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Abstract—J1939 is a networking layer built on top of the widespread CAN bus used for communication between different subsystems
within a vehicle. The J1939 and NMEA 2000 protocols standardize data enrichment for these subsystems, and are used for trucks,
weapon systems, naval vessels, and other industrial systems. Practical security solutions for existing CAN based communication systems
are notoriously difficult because of the lack of cryptographic capabilities of the devices involved. In this paper we propose a novel intrusion
detection system (IDS) for J1939 and NMEA 2000 networks. Our IDS (CANDID) combines timing analysis with a packet manipulation
detection system and data analysis. This data analysis enables us to capture the state of the vehicle, detect messages with irregular
timing intervals, and take advantage of the dependencies between different Electronic Control Units (ECUs) to restrict even the most
advanced attacker. Our IDS is deployed and tested on multiple vehicles, and has demonstrated greater accuracy and detection

capabilities than previous work.
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1 INTRODUCTION

For the past decade researchers have practically demon-
strated hacking consumer automobiles by injecting traffic
across the CAN Bus, pretending to be one of the many Elec-
tronic Control Units (ECUs) transmitting data throughout
the vehicle. Initial efforts required physical access, but now
consumer vehicles can be hacked remotely, albeit with time
consuming reverse engineering for each make and model,
and on a small scale [24]. From this framing car hacking is an
important, but unlikely threat vector for most individuals.

Industrial protocols, such as J1939 and NMEA 2000, take
that small attack vector and expand it across millions of
trucks, ships, and even military systems by standardizing
communication. Now, not only is reverse engineering not
necessary, an attack that controls the engine on one make
and model of truck also can control the engine of another
truck with completely different hardware. This means that
any remote attack payload no longer only works on one
vehicle, but entire fleets of hetergenous industrial and
military vehicles. The value of these assets is far higher than
their consumer automobile counterparts [13], [14], while
simultaneously being an easier target through their remote
attack vectors, and standardized data fields.

A simple example of this is the electronic data logger
(EDL). This device is required in US trucks, often plugs
directly to the OBD-II port, and then sends data to a fleet
management system [42]. A keen observer might note this
looks extremely similar to the limited, highly targeted, phys-
ical implant style attacks used by car hacking researchers,
but now mandatory, and installed across fleets. This is one
example among many, the desire for real time access to bus
data is growing and has the potential to be a scalable attack
vector [40], [35], [41].

The question is then how to secure the CAN bus in a
way that supports the decades of systems we already have.
One method is adding authentication, but cryptographic
mechanisms would impact bus performance, and limit
possible bus configurations [26], [31], [16], [12]. This makes
it impractical for existing systems, especially with J1939
running at 250kb/s.

The alternative to authentication is adding an intrusion
detection system (IDS) which detects attacks as they go across
the bus. The proposed solutions in this area range from
timing analysis [9], [38], [45] to signal fingerprinting [10],
[33], [39] to physical invariance models based on the data
from the bus [32], [43]. While these solutions work for some
types of messages, they have serious gaps.

Take, for instance, a message which enables and sets
the cruise control speed. Our electronic data logger attacker
could transmit a single cruise control message indicating the
brake is off, the cruise control is enabled, and setting the
cruise control speed to Imph. This causes the vehicle to slow
down dramatically, which could create dangerous situations
in typical driving environments. In our datasets the cruise
control message has three different transmission intervals
centered around 35ms, 100ms, and 150ms. Previous timing,
data, and ECU fingerprinting techniques do not cover this
attack. Prior timing based work fails to account for these
three different intervals, meaning they either generate false
positives or ignore the message entirely. Data based work
relies on detecting changes that violate the physical invari-
ance of the system, but cruise control controls the vehicle
using normal mechanisms. Finally ECU fingerprinting tech-
niques fail to account for legitimate devices,and are prone
to high false positives from varied external environments.
Fundamentally the problem is these techniques do not cover
all message / attack combinations when used in isolation.
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Fig. 1. J1939/NMEA 2000 Extended CAN Packet. ACK indicates Ac-
knowledgement, and EOF indicates End of Frame.

Our IDS, CANDID uses a combination of timing, data, and
voltage-based techniques in a novel way to ensure we apply
some security guarantee to every message, not just ones with
regular transmission intervals, from physical implants.

The first step is detecting our EDL sending our cruise
control attack. CANDID detects the EDL, or any ECU,
spoofing the messages of another ECU by calculating the
interval between messages. This interval based detection
functions by correlating data to the timing of messages,
allowing CANDID to select the appropriate timing for the
state of the system instead of assuming fixed timings. Of
course, an EDL does not usually transmit messages, meaning
we can detect any message it transmits, as it always spoofing
another ECU. Even so, all normally transmitting attackers
can no longer spoof another ECU’s data fields. CANDID
leverages this guarantee by drawing dependencies between
data fields, such that even if an attacker takes over a critical
ECU, their data is restricted to what could be expected
given the data of every trusted ECU. The final consideration
is how to detect an attacker which has control over the
voltage, meaning they could arbitrarily change any and all
bits on the bus. Rather than a full voltage fingerprinting
mechanism which is prone to false positives and requires
constant retraining, CANDID detects these bit flips through
CAN error frames and voltage transitions which never occur
in benign traffic.

We summarize our contributions as follows:

e An integrated timing and data solution which more
accurately predicts message timing based on the state
of the system, and dependencies between data. Using
these features we are able to detect an adversary
spoofing trusted ECUs, and limit attackers in control
of legitimate ECUs.

e A practical detection mechanism for signal-level
manipulation attacks which doesnt rely on continuous
training. Our improvements on bit manipulation
attacks to silently reach the bus-off state underscore
the importance of this detection mechanism.

e A proof of concept implementation of CANDID. The
implementation is tested on multiple vehicles, as well
as adversarial data generated on a testbench.

2 BACKGROUND AND RELATED WORK

In this section we provide a background on the CAN and
J1939 architectures, as well as existing literature on offensive
and defensive techniques affecting these architectures.

2.1 CAN and J1939 Background

CAN is a serial data bus protocol invented in 1986 by
Bosch [4], and is used in most modern ground vehicles.
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J1939 is a software standard created by the Society of
Automotive Engineers [37], which tells ECUs how to in-
terpret the contents of an extended CAN packet, as seen in
Figure 1. It also adds a networking layer which enables a few
attacks [25], and is easily spoofed by an attacker. Importantly,
a Parameter Group Number (PGN) identifies the type of
message, and allows us to translate the data fields, called
Suspect Parameters Numbers (SPNs). NMEA 2000 uses the
same structure. For the sake of clarity we will refer to PGN
as the message type, the packet ID as the message ID, and
SPNs as data parameters, or simply data, for the rest of the
paper.

CAN transmits data at regular interval, though messages
can have multiple transmission rates, or a wide interval.
We can see examples of this in Figure 2, which graphs the
observed message intervals from a single data set. The first
message is consistent, and would be considered periodic
by existing work. The other two have varying transmission
rates, and may be considered aperiodic by the same work.
Notably J1939 transmits sensor data at a fixed rate. This is
not necessarily a single fixed rate, but it will reliably transmit
rather than transmitting sporadically on each update.

2.2 Historical Attacks on CAN and J1939

Hacking CAN involves reverse engineering a vehicle to
determine the proprietary CAN messages, and then injecting
arbitrary messages to manipulate the system into a desired
state [11], [36]. Most work on offensive techniques focus
on preventing the system from operating, manipulating the
brakes, or other safety critical functionality, sometimes by
remotely pivoting through a telematic device [24], [7], [21].
Trends indicate more safety-critical systems will use telematic
solutions for predictive maintenance [19], [35], providing
additional attack vectors. In J1939 hacking becomes simpler
as the specification removes the need for reverse engineering,
while only requiring the same hardware used when hacking
consumer CAN devices [25], [5].

In terms of specific attacks this paper is primarily con-
cerned with attacks that can disable an ECU on the bus.
An address hijack attack claims an existing ECU’s network
address to prevent it from speaking [25]. Other attacks
like the bus-off attack and CANStomper solution produce
CAN errors to disable individual messages and eventually
stop an ECU from transmitting [8], [15], [22]. This paper
improves upon this work by cancelling out messages without
producing an error frame, and having the transceiver enter
an off state within one message, as described in Section 5.

2.3 Existing Defense Mechanisms

Table 1 contains a summary of CANDID versus existing
work. We often find timing based solutions to serial data
bus exploits [45], [38], [2]. This work relies on trusted ECUs
transmitting periodically, making an attacker’s message an
obvious anomaly. In a similar vein Pawelec et al., Zhou et
al. and Butler used machine learning to identify anomalous
messages [29], [46], [6]. Lee [23] relies on sending requests on
the bus, which requires an IDS capable of transmitting data,
something which risks increasing the bus utilization such
that legitimate messages fail to transmit on noisy buses.
Cho and Shew analyzed clock skew to fingerprint each
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Fig. 2. Interval data from 4 J1939 messages. The engine speed and override messages are easy to predict with their single distributions, the rest
require an understanding of when messages are transmitted based on the data going over the bus.

TABLE 1
Comparison between CANDID and related CAN IDS research by technique and attack coverage. Half Circles indicate that we believe their research
may cover these attacks, though our adversary models differ. Spoofing attacks pretend to be another ECU on the bus, masquerade attacks control an
existing ECU, sending that ECUs normal set of messages, and bit manipulation modifies individual bits from existing messages. Aperiodic refers to
aperiodic spoofing and encompasses messages without a single regular transmission interval.

Techniques

Attack Coverage

Proposal Timing Data
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Spoofing  Aperiodic Masquerading Manipulation

Song et. al [38] v - -
Cho and Shin [9] v - v
Groza et. al [16]

Wasicek et. al [43]
Choi et. al [10] - - v
Sagong [33] - - v
Zhou et. al [46] v
Quinonez et. al [32] -
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ECU and used variations in it for alerts [9]. This work has
a 0.055% false positive rate. Based on our capture of 1.5
million CAN packets from a truck in 90 minutes, one would
expect nine false positives a minute. A recurring theme in
the referenced work is that each of these avoids aperiodic
messages. Avoiding some sub-set of messages provides a
clear target for an attacker.

In terms of research that currently uses the data field,
the closest is physical invariance models [32], and neural
networks incorporating the OBD-II pinout [43] [17]. Each
of these papers account for primary vehicle functions, but
are inherently limited in their data analysis. Quinonez [32]
applies physical model restrictions to a small line following
robot car, making it unclear how well this approach scales
to the magnitude of data coming off a CAN bus. Wasicek
et al. [43] references ten data points. Even factoring in
recent reverse engineering work [30], only 32 data points are
extracted. Hanselmann et al. [17] uses a neural network on
individual IDs, but it lacks context for what the data means.
This ambiguity, in combination with the general difficulty of
actionable alerts from neural networks makes this approach
poorly suited for any real time decisions. Detection wise
each of these approaches acts in isolation of message timing.
We believe physical models are best suited to an integrated

solution between data and timing, as this improves timing
analysis while ensuring a fast attacker cannot bypass the
physical model by intelligently flooding the bus.

Voltage-based intrusion detection, or signal fingerprint-
ing [10], [8] [39], [33], [20] is useful for detecting bit-
manipulation attacks, and implants. However, these tech-
niques are ineffective against corrupted devices, and often
require continuous retraining to account for shifting environ-
mental factors. Not accounting for corrupted devices means
an attacker taking over an existing device can send any
messages that device would normally send without any risk
of detection.

While the referenced papers are capable of detecting
many attacks, they fail to account for every message on
the bus, or specific attackers. Through a combination of
timing and data analysis, described in Section 4, as well as
a more targeted voltage detection mechanism, described in
Section 5 we address these shortcomings. We discuss the
design advantages of CANDID over the aforementioned
research in Section 7.

3 SYSTEM AND ADVERSARY MODEL

In this section we define our system and adversarial model.
The system model defines our CAN bus infrastructure and
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Fig. 3. System Model for a CAN system. Each node represents an ECU
with a CAN transceiver, though attackers may have custom hardware.

how CANDID is connected. The adversary model defines
the capabilities of the adversary.

3.1

Our system model is depicted in Figure 3. It is a CAN bus
which operates using the differential voltage between two
wires designated CAN-L (low) and CAN-H (high). Messages
transmitted on the bus are visible to all connected nodes. The
specific ECUs vary by vehicle, but some example systems
controlled by ECUs include: transmission, engine, brakes,
steering, and more. To listen to these ECUs any device with
the appropriate connections only has to connect to these two
wires.

CANDID is connected to the two wires of our CAN bus,
allowing it to monitor all messages transmitted on the bus.
CANDID is able to interpret any read data using the J1939
standard, and compares those data values against each other
or values within the specification to send alerts. All CAN
packets and alerts are stored, compressed, on disk for future
analysis. CANDID is secure from wireless threats, and can
not be removed from the system. Our IDS is also capable
of monitoring the amperage going over the pullup resistors
depicted in our system model. Our system requires a brief
training period, we assume the attacker is not active during
this period.

In this paper we define the state of the system to be
CANDID’s estimation of how the system is operating. For
each message CANDID updates its internal variables, and
tracks how those change over time. A full explanation for
this process of tracking state is in Section 4.

System Model

3.2 Adversary Model

We define the goal of the adversary as changing the state of
the system. The state is changed if a dependent data field is
modified as a result of the attack. An attack is successful if
the state is changed without CANDID detecting it.

An adversary has the power to manipulate voltage over
the bus directly, send and receive messages, and modify
their attacks based on the state of the system. In a realistic
environment the capabilities vary between attack vectors,
with remote attackers being limited in their adaptability, and
corrupted ECUs having the most control over their victim.
However, we deliberately assume the strongest adversary
model possible regardless of attack vector and base our
security analysis on how that attacker affects the bus.

At a high level an attacker has three options for trans-
mitting an attack across the bus. They can transmit a new
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message, increasing the overall bus utilization, corrupt an
existing device and transmit malicious data as the victim
device (effectively replacing a legitimate message with a
malicious one), or arbitrarily manipulate the voltage of
the bus. In this paper we define these attacks as follows:
Spoofing, where an attacker transmits a new message for
an ECU they do not control. Masquerading, where an
attacker controls an ECU and transmit the messages it would
normally transmit with different data. Manipulation, where
an attacker controls the voltage to modify individual bits.

This categorization does not limit possible attacks, instead
it provides nuance for our detection system. Take a corrupted
engine control module, it is able to perform a masquerade
attack for engine messages, but if it attempts the same on
a trusted ECU, then that trusted ECU is still transmitting
and our attacker is increasing bus utilization, making it a
spoofing attack. Through this categorization we can define
security guarantees for our attacker, regardless of how they
connect to the bus.

4 CANDID

This section will outline the design considerations for CAN-
DID, then expand on the chosen designs in the subsequent
subsections. The core design is motivated by the three broad
attack categories laid out in the adversary model: spoofing,
masquerading, and manipulation. Previous work clearly
indicates timing is an effective mechanism for detecting
spoofing; an attacker transmits a message on the bus, that
message is regularly transmitted by a trusted ECU, and the
result is an anomalous timing interval. When applied to every
ECU on the bus, this technique detects any attack vector
pretending to be a trusted ECU. However, if a trusted ECU
transmits with multiple timing intervals, then an attacker
can easily circumvent the detection system. This indicates
a CAN message ID is not enough to detect attackers for all
messages. From this we conclude CANDID must be able to
use the data it sees on the bus to understand messages with
multiple timing intervals.

The next challenge is masquerade attacks, where a
corrupted device transmits fake data at the appropriate
time. Fake data covers a wide range, from increasing the
Engine speed to 8000 Revolutions Per Minute (RPM), to
minor tweaks creating small inefficiencies. In some ways
always detecting those minor tweaks is implausible with
physical systems. Minor fluctuations happen constantly, and
calculating the impact of every data field on the system
is too computationally expensive for a lightweight IDS to
do in near real time. Instead, we take the approach of
constraining attackers and limiting damage. Our spoofing
detection covering all messages ensures that an attacker
cannot transmit the IDs, or data, of another ECU. From this
foundation, CANDID can safely examine the data going
across the bus and calculate correlations between the data
fields, effectively creating a dependency tree. If the data from
one dependent ECU does not match the others, CANDID can
alert. This limits the scope of an attacker’s fake data, without
attempting to model the entire system.

Manipulation attacks bypass both of our intended detec-
tion mechanisms, as an attacker could overwrite every bit of
the bus in a way that changes no timing characteristics, and
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Fig. 4. Training phase of the design. Correlations are drawn between data
and IDs, resulting in a dependency graph based on which data fields
change in response to a given data parameter changing. Simultaneously
a distribution of intervals for each ID is calculated and combined with the
correlations to identify the data fields which result in a change in timing.
Our training is stored as PGN/SPN dependencies, a list of valid IDs, and
PGN/SPN timing.

maintains a consistent narrative in the data field. The first
option is a voltage based intrusion detection system which
fingerprints every system on the bus. Yet, these solutions can
be unreliable in real world environments without retraining,
while having the same issues with masquerade attacks as
our easier to train timing solution. For CANDID we choose
a more targeted approach to manipulation attack detection.
To perform a bit flip, i.e., change a logical ‘0’ to a ‘1, a
higher than normal amount of current will flow through
the termination resistors in the connected ECUs, which
can be detected by CANDID. To avoid complicating the
description of our timing and data analysis, we describe
how manipulation attacks are executed and detected in
Section 5. CANDID’s unique approach of integrating and
improving upon these three techniques ensures we detect
more advanced attackers, more accurately, regardless of if
they are trying to avoid our IDS and know how it functions.

4.1 CANDID Training

In order for CANDID to function it must train on a clean
vehicle dataset. By training we mean fine tuning CANDID
based on the parameters of the vehicle, not a machine
learning based solution as seen in recent literature. Without
training our solutions risks being too generic, allowing
attackers to sneak by as one ECU transmits with a slightly
longer delay, or more variance in a data field.

CANDID has 2 main components: determining the depen-
dencies between data parameters, and the expected timing
intervals for each ID, as shown in Figure 4. In this subsection
we describe how CANDID determines timing distributions,
how those distributions are affected by the data going over
the bus, and the correlation between parameters. CANDID
trains off of a continuous dataset with times calculated based
on arrival time in microseconds from the perspective of the
process communicating with the transceiver. This process
need to be redone for each vehicle.

For high quality training CANDID requires CAN data
from the vehicle in normal operations (battery on, idle,
driving in various conditions), and importantly the transition
between states. Any new types of messages or vehicle states
will be seen as anomalous. This is generally fine for rare
messages, as we expect an operator would be fine with
being alerted to a legitimate error state, but any core vehicle
functionality needs to be included in the training set to avoid
false positives.

4.1.1

CANDID uses the ID field of each packet to group messages
and calculate the interval between each message with the
same ID, resulting in a list of intervals, and timestamps for
each ID. The list serves two purposes. Firstly it gives us a list
of valid IDs, any IDs not seen during training are assumed to
be anomalous. The second purpose of the list of ID intervals
is determining when a message is going to be transmitted. We
do this by taking the maximum and minimum for each list of
intervals, defining them as the upperbound and lowerbound
respectively. Of course, determining when a message should
arrive is not quite so simple. If the space between the bounds
is too large then an attacker may be able to sneak in. If they
are too small then the model may be prone to false positives.

CANDID’s time based training must ensure that for
a given period an attacker’s message must result in 2 or
more messages within an interval, or one legitimate message
within an interval, and the attacker’s message outside the
interval. This bound is defined such that the lowerbound
is at least as high as the width of the interval. Bounding
based on this width is an improvement on existing timing
based work, which assumes messages are periodic [38], and
focuses on messages occurring quickly instead of outside of
a bounded time range. But not all messages will fit within
these bounds as some messages are aperiodic, only occurring
on certain conditions, or periodic but with the transmission
rate dependent on another variable. The timing training takes
the messages which do not meet our bounds criteria, and
identifies the locations of their modalities. A modality being
the grouping of timing intervals around different times. It
does this by transforming the set of intervals for a given
message into a Harrell-Davis quantile estimator [18]. This
quantile estimator is a way of estimating the shape of the
interval dataset for each message ID. We can then apply a
low-land detection algorithm [1] to that quantile estimator
data. In brief, the algorithm uses the quantile estimator to
identify local maxima in our dataset, then metaphorically fills
the valleys of our dataset with water to identify any peaks.
Then it narrows these down to the modes of the dataset
based on how much water filled the different valleys. CAN
interval datasets tend to be noisy, with the risk of modes
being close together. The low-land detection algorithm allows
us to identify the modes of n-modal distributions, and by
extension which messages fit within each of those modes.

This gives CANDID n groups of messages, where n is
the number of modalities for when a given message occurs.
Now CANDID knows that a message can appear at roughly
any of these times, but CANDID still needs to identify
two things. CANDID does not know how to identify what
message is going to be sent at what mode. And CANDID
has no knowledge of how to draw a timing interval around
this mode such that it captures the appropriate messages
without being too encompassing. These require a contextual
understanding of why a message changes its transmission
rate.

Timing Interval Training

4.1.2 Modality Based Interval Training

At this point in training CANDID has lists of messages
with timing intervals at each modality. Since the mode
is by definition a common state, CANDID can search for



when a message goes from transmitting in one modality to
another. Our IDS takes the list of messages that occurred in
the timeframe between the modality switch, then grabs the
last time CANDID saw that message before the modality
switch, and the most recent occurrence after the modality
switch for each of those messages. Then CANDID enriches
the data fields of those messages to identify what data fields
are changing as the modality changes. To pare down the
list of potential messages, CANDID starts with smallest
time between each modality switch for a given message and
ignores any data fields not included in that switch when
training on future observations of that switch. We refer to
the data fields that influence the timing characteristics of a
message as state parameters. We short-circuit the processing
to find these state parameters by first examining discrete
parameters, as these often reflect the state of the vehicle. If
that parameter changes as the modality changes, then we
mark it as a state parameter. More than one parameter may
change for each modality, which can make it difficult to
establish a causal relationship. But CANDID is indifferent as
long as the change is consistent. The more modality switches
in the training dataset, the more CANDID can whittle down
the possible list of state parameters. CANDID stores these
state parameters for later.

Now that CANDID has the state parameters for each
modality change, it needs to learn the timing interval it
applies to. CANDID iterates through the training dataset for
each message with state parameters, identifying which state
the system is in when the message appears, and lowering
the lowerbound or raising the upperbound accordingly.
After iterating through the whole dataset each modality
for each message with multiple transmission rates now
has a base lowerbound and upperbound. From there if the
modalities are far apart then we expand the interval to its
maximum to be more forgiving of variations, favoring a
higher upperbound as attacks are likely to be faster than
slower messages. If the modalities are close together and
have the same state parameter and ID then they are merged
together. With modalities close together they can often have
overlapping intervals as a particularly fast message from
one interval lines up with a particularly slow message from
another. This does not present a security problem for our
interval based analysis because we assume that a message
does not rapidly flip states. Rapidly being defined as the
upperbound of the original transmission interval. That way
an attacker cannot bypass our interval based guarantee
by pretending the system is in another state. At the end
of this modality training CANDID has the base interval
training for single transmission interval messages, and for
more complicated n-modal messages CANDID has a list of
state parameters to determine which of n timing intervals it
applies to a given message.

The ramification of this modality training is that an
attacker cannot spoof any messages regardless of the ID.
The inability to spoof means that an attacker has to corrupt
the device they want to send messages as. In part, this is
because traditionally adhoc messages, such as the power take
off or engine override (TSC1) messages highlighted in J1939
hacking work [5], are typically transmitted at predictable
timing intervals. We see both of these messages in Figure 2 as
images 3 and 4. We expect that in datasets where this message
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is only transmitted in emergency situations, CANDID would
train on data that indicates that situation. Take an aperiodic
message, such as an engine diagnostic light. Our data-based
training allows CANDID to see the data which results in
that light turning on, and alerts if that data is not true when
the engine light message is transmitted. If the attacker is not
directly controlling the engine, but instead the gauge cluster
displaying the light, then they have no way of setting the
engine conditions that result in that diagnostic light without
being detected by the timing anomaly from a spoofed engine
message.

4.1.3 Data-Dependency Training

The final phase of CANDID’s training is identifying how
a change in one parameter affects a future parameter. We
include this because if an attacker can corrupt an ECU,
then CANDID needs a mechanism for detecting when they
are sending malicious data. We identify deviations in the
data by calculating the correlations between parameters.
Afterall, vehicle operations are communicated on the CAN
bus because the ECUs rely on this data to function. If the data
ECUs output does not match with the flow of data going
over the bus, then there is an anomaly. As these relationships
are often non-linear we use Spearman correlation to calculate
the relationship between parameters. To do this we take our
training dataset and pair each data permutation together,
duplicating the slower message to pair with each faster
message. Duplicating the slower message allows us to
determine how much a faster message is concerned with
older data as the system continues to run. To reduce our risk
of producing false positives we only consider pairs with a
correlation an absolute value greater than 0.85, though this
value could be changed depending on the desired sensitivity
and computational restrictions. The correlation values for
these messages are stored by our training process so we can
compare the value in our evaluation phase.

The last step to ensuring correlations are effective is
accounting for naturally fluctuating scalar values. The RPM
of an idling engine is an inherently unstable data point,
yet an idling engine will only fluctuate so far, as the
physical component attempts to maintain a steady value.
Parameters correlated to engine speed will be fluctuating
along with engine speed, but these messages are not always
transmitted at the same speed, thus we need to ensure an
attacker cannot slowly change engine speed such that each
individual step looks like normal fluctuations, but never
averages back to normal. Our solution is to compute the
difference between the correlated and observed value, where
we assume an expected difference of zero for dependent
messages transmitting more frequently than their correlated
message. By applying the CUSUM algorithm [28] to this data,
we can alert on both small errors propagating across a large
period of time, and large variations from the correlated value.
The alert threshold is determined by training on normal data
and taking the maximum observed error in either direction.
The result is no matter how slowly or quickly an attacker
changes the data, we will alert before the system is seriously
impacted.

Let us examine the ramifications of this approach for
some engine messages. If an attacker corrupts the engine they
effectively control most of the vehicle. Of course, many of



the messages an engine transmits are dependent upon inputs
from the rest of the system, such as the transmission. So if an
attacker tries to increase the engine speed without sending
the transmission message engine speed is dependent on, then
CANDID will alert on the deviation between the expected
correlation and what the attacker sent. Our timing guarantees
ensure that a corrupted engine control module, could not
then spoof a transmission message without being detected.
That said, there are high level messages which take control
of systems, like the engine override message mentioned in
the previous subsection. But the engine sends that message,
and it sends it regularly. Because of our improved timing
guarantees we can predict when that message will occur, and
the attacker has to take over the engine specifically to send an
engine override message. The impact of the data correlation
guarantees are best demonstrated with the plethora of other
ECUs on a CAN bus. It is important to ensure that any cheap
ECU cannot start lying about its data to an extent where it
has an impact on the vehicle. This forces the attacker to stick
closely to what the bus is saying for most ECUs. And for the
rare ECUs with override messages the attacker now needs to
corrupt that ECU specifically to perform their desired attack.

4.2

CANDID relies heavily on the idea of fixed timing intervals.
At face value an interval sounds overly simplistic and prone
to false positives. An easy to imagine alternative is viewing
the distribution of timing intervals and determining if a
number of messages seen over some time period matches
that distribution. The problem is that many CAN attacks
are a single CAN packet, making this alternative unlikely to
detect the attack. Still, timing is an ideal basis for security as
all attacks, outside of manipulation attacks, affect the timing
of messages. A timing interval, enhanced by knowledge of
the data field, allows the defender to detect attacks without
predicting the exact order of messages.

The question is then how we define the interval, and why.
Too wide of an interval and an attacker transmitting near
the lowerbound may remain undetected as the legitimate
ECU transmits closer to the upperbound. When the attacker
transmits within the expected interval a new expected
interval is defined, and the legitimate ECU falls within this
interval. Too small of an interval and CANDID is prone to
false positives. We earlier defined the bounds of this interval
as the lowerbound being greater than the total width of the
interval. This ensures that if an attacker transmits within
an expected interval the legitimate ECU’s transmission is
guaranteed to fall outside of the new interval. With these
bounds no matter how many messages an attacker transmits,
as long as a legitimate device is transmitting CANDID is
guaranteed to raise an alert.

The observed upperbound and lowerbound may be more
rigid than necessary. CANDID expands intervals such that
the lowerbound is only just greater than the width of the
interval. This expansion favors increasing the upperbound.
A message is more likely to be delayed as the bus tends
to get busier than the baseline. The more comprehensive
the dataset the less this expansion matters for reducing
false positives, but generally some expansion is desired to
disentangle abnormal bus loads from attacks.

Interval Design Considerations
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Fig. 5. CANDID Evaluation Phase. On receiving a CAN packet CANDID
extracts the ID, time, and parameters. Training is checked to determine if
the message has a valid ID, if the interval between the observed ID and
the last occurrence matches what CANDID expects from our PGN/SPN
timing training given the state of the system, and if the changing data
values are correlated according to CANDID’s PGN/SPN dependencies
training. Using the observed data we update what state our training
believes we are in. Valid IDs does not change as the system operates.
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For outlier data points, such as a small set of points
between two bi-modal distributions, CANDID determines
which state parameter is set and includes them in the
appropriate distribution. Given that a message is more likely
to be delayed than significantly early, this likely increases
the upperbound of the interval, making outliers less likely
to result in no viable boundary condition. If there is no
viable boundary, then CANDID defaults to only using a
lowerbound. Such that even if the message can have a
wide timing interval, CANDID still detects an attacker
transmitting that message too frequently.

4.3 Evaluation Phase

The evaluation phase determines how CANDID functions
on each incoming message. A flowchart of this process
can be seen in Figure 5. In terms of timing CANDID
calculates the interval between the observed ID and the
two times it was seen. The appropriate bounds are then
selected by querying the last value for the trained state
parameter. If the interval is within the lower and upper
bounds for the 2nd from last message, or is not within
those bounds for the last message, CANDID alerts. CANDID
also alerts if the state parameter has changed for each of
these messages. This is indicative of an attacker changing
the state parameter to change the expected timing bounds,
followed by the legitimate ECU transmitting in the original
bounds. In terms of data, the expected correlation for data
parameters with strong correlations is queried from our
training database for each parameter. If the percent change
between an observed parameter and percent change in the
correlated parameter deviates beyond the trained CUSUM
threshold, CANDID alerts. This percent change is then stored
in memory. In summary CANDID stores a tuple containing
the last timestamp and state parameter for the last two
messages from each ID, as well as the percent change of each
parameter for each ID. All other necessary data is pulled
from CANDID's training.

Taken together, CANDID is a robust intrusion detection
system which combines timing and data analysis to detect
spoofing attacks, and masquerade attacks where a corrupted
ECU is transmitting messages correlated to trusted ECUs.



This leaves the manipulation attack, manipulating arbitrary
bits as they are transmitted on the bus. In the next section
we will demonstrate how simple it is to perform this attack,
and the CAN features that simplify detecting it.

5 MANIPULATION ATTACKS

Manipulation attacks can change the contents of a message,
without changing the timing metadata. Consequently, if
manipulation attacks are not addressed, spoofing attacks
are difficult to detect. Additionally, repeated manipulation
attacks can lead to a bus-off attack [8] scenario within a
single message, without generating a single error frame, or
dropping the message, making this attack harder to detect
than previous work implies. This section describes how a
manipulation attack is done, the possible consequences of
them, and how our IDS detects it.

5.1

Before we go into how manipulation attacks work, we will
go over important features of CAN. These features simplify
our detection mechanism, such that we only have to detect 0’
to "1’ manipulation attacks to cover all manipulation attacks.

The CAN bus consists of two wires labeled CAN-L and
CAN-H. The differential voltage between CAN-L and CAN-
H determines the logical output. A ’1” is the default and
referred to as the recessive state, with a differential voltage
of OV. This recessive state means no ECU is actively driving
the CAN Bus, meaning it is relatively constant for each CAN
Bus. '0’ is the dominant state with a differential voltage of
approximately 2V. If any ECU is transmitting a ‘0" signal it
overrides the recessive state, and transmits a ‘0" across the
wire. An attacker overriding a recessive bit with a 0" after
the arbitration field generates a CAN error.

For the purposes of this paper we are concerned with two
forms of CAN errors, implemented in all ECUs. We will use
these errors to ensure the bus must reach a state where we
can detect a manipulation attack, specifically manipulating a
dominant bit to a recessive bit.

A Bit Monitoring Error occurs when an ECU transmits
one bit, and sees a different value on the bus. The only time
bit monitoring errors do not apply is when an ECU transmits
a logical 1 during the arbitration period, as a 0 from another
ECU is designed to indicate a higher priority message.

A Bit Stuffing Error occurs when 6 of the same bits are
observed in a row. After transmitting 5 of the same bits in
a row, the transmitting ECU is meant to insert the opposite
bit, then resume normal transmissions. All CAN transceivers
know to ignore the stuffed bit.

When an ECU detects an error it sends a CAN Error
Frame which consists of 6 dominant bits (0) in a row. The
error frame itself generates a bit stuffing error, alerting every
ECU on the bus that it should ignore the message it just
transmitted. The bit stuffing error means a ‘1" to ‘0" bit
manipulation attack, which generates a CAN error frame,
inevitably forces the attacker to perform numerous 0" to
"1” manipulation attacks, lest an error frame is completed
and the message is dropped. Notably the victim ECU will
retransmit a message interrupted by an error frame, making
it an ineffective technique for silencing legitimate ECUs. The
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bus-off attack [8] complicates this, but is covered in our
security analysis.

We make the distinction between "1’ to ‘0" and 0" to "1’
manipulation attacks as the former is intentionally simple in
CAN, and difficult to distinguish from a normal bit change.
On the other hand a ‘0" to 1" transition requires the attacker
to drive the bus against the victim ECU, who is actively
providing power to CAN-H, and sinking CAN-L. For the
rest of this section we will focus on performing and detecting
‘0" to “1” manipulation attacks, as they are the inevitable
consequence of any manipulation attack where the attacker
wants the bus to process the manipulated message.

5.2 Performing a Manipulation Attack

An attacker has 3 options to manipulate a 0 to a 1: ground
CAN-H to CAN-L, increase CAN-L to CAN-H, or meet
somewhere in the middle. In terms of detection, a manipula-
tion attack which significantly deviates from the passive bus
voltage is immediately obvious, as no ECU is transmitting
during a passive bus, but the attack still works.

In Figure 6 we demonstrate a manipulation attack on a
real CAN bus, changing a ’0” to a "1’ three times by increasing
the voltage of CAN-L such that the differential voltage
between CAN-H and CAN-L is 0V. In terms of hardware,
we used a standard CAN transceiver to time the attack, and
P-channel MOSFETs to source/sink voltage for overriding
the existing signal. Each manipulation attack produces an
error frame, and manipulating this frame results in another
error frame. In Figure 6 we can see these repeated error
frames from each manipulation attack. Error frames will stop
transmitting a dominant bit after an error count of 127, and
ECUs will stop transmitting entirely after an error count of
255 [8]. The errors caused by a manipulation attack increase
the count by 8, meaning it only takes 16 bit manipulations
for passive bit errors. Once in a passive bit error state, we
can simply transmit dominant bits. After 16 dominant bit
transmissions the victim ECU will enter a bus-off state, and
stop transmitting until reset.

Manipulation attacks allow us to reach a bus-off state
much faster, and easier than previous work, which took 32
interrupted messages, and predicted when messages would
transmit to have two messages win arbitration instead of
simply reading the ID as it goes across the bus [8]. We
complete a bus-off attack within the span of a single message,
without allowing any error frames to complete, and without
having the bus discard the manipulated message.

5.3 Detecting a Manipulation Attack

We detect a manipulation attack by monitoring the current
during a dominant to passive bus transition, as shown
in Figure 7. Normally this transition is from no ECUs
transmitting, but during a manipulation attack the attacker
is actively driving the bus towards the passive state. This
never occurs on a normal CAN bus. The result of this drive
towards passive is an anomalous change in electric potential.
CANDID can see this change in potential because each ECU,
including CANDID, is connected to the bus in parallel,
meaning any change in potential results in a measurable
change in current from our pull up resistors. An attacker
must perform a 0 to 1 manipulation attack because the initial
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Fig. 6. This shows a manipulation attack, performed 3 times, forcing a dominant to a recessive bit. The right figure, a zoomed in section of the left
figure, depicts a 4us attack, followed by an 8us pause, 8us attack, another 8us pause and attack, before allowing the error frame to complete. When
a CAN error frame is interrupted, we see the ECU transmit the error frame again. After a complete error frame is sent, the line goes passive for

approximately 60us before retransmitting the manipulated message.
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Fig. 7. Depicts active 0 to 1 manipulation attack on CAN Bus. Changing
potential from the attacker overriding the victim’s transmission from high
to low results in current draw from CANDID pullup resistors. This does
not occur on a passive bus.

bit flip induces the 6 zero bits of a CAN frame, and if that
error frame completes then any standard CAN transceiver
easily detects it. We disagree with the premise presented in
Cho and Shin’s bus-off attack paper [8] that error frames
are too unreliable of a detection metric. Presumably the
vehicle functions, and the bus-off state is not reached by

normal ECUs even if they sometimes produce error frames.

By keeping our own error counter for each ECU we can alert
when an ECU is approaching the bus-off state. If an attacker
attempts to circumvent error frame detection by continuously
flipping bits, then they must perform a 0 to 1 bit flip as long
as the error counter is below 128. Thus we alert if we see any
ECU reaching an error count of 128. To summarize, after a
single bit flip the victim will produce 6 zero bits. An attacker
can either continue flipping bits to ensure the message is not
dropped, at which point we detect the 0 to 1 transition which
does not occur normally on the bus, or the attacker can allow
error frames to complete until error frames start transmitting
6 one bits instead, which we detect by keeping a counter
of errors produced by each ECU. If the attacker decides to
let the message drop after one bit flip then there is almost
no impact on the bus, as the victim ECU will immediately
re-transmit the dropped message. By having our solution
take advantage of CAN errors and passive bus levels, we
are able to detect these attacks on any CAN system without
attempting to fingerprint each ECU and dealing with the
complications of electrically fingerprinting electronics, and
the cat and mouse game of how much an attacker can recreate
a signal.

6 SECURITY ANALYSIS

In the adversary model we defined a successful attack as
changing the state of the system without CANDID alerting.
To provide a security guarantee against an attacker we first
focus on the detection of manipulation attacks and then we
analyze spoofing and masquerade attacks separately. Recall
that our detection system is connected as a normal ECU to
the bus, with an amperage monitor on the pullup resistors
in our CAN transceiver. This security analysis assumes the
attacker knows CANDID is installed.

6.1 Securing Against Spoofing Attacks

The attacker has somehow added a device to the CAN
bus, and wishes to modify the state of the system by
impersonating existing ECUs. To perform a spoofing attack,
an attacker must send a periodic, or aperiodic message. The
security model is the same for both, but our approach for
detecting them is different. Let us discuss the approach for an
adversary transmitting periodic messages. First the attacker
must select a message ID. Because of CANDID’s timing
training, the attacker must select a periodic ID previously
observed on the system. When the attacker transmits their
desired periodic ID our IDS checks the transmission interval
of that message. This interval is selected based on the state of
the system, and defined during training. If the time between
the attacker’s message and the previous time we saw that ID
is not within the known transmission interval, we alert on
that message. If it is within the known interval, the original
device will send a message, guaranteeing an alert by the end
of the interval on whichever message came second. Given
this, an attacker must ensure that no other ECUs are sending
their desired ID. It follows that to transmit their desired ID
the attacker must prevent the original ECU from speaking.
An attacker can do this by colliding with the original message,
performing an address hijack attack, or uploading malicious
firmware. Collisions generate a CAN error frame, which
are covered under our security analysis for manipulation
attacks. An address hijack attack causes the victim ECU
to transmit a specific ‘address not found” message, and
requires the attacker to send a completely new data field.
Mangling this alert message to hide the address hijack
attack is secured by the same logic as collisions. Firmware
upgrades are trivial to detect if we assume our IDS knows
all legitimate firmware versions, and can calculate a hash
of each CAN frame involved in the firmware update. This
means an attacker can not prevent an ECU from transmitting
undetected. Consequently, if a legitimate ECU is transmitting



periodic message, we guarantee CANDID detects injected
illegitimate periodic messages.

For aperiodic messages there is no existing ECU trans-
mitting the message. Once an attacker injects an aperiodic
message CANDID’s data correlation training verifies that the
provided aperiodic message should have been transmitted
based on the state of the system. This is done through a
series of data dependency checks. To bypass this check,
the attacker must inject additional messages prior to their
desired aperoidic message, setting the appropriate data
dependencies. However, these data dependencies belong to
periodic messages, meaning our security analysis for periodic
messages now applies to aperiodic messages. This leaves the
attacker unable to inject any messages.

6.2 Securing Against Masquerade Attacks

The attacker has taken over an existing ECU, and aims to
send false messages on the bus as the victim ECU. The
masquerade attack’s security analysis is the same as the
spoofing attack’s, with three distinct differences: periodic
message detection relies on data dependencies, the attacker
can lie about the physical defects in the system, and CANDID
is unable to detect small changes to messages with no data
dependencies.

The attacker transmits messages within the known trans-
mission interval of the victim ECU. As there is no other ECU
transmitting this normally periodic message, CANDID’s
timing features no longer detect this attacker. However, the
injected periodic message has data dependencies. To bypass
these dependencies the attacker must transmit the parent
messages, or transmit within the error bound allowed by
the CUSUM analysis for the chosen message. Because the
parent message is coming from a trusted ECU, the attacker
would need to perform a spoofing attack as that ECU.
This attack is protected by the aforementioned timing-based
spoofing detection mechanisms. This leaves the attacker with
messages within the CUSUM error threshold. By definition,
attacks within this CUSUM error threshold have limited
impact on the system. This is because the error threshold
is determined by training on the innate fluctuations of a
normally operating system.

Given that the attacker cannot successfully transmit mes-
sages with dependencies, they can only transmit messages
with no data dependencies to non-corrupted ECUs. This
means a corrupted ECU has control over what its victim
transmits, but cannot reach outside of that domain due to
data dependencies and CANDID’s timing analysis.

The attacker is capable of lying about the state of the
system for its independent messages. However, this lie
must be physically possible in the system. Take an attacker
omitting messages reporting an oil leak. The rest of the
system will believe these omissions, until the lie is physically
impossible for the rest of the system to maintain. At this
point CANDID will alert on the dependent, trusted, ECUs
as their data diverges from that expected from the corrupted
ECU’s messages.

6.3 Securing Against Manipulation Attacks

To perform a manipulation attack the adversary must modify
the voltage of CAN-H and CAN-L such that the differential
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voltage translates to their desired bit. Any attempts at manip-
ulating a bit result in the victim ECU raising a bit monitoring
error, as the bit on the bus is different from the transmitted
bit. If the error frame completes, then CANDID detects an
error frame from the victim ECU, incrementing CANDID’s
internal error counter for that ECU. CANDID alerts if the
error counter for any ECU exceeds 127 (where errors start
transmitting recessive bits). This cutoff ensures CANDID
does not transmit false positives for one-off legitimate errors,
but does alert if any ECU reaches a serious error state.
Allowing a number of error frames less than 255 to complete
is inconsequential to the state of the bus, as every interrupt
message is ignored, then retransmited. Meaning the attacker
cannot achieve their goal without allowing enough error
frames to complete that CANDID detects it. Now that an
attacker cannot allow error frames to complete, they are left
with one option - interrupting error frames. Interrupting
an error frame requires flipping a ‘0’ to a ‘1’. Each bit flip
during an error frame results in an error count increase which
CANDID does not observe. Each manipulated error frame
results in the victim ECU transmitting another error frame,
for at minimum the length of an extended CAN packet. The
necessity of flipping a ‘0’ to a “1” to interrupt error frames
ensures CANDID does not need to be able to detect a ‘1" to
‘0" bit flip.

Let us discuss how the attacker performs this manipula-
tion attack. When modifying the voltage over CAN-H and
CAN-L the attacker can set the voltage of CAN-H and CAN-
L to any value. However, the voltage of a passive (1) CAN
Bus is consistent. This can be seen in Figure 6, where CAN-H
and CAN-L reset after we stop our attack and the bus begins
transmitting a recessive bit. If the voltage of CAN-H and
CAN-L is significantly different from the passive voltage for
longer than a microsecond the attack is obvious. Now the
attacker must sink CAN-H and source CAN-L such that the
voltage of both are approximately the same as a passive bus.

To sink CAN-H and source CAN-L the attacker must
overpower the victim ECU, who is actively driving CAN-
H high and CAN-L low to transmit an error frame. The
resulting change in potential results in current flowing
towards the attacker’s CAN-H connection, and away from
the attacker’s CAN-L connection. We observe these draws
in current through the pullup resistors in CANDID. Afterall
each ECU is connected in parallel to the CAN Bus. In
contrast, the passive bus has no transmitting ECUs, meaning
a near 0 change in potential and current. CANDID monitors
the current across its pullup resistors whenever the bus
is transmitting a "1’. If that current is different from the
near-zero current of a passive bus, then we alert. Given
that a critical mass of CAN error frames result in detection,
the attacker must eventually transmit a '1’, and the current
will be different from that of a passive bus. This leaves the
attacker unable to perform a manipulation attack undetected.
Now an attacker must inject new messages onto the CAN
bus to perform a successful attack. Our security analysis for
spoofing and masquerade attacks covers these new messages
being injected onto the bus.

6.4 Security-Analysis Conclusion

We guarantee detecting all periodic messages, and data
dependent aperiodic messages for spoofing attacks. For



Fig. 8. Testbench with engine emulator in bottom left, C7 Engine Control
Module in top left, collection devices in top right, and implant attacker
in hand in the bottom right. The red light in the middle left represents a
mechanism for alerting the operator of the vehicle.

masquerade attacks, we detect data dependent periodic
messages and data dependent aperiodic messages. Our
ability to detect any manipulation attack ensures CANDID
can rely on the required data from trusted ECUs.

7 IMPLEMENTATION AND EXPERIMENTAL RESULTS

This section tests the performance of our implementation,
and demonstrates our experimental results.

71

Our implementation works on both a dump of CAN packets,
and live connection from the CAN Bus. That live connection
used one of two collection devices, a Neousys ruggedized
vehicle computer [27], or a Raspberry Pi 3 CAN Hat [44]. For
development and attack testing we used a testbench with
a C7 Caterpillar Diesel Engine Control Module, an engine
emulator, and an OBD-II computer acting as an implant,
and both aforementioned collection devices connected to the
same CAN bus. This can be seen in Figure 8. All live testing
was done on a 250KB/s CAN Bus.

For our manipulation attack detection we install an
amperage monitor in series with the CAN transceiver.
Alternatively we could connect a normal oscilloscope to
the CAN-H and CAN-L connections with a common ground
and measure the difference in voltage. But this requires
knowledge of the impedance of the bus line, making it
ineffective against implants.

All J1939 specification parsing, rule generation, and IDS
functionality is written in Python, primarily for rapid feature
development. CAN frame collection is written in C++ and
uses Linux PCAN drivers to process incoming messages.
We tested the performance of our system using profiling on
a data capture, and testing on a fully operational moving
vehicle with two CAN busses. By testing to see if the time it
takes for CANDID process to a CAN packet is less than the
time for another CAN packet to be transmitted we know if
CANDID can be used in real world settings. Our profiling
indicates CANDID enriches and evaluates an individual
CAN packet in less than 500 microseconds, even when
duplicating the CANDID process to work on both CAN
Busses. On a 250KB/s bus a single CAN packet takes 584
microseconds, meaning CANDID is fast enough to not fall
behind the bus. To test CANDID’s performance on a real
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bus we turned off the rest of the bus while a separate device
transmitted a test alert message. We observed this test alert
instantaneously, indicating CANDID’s processing did not
fall behind.

7.2 Experiment

Evaluating CANDID requires us to test it for each attack,
and against a data set without attacks. To this end we
test CANDID against 6 representative attacks, and verify
CANDID's behavior against a clean dataset. We do not per-
form experiments on manipulation attack detection beyond
executing the attack and validating repeated CAN Error
Frames as described in Section 5.

For our evaluation we have access to datasets from a
truck and four tactical vehicles. CANDID is also evaluated
while deployed on a full system to ensure CANDID can keep
up with real bus speeds, as described above in the Section 7.1.
From a detection evaluation perspective CANDID’s timing
and data capabilities perform the same on a collected data
captures as a real bus. We have three hours of driving data
from our truck dataset and 145, 55, 170, and 16 data captures
for the four tactical vehicle respectively. These captures
average 200,000 CAN packets each, with varied driving
conditions including: off-road, hill, track, and road testing
with faults. Across our datasets we observe 124 different
message types, 328 data parameters and 72 million packets.
The observed message types are reflected in both datasets,
though the tactical vehicles datasets include 41 types not
seen in the truck dataset.

For our evaluation we need to create a training set off of
these datasets. Based on the differences in observed messages,
training is not transferable between vehicles with different
ECUs. We trained on roughly one million CAN packets (1-2
hours of driving time) for each vehicle. The most important
aspect of this training is ensuring all message types are seen,
and that any transitions between vehicles states are included
in the traffic. To verify that a normally operating system does
not result in false positives we run CANDID against our
truck and tactical vehicle datasets. We do not run attacks on
vehicles while collecting this data to establish a baseline, and
for safety reasons.

For spoofing attacks we inject one of five attacks into a
random spot in the aforementioned truck dataset then run
the dataset against CANDID. We use randomized spots in the
dataset to emulate attacker behavior, but analyze the intervals
produced by CANDID’s training to ensure they meet the
bounding criteria necessary for the security principles around
intervals to hold. We only use the truck dataset as the
difference between vehicles is inconsequential for detecting
attacks once the training mechanism can be trusted. Our five
attacks are chosen to demonstrate CANDID'’s ability to detect
messages with one timing interval, messages with multiple
timing intervals, aperiodic messages sent as a condition of
the data field, completely new messages, and J1939 specific
attacks. These attacks cover the entirety of spoofing attacks,
and give us confidence in CANDID's ability to detect any
other spoofing attacks, in addition to common mechanisms
for disabling existing ECUs.

We repeat each of the five spoofing attacks 100 times.
The five attacks are: spoofing periodic engine message



TABLE 2
Summary of results of 6 practical attacks. For each attack, a message is
injected or replaced randomly in a trace of 1.5 million packets. Each
attack is repeated 100 times.

Description Attack Precision (%)  Recall (%)
Periodic Engine Message  Spoofing 100 100
Cruise Control Message Spoofing 100 100
Enable Engine Diagnostic ~ Spoofing 100 100
New Message Injection Spoofing 100 100
Address Hijack Spoofing 100 100
Corrupted ECU Masquerade 100 93.3

61445, spoofing the multiple timing cruise control message,
spoofing an aperiodic diagnostic message which enables
the check engine light, transmitting a message type not
previously seen by the engine, and an address hijack attack.
The aforementioned attacks were tested on our testbench,
and work as expected. To test against a masquerade attack
we change the engine speed of engine message PGN 61444
at random places in the dataset. We modify 30 data fields,
and add an additional case for an attacker incrementally
changing the data.

7.3 Results

Our first tests involve running CANDID against truck, and
tactical vehicle datasets to test if any alerts are generated on
a clean dataset. After training we process each CAN packet
for each dataset. We observed no false positives as a result of
messages operating outside their normal timing bounds. This
indicates predictability and consistency of timing intervals.

Our data analysis implementation uncovered a small
number of proprietary message types in our data set (from
military vehicles), which led to false positives as CANDID
had no way of interpreting their data fields. Proprietary
messages are not a problem for the equipment manufacturer,
but lacking documentation CANDID ignores them if they do
not immediately fit within one timing interval.

We found that 4.76% of IDs in our datasets have data
dependent transmission times. These 4.76% of IDs, including
messages like the cruise control message from our intro-
duction, would cause false positives in existing timing-
only research. At 11.86% our NMEA 2000 data has more
data dependent messages than seen in our wheel-based
J1939 systems, so here the benefit of CANDID is even more
pronounced. CANDID was able to correctly identify the data
fields which modify message timing, such that we can safely
process these IDs.

To test the success of a spoofing attack we inject a
single attack randomly into our truck dataset, scanning the
dataset with CANDID, then scrub the dataset. We repeat
this experiment 100 times for each of our 5 attacks, for a
total of 500 injected messages. In terms of interval training
we found that CANDID was able to produce intervals with
lowerbounds greater than the width of the interval, such
that the security principle holds. For the masquerade attack
we modify a data value in a message, rather than inject a
new one. We do this 30 times, plus an extra 5 messages in
a sequential replacement attack. Table 2 depicts the results
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Fig. 9. Masquerade Attack, with a zoom in on the incremental attack.
Here an attacker modifies the RPM as a corrupted engine ECU. Attacks
are detected using CUSUM on deviations from trained correlations.
Undetected attacks have an insignificant impact on the system.

of our experiment. For the spoofing attack we achieve 100%
recall and precision. For the masquerade attack we achieve
a 93.3% recall and 100% precision. Attacks that change the
value to something within the variance of the transmission
are not detected, but such attacks have a limited impact on
the system.

The Periodic Engine Message attack demonstrates detecting
fixed rate periodic traffic, where each attack causes the victim
ID’s intervals to diverge from the fixed rate. The Cruise
Control Message attack uses the same principle as the Periodic
Engine Message attack, with multiple intervals. Detecting it
requires CANDID to track the state of the system, select the
appropriate time interval, then alert on any messages outside
that time interval. The Enable Engine Diagnostic attack extends
the periodicity proven by our periodic engine message to an
aperiodic message, as the chosen diagnostic only turns on
when the engine speed is over 2400 RPM. The New Message
Injection attack proves that CANDID can detect unknown
IDs, this emulates the heartbeat functionality of a popular
CAN cryptography solution [31], but for extended CAN
packets and without limiting the system configuration. The
address hijack attack requires CANDID to save the known
addresses for each address, and alert on any new data fields.

Explaining the corrupted ECU attack and what we do and
do not detect requires more detail. The results can be seen
in Figure 9. In this case our data analysis finds engine speed
is dependent on the rate of change of transmission input
shaft speed, meanwhile it is in the engine idle state. This
state means the engine speed has some natural fluctuations,
which we account for with a CUSUM error threshold of
1.2%. A chain of incremental attacks, seen in the zoomed
in section of Figure 9, remained undetected over successive
smaller changes until the final message where the cumulative
error was larger than possible in that idle state time period.
CANDID does not detect some small deviations, resulting
in false negatives. Even so, the attacker is limited in their
desired engine speed, despite controlling the engine control
module. Further restricting changes to the data field is likely
to result in many false positives, though may be necessary
for systems where small changes to scalar values are of
consequence.



In summary, tests against a clean dataset results in
false positives from enrichment errors with proprietary
messages, but has high accuracy on standard traffic. While
an implementation can approximate out proprietary values,
it depends on how sensitive the defender is about small
fluctuations in data. We are able to detect all of our spoofing
attacks. This includes periodic, multi-periodic, and aperiodic
messages. Identifying these data dependent periodic mes-
sages makes the bus more predictable for the defender. Our
experiment against a masquerade attack is detected through
data dependencies to periodic messages. Detecting multi-
periodic, and aperiodic messages from any attacker, as well
as masquerade attacks from periodic messages is a significant
improvement on previous CAN intrusion detection research.

7.4 Comparison to Existing Work

To contextualize the results of CANDID we will take the
three modules of CANDID and compare them to existing
work. We define our three modules as a timing module
(which encompasses the interval training, and modality
based interval training), a data-dependency module, and
a manipulation attack detection module. The modality-based
timing approach is an improvement on existing CAN timing
based IDS approaches as it removes the assumption that
messages are strictly periodic. An assumption that is known
to be false for some subset of messages [22]. While post-
detection-analysis can reveal aperiodic false positives [9], it
does not provide a security guarantee to those messages.
CANDID provides an improved timing interval bounding
approach, which is then extended to aperiodic messages
via this modality training. And it does this in a way that is
unspoofable in our system model, unlike clock skew analysis
which can be faked [34]. An attacker cannot fake an interval
as long as the legitimate ECU is still transmitting, and our
IDS is designed to catch the attacks that would disable a
legitimate ECU. The result is every message has a security
guarantee that is non-spoofable. An attacker cannot avoid
CANDID simply by choosing a message with a complicated
transmission interval.

Now let us examine our data-dependency module. Ex-
isting CAN work applies data analysis via an Artificial
Neural Network (ANN) which learns how data is expected
to deviate in sliding time windows [43]. CANDID'’s timing
analysis exists separately from the data-dependency training,
which ensures that an attacker cannot overload the bus
with illegitimate messages. Quinonez’s physical invariance
research has similar timing issues [32]. CANDID’s use of
dependencies between data fields, with CUSUM applied
to the deviation from the expected value, is novel in that
it is applied across the entire vehicle. The physical models
presented by Wasicek [43] and Quinonez [32] are applied
to specific subsystems, and simplistic line following robots
respectively. This results in assumptions about which systems
are interconnected and risks gaps in detection coverage. Our
layering of data contextualized timing analysis further limits
the set of messages an attacker can send, while ensuring an
attacker is limited when sending malicious data correlated
to legitimate ECUs.

Our manipulation attack detection is most similar to
voltage based detection systems. These monitor the voltage
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of the bus to create electrical fingerprints of the system [20],
[10]. While not explicitly designed to detect manipulation
attacks, the sudden change in voltage required to flip a bit
would likely modify the fingerprint of the message, and
so trigger the detection system. CANDID offers two novel
improvements. The limitation of the monitoring system from
fingerprinting the whole system to only 0 to 1 bit flips reduces
false positives by removing the need for constant retraining.
Overlapping our manipulation attack detection with timing-
based spoofing detection ensures we do not lose any of
the security guarantees delivered by voltage fingerprinting.
The second improvement is using the current in the pull
up resistors during 0 to 1 transitions. In a generic sense
monitoring only current would create a false positive ridden
detection system. However, the nature of the CAN bus and
its error process ensures that CANDID knows when a 0 to
1 transition must occur in response to a bit flip, and that
when it does any deviations from that particular passive
state must be erroneous. This comparison to a passive state
ensures that our approach is suited to detecting voltage IDS
circumvention techniques like those used by DUET [3], which
uses multiple attackers to hide the voltage being changed.
Any attempt to overpower the grounding of a CAN line, and
thus generate a current in CANDID’s pull up resistors, is
inherently anomalous during a 0 to 1 bit transition.

8 DiscussIiON

In this section we will further discuss CANDID’s effective-
ness for detecting attacks with limited training, and what to
do after an alert.

8.1 Training

As described in Section 4.1, CANDID has 3 main training
components: training on timing intervals, using data to split
those timing intervals, and training on a CUSUM error
threshold for correlated data fields. This training has to
be done for each vehicle, preferably with a representative
dataset of the system: powered on, idling, and driving in
variable conditions.

The question is then what happens if the vehicle diverges
outside of our training. We are unconcerned about this
for two reasons. First, CANDID trains on normal behavior,
then expands the timing intervals to the maximum possible
while still maintaining our outlined security principles.
This ensures our timing intervals are not prone to false
positives from poor training sets, but are still effective at
detecting spoofing attacks. Secondly, CANDID accounts for
fluctuations in vehicle data by using CUSUM, as we can
safely assume the vehicle will self correct and minor errors
will not propagate through a vehicle indefinitely. Our results
show that an attacker can make small changes to the data
field, but none more significant than the natural fluctuations
of normal data. These measures increase our confidence that
even if our training did not capture all outliers, it is resilient
to future outliers. This makes CANDID an effective and
resilient IDS.

8.2 After an Alert

The question with any intrusion detection system is how
an alert should be communicated, and what can be done



about it. While a full incident response process for CAN
is outside the scope of this paper, we can make a few
suggestions. Any communication of the alert to the operator
of the vehicle must be done through a mechanism external
to the compromised CAN bus. In our testbench, seen in
Figure 8 we use an LED light, but more context could be
helpful. For example, if an alert indicates the communications
system is no longer transmitting the appropriate messages,
the operator can know to react accordingly. As for broader
incident response, CANDID compresses and logs all CAN
packets observed on the bus. This makes it a simple process
to upload the messages to any traditional incident response
platform such as Splunk or ELK. The alerts are logged with
the alerting message, and its timestamp, such that analyzing
the messages surrounding an alert is trivial.

9 CONCLUSION

In this paper we proposed CANDID, a novel IDS which
detects anomalies on the CAN Bus via timing, data, and
voltage techniques. Combining, improving, and developing
these techniques ensures CANDID is more accurate than
previous work, as it has greater context for how the system
is meant to operate, without the cons of any individual
approach. CANDID’s timing analysis isolates transmission
influencing data to more accurately bound when messages
are going to appear, capturing safety critical messages,
such as cruise control, even if they transmit with multiple
timing intervals. CANDID’s data analysis takes our much
larger set of parameters into account, performing correlation
analysis to determine when an attacker is modifying data
influenced by the rest of the system. This limits what even
the most advanced attacker can do on the system. Finally
the voltage analysis avoids traditional fingerprinting to
use a more focused approach. It specifically monitors for
an attacker manipulating a 0 to a 1, using the physical
properties of the CAN Bus to the defender’s advantage.
This capability is particularly important in the context of
our advanced bus off attack contribution, which disables
a transceiver within a single message, without producing
any error frames. CANDID was tested against multiple
vehicles and data captures, and was able to detect all injected
attacks without producing false positives beyond small
data translation limitations. The success of these tests, our
device not requiring the modification of any ECUs, and
the performance of our implementation, demonstrates that
CANDID is a practical and effective solution to security for
existing and future CAN systems.
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