
Computers & Security 129 (2023) 103213

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

RegGuard: Leveraging CPU registers for mitigation of control- and

data-oriented attacks

Munir Geden

∗, Kasper Rasmussen

Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom

a r t i c l e i n f o

Article history:

Received 2 December 2022

Revised 16 February 2023

Accepted 27 March 2023

Available online 29 March 2023

Keywords:

Security

Compiler

Register allocations

Memory attacks

a b s t r a c t

CPU registers are small discrete storage units that are used to store temporary data and instructions

within the CPU. Registers are not addressable in the same way memory is, which makes them immune to

memory attacks and manipulation by other means. In this paper, we take advantage of this to protect crit-

ical program data with integrity guarantees that cover register spills. This protection effectively addresses

control- and data-oriented attacks targeting the stack, even by adversaries with the full knowledge of

program memory. Our solution RegGuard is a software-based mitigation technique that uses existing CPU

registers and cryptographic primitives to protect critical variables with hardware-level assurance. Unlike

conventional register allocation methods, RegGuard prioritises the security significance of a register can-

didate over its expected performance gain. Our scheme also deals effectively with saved registers to the

stack, i.e., when the compiler frees registers to make room for the variables of a new call. With Reg-

Guard, register values saved to the stack are protected, including strong adversaries with arbitrary read

and write access capabilities. While our primary design focus is on security, performance is important

for a scheme to be adopted in practice. RegGuard is still benefiting from the performance gain normally

associated with register allocations and provides practical protection. Despite being adaptable to different

CPU architectures, we showcase the performance of RegGuard using different benchmark programs and

the C library on the ARM64 architecture as a proof-of-concept.

© 2023 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1

o

p

m

p

p

e

fl

t

o

a

n

o

c

k

a

t

2

p

(

i

o

p

e

a

a

t

m

c

t

n

h

0

. Introduction

Despite many years of effort, memory bugs continue to be one

f the root causes of software security problems, especially in ap-

lications developed using unsafe languages like C, which are com-

only used in systems programming and performance-critical ap-

lications. Since there is no built-in safety in those languages to

revent unintended access to critical program data, an attacker

xploiting a memory bug in the program (e.g. stack buffer over-

ow) can overwrite control and data objects beyond the abstrac-

ion given in the source code.

Several schemes have been proposed to mitigate such exploits

f memory bugs. The majority of these focus on control-oriented

ttacks in which code pointers are targeted. For example, stack ca-

aries (Cowan et al., 1998) place random values to detect overflows

nto return addresses. But these canaries fail to catch well-targeted

orruptions, e.g., format string attacks, that alter certain addresses
∗ Corresponding author.

E-mail addresses: munir.geden@cs.ox.ac.uk (M. Geden),

asper.rasmussen@cs.ox.ac.uk (K. Rasmussen) .

e

t

(

C

ttps://doi.org/10.1016/j.cose.2023.103213

167-4048/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article
nd leave the canary untouched. More powerful control-flow pro-

ections such as CFI (Abadi et al., 2005) and CPI (Kuznetsov et al.,

014) do not make assumptions about how the corruption hap-

ens. Those either use a shadow stack to detect corruptions of

shadowed) control data or a safe stack to protect them from be-

ng altered. In general, control-flow protections do not cover data-

riented attacks that selectively target non-control data, for exam-

le, a function argument or a condition variable deciding on the

xecution of a privileged branch. Proposed defences against those

ttacks, e.g., data-flow integrity (DFI) (Miguel et al., 2006), gener-

lly require a more thorough check of all stack accesses in addition

o code pointers, and in the process they introduce high perfor-

ance overheads.

Regardless of their limitations, current proposals for both attack

lasses face three common challenges in general. The first one is

he performance overheads due to the instrumentation accompa-

ying each legitimate memory access, which worsens as the cov-

rage expands (i.e. non-control data). The second challenge is that

heir success is dependent on how well the instrumentation data

e.g. shadow stack) is protected within the same address space.

urrent techniques either hide the location of those through ran-
under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.cose.2023.103213
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103213&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:munir.geden@cs.ox.ac.uk
mailto:kasper.rasmussen@cs.ox.ac.uk
https://doi.org/10.1016/j.cose.2023.103213
http://creativecommons.org/licenses/by/4.0/

M. Geden and K. Rasmussen Computers & Security 129 (2023) 103213

d

i

t

2

o

s

s

e

t

f

m

l

t

C

t

O

a

t

a

o

p

o

a

t

g

G

i

o

i

i

a

i

n

h

A

p

b

S

s

r

t

o

c

b

r

f

2

i

w

2

s

d

c

c

w

t

g

g

w

fl

2

d

a

c

t

i

t

f

d

2

n

(

t

2

o

i

o

i

p

c

h

a

d

c

s

t

i

p

m

c

t

t

a

i

b

g

a

1

a

a

n

a

p

c

r

p

s

s

s

omisation or implement some access policies for them. However,

ntegrated attacks that reveal or search the location of instrumen-

ation data can break the promises of those schemes (Evans et al.,

015; Gökta ̧s et al., 2016). The final and the third issue is the lack

f deployability by different device types and architectures. For

trong assurance, many proposals either require changes in the in-

truction set (ISA) (Christoulakis et al., 2016; Davi et al., 2015; Song

t al., 2016) or features provided by specific architectures, e.g., In-

el MPK (Burow et al., 2019), which makes them deployable only

or future devices or a small portion of existing systems. Also, the

ajority of defences are designed for high-end devices with a re-

iable operating system, whereas primitive architectures and sys-

ems (e.g. bare-metal) are often ignored.

This paper presents RegGuard, a novel scheme that leverages

PU registers to protect critical program data in use with fur-

her integrity assurance even if their states are saved to the stack.

ur scheme successfully addresses all three challenges mentioned

bove and differs from the previous proposals by providing prac-

ical and robust protection against both control- and data-oriented

ttacks. It is practical because RegGuard is designed as a software-

nly scheme that does not require any new hardware. Besides, re-

lacing memory accesses with registers still compensates for most

f the performance overhead. It is robust because CPU registers,

s unaddressable storage units, provide a strong hardware root of

rust for the storage of critical data in use. Thanks to our crypto-

raphic assurance covering register data at rest on the stack, Reg-

uard does not need to worry about integrated attack scenarios as

t does not generate any instrumentation data that must be hidden

r protected in the same address space. Lastly, because RegGuard

s built on one of the fundamental building blocks of computers,

.e., CPU registers, it can be adapted to different device types and

rchitectures, including both modern and legacy systems, with triv-

al changes on the software stack.

To verify that the integrity checks introduced by RegGuard do

ot make the performance of the resulting binary unusable, we

ave implemented a proof-of-concept using LLVM compiler for the

RM64. Our results show that for many programs compiled, the

erformance cost is within a few percent of a normal optimised

inary.

We summarise our contributions as follows:

1. Mitigation of attacks targeting control and data objects on the

stack with an architecture-agnostic approach that relies on ba-

sic hardware primitives (i.e., registers).

2. Proposal of a security-oriented global register allocation scheme

favouring program variables that are more critical to runtime

integrity.

3. Leveraging CPU register file as reusable trusted storage for host-

ing critical data by introducing cryptographic integrity checks

on saved values to the stack.

The rest of the paper is organised as follows: First,

ection 2 provides the necessary background about our attack

cope and register allocations, which are necessary to follow the

est of the paper. Section 3 explains our motivation, and delivers

he system and threat model. Next, Section 4 presents the design

f our scheme. Section 5 provides the details of our proof-of-

oncept implementation, whereas Section 6 provides an evaluation

ased on this implementation. Following Section 7 reviewing

elated work, Section 8 discusses certain design decisions and

urther extensions that can be taken forward.

. Background

This section provides information about the attack classes mit-

gated and explains how conventional register allocation schemes

ork.
2
.1. Control- and data-oriented attacks

Even if the program code is set as read-only and the stack is

et as non-executable, an attacker can still exploit memory bugs in

ifferent ways. The first option is to hijack the control flow for a

ode-reuse attack. By carefully crafting code pointers, the attacker

an express his attack using existing instructions and execute them

ith the order and the data he would benefit from. To achieve

his, he can modify return addresses, e.g., return-oriented pro-

ramming (ROP) (Checkoway et al., 2010), or indirect branch tar-

ets, e.g., jump-oriented programming (JOP) (Bletsch et al., 2011),

hich we describe as control-oriented attacks in general. Control-

ow protections mitigate those scenarios by checking (Abadi et al.,

005) or ensuring (Kuznetsov et al., 2014) the integrity of control

ata. However, these techniques fall short of protecting against the

ttacks that corrupt only program variables without touching any

ode pointers. Such data-oriented attacks (Chen et al., 2005) enable

he adversary to reach his goal indirectly, for instance, by alter-

ng a condition variable that decides on a privileged branch execu-

ion (i.e. control-flow bending attacks (Carlini et al., 2015)). Apart

rom specific scenarios, those attacks can be Turing-complete using

ata-oriented programming (DOP) (Hu et al., 2016; Ispoglou et al.,

018) techniques in case of a suitable vulnerability. For a DOP sce-

ario, the attacker must exploit a bug that can compromise a loop

the dispatcher) providing necessary branches and instructions (at-

ack gadgets).

.2. Register allocation

Because accessing CPU registers is much faster than the mem-

ry, the compiler prefers mapping all program variables to the reg-

sters. However, there is no practical constraint on the number

f variables that can be defined in a program, despite the lim-

ted number of registers (i.e. usually no more than 32 general-

urpose (GPR) and 32 floating-point registers (FPR) on most ar-

hitectures). Hence, a register allocation scheme must decide on

ow to share out registers to the variables. Thankfully, not all vari-

bles are concurrently live (i.e. code scope describing a variable

efinition to its final use) throughout the program execution. The

ompiler can thus utilise registers more efficiently by assigning the

ame registers to different variables (i.e. live ranges) at different

imes. If the number of live variables is more than available reg-

sters at any program point, called high register pressure , the com-

iler handles those situations by spilling some variables into the

emory (Chaitin et al., 1981). The allocation scheme usually de-

ides which variable to be spilled based on spill costs that estimate

he number of accesses for the candidate, weighted proportionally

o its loop depth (Chaitin, 1982). The compiler can also store a vari-

ble both in the memory and registers by splitting for better util-

sation (Cooper and Taylor Simpson, 1998; Wimmer and Mössen-

öck, 2005).

Register allocations can happen at basic block, function or pro-

ram level. If the basic block is chosen as the optimisation bound-

ry, this is called local register allocation (L. P. Horwitz et al.,

966). Since local allocations have to save and restore registers

t basic block sites, they are not considered as optimal as global

llocations happening over the whole function (Chow and Hcn-

essy, 1984). On the other hand, program level (interprocedural)

llocations can only be meaningful for small programs with short

rocedures (Santhanam and Odnert, 1990). Therefore, global allo-

ations are commonly used in practice. Global allocation enables

eusing the same registers repeatedly for each function call. De-

ending on the calling convention in place, if a register is de-

cribed as a caller-saved register, its state is saved/restored at call

ites by caller functions. Otherwise, the function called is respon-

ible for saving and restoring a callee-saved register. These opera-

M. Geden and K. Rasmussen Computers & Security 129 (2023) 103213

t

a

c

G

m

g

n

a

w

i

i

w

m

S

g

w

B

l

b

w

i

3

e

p

m

m

2

t

c

t

a

2

s

b

t

a

v

p

t

3

fl

t

a

d

h

s

n

e

i

S

a

w

t

w

p

r

e

e

Fig. 1. Probability distributions of variable counts.

Fig. 2. Overview of the system components.

v

f

t

t

1

a

f

G

c

f

c

I

e

3

c

(

d

l

t

(

t

t

t

w

t

e

ions are mostly performed through simple push-pop instructions

s part of the function’s prologue and epilogue.

Global schemes, which utilise registers at the function level,

an adopt different approaches to solve the allocation problem.

raph colouring (Briggs et al., 1994; Chaitin et al., 1981) is the

ost well-known technique. It starts by building an interference

raph, where the nodes represent variables and the edges con-

ect two simultaneously live variables. The problem is formulated

s two inferring (interfering) nodes (variables) cannot be coloured

ith the same colour (register). For a node, the degree of which

s greater than the number of available colours (registers), mean-

ng register pressure, the compiler acts based on the spill costs ,

hich estimate the performance loss of leaving a variable on the

emory. Alternative to graph-colouring, linear scan (Poletto and

arkar, 1999) techniques aim for faster compilation times. Those

enerally maintain an active list of live variables, the intervals of

hich are chronologically visited to perform register allocations.

ecause linear techniques do not backtrack, they might result in

ess optimal allocations. However, proposals such as second-chance

inpacking (Traub et al., 1998) utilise lifetime holes, i.e. a scope

here the value is not needed, by placing a spilled value on a reg-

ster back again.

. Problem setting

Separation of memory into (read-only) code and (non-

xecutable) data addresses in most systems has made it harder to

erform simple code-corruption and -injection attacks. In response,

ore sophisticated code-reuse scenarios such as ROP have become

ore prevalent. Although control-flow protections (Abadi et al.,

005; Kuznetsov et al., 2014) mitigate these attacks targeting con-

rol data (i.e. code pointers), they fail to capture more challenging

ases where non-control data objects (e.g. condition variables) are

argeted. Addressing those attacks has proven difficult in practice

s they either introduce heavy instrumentation costs (Miguel et al.,

006) provisioning each memory (data) access or require expen-

ive hardware changes (Song et al., 2016). Furthermore, software-

ased approaches must secure their instrumentation data within

he same address space. However, commonly used techniques such

s hiding can be circumvented when the location of the data is re-

ealed through an integrated attack (Gökta ̧s et al., 2016). This pa-

er takes those drawbacks into account while mitigating attacks

argeting the stack.

.1. Motivation

In order to modify a stack object, the attacker must either over-

ow some buffer onto the target object (i.e. relative address at-

ack) or take over a data pointer first to overwrite it (i.e. absolute

ddress attack). Registers are immune to both as they are not ad-

ressable.

However, to use CPU registers as a protection mechanism, we

ave to solve a couple of challenges. First, we must use them for

ecurity while still allowing them to serve their primary purpose,

amely as a fast storage mechanism for data in use to reduce ex-

cution time. Second, we have to find a way to leverage the lim-

ted capacity of the registers to protect all the relevant variables.

imply using CPU registers as program-wide (interprocedural) stor-

ge would put a hard limit on the number of variables allocated,

hereas register states that are saved to the stack during func-

ion calls void their immunity against potential corruptions. Hence,

e need a global (function-level) allocation scheme that can em-

loy the same registers for each call without undermining secu-

ity. With such an integrity assurance, CPU registers can provide

nough storage to secure critical control and data objects on the

ntire stack.
3
To provide insight into the coverage such protection can pro-

ide, Fig. 1 shows the distribution of variable counts found per

unction, which we extracted using more than a thousand func-

ions of the benchmark programs used for performance evalua-

ion. The results have shown that 93% of functions have less than

6 variables, and 99% have less than 32 variables. Considering the

verage number of variables (6.9) and arguments (2.6) found per

unction, most modern CPUs contain enough registers (with 16/32

PRs and 32 FPRs) to accommodate them. Note also that these

ounts represent all reference and primitive variables found in a

unction at any point, and do not take the live ranges into ac-

ount, so the number of concurrently live ones would be smaller.

n Section 4.1 , we show how it is still possible to deal with the rare

vent that this number exceeds the number of available registers.

.2. System and adversary model

In our model, the CPU is trusted and provides limited but se-

ure register storage. Regarding the program memory, the system

see Fig. 2) ensures code integrity via non-writable (RX) code ad-

resses, which can be provided by some flash memory or page-

evel protections, depending on the setting. The CPU has n regis-

ers available (r 1 -r n) for the scheme. We dedicate a specific register

r key) to store the key, for instance, a single FPR that is never saved

o the program memory. We deliberately avoid making assump-

ions about the device type and its architecture. It can be a single-

hreaded bare-metal environment as well as a multi-threaded one

ith a rich operating system (OS), the kernel space of which is

rusted by the user processes. As long as the system has the nec-

ssary CPU registers and ensures the integrity of program code,

M. Geden and K. Rasmussen Computers & Security 129 (2023) 103213

o

s

i

m

p

i

o

n

a

a

o

s

w

a

t

c

p

T

v

t

(

e

4

c

a

c

a

s

a

t

e

t

a

d

f

m

4

m

i

a

t

f

w

t

t

d

4

g

a

i

Fig. 3. Code under register pressure for the given scope. For security, registers are

allocated to and first instead of less critical max_trial and

drop_stats .

m

r

g

u

a

f

W

t

t

u

A

l

i

o

m

u

a

c

t

t

r

e

H

s

a

s

b

n

h

d
a

s

p

a

r

c

l

ur scheme is applicable in different settings. We only assume that

oftware stack running on the device can be recompiled and mod-

fied as required, without asking for any changes in the hardware.

The adversary’s goal is to manipulate the program runtime by

odifying critical control and data objects on the stack, although

rogram termination does not constitute a successful attack. For

nstance, he can target a code pointer such as a return address

r a function pointer to hijack the program’s control flow. Alter-

atively, he can overwrite a non-control data object, for example,

 condition variable to manipulate the control flow indirectly. We

ssume a powerful adversary that has full read access to any part

f the memory at all times, as well as arbitrary write access to

tack addresses. We are not going to explore how such read and

rite capabilities can be achieved in practice, we just grant the

dversary this power. We do assume that the adversary cannot in-

ervene in the compilation process and cannot modify the program

ode, which includswpart of it.

This model captures both control- and data-oriented attacks ex-

loiting the stack, including scenarios that can bypass DEP and CFI.

his model also covers a wide range of scenarios on how the ad-

ersary can interact with the program memory. In contrast to pro-

ections relying on random values (e.g. stack canary) or addresses

e.g. safe stack, ASLR), this model covers integrated attacks (Gökta ̧s

t al., 2016) that exploit memory disclosure bugs first.

. Design of RegGuard

During the compilation process from source code down to ma-

hine code, the compiler has to map variables to either memory

ddresses or CPU registers. Since registers are safe from memory

orruption and can be accessed very fast, we would prefer to put

ll variables in registers. However, this might not be always pos-

ible as there can be more (simultaneously live) variables than

vailable registers (i.e. register pressure), especially for CPU archi-

ectures suffering from register scarcity. Therefore, we must first

nsure that the compiler prioritises a variable that is more likely

o be attacked for registers. Second, even if all function variables

re assigned to registers, their values will be saved to the memory

uring a function call, to make the registers available to the new

unction. Because these values can be overwritten on the stack, we

ust guarantee their integrity.

.1. Security-oriented allocations

Similar to the conventional spill cost that estimates the perfor-

ance burden of a variable left in the memory, we suggest assign-

ng a security score to each variable to ensure a register is primarily

llocated to a variable that is more likely to be attacked. In con-

rast, a security score is a compile-time estimate of how critical a

unction variable is for the program’s runtime integrity. Variables

ith higher security scores are thus prioritised for register alloca-

ion and are included in the integrity checks designated for regis-

er values saved to the stack during a function call, as explained in

etail in Section 4.2 .

.1.1. Security scores

RegGuard considers variables listed below as primary attack tar-

ets that must be prioritised during register allocations. It assigns

 security score to each according to the given order (i.e. the first

n the list has a higher score).

1. code pointers, e.g., function pointers,

2. data pointers, i.e., variable addresses,

3. programmer-defined variables, e.g., is_admin = 1 ,

4. condition variables, e.g., if(authenticated) . t

4
Pointers have the highest scores as they are the most com-

on attack vector for powerful attacks. If not caught, the cor-

uption of a code pointer such as an indirect jump or a call tar-

et can result in arbitrary execution, while a data pointer can be

sed to access or modify other memory addresses (i.e. absolute-

ddress attack). Next comes the variables whose values are set

rom the code and condition variables used for branch decisions.

e remind that programmer-defined variables are different from

he constants evaluated and eliminated at compile time by the op-

imisations. A programmer-defined variable whose all possible val-

es are hard-coded actually represents the programmer’s intention.

lthough those are generally used as condition variables, they al-

ocated first compared to ones defined from unknown origins. This

s because an attacker would not benefit from corrupting a data

bject that is already controlled or defined by the user or environ-

ent (Geden and Rasmussen, 2020). Return addresses, return val-

es, and function arguments are also assigned to registers. But they

re excluded from this scoring and selection process because the

alling convention in place already dedicates registers for them.

Figure 3 exemplifies how our security scores differ from conven-

ional spills costs. This code depicts a high register pressure for

he given scope. Normally, a conventional scheme would allocate

egisters to drop_stats or max_trial variables first for better

xecution times as they will be accessed by each loop iteration.

owever, RegGuard considers that func_ptr and is_valid
hould be given registers primarily. Alteration of func_ptr as

 code pointer can result in illegitimate execution of sensitive

ystem functions, whereas modifying is_valid flag, which is

oth a programmer-defined and a condition variable, would ma-

ipulate branch decisions as a data-oriented attack. On the other

and, max_trial which is defined externally (e.g. the user) or

rop_stats that does not affect control-flow are not identified

s critical.

In contrast to spill costs based on the use densities of variables,

ecurity scores are designed as a fast intraprocedural static ap-

roximation based on type, value agents and use purposes. Hence,

 security score must be associated uniformly with different live

anges of a variable. In other words, the scores should not be lo-

alised. Algorithm 1 shows how those security scores are calcu-

ated to rank register candidates in an order that would maximise

he security by taking those properties into account.

M. Geden and K. Rasmussen Computers & Security 129 (2023) 103213

Algorithm 1 Pseudocode of security score calculations.

function SecurityScore (v ar)

v ar. score ← 1

if v ar.type is a pointer type then

v ar. score ← v ar. score + 4

if v ar.uselist has a branch instance then

v ar. score ← v ar. score + 1

end if

else if v ar.type is an integral type then

if v ar.de f list has an immediate assignment then

v ar. score ← v ar. score + 2

end if

if v ar.uselist has a comparison instance then

v ar. score ← v ar. score + 1

end if

end if

end function

Fig. 4. Allocations under register pressure.

4

t

c

n

b

s

(

n

t

a

o

fi

s

s

c

b

v

s

a

l

a

d

t

t

p

a

s

c

t

Table 1

Variance of register saves during the callee function.

Target Type Variance

Variables (Not Addressed) Static

Variables (Locally Addressed) Static

Variables (Called by Reference) Dynamic

Temporaries Static

Arguments Static

Return Addresses Static

Frame Pointers Static

Return Values Static

a

r

t

s

c

U

a

m

d

f

p

g

p

i

d

w

t

g

4

s

a

h

r

d

w

t

t

a

c

t

l

s

r

t

c

4

c

a

a

u

g

d

t

g

2

c

f

l

t

.1.2. Allocation process

As a global allocation scheme, RegGuard works at the func-

ion level to reuse the same register file repeatedly for each

all and to accommodate more critical data. The allocation tech-

ique to be used (see Section 2.2 for different options) should

e chosen based on the features of the compiler. For in-

tance, the compilers using single static assignment (SSA) forms

e.g., LLVM Xavier et al., 2012) generally prefer linear scan tech-

iques (Mössenböck and Pfeiffer, 2002; Wimmer and Franz, 2010)

o have faster compilation times, whereas other compilers can

dopt graph-colouring (Matz, 2003). We highlight that the choice

f allocation method, which some compilers can provide as a con-

gurable option (e.g., -fira-algorithm), is an orthogonal is-

ue. And it does not have any impact on the applicability of our

cheme as long as conventional spill costs are replaced by the se-

urity scores proposed. Any global allocation technique provided

y the compiler can thus be preferred.

We recall that registers are actually allocated to live ranges of

ariables. A live range describes the scope of the instruction or ba-

ic block scope ranging from the definition of a variable value to

ll its uses for the same definition. A variable can have multiple

ive ranges with potential gaps in between, where each starts with

 new definition. The variable does not have to occupy a register

uring these gaps. Hence, the allocation schemes generally utilise

hose for more optimal allocations (Traub et al., 1998). Such utilisa-

ion can also benefit our scheme without undermining its security

romises since the attacker cannot benefit from overwriting a vari-

ble value that will be later redefined before its use. The attack

urface thus gets smaller as the registers are utilised better. This

an be meaningful for architectures suffering from register scarcity.

Figure 4 depicts how RegGuard should allocate available regis-

ers to the variables using security scores; so decides which vari-
5
bles to be protected. This example considers a scope under high

egister pressure with two available registers reg 1 and reg 2 , and

hree variables, the live ranges of which interfere as shown. The

ecurity scores are represented by colour tones; var 3 is the most

ritical target, followed by var 2 , whereas var 1 has the lowest score.

sing security scores, the scheme priorities two registers to var 3
nd var 2 and spills var 1 when required. However, the allocation

ethod can still utilise gaps (i.e., instructions that var 3 and var 2
o not interfere), where a register becomes temporarily available

or var 1 . Those splits not only enhance the performance but also

rovide a better reduction of the attack surface. For instance, re-

ardless of its criticality, var 1 in the example can thus enjoy both

erformance and security promises, even if for a short time. And

t will be safe during the execution of function calls, call 1 , call 2
epicted as potential attack vectors. Suppose such a case occurs

hile a critical variable range is left in the memory. In that case,

he compiler could display a warning message to guide the pro-

rammer to review the code.

.2. Integrity of saved register values

The program can save a register to the stack for one of two rea-

ons. The first one is to free up a register for a more critical vari-

ble within the same function. These register spills rarely and only

appen under high register pressure, and the decision of evicting a

egister in use for another variable is guided by the security scores

escribed in Section 4.1 . The second more common reason, which

e should take care of, is a new function call that triggers the evic-

ion of registers for the callee function. Those registers that belong

o the caller’s execution are saved to the stack either by the caller

t call sites or by the callee as part of its prologue code. The de-

ision of which registers must be saved/restored by the caller and

he callee is mainly described by the calling convention. Regard-

ess of the calling convention in use, any register state saved to the

tack during a function call becomes vulnerable to memory cor-

uption. Therefore, RegGuard implements integrity checks on those

o ensure that they are restored back to the registers without any

orruption.

.2.1. Invariance of saved states

Integrity assurance covers saved register states that must not

hange during the execution of a callee function. Table 1 presents

n overview of those as potential targets. The only exceptions

re the values that can be legitimately modified by the callee,

sually an updateable value passed as a call by reference ar-

ument. Otherwise, RegGuard protects local variables, return ad-

resses, frame pointers, temporaries, function arguments, and re-

urn values, all of which can be targeted for an attack. With a fine-

rained (e.g. flow-sensitive) pointer analysis (Hardekopf and Lin,

011; Kuderski et al., 2019) that distinguishes local pointers from

all by reference arguments, where the latter must be destroyed

ollowing the call instruction, RegGuard can ensure the integrity of

ocally addressed variables whose values must not change during

he callee’s execution.

M. Geden and K. Rasmussen Computers & Security 129 (2023) 103213

4

a

t

h

b

e

f

k

c

a

c

j

c

t

c

f

p

t

s

o

a

o

f

f

l

i

i

s

k

p

r

c

G

t

c

e

E

c

t

t

f

a

a

t

r

t

b

a

g

r

s

o

a

m

p

s

o

r

Fig. 5. Securing saved register objects using a keyed hash.

4

s

s

b

t

a

a

m

t

i

w

a

i

s

s

4

a

v

H

w

a

e

e

n

f

d

w

i

s

a

.2.2. Integrity checks

We recall that the data in use on registers are already safe from

ttacks, and the only attack surfaces left are register values saved

o the stack. Therefore, RegGuard employs a cryptographic keyed

ash (MAC) to guarantee that those saved register values have not

een modified while they were at rest on the stack. Prior to the ex-

cution of a function body, our scheme computes a reference tag

rom register objects being saved to the stack. This tag value is also

ept on a specific register unless the callee function makes another

all. Upon completion of the function body, a new tag is gener-

ted from actual objects being restored to the registers. This tag is

ompared to the reference tag previously generated from saved ob-

ects, any corruptions on those can thus be revealed. For a function

all consisting of both caller- and callee-saved registers, this is a

wo-step process connected. The first tag generation/verification of

aller-saved registers is managed at the tails of call sites, while the

ollowing tag digesting callee-saved registers is created/checked as

art of function prologues/epilogues.

Function-wise, RegGuard digests each call frame using a single

ag value. Program-wide, because we save the tag register to the

tack with other registers and include it in the next tag calculation,

ur scheme actually creates a chain of tags that provides (almost)

 complete stack image on a single register. Although we still rely

n the key for integrity checks, this chain prevents the attacker

rom replaying a (standalone) call frame and its corresponding tag

or a different call context. Thanks to the control over the compi-

ation process of the software stack, we remind that the key reg-

ster is never saved to the same program/process memory, which

s adequate to authenticate any tag restored from the memory that

erves as the integrity proof of restored objects. With a single key

ept secret on a dedicated register and MAC calculations that are

art of non-writable program code, RegGuard enables the use of

egister file as an integrity-guaranteed storage for each function

all.

Figure 5 depicts an overview of a call stack tied with tags. Reg-

uard creates a tag for each callee- and caller-saved region, where

he tag of a caller-saved region also contains the previous tag of a

allee-saved region or vice versa. This helps us to bind frames to

ach other with a tight representation of the whole program stack.

quations (1) and (2) below express what each tag created for

aller- and callee-saved regions contains.

tag i = MAC sk (tag i-1 ‖ arg 1 i −1 ‖ . . . ‖ tmp n i −1) (1)

ag i +1 = MAC sk (tag i ‖ ret i ‖ bp i ‖ var 1 i ‖ . . . ‖ var n i) (2)

Although the details can vary depending on the calling conven-

ion and the architecture, we consider that the caller is responsible

or saving and restoring its arguments (arg) and temporaries (tmp)

t call sites while its return address (ret), base/frame pointer (bp)

nd local variables (var) on registers are saved by the callee func-

ion. Even if the architecture (e.g. x86) does not use a link (return)

egister and creates return addresses directly on the stack, because

he return addresses are static and not used during the function

ody unlike other objects, they are also included in the tag gener-

ted for callee-saved regions.

To reveal the corruption of a saved object, RegGuard injects two

roups of instructions. The first group generates a reference tag for

egister values being saved at function prologues and call sites. The

econd group checks whether this reference tag matches with the

ne calculated from restored values. Both tag calculations directly

lign with the existing register operations to avoid any additional

emory accesses. With a few scratch registers, RegGuard can com-

ute tags from directly register values. In order to make this pos-

ible, the compiler should rearrange register restores in the same

rder they are pushed, instead of pop instructions working in the

everse order.
6

.2.3. Bootstrapping and key management

Regarding the bootstrapping of the system, the tag generation

tarts with the first call made by the software in question. For a

imple setting with no process or privilege separation, such as a

are-metal or a RTOS environment, a single key to be shared by all

asks is generated at boot time using software or hardware RNGs

vailable on the system. This key is assigned to an FPR dedicated

s the key register. We note that this register is not saved to the

emory by the scheduler or interrupt handler, thanks to the con-

rol over the software stack. If there is a hardware context switch-

ng in use, those instances also usually do not save FPRs. Other-

ise, in the case of a general-purpose OS, a fresh key is generated

t each process start. Only the kernel space can host the key, which

s trusted by the user processes. User-managed threads share the

ame key and do not save the key register during a context

witch.

.2.4. Choice of MAC

The MAC function to be used should be chosen based on avail-

ble features of the CPU architecture. If the ISA provides rele-

ant vector and cryptographic extensions, we recommend using

MAC-SHA256 (Hansen, 2011) with hardware acceleration. Other-

ise, we suggest using SipHash (Aumasson and Bernstein, 2012)

s an architecture-agnostic option for CPUs that lack cryptographic

xtensions. SipHash is a keyed hash primarily designed to be fast,

ven for short inputs, with a performance that can compete with

on-cryptographic functions used by hash tables. Thanks to its per-

ormance benefits, SipHash is highly practical and deployable on

ifferent architectures.

Figure 6 sketches how RegGuard can align its MAC calculations

ith register operations at function prologues and epilogues us-

ng SipHash. Both sections start by initialising internal states (on

cratch registers) generated from the key and constants. Next, it

pplies compression rounds on those with message blocks (values)

M. Geden and K. Rasmussen Computers & Security 129 (2023) 103213

Fig. 6. MAC aligned with register operations for the slice of

and variables.

a

fi

t

e

e

i

t

t

m

j

c

4

G

n

a

g

a

i

t

a

C

b

p

t

d

t

a

p

s

b

h

t

e

a

v

a

4

t

o

h

W

o

p

T

b

s

a

t

g

a

i

a

s

t

l

a

c

b

t

f

a

e

t

v

t

k

e

s

i

m

p

(

B

m

n

v

lready on registers. Lastly, it completes tag generation with the

nal message block (register). The reference tag is not pushed to

he stack unless the function calls another function. Prior to the

pilogue, this reference value is moved to a scratch register; the

pilogue can thus restore the previous tag to the dedicated reg-

ster as a part of the restoring process. The reference tag moved

o a temporary register will be later compared against the actual

ag generated from restored registers at the end before return. Any

ismatch of two tags implies an attack because saved register ob-

ects cannot be changed unless the control is returned back to the

aller function.

.2.5. Attack coverage

ROP attacks that exploit return addresses are prevented by Reg-

uard, regardless of whether the architecture has a link register or

ot as in x86. In contrast to other variable objects, return addresses

re always static and must have a single definition (call) and sin-

le use (return) located at our instrumentation sites, so they are
7
lways included in the MACs and protected. Further JOP scenar-

os that corrupt other code pointers on the stack given by func-

ion pointers and switch statements are also mitigated as those

re either securely updated (e.g. pointer arithmetic) within the

PU or checked against any corruptions before they are restored

ack from the stack. Thanks to the integrity guarantees on data

ointers, absolute-address (non-linear) attacks that can use them

o access/corrupt other memory sections are also avoided. In ad-

ition, RegGuard mitigates relative-address (linear) attacks such

hat a stack array is overflown onto an adjacent condition vari-

ble as a DOP attack. We exclude scenarios that might alter com-

osite data values, such as strings for practicality. However, those

trings typically host untrusted inputs and their corruption can

e only meaningful as a data-only attack in case the given string

as a critical use in bulk following a sanitisation check, with a

imely bug located between the sanitation and critical use. Oth-

rwise, the sanitisation (comparison) outcome of those inputs that

ffects the control flow would be already transferred to a condition

ariable that will be safe on a register (i.e., control-flow bending

ttacks).

.3. Security analysis

As previously described, the adversary’s goal is to manipulate

he program execution by corrupting the control and data objects

n the stack. For the corruption to stay undetected, the adversary

as to either skip the integrity checks or make those checks pass.

e will look at each of these options in turn.

In order to skip checks, the adversary must modify the binary

r its execution to void the instrumentation. The former is not

ossible in our model because the code segment is non-writable.

he latter which requires altering code pointers is also infeasi-

le as the scheme protects those in the first place. For the adver-

ary to pass integrity checks, he has to forge a valid tag or reuse

 previously recorded one. Forging a valid keyed hash for an at-

ack state either requires finding the second preimage of the le-

itimate state or access to the key. Since the key is protected on

 register that is never saved to the same address space (includ-

ng user-managed context switches and setjmp/longjmp instances),

nd therefore unavailable to the attacker, if the MAC-function is

ecure (i.e. existentially unforgeable, and second preimage resis-

ant), forging a valid tag without the key is only possible with neg-

igible probability. We remind the reader that our system model

ssumes that the software code executing within the same pro-

ess/program space, including user libraries are recompiled, or can

e touched through binary-level mechanisms. This is to guaran-

ee that no instruction operates on the register (i.e., FPR) reserved

or the key, except bootstrapping code responsible for key gener-

tion and placement. This protects the key even under the pres-

nce of a powerful attacker that has arbitrary access primitives to

he same program memory. In the case of a multi-threaded en-

ironment, the key register is allowed to be managed (i.e., con-

ext switches) by only trusted software components, such as the

ernel.

The adversary might attempt to replay a seen tag for a differ-

nt call of the same or a different function. However, even with the

ame variable and argument values, replaying will not work. This

s because each tag containing return address, base pointer and

ore importantly former tags (representing previous call frames)

rovides a very tight representation of the whole stack, where the

most recent) tag digesting all context is also safe on a register.

esides, replaying a tag for a different process in rich OS environ-

ents or a different execution time in the embedded systems is

ot an option since a fresh key is generated at each process or de-

ice start.

M. Geden and K. Rasmussen Computers & Security 129 (2023) 103213

Table 2

The details of calling convention used.

Register Type Purpose

x0-x7 Caller-saved Arguments

x9-x15 Caller/e-saved Temporaries

x19 Callee-saved Tag

x20-28 Callee-saved Local variables

x29 Callee-saved Frame/base pointers

x30 Callee-saved Link/return addresses

q31 (FPR) Reserved/not saved MAC key

5

A

G

M

p

a

t

v

s

h

d

f

t

p

p

t

o

w

a

t

t

e

t

h

e

i

p

t

u

a

l

t

(

g

o

t

a

m

B

t

t

s

n

t

t

t

m

Fig. 7. Runtime overheads of RegGuard.

e

f

s

m

i

a

s

o

o

S

a

6

o

b

6

(

s

T

g

a

r

t

p

o

a

t

a

e

S

h

y

b

c

t

W

t

t

. Implementation on ARM64

We have implemented a proof-of-concept 1 of RegGuard on

RM6 4 (AArch6 4) to mainly evaluate its performance impact. Reg-

uard can be adapted to different architectures such as x86, SPARC,

IPS, and RISC-V. We have chosen ARM64 for demonstration pur-

oses. In addition to being the dominant architecture of the mobile

nd embedded landscape with a rapidly increasing market share in

he PC domain, ARM64 provides enough registers to secure more

ariables than expected to be found per function (i.e., 10 callee-

aved GPRs (x19-28) compared to 6.9 variables on average) without

aving to modify the standard calling convention (ABI) of the un-

erlying software components. Furthermore, the registers reserved

or arguments (x0-x7) and temporaries (x8-x15) can help not only

o secure other potential data targets but also to avoid register

ressure in general. If needed, FPRs can be used for the same pur-

ose. More importantly, the ISA equipped with cryptographic ex-

ensions allows us to evaluate the hardware-accelerated SHA256

ption.

For the implementation, we have used the LLVM compiler,

hich is configured to dedicate a single FPR (128-bit) for the key

nd a GPR (64-bit) for tag values. We first modified the basic regis-

er allocation pass provided as a custom linear allocation technique

hat use priority queues. Since our benchmark programs have not

ncountered register pressure, our modified pass simply ensures

hat registers are not spilled for performance reasons. Then, we

ave mainly worked on the components responsible for the gen-

ration of prologue and epilogue code. For the proof-of-concept,

ntegrity checks are placed for only callee-saved registers that are

rimarily assigned to local variables by the allocator. But the regis-

ers known as caller-saved can also be included in tag calculations

sing the same instrumentation, thanks to the compilation flags

vailable (e.g. -fcall-saved-x9). Table 2 summarises the high-

ights of the calling convention used during our experiments.

For simplicity, we have encapsulated hash calculations with

wo functions added to the C library (musl). 2 The first one

 _register_mac) is injected to the end of the prologue and

enerates a reference tag from saved register values. The second

ne (_register_check), which is placed at the beginning of

he epilogue, creates another tag from the values to be restored

nd compares it against the reference value. In the case of un-

atched values, which means an attack, it terminates the program.

oth wrapper functions take the starting address and the size of

he region where registers are pushed as their arguments. The lat-

er function additionally requires the reference tag for compari-

on. The instrumentation also handles the preservation of origi-

al arguments required by the actual callee function and the re-

urn values upon its completion at call sites of the wrapper func-

ions. For optimisation purposes, we have avoided injecting these

wo functions into the leaf functions, as their frames cannot be

odified in practice without having another function call. Differ-
1 https://github.com/msgeden/llvm-project
2 https://github.com/msgeden/musl

a

t

m

t

8
ntly from the ideal design proposed in Section 4.2 , those wrapper

unctions calculate MACs from the register values awaiting on the

tack instead of directly using values already on registers. We re-

ind the reader that as a proof-of-concept implementation avoid-

ng the complexity, these functions introduce additional memory

nd cache accesses. Hence, our performance discussion should be

een as an over-approximation, whereas the implementation based

n the proposed design would have less performance overhead.

For MAC, we have explored two keyed hash options. The first

ne is SHA256, backed by hardware acceleration. The second one is

ipHash-2-4, as a fast, practical, and deployable option for different

rchitectures lacking vector and cryptographic extensions.

. Evaluation

This section evaluates the performance overhead of our proof-

f-concept implementation and presents some real-world vulnera-

ilities it mitigates.

.1. Performance

For performance evaluation, we have used cBench

 Fursin, 2009), a popular open-source uniprocessor benchmark

uite that is based on earlier MiBench (Guthaus et al., 2001) suite.

he experiments were performed with a collection of 14 C pro-

rams from various categories that aim a realistic benchmarking

nd research. We have run those programs on a Linux system

unning on an Apple M1 chip that is equipped with the ISA fea-

ures we need, such as SHA extensions. We have run benchmark

rograms with both non-instrumented and instrumented versions

f the C library (i.e. musl libc). The latter version aims to provide

 better understanding of the costs for extended guarantees in

he case that the libc library is not considered as part of TCB

nd can be exploited to corrupt the program’s objects. We have

xperimented with both SHA256 (using ISA acceleration) and

ipHash-2-4 for integrity checks.

For program-only instrumentation (see Fig. 7), SHA extensions

ave produced only 13 % runtime overhead, whereas SipHash has

ielded 23 % overhead, compared to the programs compiled with

asic register allocation without any instrumentation (-O2). In

ontrast to unoptimised versions, where no register allocation

akes place, both MAC options have yielded better execution times.

e have observed higher performance costs for programs linked

o an instrumented C library as expected (see Fig. 8). Compared

o the basic allocations bundled with -O2 optimisations, SHA256

nd SipHash instrumentation have introduced 33 % and 59 % run-

ime overheads, respectively. Considering the binary sizes, instru-

ented C library with wrapper functions is only 14 % higher than

he non-instrumented library file.

https://github.com/msgeden/llvm-project
https://github.com/msgeden/musl

M. Geden and K. Rasmussen Computers & Security 129 (2023) 103213

Fig. 8. Runtime overheads with libc instrumentation.

c

i

e

W

i

f

c

i

r

C

c

a

D

t

s

t

6

fl

S

N

a

g

s

s

t

c

0

(

g

t

S

s

7

c

7

o

e

c

a

a

C

p

a

(

p

p

d

s

o

R

i

n

m

p

D

b

d

m

m

f

i

t

t

i

(

v

m

m

u

r

D

j

s

7

fi

s

a

m

2

2

a

t

v

s

a

h

I

a

i

c

t

s

7

i

p

B

t

We have used -O2 as the baseline to evaluate the overhead

osts of additional integrity checks. On the other hand, compar-

sons with unoptimised and non-instrumented programs aim to

valuate the performance compensation by the register allocations.

e note that there are other optimisations included contribut-

ng to the performance compensation. For instance, inlining some

unctions not only avoids branching costs but also reduces tag cal-

ulations. This is due to the fact that the caller can aggregate reg-

ster operations of the inlined function. Overall, SipHash, with its

easonable overheads, proves to be a practical option for different

PU architectures without asking for any hardware change or ac-

eleration. If available, using native SHA instructions that provide

round 7x speed-up would be a faster and more convenient option.

epending on the CPU features, both options can thus be prac-

ically used to ensure the integrity of register data on the stack

ince the overheads are within very small fractions of optimised

imes (-O2) for most programs.

.2. Real-world cases

We have tested our PoC implementation using buffer over-

ow cases extracted from open source model programs (e.g. BIND,

endmail, WU-FTP) made available as a SARD test suite (88) by

IST. For a sound evaluation, we have first attempted to compile

vailable 14 cases with clang and -O2 flag instead of the default

cc and -O0 configurations given by the suite. Due to the optimi-

ations changing the memory layouts and architectural differences,

olely 6 cases have remained compiled and exploitable. From

hose, our implementation has successfully captured 5 out of 6

ases (1285/CVE-1999-0368, 1287/CVE-1999-0878, 1289/CA-2001-

1, 1299/CVE-1999-0131, 1303/CVE-1999-0047). Only one case

1307/CVE-2001-0653) exploiting a sign cast bug to underflow a

lobal array with negative index values has been undetected. Al-

hough such scenarios are not within the scope of this work,

ection 8 discusses how MAC checks can be extended to mitigate

imilar corruptions.

. Related work

This section reviews relevant work previously proposed and dis-

usses how RegGuard differs from them.

.1. Software-based mitigations

There have been different proposals to mitigate control-

riented attacks. Control-flow integrity (CFI) techniques (Abadi

t al., 2005; Davi et al., 2012; Niu and Tan, 2014) validate

ode pointer addresses according the control-flow graph (CFG)

nd do not bother with how the corruption occurs. Although
9
 shadow stack can assist for a fully precise backward-edge

FI (i.e. return addresses), forward-edge targets can only be ap-

roximated depending on what is decidable and computable

t compile-time. In contrast, code-pointer integrity/separation

CPI/CPS) (Kuznetsov et al., 2014) focuses on the integrity of code

ointers instead and provides more precise protection. This ap-

roach requires a safe stack, the location of which is generally ran-

omised within the same memory space without special hardware

upport. However, integrated attacks that can disclose the location

f the stack easily circumvent made promises (Evans et al., 2015).

egGuard does not need to worry about those attack scenarios as

t does not rely on isolation or hiding of any data on the memory.

Control-flow protections are generally prone to attacks that do

ot touch any code pointers (i.e. DOP) and still lack a practical

itigation deployed in the wild. Miguel et al. (2006) have pro-

osed data-flow integrity (DFI) protection against those attacks.

FI checks whether any data object used at runtime is defined

y an expected instruction given by flow-sensitive static reaching

efinitions analysis. DFI requires excessive instrumentation of al-

ost every memory access to protect both program and instru-

entation data. A more coarse-grained technique with better per-

ormance in return for the loss of precision, write integrity test-

ng (WIT) (Akritidis et al., 2008) instruments only write instruc-

ions to prevent them from modifying objects that are not in

he set of flow-insensitive points-to analysis. Two relevant stud-

es PointGuard (Cowan et al., 2003) and data space randomisation

DSR) (Bhatkar and Sekar, 2008) mask data objects with random

alues and unmask them prior to their use. The main goal is to

ake corrupted values useless for an attacker that does not know

asking values. Although masking pointers can harden to find a

seful target address, branch decisions relying on boolean or value

ange comparisons would not have much protection by masking.

ifferently, RegGuard detects the corruption of critical data ob-

ects under stronger adversary assumptions (e.g. memory disclo-

ure), regardless of whether they are useful or not to the attacker.

.2. Hardware-assisted protections

Regardless of their coverage, software based techniques must

rst ensure the integrity of their instrumentation data (e.g. shadow

tack). But this is a challenging task without special hardware

ssistance. Hardware-assisted schemes can provide better perfor-

ance and protection against both control (Christoulakis et al.,

016; Davi et al., 2015) and data (Nyman et al., 2019; Song et al.,

016) attacks. However, those academic proposals are not usu-

lly adopted in practice as they require changes in CPU archi-

ectures, and the manufacturers do not implement them due to

arious reasons. Furthermore, already available features provided

pecific CPUs to protect instrumentation data, such as Intel MPX

nd MPK, are shown to have high instrumentation or switch over-

eads despite their strong security promises (Burow et al., 2019).

n contrast, RegGuard promises the same strength of assurance as

n instrumentation-only solution using very basic hardware prim-

tives that are available in any CPU. This makes our scheme appli-

able to both legacy and modern architectures for a broad spec-

rum of devices, from high-end processors to low-end embedded

ystems.

.3. Cryptographic approaches

MACs are first used by CCFI (Mashtizadeh et al., 2015) to mit-

gate control attacks on x64 architectures. A CBC-MAC is com-

uted and placed alongside each control object on the memory.

ut instead of leveraging registers for practical protection of con-

rol data in use, CCFI uses floating-point registers to only store

M. Geden and K. Rasmussen Computers & Security 129 (2023) 103213

A

i

u

n

P

d

a

n

w

t

o

b

i

t

a

C

P

i

a

n

P

w

a

a

c

t

w

t

r

r

2

s

i

t

n

r

k

t

a

n

t

8

c

d

8

m

o

c

b

F

w

s

c

w

c

s

t

i

r

t

a

p

c

d

a

f

8

a

s

e

(

o

s

s

i

l

p

c

C

G

a

d

a

l

d

(

8

t

o

a

e

c

s

r

r

w

p

f

t

e

t

o

t

a

o

g

1

g

t

8

t

g

g

h

ES keys that occupy most of them (i.e. 11 out of 16 XMM reg-

sters). The authors benefit from Intel’s AES-NI extensions to speed

p MAC calculations. A similar work (Liljestrand et al., 2019) use

ew pointer authentication (PAC) features provided by ARMv8.3-A.

AC tags are calculated from effective bits (39-bit) of pointer ad-

resses and squeezed into the (unused) upper part (24-bit) of the

ddress word, which makes them susceptible to brute-force sce-

arios due to the short tag size. PAC associates return addresses

ith the stack pointer to harden replay (pointer substitute) at-

acks. PAC does not provide any mechanism to detect corruption

f a primitive variable, for instance, a condition variable overflown

y an adjacent buffer. Similar to CCFI, PAC authenticates pointers

n a standalone way with a separate MAC tag for each, in con-

rast to our work that digests many control and data objects using

 single tag. Furthermore, both idea is only applicable to specific

PU models. More recent schemes, ZipperStack (Li et al., 2020) and

ACStack (Liljestrand et al., 2021) (as an implementation of a sim-

lar approach using PAC) create a chain of tags to protect return

ddresses. These schemes protect only return addresses and does

ot cover other (forward-edge) control or data targets. Similar to

AC, ZipperStack stores MACs on the upper (24-bit) space of word,

hich provides weaker protection. Apart from their limited cover-

ge, none of those cryptographic solutions leverages the security

nd performance features of CPU registers as means for protecting

ritical objects in use.

Palit et al. (2019) suggest encrypting sensitive data resident in

he memory to address memory disclosure attacks. The proposed

ork ensures that the sensitive data is always kept encrypted in

he memory and is decrypted only while being loaded into CPU

egisters, for confidentiality. It leverages AES extensions and XMM

egisters available in the x86 ISAs. A very recent work (Fanti et al.,

022), which also cites the early version of this study, similarly

uggests the protection of register spills via cryptography, but us-

ng an architecture-specific primitive i.e., ARM64’s PAC instruc-

ions. Differently, the proposed work does not provide a mecha-

ism to favour critical variables during register allocations. Another

ecent work RegVault (Xu et al., 2022) suggests the protection of

ernel data through value masking, by adopting a similar approach

o our work. The scope of the work is confidentiality and integrity

ssurance of register- and interrupt-based context data in the ker-

el space. Similar to PAC, RegVault uses an FPGA-based accelera-

ion of the QARMA scheme implemented for RISC-V.

. Discussion

In this section, we present a discussion of certain design de-

isions of RegGuard, including further extensions and future CPU

esign features that would complement our scheme.

.1. Chained vs. independent frames

Given that RegGuard uses a keyed hash, it is not a strict require-

ent to include the previous tag in the tag of the next frame. In

ther words, we could have chosen to independently secure each

all frame, rather than chaining them together. This section will

riefly look at the reasons for and against this design desertion.

or a program with a regular call stack strictly following LIFO,

e could have relied solely on a single (unkeyed) hash for the

tack integrity by chaining frames. This is because such a program

an ensure that any CPU state restored from the stack complies

ith the hash register first. However, there are many legitimate

ases where the register hosting the head of the chain has to be

aved to/restored from program memory without our instrumenta-

ion, for example, setjmp/longjmp, exception handling and thread-

ng managed within the same address space. They all oblige us to

ely on the MAC key instead of a single hash.
10
Despite its redundancy for integrity assurance, we have chosen

he chained approach over independent frames to prevent replay

ttack scenarios. With independent frames, the attacker could sim-

ly replay a call frame (and its aligned tag) for a different function

all or context. However, with a chained approach, replaying for a

ifferent call context will not work since the tag register provides

 very tight representation of the execution context, including all

unctions calls waiting to be returned.

.2. Primitive devices and register scarcity

RegGuard uses security scores to distinguish critical variables

nd prioritise them for available registers under register pressure

cenarios. However, it is difficult to observe such cases in a mod-

rn CPU setting that provides a register file consisting of 48–64

16/32 GPRs and 32 FPRs) registers with sizes up to 2 kB. Hence,

ur selection process actually serves more primitive architectures

uffering from register scarcity (e.g. 6–8 GPRs with no FPRs). In

uch a case, our security scores aim to accommodate at least crit-

cal stack objects in registers. But if there is a critical object still

eft in the memory, the compiler could display a warning; so the

rogrammer can review the code. Despite being ignored by some

ompilers, the programmer can use the register keyword in

 to annotate which variables to protect. We have designed Reg-

uard as an architecture-agnostic solution to make it applicable to

 wide range of systems, even with the most resource-constrained

evices in mind; for example, a 16/32-bit MCU with no security

t all, but might be still prevalent in critical systems. By just re-

ying on a flash program memory and a few registers, we can re-

uce the attack surface significantly against less strong adversaries

i.e. weaker checksums).

.3. Future CPU architectures

Although RegGuard is designed to fit existing CPU architec-

ures, we would like to see CPU manufacturers incorporate some

f these ideas into their designs in the future. If the next gener-

tion of CPUs were to include the necessary registers and maybe

ven hardware acceleration of a suitable MAC function, RegGuard

ould be implemented at the hardware level through a single in-

truction. A bit vector-like operand can be given to describe which

egisters to include in the MAC, and the new instruction can then

un all the necessary calculations within the CPU. Such instruction

ould enable us to create a standalone tag for registers spills hap-

ening within the function, without having to worry about the per-

ormance overheads.

Furthermore, similar to discontinued Itanium (IA-64) architec-

ure with 128 GPRs and 128 FPRs, CPU manufacturers can consider

xpanding their register files as trusted storage and adopting regis-

er windows to zero out the performance costs in return for space

verhead within the CPU. Register windows, which are designed

o avoid the cost of register spills on each call by making only

 portion of registers visible to the program, can actually benefit

ur scheme more than its original purpose by eliminating crypto-

raphic calculations. For example, with a window size of 32 (from

28 registers), RegGuard would not incur any overheads for a pro-

ram that has no call down deeper than four calls, where some of

hese could also be reserved for protection of global variables.

.4. Further extensions

RegGuard covers attack scenarios that target stack objects. Due

o the integrity assurance of the pointers on the stack, most ille-

itimate accesses to other memory sections would also be miti-

ated. However, the attacker might still have options not covered

ere, such as overflowing a global array or a heap buffer to target

M. Geden and K. Rasmussen Computers & Security 129 (2023) 103213

a

a

e

a

w

m

9

t

a

t

i

s

g

c

n

i

p

t

c

r

t

h

b

p

a

s

t

w

o

T

o

r

I

D

c

i

C

d

S

D

A

T

t

S

f

R

A

A

A

B

B

B

B

C

C

C

C

C

C

C

C

C

C

D

D

E

F

F

G

n adjacent variable whose modification can result in a successful

ttack. But in the case of hardware acceleration for MAC, we can

xtend our scheme to address those. For example, we can allocate

 tag address next to each global variable or composite data that

ill host a digest of them. We can update this tag at each legiti-

ate (re)definition of those variables and verify when used.

. Conclusion

This paper presents RegGuard, a novel and practical scheme

hat leverages CPU registers to mitigate control- and data-oriented

ttacks targeting stack objects, for instance, return addresses, func-

ion pointers and condition variables. Our protection relies on the

mmunity of registers from memory corruptions as unaddressable

torage units. Despite their heavy use by compiler optimisations,

eneral-purpose registers have not been systemically used as se-

ure storage because of their limited capacity and voided immu-

ity of saved values on the stack.

RegGuard addresses these with a two-step proposal. First, dur-

ng register allocations, it prioritises program variables that are ex-

ected to be targeted; so they stay safe while in use. Second, when

hose registers are saved to the stack because of a function call, we

ompute a keyed hash to ensure they are restored without any cor-

uption. Those integrity checks enable the reuse of the same regis-

er file as secure storage repeatedly for each function call, without

aving to occupy registers across function boundaries.

Although RegGuard is designed as a software-based approach to

e practical, it makes strong promises using a very basic hardware

rimitive, i.e., CPU registers. This makes our scheme applicable to

 broad range of devices from high-end to low-end without any

pecial hardware features. Our experiments on ARM64 have shown

hat registers can also enhance program security with a surplus

ithin the range of 13% (with SHA extensions) to 23% (SipHash)

n average compared to purely performance-based optimisations.

herefore, RegGuard provides a practical protection designed upon

n very basic building blocks of computers, such as code integrity,

egisters and MAC calculations that can be expressed by any CPU

SA.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Munir Geden: Conceptualization, Methodology, Software, Vali-

ation, Visualization, Writing – original draft. Kasper Rasmussen:

upervision, Project administration, Writing – review & editing.

ata availability

PoC is given as a github link in the paper.

cknowledgement

We thank the Ministry of National Education of the Republic of

urkey because of their generous support for Munir Geden’s doc-

oral studies during the preparation of this paper.

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.cose.2023.103213 .
11
eferences

badi, M., Budiu, M., Erlingsson, U., Ligatti, J., 2005. Control-flow integrity. In: Pro-

ceedings of the 12th ACM conference on Computer and communications se-

curity - CCS ’05. ACM Press, New York, New York, USA, p. 340. doi: 10.1145/
1102120.1102165 .

kritidis, P., Cadar, C., Raiciu, C., Costa, M., Castro, M., 2008. Preventing mem-
ory error exploits with WIT. In: 2008 IEEE Symposium on Security and Pri-

vacy (sp 2008). IEEE, Oakland, CA, USA, pp. 263–277. doi: 10.1109/SP.2008.30 .
http://ieeexplore.ieee.org/document/4531158/

umasson, J.-P., Bernstein, D.J., 2012. SipHash: a fast short-input PRF. In: 13th In-

ternational Conference on Cryptology in India (INDOCRYPT 2012), Vol. 7668
LNCS. Springer Berlin Heidelberg, Kolkata, India, pp. 489–508. doi: 10.1007/

978- 3- 642- 34931- 7 _ 28 .
hatkar, S., Sekar, R., 2008. Data space randomization. In: 5th International Con-

ference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA). Springer, Paris, France, pp. 1–22 .

letsch, T., Jiang, X., Freeh, V.W., Liang, Z., 2011. jump-oriented programming : a
new class of code-reuse attack. In: Proceedings of the 6th ACM Symposium on

Information, Computer and Communications Security - ASIACCS ’11. ACM Press,

New York, New York, USA, p. 30. doi: 10.1145/1966913.1966919 .
riggs, P., Cooper, K.D., Torczon, L., 1994. Improvements to graph coloring register

allocation. ACM Trans. Program. Lang. Syst. 16 (3), 428–455. doi: 10.1145/177492.
177575 .

urow, N., Zhang, X., Payer, M., 2019. SoK: shining light on shadow stacks. In:
Proceedings - IEEE Symposium on Security and Privacy. IEEE, pp. 985–999.

doi: 10.1109/SP.2019.0 0 076 .

arlini, N., Barresi, A., Payer, M., Wagner, D., Gross, T.R., 2015. Control-flow bending:
on the effectiveness of control-flow integrity. In: USENIX Security Symposium.

USENIX Association, Washington, D.C, USA, pp. 161–176 .
haitin, G.J., 1982. Register allocation and spilling via graph coloring. ACM SIGPLAN

Not. 17 (6), 98–101. doi: 10.1145/872726.806984 .
haitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M.E., Markstein, P.W.,

1981. Register allocation via coloring. Comput. Lang. 6 (1), 47–57. doi: 10.1016/

0 096-0551(81)90 048-5 .
heckoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham, H., Winandy, M.,

2010. Return-oriented programming without returns. In: Proceedings of the
17th ACM conference on Computer and communications security - CCS ’10. ACM

Press, New York, New York, USA, p. 559. doi: 10.1145/1866307.1866370 .
hen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K., 2005. Non-control-data attacks are

realistic threats. USENIX Security Symposium. USENIX Association, Baltimore,

MD .
how, F., Hcnnessy, J., 1984. Register allocation by priority-based coloring. In: Pro-

ceedings of the 1984 SIGPLAN Symposium on Compiler Construction, SIGPLAN

1984, 19, pp. 222–232. doi: 10.1145/502874.502896 .

hristoulakis, N., Christou, G., Athanasopoulos, E., Ioannidis, S., 2016. HCFI:
hardware-enforced control-flow integrity. In: Proceedings of the Sixth ACM Con-

ference on Data and Application Security and Privacy. ACM, New York, NY, USA,

pp. 38–49. doi: 10.1145/2857705.2857722 .
ooper, K.D., Taylor Simpson, L., 1998. Live range splitting in a graph coloring regis-

ter allocator. In: Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1383,

pp. 174–187. doi: 10.10 07/BFb0 026430 .
owan, C., Beattie, S., Johansen, J., Wagle, P., 2003. PointGuardTM: protecting point-

ers from buffer overflow vulnerabilities. In: Proceedings of the 12th USENIX Se-

curity Symposium. USENIX Association, Washington, D.C., pp. 91–104 .
owan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Grier, A., Wagle, P., Zhang, Q.,

Attacks, B.-o., Walpole, J., Bakke, P., Beattie, S., Grier, A., Wagle, P., Zhang, Q.,
1998. StackGuard : automatic adaptive detection and prevention of buffer-over-

flow attacks. In: Proceedings of the 7th USENIX Security Symposium. USENIX
Association, San Antonio, TX, pp. 63–78 .

avi, L., Dmitrienko, A., Egele, M., Thomas, F., Holz, T., Hund, R., Nurnberger, S.,
Sadeghi, A.-R., 2012. MoCFI: a framework to mitigate control-flow attacks on

smartphones. In: NDSS 2012 (19th Network and Distributed System Security

Symposium), Vol. 26, pp. 27–40 .
avi, L., Hanreich, M., Paul, D., Sadeghi, A.-r., Koeberl, P., Sullivan, D., Arias, O., Jin, Y.,

2015. HAFIX: hardware-assisted flow integrity extension. In: Proceedings of the
52nd Annual Design Automation Conference. ACM, New York, NY, USA, pp. 1–6.

doi: 10.1145/2744769.2744847 .
vans, I., Fingeret, S., Gonzalez, J., Otgonbaatar, U., Tang, T., Shrobe, H., Sidiroglou-

Douskos, S., Rinard, M., Okhravi, H., 2015. Missing the point(er): on the effec-

tiveness of code pointer integrity. In: 2015 IEEE Symposium on Security and
Privacy. IEEE, pp. 781–796. doi: 10.1109/SP.2015.53 . https://ieeexplore.ieee.org/

document/7163060/
anti, A., Chinea Perez, C., Denis-Courmont, R., Roascio, G., Ekberg, J.E., 2022. To-

ward register spilling security using LLVM and ARM pointer authentication. IEEE
Trans. Computer-Aided Des. Integr. Circuits Syst. 41 (11), 3757–3766. doi: 10.

1109/TCAD.2022.3197511 .

ursin, G. Collective benchmark (cBench): collection of open-source programs and
multiple datasets from the community. https://www.sourceforge.net/projects/

cbenchmark/files/cBench/V1.1/
eden, M., Rasmussen, K., 2020. TRUVIN: lightweight detection of data oriented at-

tacks through trusted value integrity. In: 2020 IEEE 19th International Confer-
ence on Trust, Security and Privacy in Computing and Communications (Trust-

Com). IEEE, Guangzhou, China, pp. 174–181. doi: 10.1109/TrustCom50675.2020.

0 0 035 . https://www.ieeexplore.ieee.org/document/9343134/

https://doi.org/10.1016/j.cose.2023.103213
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1109/SP.2008.30
http://ieeexplore.ieee.org/document/4531158/
https://doi.org/10.1007/978-3-642-34931-7_28
http://refhub.elsevier.com/S0167-4048(23)00123-2/sbref0004
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/177492.177575
https://doi.org/10.1109/SP.2019.00076
http://refhub.elsevier.com/S0167-4048(23)00123-2/sbref0008
https://doi.org/10.1145/872726.806984
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1145/1866307.1866370
http://refhub.elsevier.com/S0167-4048(23)00123-2/sbref0012
https://doi.org/10.1145/502874.502896
https://doi.org/10.1145/2857705.2857722
https://doi.org/10.1007/BFb0026430
http://refhub.elsevier.com/S0167-4048(23)00123-2/sbref0016
http://refhub.elsevier.com/S0167-4048(23)00123-2/sbref0017
http://refhub.elsevier.com/S0167-4048(23)00123-2/sbref0018
https://doi.org/10.1145/2744769.2744847
https://doi.org/10.1109/SP.2015.53
https://ieeexplore.ieee.org/document/7163060/
https://doi.org/10.1109/TCAD.2022.3197511
https://www.sourceforge.net/projects/cbenchmark/files/cBench/V1.1/
https://doi.org/10.1109/TrustCom50675.2020.00035
https://www.ieeexplore.ieee.org/document/9343134/

M. Geden and K. Rasmussen Computers & Security 129 (2023) 103213

G

G

H

H

H

I

K

K

L

L

L

L

M

M

M

M

N

N

P

P

S

S

T

W

W

d

X

e

ökta ̧s , E., Economopoulos, A., Gawlik, R., Kollenda, B., Athanasopoulos, E.,
Portokalidis, G., Giuffrida, C., Bos, H., 2016. Bypassing clang’s SafeS-

tack for fun and profit. https://www.blackhat.com/docs/eu-16/materials/
eu- 16- Goktas- Bypassing- Clangs- SafeStack.pdf .

uthaus, M., Ringenberg, J., Ernst, D., Austin, T., Mudge, T., Brown, R., 2001. MiBench:
a free, commercially representative embedded benchmark suite. In: Proceedings

of the Fourth Annual IEEE International Workshop on Workload Characteriza-
tion. WWC-4 (Cat. No.01EX538). IEEE, Austin, TX, USA, pp. 3–14. doi: 10.1109/

WWC.2001.990739 . http://www.ieeexplore.ieee.org/document/990739/

ansen, T., 2011. US Secure Hash Algorithms (SHA and SHA-based HMAC and HKDF).
Technical Report. RFC Editor . https://www.rfc-editor.org/rfc/rfc6234.txt

ardekopf, B., Lin, C., 2011. Flow-sensitive pointer analysis for millions of lines of
code. In: International Symposium on Code Generation and Optimization (CGO

2011). IEEE, pp. 289–298. doi: 10.1109/CGO.2011.5764696 . http://ieeexplore.ieee.
org/document/5764696/

u, H., Shinde, S., Adrian, S., Chua, Z.L., Saxena, P., Liang, Z., 2016. Data-oriented

programming: on the expressiveness of non-control data attacks. In: 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, San Jose, CA, USA, pp. 969–986.

doi: 10.1109/SP.2016.62 .
spoglou, K.K., AlBassam, B., Jaeger, T., Payer, M., 2018. Block oriented programming:

automating data-only attacks. In: Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security. ACM, New York, NY, USA,

pp. 1868–1882. doi: 10.1145/3243734.3243739 .

uderski, J., Navas, J.A., Gurfinkel, A., 2019. Unification-based pointer analysis with-
out oversharing. In: Proceedings of the 19th Conference on Formal Methods

in Computer-Aided Design, FMCAD 2019, pp. 37–45 . http://arxiv.org/abs/1906.
01706

uznetsov, V., Szekeres, L., Payer, M., 2014. Code-pointer integrity. In: Proceedings of
the 11th USENIX Symposium on Operating Systems Design and Implementation.

USENIX Association, Broomfield, CO, pp. 147–163 .

. P. Horwitz, Karp, M.R., Miller, R.E., Winograd, S., 1966. Index register allocation. J.
Assoc. Comput. Mach. 13 (1), 43–61 .

i, J., Chen, L., Xu, Q., Tian, L., Shi, G., Chen, K., Meng, D., 2020. Zipper stack: shadow
stacks without shadow. In: European Symposium on Research in Computer Se-

curity. Springer, Guildford, UK, pp. 338–358. doi: 10.1007/978- 3- 030- 58951- 6 _
17 .

iljestrand, H., Nyman, T., Gunn, L.J., Ekberg, J.E., Asokan, N., 2021. PACStack: an au-

thenticated call stack. In: Proceedings of the 30th USENIX Security Symposium,
pp. 357–374 .

iljestrand, H., Perez, C.C., Nyman, T., Ekberg, J.E., Wang, K., Asokan, N., 2019. PAC it
up: towards pointer integrity using ARM pointer authentication. In: Proceedings

of the 28th USENIX Security Symposium. USENIX Association, Santa Clara, CA,
USA, pp. 177–194 .

ashtizadeh, A.J., Bittau, A., Boneh, D., Mazières, D., 2015. CCFI: cryptographically

enforced control flow integrity. In: Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security. ACM, New York, NY, USA,

pp. 941–951. doi: 10.1145/2810103.2813676 .
atz, M., 2003. Design and implementation of a graph coloring register allocator

for GCC. In: GCC Developers Summit, pp. 151–170 . http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.5.9896&rep=rep1&type=pdf-page=151

iguel, C., Costa, M., Harris, T., 2006. Securing software by enforcing data-flow in-
tegrity. In: Proceedings of the 7th symposium on Operating systems design and

implementation. USENIX Association, pp. 147–160 .

össenböck, H., Pfeiffer, M., 2002. Linear scan register allocation in the context
of SSA form and register constraints. In: Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2304, pp. 229–246. doi: 10.1007/3- 540- 45937- 5 _ 17/COVER .

https://www.link.springer.com/chapter/10.1007/3- 540- 45937- 5 _ 17
iu, B., Tan, G., 2014. Modular control-flow integrity. In: Proceedings of the 35th

ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion. ACM, New York, NY, USA, pp. 577–587. doi: 10.1145/2594291.2594295 .
yman, T., Dessouky, G., Zeitouni, S., Lehikoinen, A., Paverd, A., Asokan, N.,

Sadeghi, A.-R., 2019. HardScope: hardening embedded systems against data-
oriented attacks. In: 2019 56th ACM/IEEE Design Automation Conference (DAC).

IEEE, Las Vegas, NV, USA, pp. 1–6. doi: 10.1145/3316781.3317836 .
12
alit, T., Monrose, F., Polychronakis, M., 2019. Mitigating data leakage by protecting
memory-resident sensitive data. In: Proceedings of the 35th Annual Computer

Security Applications Conference. ACM, New York, NY, USA, pp. 598–611. doi: 10.
1145/3359789.3359815 .

oletto, M., Sarkar, V., 1999. Linear scan register allocation. ACM Trans. Program.
Lang. Syst. 21 (5), 895–913. doi: 10.1145/330249.330250 .

anthanam, V., Odnert, D., 1990. Register allocation across procedure and module
boundaries. In: Proceedings of the ACM SIGPLAN 1990 conference on Program-

ming language design and implementation - PLDI ’90. ACM Press, New York,

New York, USA, pp. 28–39. doi: 10.1145/93542.93551 .
ong, C., Moon, H., Alam, M., Yun, I., Lee, B., Kim, T., Lee, W., Paek, Y., 2016.

HDFI: hardware-assisted data-flow isolation. In: 2016 IEEE Symposium on Se-
curity and Privacy (SP). IEEE, San Jose, CA, USA, pp. 1–17. doi: 10.1109/SP.2016.9 .

http://www.ieeexplore.ieee.org/document/7546472/
raub, O., Holloway, G., Smith, M.D., 1998. Quality and speed in linear-scan regis-

ter allocation. SIGPLAN Not. (ACM Special Interest Group on Programming Lan-

guages) 33 (5), 142–151 .
immer, C., Franz, M., 2010. Linear scan register allocation on SSA form. In: Pro-

ceedings of the 8th annual IEEE/ ACM international symposium on Code gen-
eration and optimization - CGO ’10. ACM Press, New York, New York, USA,

p. 170. doi: 10.1145/1772954.1772979 . http://www.portal.acm.org/citation.cfm?
doid=1772954.1772979

immer, C., Mössenböck, H., 2005. Optimized interval splitting in a linear scan

register allocator. In: Proceedings of the 1st ACM/USENIX international confer-
ence on Virtual execution environments - VEE ’05. ACM Press, New York, New

York, USA, p. 132. doi: 10.1145/1064979.1064998 . http://portal.acm.org/citation.
cfm?doid=1064979.1064998

e Souza Xavier, T.C., Oliveira, G.S., de Lima, E.D., de Silva, A.F., 2012. A detailed
analysis of the LLVM’s register allocators. In: 2012 31st International Conference

of the Chilean Computer Science Society. IEEE, pp. 190–198. doi: 10.1109/SCCC.

2012.29 . http://ieeexplore.ieee.org/document/6694089/
u, J., Lin, H., Yuan, Z., Shen, W., Zhou, Y., Chang, R., Wu, L., Ren, K., 2022. Reg-

Vault: hardware-assisted selective data randomization for operating system ker-
nels. In: Proceedings of the 59th ACM/IEEE Design Automation Conference.

ACM, New York, NY, USA, pp. 715–720. doi: 10.1145/34 89517.353054 9 . https:
//dl.acm.org/doi/10.1145/34 89517.353054 9

Munir Geden is a D.Phil. student in Cyber Security at the
University of Oxford. He completed his masters degree

in Software Systems Engineering from University College
London, in 2015, with a dissertation on malware analy-

sis. His doctoral research explores runtime verification of
software programs in different contexts. His main areas

of interest are software security, malware analysis, com-

pilers and trusted computing.

Kasper Rasmussen received his Ph.D. degree under the
guidance of Prof. S. Capkun at the Department of Com-

puter Science, ETH Zurich, where he worked on security
issues related to secure time synchronization and local-

ization, with a particular focus on distance bounding. He

was a Post-Doctoral Fellow with the University of Califor-
nia, Irvine, for two years. In 2013, he joined the Depart-

ment of Computer Science, University of Oxford, where
he is a Full Professor. He was awarded a University Re-

search Fellowship from the Royal Society of London in
2015. His thesis won the “ETH Medal” for outstanding dis-

sertation from the Swiss Federal Institute of Technology,

and he was additionally awarded the Swiss National Sci-
nce Foundation Fellowship for prospective researchers.

https://www.blackhat.com/docs/eu-16/materials/eu-16-Goktas-Bypassing-Clangs-SafeStack.pdf
https://doi.org/10.1109/WWC.2001.990739
http://www.ieeexplore.ieee.org/document/990739/
https://www.rfc-editor.org/rfc/rfc6234.txt
https://doi.org/10.1109/CGO.2011.5764696
http://ieeexplore.ieee.org/document/5764696/
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1145/3243734.3243739
http://arxiv.org/abs/1906.01706
http://refhub.elsevier.com/S0167-4048(23)00123-2/sbref0029
http://refhub.elsevier.com/S0167-4048(23)00123-2/sbref0030
https://doi.org/10.1007/978-3-030-58951-6_17
http://refhub.elsevier.com/S0167-4048(23)00123-2/sbref0032
http://refhub.elsevier.com/S0167-4048(23)00123-2/sbref0033
https://doi.org/10.1145/2810103.2813676
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.9896%26amp;rep=rep1%26amp;type=pdf-page=151
http://refhub.elsevier.com/S0167-4048(23)00123-2/sbref0036
https://doi.org/10.1007/3-540-45937-5_17/COVER
https://www.link.springer.com/chapter/10.1007/3-540-45937-5_17
https://doi.org/10.1145/2594291.2594295
https://doi.org/10.1145/3316781.3317836
https://doi.org/10.1145/3359789.3359815
https://doi.org/10.1145/330249.330250
https://doi.org/10.1145/93542.93551
https://doi.org/10.1109/SP.2016.9
http://www.ieeexplore.ieee.org/document/7546472/
http://refhub.elsevier.com/S0167-4048(23)00123-2/sbref0044
https://doi.org/10.1145/1772954.1772979
http://www.portal.acm.org/citation.cfm?doid=1772954.1772979
https://doi.org/10.1145/1064979.1064998
http://portal.acm.org/citation.cfm?doid=1064979.1064998
https://doi.org/10.1109/SCCC.2012.29
http://ieeexplore.ieee.org/document/6694089/
https://doi.org/10.1145/3489517.3530549
https://dl.acm.org/doi/10.1145/3489517.3530549

	RegGuard: Leveraging CPU registers for mitigation of control- and data-oriented attacks
	1 Introduction
	2 Background
	2.1 Control- and data-oriented attacks
	2.2 Register allocation

	3 Problem setting
	3.1 Motivation
	3.2 System and adversary model

	4 Design of RegGuard
	4.1 Security-oriented allocations
	4.1.1 Security scores
	4.1.2 Allocation process

	4.2 Integrity of saved register values
	4.2.1 Invariance of saved states
	4.2.2 Integrity checks
	4.2.3 Bootstrapping and key management
	4.2.4 Choice of MAC
	4.2.5 Attack coverage

	4.3 Security analysis

	5 Implementation on ARM64
	6 Evaluation
	6.1 Performance
	6.2 Real-world cases

	7 Related work
	7.1 Software-based mitigations
	7.2 Hardware-assisted protections
	7.3 Cryptographic approaches

	8 Discussion
	8.1 Chained vs. independent frames
	8.2 Primitive devices and register scarcity
	8.3 Future CPU architectures
	8.4 Further extensions

	9 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgement
	Supplementary material
	References

