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Abstract
Remote attestation, as a challenge‐response protocol, enables a trusted entity, called
verifier, to ask a potentially infected device, called prover, to provide integrity assurance
about its internal state. Remote attestation is becoming increasingly vital for embedded
systems that serve in many critical domains, as part of health, military, transportation and
industry services, but still lack the most security features available to high‐end systems. In
most attestation techniques, the prover provides a cryptographic checksum of its static
memory contents, that is, code segments, to the verifier when requested to demonstrate
that the device is loaded with the right software. However, those measurements are
subject to two limitations. First, they cannot guarantee that the prover has always had
legitimate software in the memory prior to attestation. This is because occasional mea-
surements, triggered by the verifier, still leave the device vulnerable to the compromise
between two attestation windows as a time‐of‐check‐to‐time‐of‐use (TOCTOU) prob-
lem. Second, including dynamic memory regions in the checksum calculation is not
helpful in practice, since the verifier typically does not know what those regions should
contain or which checksums should be accepted as valid. Hence, many attack scenarios
residing in those dynamic regions (e.g. stack) would also go unnoticed. To reveal attack
scenarios exploiting the memory regions and time windows left unattested, we propose
an attestation scheme that can continuously monitor both static and dynamic memory
regions with better spatial and temporal attestation coverage. Our monitoring mechanism
is designed to be performed in real time using a novel hardware security module (HSM)
connected to the prover's system bus. The proposed HSM monitors not only the integrity
of the code on the prover but also its execution by checking the compliance of the bits
seen on the bus according to a runtime integrity model (RIM) of the prover's software.
Therefore, our attestation scheme is capable of reporting scenarios that violate both the
(static) code and (dynamic) runtime integrity since the deployment time.
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1 | INTRODUCTION

Remote attestation aims to address these risks by providing
reports on the integrity of a device to a remote entity. A remote
attestation scheme generally consists of two parties. Prover, as
a potentially infected device, has to assure a remote party called
verifier that the device is in a benign state. In a typical

attestation scheme, the verifier makes a request to the prover
with a challenge. Then, the prover performs some measure-
ments on its memory and returns it as a signed response. Upon
receiving the response, if satisfied with its freshness, integrity
and authenticity, the verifier can then decide whether
the prover is in a legitimate state using the measurement
returned.
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In conventional attestation schemes, when the verifier
makes a request, the prover calculates a cryptographic check-
sum of its static memory contents (i.e., code segments) and
returns it to the verifier as a proof. However, there are two
limitations of such an approach. The first one is that occasional
measurements triggered by the verifier cannot guarantee that
the prover has always been in the proven state. Due to the lack
of continuous monitoring, an attack scenario that starts and
finishes between two measurement windows would not be
caught as long as the attacker leaves the attested memory re-
gions in an acceptable state, that is, time‐of‐check‐to‐time‐of‐
use (TOCTOU) attacks. Unfortunately, attempts to shorten
these time gaps through more frequent attestation requests by
the verifier would have a significant performance impact on the
availability aspect of the device because the prover must spend
most of its execution time on checksum calculations [1].

The second limitation with the checksum‐based approach
is the applicability to dynamic memory regions (e.g., stack),
where many attacks, such as return‐oriented programming
(ROP) scenarios, can be accommodated. Unlike static code
regions, a single checksum of dynamic regions at a certain time
would not deliver practical value to the verifier for mainly two
reasons: The first one is that the verifier cannot simply reason
about such a measurement unless the verifier has access to the
same (external) program input with the same hardware and
software settings. This is because each execution or corre-
sponding state at a particular time would be specific to the
external data provided, such as environment and user input,
which makes the problem undecidable from the verifier's
perspective. The second reason is that even if all external data
are excluded from checksums, discovering all acceptable
checksums would still be impractical for many programs due to
the combinatorial explosion of internal variable values.
Therefore, the checksum returned would be inconclusive.

Many attestation schemes fail to address those together and
ignore attacks that can exploit time gaps or memory regions
left unattested. There have been attempts to address some of
those limitations. A recent work RATA [1] elegantly addresses
the TOCTOU attacks on static regions by including their last
modification time in the attestation measurement. Likewise,
this approach is not applicable to dynamic memory regions
since the verifier does not know what these regions should
contain or when they should be written. On the other hand, an
increasing number of runtime attestation work [2–4] suggests
providing a cumulative hash of path traces to inform the
verifier about the states observed in dynamic regions, so
control flow attacks that corrupt them can be revealed.
Because the prover returns only a single hash representing the
whole program execution, those schemes require the verifier to
discover all possible control‐flow traces and corresponding
hashes in advance from the program's control‐flow graph
(CFG). However, this requirement overlooks potential chal-
lenges on the verifier side due to the same reasons mentioned
above, which are the rapid explosion of path search space for
many programs, and the undecidability of the verification
problem without program input in case of attacks complying
with the CFG (i.e. control‐flow bending). We note that

program input is typically determined by external agents, such
as the environment and users. Assuming that the verifier
provides the program input [3] that can eliminate the need for
having a prover device as the same computation could have
been performed on the verifier as the trusted party.

To address these drawbacks in a more practical setting, this
paper proposes an attestation scheme that monitors the prover
with the help of a hardware security module (HSM) connected
to its system bus. The HSM is responsible for measuring both
code and its execution according to a runtime integrity
model (RIM) provided by the verifier to the HSM. Thanks to
its continuous monitoring, our scheme promises to catch any
TOCTOU cases that can temporarily alter the device software
even for a short time. Furthermore, it substitutes trace‐based
checks on the verifier side with model‐based checks in real
time for a more efficient approach. Therefore, our scheme
does not require the verifier to generate traces in advance or to
have access to the same environment/user input. Also, thanks
to the use of an invasive off‐chip hardware module, it offers an
attestation solution that can fit better into legacy systems.

We previously suggested a similar setting in the conference
version of this work [5], that is, a hardware module (HSM)
connected to the prover's system bus to monitor and attest
software runtime in real time according to a static runtime
model (RIM). However, the conference version was quite
restrictive about the software subject to the attestation. For
instance, it was not allowing any use of recursive functions and
was accepting only software instances whose static model could
be extracted with high precision. Also, the conference version
was more demanding in terms of HSM resources, such as
memory requirements. In contrast, this paper proposes a more
practical solution with completely changed RIM and HSM de-
signs that can fit into a more realistic setting, accepting a wider
range of software instances. Regarding the attestation scope,
this version attests not only program runtime but also to the
program code, unlike the previous work obtaining code integ-
rity by assumption. In terms of program models (RIM), this
paper replaces the previous branch‐centric model with a call‐
centric approach that focuses on only control flow events that
matter most. In addition, the HSM, which was previously
monitoring program execution mainly through instruction ad-
dresses, is redesigned to iterate by decoding specific instructions
available on the data bus as detailed in Section 4. The new
design also replaces previous fine‐grained data flow checks with
more coarse‐grained policies to avoid the inefficiency of
monitoring the program execution at small block granularity.
Lastly, regarding the dynamic features, this paper can follow up
executions whose stack can go unbounded, (e.g., recursive
functions), thanks to the elimination of shadow stack use.

In line with this vision, this paper makes the following
contributions:

� Attestation of both programme code and execution with
strong spatial and temporal coverage.

� Approximation of programme runtime via a more light-
weight static model (i.e., RIM) that can be hosted with
resource‐constrained devices.
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� An off‐chip hardware module with a runtime monitoring
logic that can address strong adversary assumptions and
legacy issues of critical embedded systems.

The rest of the paper is organised as follows: Section 2
defines the problem scope and the assumptions about the
system and the adversary. Section 3 describes the runtime
integrity model of the software subject to attestation and
Section 4 explains how the HSM uses this model to check the
correctness of runtime in real time. Section 5 explains the
details of protocol reporting about the prover's state of the
prover. Finally, Sections 6 and 7 analyse the security and per-
formance aspects of the proposed scheme. Sections 8 and 9
review related work and provide a discussion on possible ex-
tensions and the energy impact.

2 | PROBLEM SETTING

In a conventional attestation protocol where the verifier initi-
ates the process with a nonce and the prover responds with a
checksum measurement of its static memory regions, we can
count two main limitations: The first one is the lack of strong
temporal coverage. A memory measurement triggered by the
verifier's request can best prove that the static code regions are
in a good state by the time the request is received. However,
such occasional measurements do not provide any information
about the time the verifier is idle as shown in Figure 1. Th-
erefore, an attacker can exploit the gap between two attesta-
tion windows and can execute corrupted or malicious
codes without being caught as a time‐of‐check‐to‐time‐of‐use
(TOCTOU) problem. Although a valid checksum implies that
the prover has a genuine code at the time of the check, we
cannot guarantee that the code (used) has always been in that
state unless all modifications to the code regions are recorded
and reported [1]. In this paper, we refer to these scenarios as
code attacks. Another drawback of static attestation is the weak
spatial coverage of the memory. Dynamic memory regions are
not typically included in checksums since the verifier cannot
easily reason about their contents, often containing user and

environment data also unknown to the verifier. Hence, the
prover can be compromised by a simple code‐injection or a
more sophisticated code‐reuse attack that touches only those
addresses (e.g., stack). For instance, return‐oriented program-
ing (ROP) techniques crafting the stack with the required re-
turn address and data can still achieve arbitrary code execution
on the prover without altering attested code blocks.

2.1 | Code attacks

In the absence of continuous monitoring of code addresses [1],
an attacker can temporarily compromise the prover's software
by altering or replacing it with malicious code, and can switch it
back to the expected state prior to following attestation
request. The attacker would have different options, such as
memory copy and hiding techniques to act between two
attestation measurements without being noticed. The attacker
can utilise free memory on the prover to keep both malicious
and genuine codes simultaneously [6]. He can thus calculate a
checksum from the original code when requested despite the
use of malicious one prior to the checksum measurement. If
there is not enough space for hosting two code instances, data
substitution [7] techniques can keep only the record of changes
and can revert them during the measurement time. Alterna-
tively, compression [8] methods can provide extra space to host
both code instances, whereas valid measurements are provided
through on‐the‐fly decompression. In different settings, proxy
attacks can also benefit from a more resourceful device to hold
the copy of original contents on. Thus, the compromised
prover can forward the request to the proxy node to produce a
valid measurement and impersonate the prover node with a
valid response.

2.2 | Code‐reuse attacks

The prover can still be compromised even if it is loaded solely
with the genuine programme code all the time. An attacker
modifying programme data (e.g., return addresses) can mali-
ciously reuse the original code. With a programme that
provides the necessary code snippets (i.e., attack gadgets),
code‐reuse attacks can be Turing‐complete, meaning that any
(arbitrary) code can be expressed without injecting a new code
or altering the existing one. For a successful code‐reuse sce-
nario, the attacker generally exploits control‐flow transfer in-
structions, the destination addresses of which are given from
the data segments. For typical embedded software imple-
mented using C language, the attacker would have many op-
tions: The first one is exploiting the return addresses on the
stack [9, 10], known as return‐oriented programing (ROP)
attacks. Alternatively, the attacker can take advantage of indi-
rect jump or indirect call transfers (e.g., function pointer) if the
code contains [11, 12]. These scenarios are also called jump‐
(JOP) and call‐oriented programming (COP) attacks. In this
paper, we refer to all these types as control attacks. Addi-
tionally, the attacker can specifically target programme

F I GURE 1 Limitations of conventional checksum‐based static
attestation schemes.
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variables [13–15] without touching control transfer destina-
tions, such as a global flag that can result in the execution of a
privileged programme path. These are also called data attacks.

2.3 | System model

For our scheme, we consider two entities: the verifier and the
prover. As the remote party, the verifier is trusted and can ask
the prover to provide a report showing that the prover is in a
good state at will. The prover is an embedded device, such as
microcontroller (MCU), without cache. The device has a
single‐purpose monolithic software (i.e., bare‐metal). It exe-
cutes instructions directly on logic hardware with physical
memory addresses. The software subject to the attestation can
contain indirect calls (e.g., function pointer), jumps (e.g., switch
statements) and recursive functions. Although our scheme is
applicable to different architectures with minor changes, the
detailed design in the following sections considers a load‐store
architecture with fixed‐length instructions (i.e., RISC).

Additionally, the prover has an off‐chip low‐cost hardware
security module (HSM) connected to its system bus, as seen in
Figure 2. The HSM illustrated in Figure 3 has built‐in hardware
implementations of the bus monitoring logic described in Sec-
tion 4. The HSM has limited memory resources, mainly hosting
a static runtime integrity model (RIM) of the programme sub-
ject to attestation. This static model, described in detail in
Section 3, is provided by the verifier and loaded into the HSM
during deployment. HSM's memory also contains some dy-
namic bits that keep track of the current (executing) function
and the number of calls made from each function. These bits
collaborate with the static model to monitor the runtime
integrity of the programme. While the information captured
through the bus provides the execution data, the HSM provides
a basic attestation API that reports the device's status to the
verifier. The HSM keeps a key (sk) that never leaves its internal
memory and is used to sign the attestation responses.

2.4 | Adversary model

Prior to the attestation, the adversary has access to the source
code, binary and RIM. External resources are available to

collect or record any protocol activity for later use. Only
software attacks targeting memory are considered, while
physical attack capabilities on both the prover device and the
HSM are beyond the scope of this paper. The adversary has the
ability to write an arbitrary value to an arbitrary memory
address. He can modify the programme code and put it back to
the original state at any time (i.e., code attacks). He can also
manipulate the programme execution by corrupting control
data (i.e., code‐reuse attacks) on dynamic memory regions
though the adversary cannot affect the HSM's internal state
and the verifier.

The ultimate goal of the adversary is malicious execution
on the prover without being noticed by the verifier. Acting on
the prover, the adversary can try to hide attack artefacts from
the HSM. If this is not possible and the HSM has already
detected an attack, the adversary may attempt to prevent the
genuine reports from being received by the verifier and replace
them with counterfeit but acceptable ones. The adversary can
arbitrarily call the HSM's API to learn about the HSM's in-
ternal state or to generate signed attestation reports for later
use. The adversary can intercept and modify any messages on
the network or replay the responses sent earlier.

3 | DESIGN OF THE RUNTIME
INTEGRITY MODEL (RIM)

Prior to deployment, the verifier extracts a runtime integrity
model (RIM). This model approximates the benign executions
that the code can have. It is stored by the HSM internally and is
used as a reference model to check whether the information
captured at runtime through the system bus complies with the
expected behaviour. This is a two‐layered static programme
model centred around the call graph. The main control layer
models legitimate control transfers amongst programme
functions, such as calls and returns. The second layer enables
coarse‐grained checks on memory accesses, for instance,
checking whether a function is allowed to access global vari-
ables or caller frames on the stack.

To explain the RIM and to exemplify possible attacks
covered in Section 6.3, we will use the example code in
Figure 4. The given code assumes a vulnerable login

F I GURE 2 Prover's bus architecture with an off‐chip hardware secure
module (HSM) connected.

F I GURE 3 Overview of the hardware security module (HSM)
illustrating its internal components and external interactions.
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mechanism that can form a basis for different attack scenarios.
The code illustrates that two functions login and authen-
ticate using the global user_info variable for login status.
The former function implements the core logic and creates a
user session, whereas the latter function, which checks the
credentials and sets the necessary info, contains a bug that
provides an arbitrary memory write capability to the attacker.
Despite the details omitted, the authenticate function has
an indirect jump (e.g., switch statement). A corresponding RIM
of this code, which is elaborated in the following sections, can
be found in Figure 5.

3.1 | Static model

The RIM has different nodes and edge components to guide the
HSM on what action is required for each instruction. As seen in
Figure 5, nodes illustrated with squares correspond to function
blocks, while the solid directed edges represent control transfers
between them. These constitute the main control layer of the
model. The secondary data layer is depicted by circle‐shaped
nodes describing local and global data scopes and dashed
directed edges representing memory accesses to those.

3.1.1 | Control layer

The control layer has two components: function blocks and
control transfers. Each function block is described as an
address range consisting of the beginning and end instructions.
A control transfer edge corresponds to an instruction that can

change the active function (call) block. This can be a direct
call, indirect call or return instruction, which all make the call‐
return graph of the programme. Those edges carry address
information of target instructions as permitted destinations.
Although they already correspond to the beginning of function
blocks for call transfers, return destinations are represented by
the addresses of call sites. Additionally, for a function block
that contains an indirect jump, for example, switch statement,
the RIM considers a self‐referencing edge to the same function
block unless the function that contains it is the longjmp
function. This is because such instruction cannot branch
outside the function in a regular scenario. If there is a non‐local
jump due to the setjmp/longjmp instance, used for exception
handling, the RIM adds an inter‐procedural edge from the
longjmp function to the function blocks that calls setjmp
function. For practicality, the RIM does not represent control
transfers at the basic block level, such as unconditional or
conditional jumps, the destinations of which are already hard‐
coded. These control instructions cannot be exploited without
modifying the code, which would be an attack scenario that our
scheme promises to detect as a code attack, as explained in
Section 4. Although hard‐coded direct call destination cannot
be exploited as well without code corruption first, they are
represented by the RIM to track the execution context at the
function level.

3.1.2 | Data layer

RIM has an additional layer that describes a coarse‐grained
model of legitimate memory accesses that must be observed
at runtime. This data layer consists of variable groups and

F I GURE 4 Vulnerable programme code that can form a basis to
different attack scenarios.

F I GURE 5 Runtime integrity model (RIM) of the vulnerable code in
Figure 4 with potential attack scenarios illustrated.
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memory accesses. RIM assumes that only the host function can
access its local variables (i.e., call frame) unless a variable
address is shared as a call by reference argument with a callee
function. Second, despite the availability of global variables to
the whole programme, the code can statically describe which
functions should legitimately access them.

These two layers provide a static approximation of legiti-
mate program executions. Therefore, a code reuse attack that
deviates from the expected control flow or violates given data
access policies can be detected.

3.2 | Dynamic extensions

Validating programme runtime according to a static model is
inevitably subject to over‐approximation limitations. More
specifically, for a function that can be legitimately called from
different (caller) functions, a stateless call graph does not
precisely specify the exact function that the callee must return
at runtime. An attacker can thus replace the return address of
the original (caller) function with another function that the
graph permits. A shadow stack (hosting the copy of return
addresses) is typically used to differentiate such cases and
achieve a more precise return integrity through comparisons of
shadow and actual return addresses. However, in the case of
recursive functions, a shadow stack cannot be accommodated
in a hardware module with limited memory resources. In this
work, we extend RIM with call counters to attest return ad-
dresses with better precision without asking for unbounded
memory resources. Each function has a counter value that is
set to zero by default. This counter is incremented for a call
made from and decremented for a return to that function.
Since every caller would be returned in a regular scenario, those
counters must be zero at the end of a legitimate programme

execution. The verifier can check whether these counters are
compliant or not, depending on the last instruction executed.
Any inconsistency would reveal attacks that could have stayed
unnoticed by a pure graph‐based approach.

To illustrate how these counters would enhance the
scheme, Figure 6 depicts two synthetic examples with aligned
call graphs. At the bottom of each, directed arrows represent
call and return instances of their crafted traces. context traces
describe the current call stack of each programme execution,
whereas expectation traces show how the executions should
complete. Both figures provide example attack traces that pure
call‐graph‐based checks would miss. Specifically, Figure 6a il-
lustrates scenarios that the attacker returns to a different
function (e.g., baz ←foo) that is different from the expected
one (e.g., baz ←bar). Figure 6b presents a programme with
an indirect recursion (e.g., foo1 → bar1 → baz1 → foo2)
where the attacker can return to a different frame context on
the stack, which is depicted by the superscript numbers, while
skipping some expected returns. Thanks to call counters that
keep track of call/return instances made, the tuples provided
would reveal these attack scenarios.

4 | RUNTIME MONITORING AND
ATTACK DETECTION

With the RIM loaded at deployment time, our hardware se-
curity module (HSM) connected to the prover's bus becomes
ready to monitor the integrity of both programme code and
execution. As depicted in Figure 3, the address bus provides
instruction and variable addresses. The bi‐directional data bus
carries instruction (opcodes and operands) and variable (value)
contents from memory, while the control bit indicates the
access type. The HSM uses control and address bits to ensure

F I GURE 6 Two examples depicting code‐reuse attack scenarios that would have stayed undetected without call counters. (a) Programme with functions
called by different callers. (b) Programme with functions making indirect recursion.
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that programme code is not altered. More importantly, the
address bus informs about where control transfers jump to and
memory operations access to. On the other hand, data bus
values are used to identify what instruction is being fetched.
Using those bits as the runtime input and the RIM as a
reference model, the HSM measures whether both code and its
execution are in a good state.

4.1 | Runtime integrity checks by the HSM

In order to follow up the prover's state, HSM's monitoring logic
has six modes, each of which should complete its task in a single
bus cycle (see Figure 7). These modes constitute a finite au-
tomaton, where each mode corresponds to an automaton state.
The HSM starts with Dispatcher as the default mode.
Depending on the instruction on the bus, this mode causes the
HSM to switch to the relevant task mode as the name implies.
These task modes are designed to monitor the compliance of
control flow transfers and memory accesses with the RIM. If an
integrity violation is detected, the HSM sets the appropriate
attack flag and stops further monitoring. The HSM has three
additional modes to distinguish and report different attacks.
Code attack implies that the code addresses are illegitimately
accessed or corrupted.Control attackmeans a divergence from
the expected call‐return graph and Data attack indicates un-
expected memory access to either global data or higher stack
addresses (i.e., callers' frames). If the HSM is switched to any of
these attack modes, it maintains that state and waits for an
attestation request to report the attack details. The verifier needs
to perform a hard reset on the HSM to restart the process in a
clean state. Figure 8 illustrates the bus cycle‐based logic of each
mode, of which detailed explanations are given in the following
sections.

4.1.1 | Dispatcher

This mode first identifies the range of every address seen on the
bus. For an address, pointing data regions, this mode does not
take any action and waits for the next bus cycle. In the case of a

code address, it first confirms that the control line has a read
signal as write access would mean the corruption of the pro-
gramme code. For read access, this mode identifies the in-
struction type fetched. If the instruction is one of the control
transfer instructions or a store/load operation that needs special
treatment, it switches to the appropriate task mode. Otherwise,
it maintains the same mode and waits for the next cycle.

If a call is made to a hard coded address, the HSM switches
to the Direct Call mode. In case of an indirect call instruction,
whose callee address is given by a register, the HSM mode
changes to Indirect Call. In contrast, when the instruction is a
return instruction as a backward‐edge control transfer, the
HSM switches to the Return mode. If the instruction is an
indirect jump, the target of which is not hard‐coded, the mode
changes to Indirect Jump. The HSM does not have a special
treatment for direct jumps or any conditional jump in-
structions since exploiting them requires the code to be altered
first. Lastly, if a memory instruction is encountered, the HSM
switches to the Store/Load mode.

4.1.2 | Direct call

This mode is responsible for keeping track of the execution
context on the RIM graph. Following a call instruction, the
address in the next bus cycle should be an entry address of a
function block known by the RIM (edges). This mode gets the
call address on the bus and locates it on the RIM to update
the active function node. But prior to the update, it increments
the call counter of the function. In addition, this mode handles
setjmp and longjmp calls with special care if the target
address belongs to any of these. It stores a copy of the call
counters in an array structure within the HSM for a setjmp
call. Later, this array of call counters is used to update the
original counters if a longjmp call is encountered.

4.1.3 | Indirect call

This mode works very similar to the previous mode. Differ-
ently, it ensures that an indirect call such as a function pointer
used is to call a permissible function target, not an arbitrary
instruction or a function in the code. It first increments the call
counter. Then, it checks whether the address on the bus is a
defined edge by the RIM, which is also the first instruction of a
permitted function. This is because we cannot allow an indirect
call target to be an arbitrary instruction of the target function.
Otherwise, the HSM sets the control attack flag if the model
does not recognise the destination address.

4.1.4 | Return

The HSM employs this mode to check the integrity of return
addresses. When a return instruction is on the bus, this mode
checks whether the target address in the next cycle belongs to
one of caller sites (i.e., return edges) defined by the RIM. If

F I GURE 7 Bus‐cycle based automaton of Hardware Security Module
(HSM) modes.
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not, it sets the control attack flag. Otherwise, it changes the
active function context and decrements its call counter.

The call counters mentioned in Section 3.2 are managed
by these three modes to achieve more precise return

address checks. Since a stateless graph‐based approach
would not notice the attacker that returns to a different
function, these counters aim to approximate the shadow
stack precision that would normally require unbounded

F I GURE 8 Bus cycle‐based detail process flow of HSM's monitoring logic using the runtime integrity model (RIM) graph.
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memory resources in the presence of different recursive
function patterns.

4.1.5 | Indirect jump

The HSM uses this mode to check indirect jumps (e.g., switch
statement) that do not link a return. In a regular scenario, we
expect jump targets to remain within the existing function. An
exception to this would be indirect jumps made by the
longjmp function. If the active context belongs to the
longjmp function, it checks whether the target address is one
of the setjmp sites defined by the RIM. Otherwise, it sets the
control attack flag.

We remind that direct jump instructions, both conditional
and unconditional, are not monitored, as their targets are given
from the code and cannot be exploited without touching the
code, which is also attested by the HSM.

4.1.6 | Store/load

This mode performs scope‐based checks to report arbitrary
memory access attempts. It defines constraints on the address
range in which a memory instruction can operate. First, it en-
sures that the programme code does not write the address range
given by the verifier itself, which is necessary to catch code
corruption scenarios. We note that legitimate self‐mutating code
instances are not considered. Therefore, the HSM sets the code
attack flag if the operand address of a memory instruction falls
within the code range specified at deployment time. Apart from
this, the mode follows up two coarse‐grained policies defined by
the RIM for each function block. It seeks two requirements that
must be fulfiled: The first one is that a function without any
global/heap variable use should not access non‐stack address
ranges at runtime. If such function illegitimately overwrites/
reads global addresses, theHSM sets the data attack flag. Second,
for a function that does not accept any call by reference argu-
ments, all stack accesses must stay within the current call frame;
more precisely, accesses above the current frame are described as
a data attack during the execution of such a function. To perform
this check, theHSMuses the active frame pointer address, which
is also extracted by the mode. Because the frame pointer is also
saved and restored by a store (push) and load (pop) instruction at
function prologues and epilogues, this mode also keeps the copy
of the frame pointer within the HSM. For this update, the mode
uses the data address accessed during the frame pointer push and
the data value read during the pop operation. Although the de-
tails can vary depending on the architecture and calling
convention in use, it takes the offset of any non‐register argu-
ments into account.

4.2 | Attacks coverage

The HSM reveals different attack classes: The first is attacks
that corrupt the original programme code. Thanks to

Dispatcher and Store/Load modes, the HSM describes any
overwrite of the given code address range using a memory
instruction from that range as a code attack. This provides
strong code integrity attestation for embedded systems that
lack architectural and OS support for code and data separation,
that is, write‐xor‐execute (W⊕X). In addition, thanks to co-
ntinuous monitoring, it promises capturing TOCTOU attacks
that would have normally stayed unnoticed between two
attestation windows.

The second attack class covered is control attacks, such as
code‐reuse and less‐sophisticated code‐injection scenarios,
where the primary target of the attacker is control data, such as
code pointers. The HSM confirms that any instruction up-
dating the programme counter with a potentially corrupted
value sets the counter to a permissible instruction defined by
the RIM. This includes both backward‐edge return addresses
(ROP) and forward‐edge targets, such as indirect call (COP)
addresses. We do not worry about direct conditional and un-
conditional jumps since their destination addresses are hard‐
coded and cannot be altered without a code attack first. To
start executing an injected code from the non‐code address
range or to reuse already existing instructions, the attacker
must take over at least a single code pointer. This should
eventually cause a divergence from the RIM and will be
captured by the HSM as a control attack. For a better reduction
of the attack surface, call counters reveal side cases where the
attacker crafts return addresses with options that do not
diverge from the call‐return graph. Despite not being as precise
as shadow stacks that preserve the order of calls, call counters
significantly reduce the options for the attacker that would be
given by a stateless graph. The HSM also checks the con-
straints described by the RIM for both intraprocedural and
interprocedural indirect jumps to reduce useable attack
gadgets.

In addition, our scheme considers data attacks that reuse
the code without altering code pointers. We remind that com-
plete coverage of data attacks normally requires either memory
safety or expensive fine‐grained data‐flow integrity (DFI)
checks, which is a non‐trivial task to perform with HSM's
limited resources. Therefore, the HSM offers only coarse‐
grained checks. These checks aim to catch accesses to global
data by a function without any expected use or accesses to the
callers' frames by a function that does not take any reference/
pointer arguments. Memory accesses that do not comply with
those constraints would thus be reported as a data attack.

5 | PROTOCOL OVERVIEW

This section presents a protocol design that assures that the
verifier receives a genuine report through an infected device
and an untrusted network. We consider that, at any moment,
the verifier can make a request to learn about the prover's
internal state. As seen in Figure 9, when the prover receives an
attestation request containing a fresh nonce value N generated
by the verifier, the prover calls the Attest(N) provided by the
HSM's API. Then, the prover needs to send back its output as
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the attestation response to the verifier. The response consists
of code FCode, control FCtrl, data FData attack flags, and diag-
nosis information D about the state prior to the attack, which
consists of two registers holding the last executed instruction
address and the destination address attempted by a control or
memory instruction and the array of call counters ACC. We
remind that the HSM stops further monitoring when an attack
flag is set. Therefore, the response provides information to the
verifier to reason about the instruction exploited and the
intended target. Additionally, each response contains a tag T
of which all the information and the sent nonce are signed
with a MAC scheme. Upon receiving the attestation res-
ponse, the verifier verifies the tag using the shared key with the
HSM. While the key (sk) ensures the authenticity of the mes-
sage, the tag—digesting nonce N, flags and counters—
guarantees the freshness and integrity of the response. The
verifier can then check flags and counters to decide about the
existence of an attack. FCode flag means a code attack. FCtrl and
FData flags imply a runtime attack scenario, where the former
states a control flow hijack, while the latter tells that there is a
data access that violates policies stated by the RIM. Only if
all flags are negative and call counters are zero/compliant as
expected, the verifier can conclude the prover is in a healthy
state.

6 | SECURITY ANALYSIS

To successfully compromise the prover without being detected
by the verifier, the adversary must either hide the attack arte-
facts from the HSM or forge a valid attestation response when
queried by the verifier. This section analyses these possibilities
with an evaluation of the attacks captured by the RIM on a
concrete example.

6.1 | HSM attacks

Due to the system bus integration, every instruction executed
and data transferred from/to memory will be monitored.
Because physical attacks (e.g., probing) are excluded, any attack
has to go through the bus and will be accessible by the HSM.
The adversary should modify either the code or its control flow
for an attack. Alternatively, the attacker can attempt to find a
flaw in the HSM's monitoring logic.

Regarding the first option, if the adversary uses a memory
instruction from the given range to modify the code itself, the
HSM will report those as code attacks thanks to Store/Load
mode. Hijacking control flow as a code‐injection or ‐reuse
attack is also not practical since the attacker's execution must
comply with the RIM. But RIM put constraints on all control
instructions, the target addresses of which might reside on
dynamic memory regions. Indirect Call, Return and Indirect
Jump modes guarantee that the programme counter is always
set to an instruction address described by the static model.
Additional call counters cover scenarios that might exploit the
imperfections of the static return edges. Considering the
constraints defined by the Store/Load mode, the attacker's
ability to manipulate control flow via data attacks is also
reduced. As a result, the HSM would catch the attacker for a
scenario that does not comply with the RIM.

Regardless of the compliance with the RIM, for an attack
targeting HSM's monitoring logic, the adversary must find a
bug/flaw that can alter the RIM or dynamic states within the
HSM. However, this is unlikely because the monitoring logic
implemented as hardware would be free from software vul-
nerabilities providing too much scope to the attacker with
arbitrary read/write capabilities. Thanks to its limited expres-
siveness and resources, the HSM actually serves as the root of
trust on the prover.

6.2 | Protocol attacks

When altering the HSM states is not possible, the only option
left to the adversary is to prevent the verifier from seeing the
genuine violation flags. To accomplish this, the adversary has
to return a valid response to the verifier's request. If the prover
does not respond, the verifier will conclude that the prover is
compromised. Therefore, the adversary cannot simply block a
message or remain silent after compromising the prover. There
are only two ways an adversary can send a valid response:
either replay a previously captured response or craft one from
scratch. We look at each of these in turn.

MAC provided with the response (Figure 9) contains a
nonce picked by the verifier. Thus, to replay the response
message, the adversary would either have to force the verifier
to use the same nonce twice or predict what nonce is going to
be used and query the prover ahead of time before compro-
mising the prover to obtain a clean response. This is only
possible with negligible probability since we do not allow the
adversary to compromise the verifier, and the nonce is chosen
securely (i.e., uniformly from a large domain).

F I GURE 9 Overview of the remote attestation protocol reporting any
attack presence on the prover to the verifier.
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Thus, to return a valid message, the adversary must create
it from scratch. However, the message must be authenticated
using a key kept in the HSM, which the adversary cannot
obtain by assumption. Therefore, to forge the message, the
attacker has to break the existential unforgeability property of
the underlying MAC scheme, which can be done only with
negligible probability.

6.3 | A concrete example

This section analyses the effectiveness and limitations of our
scheme against attack scenarios that could be performed using
the code in Figure 4. A powerful attacker exploiting the arbi-
trary memory write primitive given in line 12 would have
different options: For example, as a control attack, he can
replace the awaiting return address on the stack, which should
normally point to the call site at line 26, with the address of a
different function ❶ such as priv_session. Or he can alter
the target address of the indirect jump generated by the switch
statement in lines 18–20 to perform a jump to any instruction,
such as line 28 or the priv_session function ❷ as a desired
outcome. Alternatively, he can corrupt the function pointer
defined at line 24 with the address of a critical system function
❸ (e.g., exec). Also, he can modify global user_info ele-
ments defined at lines 5 as a data attack example ❹ that would
help to create a privileged session without any legitimate
authentication. For any of these scenarios, the HSM would set
the corresponding attack flag as they all constitute a deviation
from the RIM graph depicted in Figure 5.

In terms of limitations, we note that RIM cannot
approximate all legitimate executions with full precision, like
any static programme models. For example, if the attacker
replaces the address of unpriv_session with the address of
priv_session, the HSM would have to give a pass to such a
scenario, as both are valid targets according to the model. Or
our scheme does not have much to do if the attacker performs
a meaningful attack by exploiting the indirect jump of
authenticate while staying within the range of the function.
Identifying such attack scenarios is not possible without the
knowledge of programme input, which is a known limitation
for any static approach. For completeness, we also highlight
that our coarse‐grained checks on memory accesses leave room
for a data attack scenario targeting stack variables at higher
frames from a function that has at least a single call‐by‐
reference argument or an attack targeting another local vari-
able within a function. Detection of such data attacks requires
more fine‐grained checks, such as DFI [16], which cannot be
accommodated in a hardware module with very limited
resources.

7 | PERFORMANCE

The HSM is designed to perform its checks in real time while
the prover keeps running. We remind that the prover has a
general‐purpose CPU and enough memory resources that can

have an unbounded number of call frames. In contrast, the
HSM has limited memory and serves a specific purpose, where
its hardware is tailored for. For a practical attestation scheme,
both the memory usage and the complexity of the HSM tasks
should comply with its resource constraints without degrading
security guarantees.

In terms of memory requirements, the HSM must provide
enough space to host the RIM and call counters. The size of
the RIM can be defined as Oðnþ eÞ, where n is the number of
nodes and e is the number of edges in the model. The former
corresponds to the number of functions, whereas the latter is
mainly defined by the number of call edges from a caller
function to distinct functions and the number of return edges
to different call sites. We note that both (intraprocedural) in-
direct jump and memory access edges illustrated in Figure 5 do
not scale per function nor increase the complexity of the RIM
since their checks are not address‐specific. Hence, the number
of functions and call‐return relations between them repre-
sents the main cost of the static part. For the dynamic part,
the space required by call counters is also defined by the
number of programme functions, regardless of the depth or
recursiveness the call stack might have at runtime. Despite
being programme‐specific, we can approximate the memory
requirement of a RIM as a function of the programme size. To
provide insight into such evaluation, we have analysed three
bare‐metal examples of different sizes. Those binaries are
JTAG, bootloader and compression library implementations
with components, including UART, Adler, CRC32 checksums
and memory allocators. Table 1 summarises the number of
instructions and key RIM components found in those
instances. We highlight that RIM, centred around the pro-
gramme's call‐return graph, provides a more succinct rep-
resentation of the binaries with smaller sizes. For instance, zlib,
as the most complex example consisting of more than 9 K
instructions, is modelled using a far less number of compo-
nents with 57 function blocks (address ranges) and an average
of 1.4 call and 2.8 return (address) edges per function. With an
average of 14% model size to binary size ratio, RIM requires
reasonable memory resources.

Regarding the complexity of HSM tasks, each depicted
mode has a different process flow. Many modes, such as
Dispatcher, Indirect Jump and Store/Load, fulfil their tasks
within constant time. On the other hand, Direct Call, Indirect
Call and Return modes perform a linear search task whose
cost is normally defined by the degree of the active function
node in the RIM. However, those searches are expected to be
bounded in practice due to the limited number of functions.
For instance, zlib, as the most complex example examined,
does not include any function block with more than eight call
edges as shown in Figure 10. Therefore, those searches can
be parallelised at the hardware level with a small content‐
addressable memory buffer that would host the data of the
active function block and complete the search in constant time.
We emphasise that each mode intends to complete its task
within the same bus cycle. To perform these tasks in real time,
we consider a non‐generic hardware‐based implementation,
such as FPGA, for the monitoring logic described in Figure 8.
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Implementation of the monitoring logic at a lower abstraction
layer would enable the HSM to process much faster, where the
entire process of each bus mode can be completed in a single
tick of the FPGA's clock.

8 | RELATED WORK

8.1 | Static attestation

Software‐based attestation schemes, such as SWATT [17] and
Pioneer [7], suggest calculating checksums via pseudorandom
memory traversals. Because the traversals are initiated by the
nonce given by the verifier, a delayed response of the prover
would be interpreted as an attack. Although those schemes do
not require a key, their correctness is dependent on how time‐
optimal checksum calculations are. On the other hand,
hardware‐based schemes can address stronger adversaries with
reliance on trust anchors, such as trusted platform modules
[18, 19] and physically unclonable functions [20]. There are
also hybrid approaches [21–23] that leverage more commonly
available hardware components, such as read‐only memory
(ROM) and memory protection units. For instance, SMART
[21] suggests storing the key and the attestation code on ROM
with additional control mechanisms on the bus to ensure that
only the attestation code can access the key. A relevant work
[24] describes security requirements for the attestation key and
attestation code. They suggest two properties for the attesta-
tion key such as exclusive access of the attestation code with an
assurance of no leakage afterwards and three features for
attestation code, which are immutability, interruptibility and
controlled invocation as an enforcement of a legitimate entry
point to the code. In a recent work, VRased [25] extends
MCUs with a hardware module that can similarly obtain in-
formation about the instructions and memory addresses
accessed. Differently from our work, the information is used to
verify the security properties of the static attestation process.
RATA [1] elegantly addresses TOCTOU attack scenarios tar-
geting static regions. RATA logs the modification time of those
memory regions in a fixed memory address using VRased,
whenever these regions are touched, and includes this infor-
mation in the checksum provided as part of attestation re-
sponses. Therefore, the verifier can confirm that the contents
of attested regions are not changed at a time unknown to the
verifier. Unfortunately, RATA and similar checksum‐based
static attestation methods do not cover attack scenarios that
reside in dynamic memory regions, which are addressed by
runtime attestation schemes.

8.2 | Runtime attestation

DynIMA [26] extends static attestation [18] by introducing a
taint tracking mechanism for untrusted data used as code
pointers. ReDAS [27] adopts a different approach that checks
the fulfilment of two kinds of system properties. These are
formulated as structural integrity, for example, any return
address has to be the instruction address following its call in-
struction, and global data integrity constraints, for example,
data invariants. Both schemes are designed for high‐end de-
vices requiring operating systems. An increasing number of
studies in recent years promises control‐flow attestation for
more constrained embedded devices. For example, both
C‐FLAT [2] and LO‐FAT [3] propose digesting path traces on
the prover side and providing a single cumulative hash to the
verifier to provide the information of executed branches. C‐
FLAT uses binary instrumentation and TrustZone for this
purpose, whereas LO‐FAT suggests extending hardware for
branch recording and loop monitoring. Both studies aim to
reveal control‐flow hijack and some of the data attacks, such as
control‐flow bending scenarios. But to reason about provided
hash values, the verifier must discover all extractable path
traces using the CFG of the programme. However, the search
space can explode quickly for many programs with enough
number of nested control structures and indirect calls, such as

TABLE 1 Instruction counts and the
complexity of runtime integrity models (RIM)
of bare‐metal instances.

Instructions RIM highlights per function

Count Call [%] Ret [%] Functions Avg‐call Avg‐ret Max‐call Max‐ret

Jtag 165 12.1 1.8 5 0.8 3.3 3 10

Bootloader 554 12.8 2.7 17 1.3 3.4 6 8

Zlib 9068 2.6 1.3 57 1.4 2.7 8 19

F I GURE 1 0 Call graph of zlib library as the most complex bare‐metal
software evaluated.
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zlib. Furthermore, even if all CFG paths are discovered,
deciding whether a hash (i.e., path trace) represents a data
(control‐flow bending) attack requires the knowledge of
external programme input. We remind that in a system setting
[3] where the verifier has the programme and also defines its
input—which should typically be determined by the environ-
ment the prover is in—actual computation task assigned to the
prover could have been performed on the verifier side as the
trusted party. Apart from the schemes digesting control‐flow
events, more recent schemes [28, 29] offer data‐flow attesta-
tion mechanisms. For instance, LiteHAX [28] sends path traces
as bitstream and creates a cumulative hash for only memory
(store/load) traces this time. So the verifier needs to discover
legitimate memory accesses for the execution path given by the
bitstream traces. Because it has to provide control‐flow in-
formation (trace) to the verifier periodically in a lossless way,
LiteHAX yields more communication overhead. In addition,
two schemes, Tiny‐CFA [30] and DIALED [31], relying on the
VRased [25] architecture suggest logging control‐flow events
and external inputs with the proof‐of‐execution model of
APEX [32]. The former aims to reveal control attacks, while
the latter can be used to detect data attacks. In general, existing
runtime attestation methods either log or digest runtime events
to provide information about what happened on the prover
side. The verifier can accordingly check their correctness later.
However, the logging‐based approach introduces space and
communication overheads, whereas digest‐based approaches
require searching in the state space that can quickly explode.
Therefore, both approaches do not scale easily to more com-
plex software instances.

To address these challenges by offloading some of the
checks to the resources that are already required for logging or
digesting, the conference version of this work [5] suggested a
hardware security module that is similarly connected to
prover's system bus. However, the static runtime model and
the HSM logic were completely different in the conference
version with further limiting assumptions on the software
attested, such as the use of recursive functions and hard pre-
cision requirements for the static model. Unlike the conference
version adopting a branch‐centric (CFG) runtime model, this
paper uses a more lightweight call‐centric model that describes
the expected programme flow through function calls with also
less fine‐grained checks on data accesses. Furthermore, the
hardware logic in the conference version mainly identifies in-
structions via model‐given addresses on the bus, whereas the
HSM in this paper adopts an opcode‐based monitoring logic
using data bus values. Lastly, unlike the conference version
asking for a shadow stack, this paper employs call‐depth
counters and suggests a more practical scheme that can
attest software instances even with recursive function calls.

8.3 | Exploit mitigation

Apart from attestation schemes, many mitigation techniques
are also proposed in the literature against runtime attacks.
Differently, these studies prevent an attack state from

happening in the first instance. For example, the seminal
control flow integrity work [33] ensures that execution control
is always transferred to an address defined by the programme's
CFG. Code pointer integrity [34] suggests deploying a safe
stack to protect code pointers directly from memory corrup-
tions instead of validating their address values. The correctness
of those schemes relies on the integrity of (instrumented) code
and instrumentation data that must be kept on the same
memory space. Hardware‐based solutions, such as HCFI [35]
and HAFIX [36], modify instruction sets (ISA). Despite their
benefits over software‐based solutions, such as stronger pro-
tection and less overhead, their on‐chip design increases
deployment costs for existing devices with legacy issues. On
the other hand, against data attacks, a better approximation of
memory safety, DFI [16] uses reaching definitions analysis to
mitigate both control and non‐control data attacks. Data‐flow
integrity maintains a runtime definitions table, which logs
defining (write instructions) on each memory address to later
check whether they are written by expected instructions.
Hardware‐based data‐flow isolation, HDFI [37], proposes a
similar but more coarse‐grained approach. Instead of checking
instruction identifiers, HDFI splits memory addresses as sen-
sitive and non‐sensitive via one‐bit tags. In general, most of
these mitigation techniques are available to high‐end systems
and used in settings where the termination of programme
execution does not constitute an attack.

9 | DISCUSSION

9.1 | Possible extensions

Despite being orthogonal to this study, in case the prover has a
remote update mechanism for its firmware, the HSM API can
also be extended to handle the update of a matching RIM
remotely and securely. Because the HSM and the verifier
already share a key, an extended HSM and a protocol design
can verify both the authenticity and integrity of the new RIM
received. We note that the monitoring logic implemented as
hardware can still operate on different RIM instances kept as
data in the HSM's memory and therefore can be updated
remotely with the necessary changes.

9.2 | Cost considerations

Like any security mechanism, our attestation brings additional
costs due to a requirement of the FPGA. Such device cost is
justifiable for many critical domains in automotive, health, and
military systems that require high‐integrity assurance. In the
case of a sensor network, HSM devices can be selectively in-
tegrated into a few cluster heads. For other use cases, we
remind that the idea of integrating FPGAs into low‐cost MCU
systems is not new. Those programmable logic units are
commonly used in embedded space to take over some work-
loads that cannot be efficiently processed by MCUs. For
instance, many battery‐powered wireless sensors [38, 39]
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benefit from FPGAs to accelerate their computation‐heavy
tasks, while maintaining low‐cost and low‐power characteris-
tics of the system. Furthermore, embedded platforms such as
discontinued AT91CAP7 series could provide native MCU‐
and‐FPGA integration as a complete solution with metal
programmable cell fabric [40] and faster communication in-
terfaces [41]. Due to economies of scale, such devices with
promising costs of $6–13 [42] for each in large quantities
(100K) could be used to bring our security promises to non‐
critical domains with easily justifiable costs.

9.3 | Energy estimations

The energy consumption of an FPGA‐based HSM would be
very specific to the software task running on the prover's
platform. This is because the nature of prover's task and its
environment define how active or idle the prover's bus, and so
the HSM should be at runtime. Therefore, actual CPU time
required to perform the task is crucial for energy costs since
both the prover (MCU) and HSM (FPGA) would save signifi-
cant energy by putting themselves into low‐power sleep modes
during their idle modes. For instance, many MCUs operating at
low voltages (1–5 V) employ different energy modes that range
from a light sleep (45–200 μA/MHz), standby mode (1–50 μA)
to deep‐sleep (20–400 nA) [43]. Similarly, FPGAs are not
necessarily active all the time and can spend most of its time in
standby and sleep modes, therefore can save significant energy.
Especially, flash‐based FPGAs, such as IGLOO series [44],
require less static power to preserve its state compared to RAM‐
based options and can promise much lower consumptions
during these idle times with a power consumption ranging from
5 µW per 15 K gates to 53 μW for 1 M gates. Apart from the
static power usage, FPGAs have reasonable dynamic power
consumption ranging from 5 mW to 20 mW [45]. We remind
that a typical MCU (e.g., AT32UC3A0512) could be a more
power‐hungry while actively operating at 66 MHz with a re-
ported of 40 mA at 3.3 V [46].

10 | CONCLUSION

This paper presents a novel remote attestation scheme that
addresses both code and execution integrity of embedded
systems responsible for critical tasks. The scheme employs a
non‐intrusive hardware security module (HSM) loaded with a
static runtime integrity model of the programme. Thanks to
HSM's continuous monitoring through the prover's bus, our
scheme reveals any attempts to corrupt or replace the genuine
programme code. Unlike conventional static attestation
schemes, this provides immunity to TOCTOU scenarios
exploiting temporal gaps between two measurements for code
replacement and corruption.

Apart from the code attestation, our scheme also attests
how the legitimate code is executed considering its both con-
trol and data features. Hence, without having to discover
all possible execution paths in advance—‐subject to path

explosion—or introducing significant overheads by logging
them, our scheme reports both code and code‐reuse attacks
that can target the prover. The proposed HSM design with
system bus integration not only makes our scheme compliant
for critical embedded systems with legacy issues but also
monitors the prover's execution from a point that the adver-
sary cannot hide without a physical attack.
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