricity and soundness proofs.
These core results are fully mechanized in Coq. While a full-featured compiler
is left to future work, experiments show that as a first-class language feature,
bidirectional handlers can be implemented efficiently.

Definitional Interpreter for Algebraic Effects and Handlers
(AEH) (and what it is good for)

Kenichi Asai, Ochanomizu University

In this talk, I show a definitional interpreter for algebraic effects and handlers
(AEH). The interpreter is based on three ingredients: the standard CPS in-
terpreter (that supports shift), meta-continuations (for shift0), and trails (for
control and control0). The definitional interpreter for AEH is then given by
adding handler support. Depending on whether the depth is determined by
handlers or operation calls, two variations are shown, one of which requires a
recursive definition for handlers. The resulting interpreter is simple, shows clear
correspondence to the definitional interpreter for four delimited control opera-
tors, and thus I believe is suitable as ”the” definitional interpreter for AEH.

Links and WasmFX Status Update
Sam Lindley, The University of Edinburgh

I will give a status update on recent work relating to effect handlers in Links
and WasmFX.

Links is a programming language for the web which has been used as a play-
ground for research for the last 18 years. It included support for continuations
as well as a row-based effect type system before effect handlers were added, so
it was a natural environment in which to experiment with adding effect han-
dlers. Links also supports session types which rely on a linear type system. At

a previous Shonan meeting in 2019, we reported a soundness bug resulting from
a bad interaction between linear resources and multishot continuations. I will
briefly outline how we have now fixed this soundness bug in Links by way of a
new notion of control flow linearity.

WebAssembly (Wasm) is a universal intermediate language supported by all
of the main web browsers. WasmFX is an extension of Wasm with support for
effect handlers, aimed at making it much easier for language implementors to
support concurrency features such as async/await, generators, and lightweight
threads. I will briefly outline the current status of WasmFX. There is a full
formal specification, an implementation in the Wasm reference interpreter, and
current work is focusing on experimenting with an implementation as an exten-
sion of the standalone Wasm runtime Wasmtime.

Granule Status Report: Past, Present, and a Possible Fu-
ture

Dominic Orchard, University of Kent and University of Cambridge

Granule is a functional programming language that incorporates linear, graded,
and indexed types into a single typed language. The implementation was in-
spired by a string of theoretical papers between 2013-16 on coeffect and effect
systems, which I then built a language prototype from in 2017. This talk revis-
its the origins of Granule and gives a demonstration of using Granule for fine-
grained reasoning about functional programs, leveraging graded modal types
in concert with indexed and linear types. In recent years, my group has used
Granule as a research vehicle for (1) exploring grade-and-type directed program
synthesis (2) type-based renderings of ownership, uniqueness, and borrowing,
and (3) effect handlers. I will briefly touch on all these aspects and their imple-
mentation in Granule.

The State of Eff
Matija Pretnar, University of Ljubljana

The talk describes the history and the current state of Eff, the first programming
language with native support of algebraic effect handlers. The first version of
Eff was developed by Andrej Bauer and myself and appeared in 2010. It was
untyped and had a syntax similar to Python. In the next version in 2011, we
introduced the more commonly known ML-like syntax and dynamic generation
of effect instances that worked analogously to references in OCaml. After that,
the versions are a bit harder to reconstruct, but the main improvement was a
subtyping-based effect system.

Building on the effect system, the next goal for Eff was an optimizing com-
piler, on which I worked together with Tom Schrijvers and his students. The
compiler would produce efficient code by inlining handlers as much as possible,
and monadically embed the rest in OCaml. It soon became obvious that the
effect system has to be more robust, which was achieved by using coercions as
explicit witnesses of subtyping. Currently, Filip Koprivec, my PhD student,
focuses on simplifying those witnesses in the polymorphic setting, as otherwise
each coercion needs to be passed around as an additional parameter at runtime.

In parallel to the optimizing compiler project, Ziga Luksi¢ developed EEff, a
variant of Eff that tracks algebraic equations between operations that have to
be respected by the handlers. Currently, EEff only prints out the obligations,
though one could envision sending them to an SMT solver or producing speci-
fications for a proof assistant.

Finally, the talk mentions Millet, a language one can use as a basis when
developing a prototype language exploring an interesting novel idea. Millet im-
plements all the boring and expected components of a programming language
(parsing, algebraic datatypes, simple type-checking, interactive toplevel, compi-
lation pipeline, ...), and any fork just needs to extend all the components with
the support for the additional features. Then, any later change to Millet (right
now, a module system, a Wasm backend, and LSP support are in the works)
should be orthogonal and can hopefully be merged into forks with not too much
additional work.

Effekt Status Update

Jonathan Brachthiuser, University of Tiibingen

In this talk, I give an overview over the (short) history and motivation behind
the Effekt language. It is positioned as a functional imperative programming
language.

I present the compiler pipeline and illustrate it with a simple example. Each
step in the pipeline comes with a proof of typability preservation and most parts
also with a proof of semantics preservation. The compiler first makes handling
explicit by converting into capability-passing style. It then makes delimited
control explicit by performing a lift inference. Finally, we translate into iterated
continuation-passing style.

After the overview, I also briefly discuss ongoing and future work, such
as just-in-time compilation for effect handlers and improving error messages
specific to effects.

Effect Handlers for Choice-based Learning

Ningning Xie, University of Toronto

Machine learning has achieved many successes during the past decades, spanning
domains of game-playing, protein folding, competitive programming, and many
others. However, while there have been major efforts in building programming
techniques and frameworks for machine learning programming, there has been
very little study of general language design for machine learning programming.

We pursue such a study in this talk, focusing on choice-based learning, par-
ticularly where choices are driven by optimizations. This includes widely-used
decision-making models and techniques (e.g., Markov decision processes or gra-
dient descent) which provide frameworks for describing systems in terms of
choices (e.g., actions or parameters) and their resulting feedback as losses (du-
ally, rewards).

We propose and give evidence for the following thesis: languages for choice-
based learning can be obtained by combining two paradigms, algebraic effects
and handlers with the selection monad. We provide a prototype implementation

10

as a Haskell library and present a variety of programming examples for choice-
based learning: stochastic gradient descent, hyperparameter tuning, generative
adversarial networks, and reinforcement learning.

ChiRo: A Causal Probabilistic Programming Language
Eli Bingham, Basis & Broad Institute of MIT and Harvard

Despite remarkable progress over the last two decades in reducing causal infer-
ence to statistical practice, the “causal revolution” proclaimed by Judea Pearl
and other pioneers remains incomplete, with a sprawling and fragmented tech-
nical literature that is still inaccessible to non-experts and isolated from the
cutting-edge computational methods and software tools being developed within
mainstream machine learning research. Probabilistic programming languages
are promising substrates for bridging this gap thanks to the close correspon-
dence between their operational semantics and most standard mathematical
formalisms for causal inference, especially that of structural causal models.

This talk will introduce ChiRho, a new causal probabilistic programming
language embedded in Python. ChiRho extends an existing probabilistic pro-
gramming language (Pyro) that is built on algebraic effects and handlers with
new algebraic operations for expressing interventions and counterfactuals on
causal models represented as probabilistic programs, and new effect handlers
for automatically reducing causal inference computations over these models to
ordinary probabilistic inference computations on transformed probabilistic pro-
grams. [will also illustrate ChiRho’s design with a representative example
application from single-cell biology: estimating the causal effects of drug treat-
ments on cancer cells’ gene expression directly from experimental data.

Quantum Computing as an Effect

Amr Sabry, Indiana University

Free categorical constructions characterise quantum computing as the combina-
tion of two copies of a reversible classical model, glued by the complementarity
equations of classical structures. This recipe effectively constructs a computa-
tionally universal quantum programming language from two copies of Pi, the
internal language of rig groupoids. The construction consists of Hughes’ arrows.
Thus answer positively the question whether a computational effect exists that
turns reversible classical computation into quantum computation: the quantum
effect.

A Functional Account of Probabilistic Programming with
Possible Worlds

Tom Schrijvers, KU Leuven

While there has been much cross-fertilization between functional and logic pro-
gramming—e.g., leading to functional models of many Prolog features—this
appears to be much less the case regarding probabilistic programming, even
though this is an area of mutual interest. Whereas functional programming

11

often focuses on modeling probabilistic processes, logic programming typically
focuses on modeling possible worlds. These worlds are made up of facts that
each carry a probability and together give rise to a distribution semantics. The
latter approach appears to be little-known in the functional programming com-
munity. This talk aims to remedy this situation by presenting a functional
account of the distribution semantics of probabilistic logic programming that
is based on possible worlds. We present a term monad for the monadic syntax
of queries together with a natural interpretation in terms of boolean algebras.
Then we explain that, because probabilities do not form a boolean algebra,
they—and other interpretations in terms of commutative semirings—can only
be computed after query normalisation to deterministic, decomposable negation
normal form (d-DNNF). While computing the possible worlds readily gives such
a normal form, it suffers from exponential blow-up. Using heuristic algorithms
yields much better results in practice.

e Birthe van den Berg, Tom Schrijvers, “A Functional Account of
Probabilistic Programming with Possible Worlds” (Declarative Pearl).
FLOPS 2022:186-204. DOI 10.1007/978-3-030-99461-7_11

Effectful Software Contracts

Cameron Moy, Northeastern University

Contracts enable programmers to describe sophisticated properties of their com-
ponents. Effects are sometimes needed to monitor such properties. Unrestricted
effects in contracts, though, can violate desirable reasoning principles. This talk
proposes effect handlers as a means to unify the existing landscape of effectful
contracts, while guaranteeing that contracts remain well behaved.

Answer-Refinement Modification:
A Refinement Type System for Algebraic Effect Handlers

Taro Sekiyama, National Institute of Informatics

In this talk, I will introduce a refinement type system for algebraic effects and
handlers. The expressivity and usefulness of algebraic effects and handlers come
from their ability to manipulate delimited continuations, but delimited continu-
ations also complicate programs’ control flow and make their verification harder.
To address the complexity, the proposed refinement type system is empowered
with a novel concept that we call answer refinement modification (ARM for
short). ARM allows the refinement type system to precisely track what effects
occur and in what order when a program is executed by reflecting such informa-
tion about effects as modifications to the refinements in the types of delimited
continuations. I will demonstrate the usefulness of the refinement type system
with ARM by reasoning about program examples exploiting algebraic effects
and handlers.

Lessons from Pyro

Eli Bingham, Basis & Broad Institute of MIT and Harvard

Pyro is a probabilistic programming language embedded in Python that focuses

12

https://doi.org/10.1007/978-3-030-99461-7_11

on scalable, gradient-based algorithmic approaches to approximate Bayesian in-
ference. Like Stan, PyMC and many other more established PPLs, Pyro has
been used by computational scientists, engineers and statisticians to solve a di-
verse array of real-world probabilistic machine learning problems. Unlike those
other PPLs, Pyro is built on a foundation of algebraic effects and handlers, a
design choice that has provided a high level of flexibility and extensibility to its
users and developers. Moreover, as a result of the many strong constraints im-
posed by the needs of users, the structure of inference algorithms, and the choice
of host language, Pyro’s implementation of effect handlers differs somewhat from
standard presentations of handlers in other non-probabilistic languages.

In this talk, I will give a brief, opinionated tour of Pyro’s operational se-
mantics, with a focus on a small set of core features that differentiate Pyro and
its handlers from other languages. For each feature, I will summarize the cir-
cumstances that motivated its design, describe the feature as it exists in Pyro
today, warts and all, and speculate on possible implications for the design of a
hypothetical future effect handling system intended as a foundation for a Pyro
successor or other advanced machine learning systems.

Graded Algebraic Effects and Handlers
Dominic Orchard, University of Kent and University of Cambridge

The graded type system of Granule provides an opportunity to present algebraic
effects and handlers with explicit requirements on how continuations are used:
zero-shot (discardable), one-shot and multi-shot continuations can be specified
precisely and enforced via graded types. Granule provides an implementation
of algebraic effects via an embedding of the free graded monad, against which
graded signatures can be written and graded algebras for handlers. This talk
demonstrates state and non-determinism in the graded algebraic effects and
handlers style, where in particular, the non-deterministic case can require that
handlers use the continuation for ’failure’ 0 times, and for branching choice
exactly 2 times.

Control As Proofs:
And the Route to Composition, in Three Parts

Paul Downen, University of Massachusetts Lowell

The Curry-Howard Correspondence has created an industry for linking impor-
tant insights and techniques that are shared between formal logic and program-
ming languages. For decades, it was commonly believed that this correspon-
dence could not include classical logic, until the 1990s when it was discovered
that classical reasoning was connected to first-class continuations. This formed a
computational interpretation of classical logic where the programmer can effect
change on the control flow in a program using operators like call/cc.

However, on the side of programming, this style of control effect is much
weaker than an alternative — delimited control — which allows for a more
composable approach to control-flow manipulation. From the starting point
of classical proofs as programs, there are two different methods of composing
continuations, either through a dynamically-rebindable ”top level” continuation,

13

or by simply using the same programs in new contexts. While inspired by the
Curry-Howard Correspondence for classical logic, neither of these approaches
(vet) is tied to their own form of logic. Possibly, the logical interpretation of
delimited control might be achieved by expressing some of its important aspects
in a more structured form by using exotic logical connectives which are not yet
found in programming languages.

Coexponentials

Amr Sabry, Indiana University

Continuations have traditionally been viewed as “dual” to values. Despite many
attempts to formalize this intuition, there remains some ad hoc corners. We pro-
pose that coexponentials provide an improved interface to continuations using
cofunctions as the natural dual of functions.

Effect Handlers and Multi-Stage Programming
Jeremy Yallop, University of Cambridge

Effect handlers interact with quotation in multi-stage programming languages
both virtuously and viciously. In this talk I illustrate how effect handlers are
convenient for implementing the let- and if-insertion operations that are often
needed in multi-stage programs, and how unrestricted use of effect handlers can
give rise to scope extrusion errors.

Type-safe Effectful Staging
Yukiyoshi Kameyama, University of Tsukuba

Staging allows a programmer to write domain-specific, custom code generators.
Ideally, a programming language for staging provides all necessary features for
staging, and at the same time, gives static guarantee for the safety properties
of generated code including well typedness and well scopedness. We address
this classic problem for the language with control operators, which enables code
optimizations in a modular and compact way. In the work with Oishi, we
designed a type-safe two-stage language with the delimited-control operators
shift0 and resetO, which allows us to express multi-layer let-insertion. In the
work with Yokoyama, we extended the result to a two-stage language with
algebraic effects and handlers.

Higher-Order Effects

Tom Schrijvers, KU Leuven

In this talk I explain how algebraicity is a property that can be constructively
added to effectful operations by means of the Cayley construction. I also iden-
tify higher-order effects as those where the operation’s signature depends on
the computation’s monad because it takes (non-continuation) computations as
parameter. By means of a higher-order free monad and accompanying struc-
tural recursion scheme these computation parameters can be handled uniformly

14

with all other computations without the programmer having to explicitly write
recursive effect handlers.

e Birthe van den Berg, Tom Schrijvers, “A Framework for Higher-Order
Effects & Handlers”. CoRR abs/2302.01415 (2023).
DOI 10.48550/arXiv.2302.01415

Control-in Dependent Types
William J. Bowman & Paulette Koronkevich, University of British Columbia

In this talk, we’ll walk through what goes wrong when you want to transform
dependently typed programs to make control or data flow explicit. Such trans-
formations, or their image, have many uses: designing and implementing com-
pilers, optimizations, implementing control effects, or structuring (or modeling)
imperative computation. We’ll look in particular at CPS and ANF transforma-
tions, what goes wrong, how to make them work for dependent types, and what
general lessons we might take away from this.

Effective Equality:
Overcoming Obstacles with Beta and Eta

Paul Downen, University of Massachusetts Lowell

Effects make the art of equational reasoning — determining whether two ex-
pression always give equivalent results in the context of any program — more
difficult. Or do they? Many of the complications introduced by side effects like
mutable state already appear in general purpose functional language that avoid
them. In contrast, the side effect of first-class control gives us a tool *within*
the programming language which helps express and reason about the equality
of programs — with or without side effect — in a more principled way.

This talk gives a survey of lessons learned while building and using equa-
tional theories for programming languages that use a variety of effects. The
general philosophy revolves around pairs of simple syntactic rewrites for the op-
erational and extensional facts of each programming language feature — based
on the beta and eta laws of the lambda calculus — combined with a certain
equality related to control flow in abstract machines. This gives a significant
approximation of observational equality and derives a large number of other
specialized reasoning principles used in practice. The use of labeled control flow
also gives us a syntactic method for more complex forms of equational reason-
ing, such as coinduction, that is valid in both eager and lazy languages, both
with and without effects. Finally, the simple beta- and eta-based equational
reasoning is used in a setting of more general effects, including delimited con-
trol and ultimately effect handlers, where several embeddings of effect handlers
are explored.

Designing a Language for Learning Continuations

Youyou Cong, Tokyo Institute of Technology

Continuations are being introduced into various programming languages. This
trend creates a need for a language that provides support for understanding the

15

https://doi.org/10.48550/arXiv.2302.01415

concept of continuations. In this talk, I explore with the audience the design
space of such a language.

What’s Lexical about Lexical Handlers?

Jonathan Immanuel Brachthéduser, University of Tiibingen, Germany

Operationally, there are two important aspects to effects and handlers: dy-
namic scoping and delimited continuations. Effect handlers are dynamically
scoped, that is, effects will always be handled by the dynamically closest handler
surrounding the call to the effect operation. To handle an effect, the delimited
continuation, which represents the remainder of the program from the opera-
tion call up to and including the handler, is captured and made available in the
handler.

This dynamic behavior can lead to accidental capture and preventing it
can result in a problem referred to as “effect encapsulation problem”. As an
alternative solution to prevent accidental capture, lexical handlers have been
introduced in various forms (Biernacki et al. 2019, Zhang and Myers 2019,
Brachthduser et al. 2020). The terminology “lexical handlers” has ever since
caused some confusion in the community since in realistic implementations, such
as the Effekt language, handlers are not entirely lexically scoped.

This talk presented the result of discussions led at the Shonan meeting.
We attempt to distill the essence of lexical handlers (denoted handley in the
following) and contrast it with dynamic handlers (denoted handle) by means of
a single reduction rule:

handley s with { op (z, k) — s Wreturn z — s1 }
—

handle s[op — op;] with { op; (z, k) — s Wreturn z — s }

where [fresh

The rule establishes lexical scoping by renaming operations that are in the lexical
scope of the handler and then falls back to the standard semantics of dynamic
handlers. Importantly, handlers (dynamic and lexical) are considered binding
occurrences for operations.

e Biernacki, D., Pirég, M., Polesiuk, P., & Sieczkowski, F. (2019). “Binders by day,

labels by night: effect instances via lexically scoped handlers”. Proceedings of the
ACM on Programming Languages, 4(POPL), 1-29. DOI 10.1145/3371116

e Brachthiuser, J. L., Schuster, P., & Ostermann, K. (2020). Effects as capabilities:
effect handlers and lightweight effect polymorphism. Proceedings of the ACM on
Programming Languages, 4(OOPSLA), 1-30. DOI 10.1145/3428194

e Zhang, Y., & Myers, A. C. (2019). Abstraction-safe effect handlers via tunneling.
Proceedings of the ACM on Programming Languages, 3(POPL), 1-29.
DOI 10.1145/3290318

16

https://doi.org/10.1145/3371116
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3290318

4 List of participants

e Kenichi Asai, Ochanomizu University

e Eli Bingham, Basis & Broad Institute of MIT and Harvard
e William J. Bowman, University of British Columbia

e Paul Downen, University of Massachusetts Lowell

e Kazuki Ikemori, Tokyo Institute of Technology

e Yukiyoshi Kameyama, Univeristy of Tsukuba

e Shin-ya Katsumata, National Institute of Informatics

e Paulette Koronkevich, University of British Columbia

e Sam Lindley, The University of Edinburgh

e Dylan McDermott, Reykjavik University

e Cameron Moy, Northeastern University

e Dominic Orchard, University of Kent and University of Cambridge
e Amr Sabry, Indiana University

e Tom Schrijvers, KU Leuven

e Philipp Schuster, University of Tiibingen

e Taro Sekiyama, National Institute of Informatics

e Tachio Terauchi, Waseda University

e Ningning Xie, University of Toronto

e Jeremy Yallop, University of Cambridge

e Yizhou Zhang, University of Waterloo

ﬂne’, (p‘ f_&"‘ﬂ_@'f_z |

— Eﬁ ﬁ Gy
\,1%5,\&3 n “J: kD TLM?

i) E\E ZEW_+

] _:.ju s+ T‘]‘G\’—S
- D:’«'--‘“* e
R

E‘:‘.‘;:'%E =% !—\‘;

_E__u' 2 Types ﬂ@ad‘ .

Cuts (""""r ?K‘Or!f B

17

5 Summary of discussions

Two discussion sessions were held: one on Tuesday with the topic “Concur-
rency and Distribution”, and one on Thursday with the topic “Will Effects and
Handlers Replace Monads?”. Each was run as a fishbowl conversation, with a
rotating panel.

Fishbowl Discussion:
Concurrency and Distribution

All participants; initial panel: Ningning Xie, Sam Lindley, Taro Sekiyama,
Philipp Schuster

We began the discussion with a general clarification of the terms concurrency,
parallelism, and distribution. The three are different. A distinguishing feature
of distribution is that failure is pervasive. Is concurrency only for making things
happen simultaneously or (particularly with speculative concurrency) faster, or
is it also a modularity tool? We then discussed preemptive versus collaborative
concurrency. Some practical systems simulate preemption by forcing collabora-
tion, i.e. by inserting yields; this was done for example in the context of the
Frank language. Can all use-cases of preemptive concurrency be expressed like
this? We briefly discussed existing work on the combination of effect handlers
and concurrency. In AEff, preemptive concurrency is a separate concept from ef-
fect handlers. Does it have to be? The equation fork(yield(z1), z2) = fork(z2, 21)
is hard to prove given the standard implementation of a scheduler with effect
handlers. Why is it so hard to come up with an equational theory for con-
currency? It was proposed to start from process algebra, go via monads, and
then arrive at effect handlers for concurrency. Perhaps parametrized algebraic
theories would emerge? On the more practical side, the importance of specu-
lation for performance was emphasized. This led to the topic of transactions,
and more specifically transactional memory. Given that in languages with effect
handlers we usually already track effects, does that make transactional memory
work better? We then switched to parallelism. How can we use effect handlers
for or with parallelism? Is parallelism a separate effect external to handlers?
We noticed that there is a class of commutative effect operations that can safely
be executed concurrently, such as incrementing a counter or appending to a log
(assuming that log ordering is not significant). This has been observed in work
on parallel execution of for-loops. What other useful commutative effects are
there?

18

https://en.wikipedia.org/wiki/Fishbowl_(conversation)

Fishbowl Discussion:
Will Effects and Handlers Replace Monads?

All participants; initial panel: Shin-ya Katsumata, Eli Bingham, Yukiyoshi
Kameyama, Cameron Moy

The discussion began by trying to clarify the role of a monad. It was noted
that monads are a mathematical concept, much like associativity of operations.
Associativity is also not a programming language feature, but a tool for pro-
grammers and language designers to reason about programs. Similarly, monads
are a mathematical concept that helps modeling programs. It was conjectured
that, while new programming language features might replace the usage of mon-
ads as a programming language feature, they will very likely still be relevant
as a mathematical tool for reasoning. The discussion then shifted to the con-
trasting paradigms of monads and effect handlers as programming devices. It
was noted that monads put “semantics first”, such as starting from lists and
then discovering operations for non-determinism. In contrast, effect handlers
follow the notion of “syntax first”, describing the algebraic operations and pro-
gramming against this interface, to then later choose an appropriate semantics.
It was conjectured that putting syntax first might be easier for programmers,
since they are used to working with interfaces. It also might lead to software
which is more modular. A controversial take was brought up, suggesting that
monads are not commonly used, sparking a reflection on the utility of these ab-
stractions for the average programmer. Some also noted that as programming
language designers it should be our priority to support average programmers
in understanding and managing effects in programs. The discussion advanced
with a point that any abstraction aiding in clarifying effects in types is valuable,
be it monads or effect handlers, with Java exceptions cited as a useful example.
Finally, it was discussed how the conceptual proximity of effect handlers to ex-
ceptions could help in educating programmers about them. It might be easier
to explain effect handlers, starting from exceptions and then explaining how to
recover from them, then teaching monads.

19

6 Future directions

Repositories: The leffect-bench! repository for benchmarking effect handlers
has had a change of editors: Filip Koprivec is stepping down, to be replaced by
Jesse Sigal, who will join Philipp Schuster. We also reminded ourselves of the
Effects and Handlers Rosetta Stone, “a collection of examples demonstrating
programming with effects and handlers in various programming languages”.

Book: We discussed the invitation from NII to produce a book on the subject
of this meeting. On the one hand, this was considered to be a valuable project—
it would be very helpful to have a focussed and curated collection of chapters
that one could give to a new student in the field, whether of new or republished
material. We envisioned a division into several parts: tutorials; relevant theory;
programming aspects; implementation techniques; application areas; research
directions. On the other hand, the Communications of NII Shonan Meetings
series published by Springer is not open access, and the books are not cheap.
There does not seem to be any point in the endeavour if the content would not
be easily accessible.

Next meeting: We will submit a proposal for a Dagstuhl Seminar to follow
this meeting. Proposed organizers are Jonathan Brachthduser, Daniel Hiller-
strom, Yukiyoshi Kameyama, and Ningning Xie; a possible theme is “beyond
algebraic effects”.

Moy
Clillien 3 Bowmen
Fllecer e o g m-’J

: ol ofCede
s’ Lgmadlint 24 I

ke e ep. <2

S hontn, NEe [l.i.j (i

eifect Honalers o A
ek . L Uarao L L
erip W Gent Lo X L\n[_.\-\\. "t\'\\lfi \L\ISI L

By SULS

epn

Hfut Hawdlos fov

Hifta vy AU Dalag s e

ool dong prprnig 1)
owiit = fpigld i Lo |

Pkt) 4 Dinil gy
FrapuFhal | !
Thans) .._';“’vﬂn; & Fish Bl

Effect hasdless For all

20

https://github.com/daanx/effect-bench
https://github.com/effect-handlers/effects-rosetta-stone

	Background and introduction
	Overview of the meeting
	Abstracts of talks
	List of participants
	Summary of discussions
	Future directions

