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Abstract

Signal Injection attacks pose a serious threat to systems that rely
on sensor information to determine their behaviour. Using such
an attack, an attacker can remotely manipulate the values of a sen-
sor by transmitting appropriately formed RF signals that induce a
current in the sensor wires. For example, to manipulate the temper-
ature sensor in a battery management system, to trigger thermal
protection and shut down the battery. While a number of defence
mechanisms have been proposed, they all need additional hardware
to work. In this paper, we present RIPPLE, a fully software-based
detection mechanism that can reliably detect signal injection at-
tacks against sensor systems in drones. A software-only solution is
a practical way to add protection to an existing fleet of drones, and
it is a cost effective alternative to the existing proposals for new
drones.

Our detection mechanism exploits a physical layer property
known as small-scale (fast) fading, which causes the wireless chan-
nel between the attacker and drone to change unpredictably. As a
result, the power induced by the attacker’s transmission will oscil-
late rapidly, whenever the drone is in motion. We show for the first
time that this effect occurs even with extremely minimal motion,
such as a drone hovering in place on a calm, windless day. This
oscillation is used as the basis of our detection system. We conduct
an in-depth evaluation of RIPPLE on drones in several different en-
vironments. Our results show that RippLE reliably detects signal
injection attacks. Even for weak attacks, changing the temperature
by as little as 2°C, and with a drone movement of only a few mil-
limeters, we have a success rate of over 98%. The performance only
improves with stronger attack signals or more movement.
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1 Introduction

Sensor systems are vulnerable to signal injection attacks, also called
intentional electromagnetic interference (IEMI) attacks, in which
electromagnetic waves (radio transmissions) induce unwanted volt-
ages in wires or circuit board traces, resulting in manipulated sensor
readings. These attacks have been demonstrated on a wide range
of sensor types, including temperature sensors [28]. Unfortunately,
the susceptibility of sensors to electromagnetic signals is an inher-
ent part of their design, governed by the laws of physics, making
it difficult to completely eliminate. As a result, various hardware-
based solutions have been proposed to enable microcontrollers to
detect IEMI and injection attacks [16, 22, 28, 33]. Although these
approaches can be integrated during the design and development
of new sensor systems, they come with trade-offs: they tend to
increase production costs and device size and are difficult to retrofit
into existing sensor systems.

In this paper, we address the limitations of hardware-based detec-
tion systems by introducing RippLE, a lightweight and completely
software-based IEMI detection mechanism. The key idea behind
RIPPLE is the observation that during an IEMI attack, even the slight-
est movement of the target device alters the RF channel between
the attacker and the target in an unpredictable way due to small-
scale fading effects. As a result, any external signal that induces a
voltage in the sensor system will fluctuate in amplitude and cause
measurable oscillations in the sensor readings, regardless of the
attack strategy or signal type. This phenomenon allows us to create
a highly effective detection method that can be easily applied to
both existing and future devices, such as drones, through a simple
software update at minimal cost.

It might appear as if the movement would have to be at least half
a wavelength of the attackers carrier signal for this to work, but that
is not the case. We do not need the new channel environment to
be entirely independent, we just need it to change. Any movement,
however tiny, is enough to trigger a change in induced power.

Our focus is on temperature sensors, as these sensors are among
the most widely used sensors today. They are used as a proxy for sys-
tem health in battery management systems, motors, and processors,
as well as for actual temperature sensing in environmental appli-
cations. Manipulation of these sensors can cause devices to shut
down or, in the case of drones, force an emergency landing [1, 12].

We perform extensive experiments on 3 commercial off-the-
shelf (COTS) temperature sensors to validate our approach and
demonstrate that even very subtle vibrations - just a few millime-
ters — can induce unpredictable changes in the RF environment.
These changes are significant enough to be exploited by RippLE
to successfully detect attacks. Our experiments cover a variety of
environments and include a range of motion and attacker power.
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In summary, we make the following contributions:

e We demonstrate the impact of small-scale fading on the in-
duced signal in sensor wires caused by IEML. Specifically, we
show that motion leads to significant detectable oscillations
in the amplitude of measured sensor readings.

e We propose two fully software-based algorithms for realising
RIPPLE: one based on variance analysis and another using
Min-Max aggregation.

e We mathematically analyze these algorithms and provide a
framework for setting detection thresholds tailored to the
specific requirements of different applications.

e We perform extensive experiments to evaluate the perfor-
mance of our algorithms using COTS sensors in different
environments. Our tests demonstrate that RIPPLE is robust
and environment independent.

2 Related Work

A large amount of academic research has highlighted the impor-
tance of sensor reading integrity, with attack channels based on elec-
tromagnetic (EM) waves [16], ultrasound [23], [11], infrared [24],
and light [15]. In particular, signal injection using IEMI is effective
against many classes of sensor types such as microphones [30], cam-
eras [14], Inertial Measurement Units (IMUs) [10], and temperature
sensors [28].

A number of countermeasures have also been proposed, summa-
rized in [31] and [7]. These countermeasures can be categorized into
two main approaches: hardware and software-based. Hardware-
based methods employ particular materials or electronic elements
to deal with IEMI attacks, while software-based methods do not
require any additional hardware and the design of the defense
mechanism relies only on data collected by the sensors and the
anomaly detection algorithm running on a microcontroller. The
most common hardware-based approaches are shielding and the
use of robust hardware, which is less susceptible to intentional and
unintentional electromagnetic interference. Shielding reduces the
risk of IEMI attacks by providing a physical barrier that blocks or
diverts electromagnetic energy away from the electronic devices
that need protection [16-19, 21]. For example, researchers in [16]
show that an imperfect shielding with openings attenuates injected
signal up to 40 dB. Using circuits with less non-linearity or adding
low-pass filters also makes it more difficult for the attacker to in-
ject a signal into the circuit and affect the sensor output [8], [13].
However, these hardware defenses cannot detect attacks, nor can
they completely prevent them; instead, they only slightly raise the
bar for the attack.

There are some other proposed hardware defense mechanisms
capable of attack detection [16], [28], [33], and [4], however, addi-
tional hardware components are still needed for implementation.
Although these hardware-based approaches work in many appli-
cations, for some scenarios, especially when upgrading existing
devices, a fully software-based solution is more desirable. This is
because by applying software-based approaches, there is no need
for any additional hardware and the defense mechanism can be
added as a patch to address these vulnerabilities in the existing
systems. This makes software solutions preferable, as they have
no overhead costs and can be easily implemented on all existing
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systems through a software update. In addition, adding hardware
components may reduce system performance in some situations.
For example, adding hardware to a drone not only increases the
overhead cost of producing a drone, but also makes it heavier,
which decreases flight efficiency by reducing maximum flight time.
To compensate, a more powerful battery is needed, which also
increases the price and weight.

There are only a few software-based defense mechanisms in the
literature, such as [26] and [3], where in [3] authors propose a ma-
chine learning approach to detect acoustic attacks on gyroscopes
and magnetometers in smartphones, and authors in [26] propose
a software-based sensor recovery system for robotic vehicles. Al-
though the solution presented in [26] works well in its intended
application, i.e., to recover sensor data for a short period of time, it
requires relatively high computational power and has considerable
runtime overhead, which adds to the complexity of the system. Simi-
larly, the software approach proposed in [3] requires a large training
set and has been only designed for smartphones. Furthermore, it has
not been designed to optimize memory usage and computational
power. To address these limitations, we present RIPPLE, which is
a fully software-based detection mechanism against IEMI attacks
that only requires a few bytes of memory and demands almost
no computational power. To the best of our knowledge, RIPPLE is
the first fully software-based detection mechanism against IEMI
attacks in the literature that exploits channel properties, such as
small-scale fading effect.

3 Background
3.1 Signal Injection into Sensor Systems

Electromagnetic waves can induce a voltage difference in nearby
conductors. Since sensor system wires and PCB traces are not de-
signed to act as antennas, this phenomenon is known as back-door
coupling or IEMI. An attacker can exploit this phenomenon to in-
duce voltage differences in the wires of a sensor system, resulting
in manipulated sensor readings. The amplitude of the voltage differ-
ence, and therefore the discrepancy with the actual sensor reading,
increases as the strength of the electromagnetic field increases.
Each circuit component has its own specific operating frequency.
To make the attack possible, attackers must find a suitable frequency
to transmit their signal, often referred to as the resonant frequency.
For example, an attacker aims to send a signal with a wavelength
proportional to the length of the sensor wire into which the signal
is supposed to couple into. Since the length of sensor wires and
PCB traces is small, malicious signals are usually modulated onto
high-frequency carriers, which are demodulated to in-band signals
by non-linear components, such as amplifiers and analog-to-digital
converters (ADCs). This technique has been used in many previous
studies [5], [6], [20], [27], [28], [29], [32] and [25].

3.2 Small-Scale Fading

Small-scale fading is a phenomenon experienced by all RF channels
where the amplitude of a wireless signal fluctuates significantly
with small-scale changes in the environment. It is caused by several
factors, such as non-uniform reflection, diffraction, and scattering
of objects in the environment, as well as multi-path effects, i.e.,
the signal taking multiple paths to reach the receiver. These signal
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Figure 1: An illustration of system model. The detection al-
gorithm is discussed in detail in Sections 6 and 7.

amplitude fluctuations are due to constructive and destructive inter-
ference of different parts of the transmitted signal that are received
with different delays by the receiver. To quote [9]: “in small-scale
fading, the instantaneous received signal power may vary as much
as 30 to 40 dB when the receiver is moved by only a fraction of a
wavelength”.

4 System and Threat Model
4.1 System Model

Figure 1 shows our system and attacker model. The system consists
of an analog sensor connected to a microcontroller through an
analog-to-digital converter (ADC). The microcontroller periodically
samples the analog signal to obtain a digital value. The value is
sent to the detection algorithm which outputs two parameters: (1)
A value representing the average of a number of raw samples, and
(2) the uncertainty which indicates how (un)certain the value is.

RippLE detects attacks based on the raw digitized samples, so
it can be used regardless of how the analog front-end works. We
propose two different detection algorithms that differ in accuracy
and resource consumption, described in Section 6.

4.2 Threat Model

The attackers transmission induces an IEMI signal in sensor wires
on a victim device. This is an additive process where the IEMI
signal is added to the existing sensor signal before being sampled
by the ADC. We model the channel between the attacker and the
sensor as a transfer function Hc(t, jo + o) which depends on time
t, frequency w and phase o.

The attacker’s goal is to modify the measured output of the sen-
sor to achieve a change in behavior, without getting detected. The
amount of change required is modeled by a threshold parameter.

The adversary has no physical access to the sensor system and is
attacking the victim system remotely by transmitting electromag-
netic (radio) waves. We do not place upper limits on signal power.
The adversary is aware of the make and model of the sensor as well
as the details of our detection mechanism; and can make a good
guess of the approximate sensor output.

Finally, we make standard assumptions about the wireless chan-
nel, i.e., the adversary cannot know (or control) channel changes
in response to movements and vibrations of the victim device as
described in Section 3.2.
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Figure 2: Example of how the vibration of the drone changes
the wireless channel between the attacker and the target,
causing the IEMI signal to induce a noisy signal that fluctu-
ates in amplitude rather than a clean DC offset. The fluctua-
tions are observable in both, the digital temperature output
and the analog voltage measured in the wires of the sensor.

5 RIPPLE

5.1 Principle Concept of RIPPLE

The wireless channel between an attacker and the target sensor
system in a drone will vary over time due to both the movement
and vibration of the drone and changes in the environment. The
key observation that enables our detection mechanism is that any
tiny amount of movement of the drone is enough to significantly
change the channel transfer function. This means that the amount
of induced current caused by an IEMI attack will change rapidly
and unpredictably as long as the drone is moving, even if that
movement is only a few millimeters. Because this phenomenon is
unpredictable, it causes the attacker’s signal to induce rapid changes
in the sensor output whenever the attacker transmits in a way that
cannot be compensated for. We use this observation to design a fully
software-based detection mechanism that detects these changes to
reveal the presence of an adversarial (external) signal.

5.2 Proof of Concept Experiment

Before describing our algorithms we first demonstrate the existence
and magnitude of the rapid changes with a simple experiment. We
use an off-the-shelf temperature sensor (MAX31855, K-type ther-
mocouple) and mount it on a X8+ drone from 3D Robotics. To cause
a tiny but repeatable amount of movement we have unbalanced the
propellers of the drone to cause vibration when the drone propellers
are spinning. Later in Section 8 we perform extensive experiments
on drones in different environments but at this stage we want to
make sure that the effect is from the vibration and not some other
source in the environment. For this reason we use vibration as a
proxy for tiny movements so we can perform the experiments in
a controlled environment, free from other external signals. The
range of movement from the vibrations is on the order of a few
millimeters which is smaller than the movement of a drone in flight,
even when hovering in place.

We use an arbitrary waveform generator as a transmitter and an
oscilloscope to record the resulting signal injected into the thermo-
couple wires. The attacking signal is sent through an antenna at
distance of 30 cm from the drone. Figure 2 shows the analog voltage
of the thermocouple wire, and the resulting digital sensor tempera-
ture reading. Before the attack starts, the voltage level is around
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—75dBV and the temperature is stable at around 22 °C. When the
attack starts the voltage increases and the sensor output drops to
around 0 °C. 10 seconds later when we start the vibration, the fast
fading of the channel causes voltage fluctuation in the attackers
signal, which in turn results in fluctuation of the digital temperature
samples. We can clearly observe that the fluctuation of the signals
are correlated perfectly with the periods of vibration, confirming
our hypothesis that the vibration is causing the fluctuations. We
go into more details on this in Section 8, but this is enough for us
to start designing a detection mechanism around this phenomenon.
We note that we used an oscilloscope to show the injected voltage
fluctuation in the sensor wires, however, RIPPLE does not require a
fast ADC to detect these attacks.

6 Attack Detection

In this section, we propose two fully software-based detection mech-
anisms, one based on variance, and one based on Min-Max.

We design our detectors with the awareness that they must run
on flight controllers and other devices with limited computing re-
sources. For this reason we have given high priority to solutions
that use as few resources as possible, while still successfully per-
forming the detection. There are many different statistical methods
to measure rapid changes in the sensor output, however we found
that simple variance provides the best trade off between detec-
tion power and resource consumption. We note that none of our
approaches below requires a fast Analog-to-digital converter.

6.1 Variance-based Approach

One of the basic mathematical tools that quantifies variation in a
series of data points is variance. In this variance-based approach,
the detector measures the average value and the variance of the
sensor output over a sample window of m. At the end of the sample
window it outputs the average as the new value and the variance as
the uncertainty of the measurement. This enables the consumer of
these values, e.g., the flight controller, to make nuanced decisions
about what values to accept in different situations.

The approach works as follows. The flight controller executes
Algorithm 1 at regular intervals to sample the sensor. Each time the
algorithm is executed it updates its internal registers and once m
samples have been processed the algorithm outputs two values: an
average value over the sample window, and an uncertainty value
based on variance.

The variance of m samples would normally be calculated as
follows:

4 i — Xmean 2
“Zl% O

where x; is the ith sample and X;;,eqn is the average of all samples
in the sampling window. However, there are two practical problems
with this approach. First, we would have to store all the samples
before they could be processed, and second, the computation of
mean and variance would be unevenly distributed at the end of the
sampling window.

Given the storage and computational limitations of flight con-
trollers, we overcome these problems by splitting the computation
of both the mean and the variance over all samples. Calculating the
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Algorithm 1 Variance-based detection algorithm

Input: window size: m = 2k
Output: Value and Uncertainty

1 i++

2 x = GetRawSample ()

3 Xmean += (x >> k)

4 Var += ((Xlast - x)(Xlast - x)) >> k
5 if (i == m)

6 {

7 output Xmean // Value

8 output Var // Uncertainty
9 i =0

10 Xlast = Xmean

11 Var = 0

mean requires only that we know the size of the sampling window,
so this must be provided as an input to the algorithm. For reasons
we will get to shortly, we also require that this size is a power of 2,
i.e., it can be expressed as 2X.

To calculate the variance, we need to know the average of the
samples in the sample window, which we cannot know if we are
only halfway through. Our solution to this problem is to use the
mean of the previous sample window as a proxy. This is an approxi-
mation, but since we design this algorithm for sensors that measure
properties like temperature that does not normally change rapidly,
we argue that it is sufficient. This method allows us to add each
term of the sum in Equitation (1) to a running total each time a raw
sample is taken.

Looking at Algorithm 1, on line 1 we increment the sample num-
ber i to indicate that we are starting a new sample. We then store
the raw sample x on line 2 and perform the amortized part of calcu-
lating the mean and variance on lines 3 and 4. In these two lines, we
take advantage of the fact that m = 2kisa power of two, so dividing
by m is the same as right-shifting by k which is considerably faster
and can be done by even the tiniest microcontroller. When we reach
the end of a sampling window, i.e., if i = m, we need to reset the
sample counter as well as the mean and variance computation, and
output the computed values.

Algorithm 1 only needs space to store seven values: m, k, i, x,
Xmean> Xjast>» and Var. Although this approach is already light-
weight and does not require much memory, we wanted to further
reduce the complexity of the computation. Motivated by this, we
propose an alternative Min-Max-based approach that requires even
less space to run the algorithm.

6.2 Min-Max-based Approach

In this approach, the flight controller executes Algorithm 2 at regu-
lar intervals to sample the sensor. Just like in the previous approach,
each time the algorithm is executed it updates its internal registers
and once m samples have been processed the algorithm outputs
two values: a “sort of” average temperature value over the sample
window, and an uncertainty value based on the difference between
the minimum and maximum values in the sampling window. The
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Algorithm 2 Min-Max-based detection algorithm

Input: window size: m
Output: Value and Uncertainty

1 i++

2 x = GetRawSample ()

3 if (x > Max) Max =

4 if (x < Min) Min =

5 if (i == m)

6 {

7 output (Max + Min) >> 1 // Value
8 output (Max - Min) // Uncertainty
9 i =20

10 Max = -inf

11 Min = inf

12 }

“average” value computed by Algorithm 2 is the midpoint between
the extreme values, i.e., (Max + Min) /2.

Calculating these two values allows us to completely eliminate
the need for computation when sampling raw sensor values, except
to check if the newly sampled value needs to replace the currently
stored Min or Max. At the end of the sampling window, we only
have to perform two very simple computations to convert our
Min and Max values into the two output of the algorithm — value
and uncertainty. Furthermore, this approach allows us to relax the
requirement that the sampling window must be a power of two.

Algorithm 2 starts out similar to the previous approach in that
on line 1 we increment the sample number i to indicate that we are
starting a new sample, and store the raw sample x on line 2. All
that is left to do is to update Min or Max if needed, which we do
on lines 3 and 4. At the end of the sample window, i.e., when i = m,
we compute the two outputs on lines 7 and 8, taking advantage of
the fact that a division by 2 is the same as right-shifting by one.
Finally, we need to reset the sample counter i as well as Min and
Max (lines 9-11).

This approach comes with some trade-offs compared to the more
robust variance-based approach. Algorithm 2 is much more sensi-
tive to outliers or spikes in the measurement, with a single spike
being enough to offset the “average” for the block of samples. Such
a spike however would also cause the uncertainty to be high, so the
consumer of the values, e.g., a flight controller, would likely not use
such erroneous values. If the raw samples are relatively consistent
this can yield results that are almost as good as the variance-based
approach, with much less computational and storage overhead. The
storage requirements for Algorithm 2 are only five values: m, i, x,
Min, and Max. This might seem like a trivial amount of improve-
ment over Algorithm 1 but for some tiny microcontrollers every
register counts, especially if sampling the sensor is not the only
task it needs to perform.

Note that both approaches are very lightweight and many sensor
systems could run either without any problems. In Section 8, we
experimentally evaluate both approaches on several such sensors.
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7 Analysis of Detection Mechanisms

In this section, we discuss details of the detection methods and how
to find appropriate thresholds for both approaches. We also state
how we can use uncertainties in Algorithms 1 and 2 to calculate
the reliability of measurements, which facilitates making more
sophisticated decisions in the microcontroller. It should be noted
that all computations in this section are performed offline and do
not introduce any performance overhead to the algorithms when
samples arrive.

7.1 Analysis of Variance-based Approach

The i-th sample of a sensor value can be modeled as follows,
xi=X+n; (2)

where X is the value of the property that sensor measures, i is the
sample number, and n; is the noise. Here n; models the aggregated
effect of quantization noise, environment noise, and all the other
possible noise that affect our measurement for i-th sample, which
we assume that is Gaussian with variance n?, we refer readers to
Section 9.1 for more explanations regarding the noise distribution.
At the presence of an attacker, we have sensor values with more
variations compared to the case when there is no attacker as we
see in Section 5.2.

If the sensor value variation caused by the attacker is substan-
tially higher than n?, it could be used as an indicator in the attack
detection algorithm. In this approach, variance is a quantifier for
the amount of this variation on the output of a sensor and based on
its value we decide whether the sensor data is reliable. Assuming
that, in the absence of an attacker, we have only a specific, lim-
ited variance in the sensor output, the attack can be detected if we
measure a higher variance in the system. However, the variance
over a block of m samples from the sensor also depends on the
background noise that exists in the sensor data when there is no
attack.

An ideal IEMI signal for an attacker is when the resulting vari-
ance Var is close to the background noise, such that it cannot be
distinguished from it. According to Equation (2), when there is no
attacker, each sample is composed of the exact amount of a physical
quantity (X) and a Gaussian noise, n; for i-th sample. Since n; is a
Gaussian variable, and x; — X = n; for all i,

mVar < xi—X 2
nZ Z ( n ) ’
i=1
is a Chi-squared distribution with m degree of freedom. This means
if we multiply variance ,Var, by % the resulted variable, m;gar, has
a Chi-squared distribution. We form hypotheses Hy, and Hj, where
Hop, and H; indicate sensor data is reliable, and not reliable, respec-

tively. We also define p as the maximum tolerable false-positive
rate. A threshold Ay is calculated based on p, m, and n? as follows,

Iy = n—;cdf_l (;gz(p, m)), (3)

where cdf 1 (7%(p, m)) is inverse cumulative distribution function
(cdf~1) of the Chi-square distribution with degrees of freedom m.
If Var < Ay holds, the sensor data in a block is reliable and Hj is
true, otherwise Var > Ay and the sensor data is not reliable. The
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Figure 3: Normalized thresholds % and )LTM vs. number of
samples m in a block for 3 different p. The acceptable area is
below curves. As we see by increasing p for both approaches
the area below the curve decreases which means only less
noisy signals can be accepted as legitimate.

probability that noise itself produces a variance larger than Var,
which is the uncertainty in Algorithm 1, is calculated as follows,

.9 [ mVar
Cr=x\7zm

©

where §2(a,b) is the probability that a Chi-squared distribution
with degree of freedom b is larger than a. If the microcontroller
needs to make more sophisticated decisions than simply accepting
or rejecting measurements based on threshold Ay, it is possible
to use the uncertainty Var in Equation (4) and make decisions
based on the value of Cy as this is the probability that the sensor
measurement is reliable.

As p increases, we can choose smaller thresholds and the attacker
becomes more restricted. Therefore, p is a security parameter, which
provides a trade-off between security and false-positive rate in the
detection system. If p is chosen too small, it is easier for the at-
tacker to bypass the detection system without getting detected,
while if p is too large, we receive a high false-positive rate, which
interrupts the sensor system and reduces the system’s performance.
m is also another system parameter. By choosing a small m for a
fixed p, we reduce the detection time of an attack since we update
decisions after receiving m samples, however, to obtain the same
false-positive rate we need to choose a looser threshold, Ay, which
provide more freedom for an attacker to trick the sensor system
(see Figure 3 on the left), which results in higher false-negative
rate. According to Figure 3, for a fixed p as m decreases normalized
threshold ( /}l—‘z’) increases, which leaves more room for the attacker.
In general for the variance-based approach, if m increases, the prob-
ability of a successful attack decreases, while the attack detection
time increases.

7.2 Analysis of Min-Max-based Approach

In this approach, we consider the maximum variation in a window
of m samples as a metric to decide whether the sensor data is
reliable. We can define two hypotheses Hp, and Hj, where Hy, and
H; indicate that the data is reliable, and not reliable, respectively.
We also define p as the maximum tolerable false-positive rate and
a threshold Ay, which can be calculated based on m, p, and n. To
calculate the probability of falsely indicating a block of data as
unreliable, there should be at least two samples in a block that their
difference is more than Ays. The probability of a false-positive is as
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follows,

Prep =Pr( U

ije[lm], i<j

Sij) < (’:)Pr(S), )

where Prg ,, is the probability that we have at least two samples
where their difference is at least Apr and Pr(S;;) denotes the prob-
ability that the absolute value of the difference between sample
i—th and j—th (out of m samples is higher than Ayy). Since we have
additive i.i.d. Gaussian noise for all m samples, Pr(S;;) is the same
for all i and j. Therefore, we can rename it to Pr(S). After some

2
simplifications and using the Chernoff bound Q(x) < %eT given
in [2], we can have an upper-bound for Pr(S) as follows,
2
e 4n?
N
where Q(.) is Q-function. Here, combination of Equation (6) with
(5) results in Equation (7) as the probability of false-positive using
Min-Max-based approach with threshold A,.

Pr(S) <20 (ATM) + (6)

A A
A T an? T an?
o< (lel)- 5 | 0 o

From Equation (7), we are able to calculate threshold A5 based on
p, m, n as follows,

(3)

If Max-Min < Ap holds, the sensor data in a block is reliable
and Hj is true, otherwise Max-Min > Aps and the sensor data is
not reliable. The probability that noise causes maximum difference
Max-Min, which is the uncertainty in Algorithm 2, is bounded as
follows,

A —1n(”‘/§) (®)

_ (Min-Max)?
m\e 4n?
Cy = min 1,( )_ ©)
2 V2

Similarly if the microcontroller needs to make more sophisticated
decisions than simply accepting or rejecting measurements based
on threshold Ay, it is possible to employ uncertainty Max-Min in
Equation (9) and make decisions based on the value of Cyy as this
is the probability that the sensor measurement is reliable.

Figure 3 on the right illustrates the relation between Ays/n (nor-
malized threshold) and the number of samples for 3 different p. By
increasing p we would be able to choose a smaller threshold and
make the attacker more restricted.

8 Evaluation of RIPPLE

In this section, we present an in-depth evaluation to verify our
hypothesis and support the initial experiments conducted in Sec-
tion 5.2. Since sensors are usually inside an enclosure, attacks from a
larger distance require high-power signals. While IEMI attacks with
high power are possible, as demonstrated in [10], we decide to keep
the transmission power low to ensure compliance with government
regulations. Therefore, we instead evaluate RippLE on 3 different
COTS temperature sensors, which gives us more control over the
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experiments and the data captured. We conducted extensive exper-
iments on thermocouple temperature sensor MAX3185, where we
mount the sensor on a drone in various environments and evaluate
the performance of our detection mechanisms by obtaining false
and true positive rates from each algorithm. We then extend our
experiments on two other temperature sensor in Appendix to show
the generality and effectiveness of RIPPLE on detecting IEMI attacks
on different temperature sensor types.

All experiments are conducted in the line-of-sight (LoS) scenario
because the non-line-of-sight scenario would increase the chan-
nel fading effects, thus making detection easier. We note that our
experiments consider all noise sources involved in the communi-
cation between a drone and a ground control station (GCS), as we
conduct them on a real drone. In our experiments, we consider the
worst-case scenario for detection, i.e., LoS between the drone and
the attacker and movement of only a few millimetres. To verify the
effectiveness of RIPPLE under more realistic settings, we conduct
an attack against a temperature sensor attached to a flying drone.

8.1 Experimental Design

We run experiments in 4 different environments, a small lab, a
medium-sized room, a park, and a backyard, with an actual flying
drone, to confirm that RIPPLE is environment independent. The
experiments in the medium-sized room, park, and backyard are
at longer distances to demonstrate different fading environments
and actual drone movements to confirm our results from the ex-
periments in the small lab. We also conduct attacks using different
antennas, omnidirectional and directional, to test the performance
of RipPPLE. As more complex signals can be decomposed to sines,
we use a single tone sine wave attack signal with a frequency that
yields the maximum power transfer to the sensor. As described
in Section 3, the success of IEMI attacks depends largely on the
attack frequency F and the transmission power P. At the same,
the frequency affects the channel variations caused by small-scale
fading. To account for all these factors, we conduct an extensive list
of experiments with various combinations of F and P. We run the
experiment with frequencies between 600 MHz and 1 GHz (as these
frequencies are the most effective ones against the MAX3185 tem-
perature sensor) with steps of 25 MHz and different output powers.
Due to the non-linear output of our amplifier, we measured the
output power for each frequency used in our experiments and for
different settings of the signal generator. The results are presented
in Figure 10 in the Appendix for reference. The temperature sensor
MAX3185 is attached to a X8+ drone from 3D Robotics, unless
otherwise stated. In the small room, an omnidirectional antenna
(VERT900) is placed roughly 50 cm away, while we use a direc-
tional antenna for experiments in the medium-sized room, park
and backyard from a larger distance. To make our measurements
reproducible and more reliable, we use a Python script to automate
all measurements. Using Python, we can control the signal genera-
tor and change the frequency and the power of the attack signal
and the drone motors at the same time. We record vibration data
using an Arduino to be able to store everything as csv files. Our
source code is publicly available.! An example setup of one of our
experiments is depicted in the Appendix in Figure 13.

IThe link has been removed for anonymization reasons.

WiSec ’25, June 30-July 3, 2025, Arlington, Virginia, USA

Phase 1 Phase 2 Phase 3 Phase 4
301
O
o .
© 204 Attack Attack No Attack
% No Attack } } 4
g 101 Drone OFF Drone ON Drone ON
g
£ 0

0 2.5 5 7.5 10 12.5 15 17.5 20
Time [s]

Figure 4: The four phases on one of our measurements at the
attack frequency of 925 MHz.

We split each experiment into four phases of equal length. During
each 5 s phase, we collect data as described above.

Phase 1 — Idle State. In the first phase, we collect temperature
data during an Idle State, i.e., the attack signal is not present and
the drone is switched off. This ensures that we account for potential
electromagnetic interference coming from the environment.

Phase 2 — Attack & Drone Off. In the second phase, we turn on
the signal generator and emit an attack signal at a given frequency
F and power P.

Phase 3 — Attack & Drone On. In the third phase, we continue
emitting the attack signal while we switch the drone on. We have
imbalanced a propeller which causes the entire drone to vibrate
slightly. This simulates the subtle movements a hovering drone ex-
periences, but in a way that is more repeatable in our measurement
setup.

Phase 4 — No Attack & Drone On. In the final phase, the attack
ceases, but the drone is still switched on. Collecting data during
this phase enables us to eliminate potential interference from the
drone itself or from other sources in the environment.

For each phase we give the system a few seconds for everything
to stabilize and then we start recording data. This is especially im-
portant for the third phase, to get a consistent amount of vibration
when the propellers start spinning. In fact, during the transition
period from the phase 2 to the phase 3, we have substantially larger
sensor output variations as the range of movement is larger and the
detection is easier. Figure 4 illustrates a typical sensor data from
the four phases described above. From 0 to 5 s we record data when
there is no attack signal by the signal generator and the temper-
ature is around 34°C. When the attack starts at 5s in the second
phase the sensor output drops to 2 °C and stays almost without any
change since the channel between the antenna and the sensor is
fixed and not varying because everything is static and drone is not
moving. However, in the third phase, the propellers start to spin,
causing vibration, and the channel continuously changes between
the antenna and the sensor. Thus we see temperature fluctuation
since the received power varies. In the last phase, the drone is still
moving, but there is no attack signal and the sensor shows the
true value of temperature again which confirms that temperature
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Figure 5: (a) illustrates the relationship between variance and temperature change during the third phase for frequencies
800 MHz, 900 MHz, 1 GHz and for different transmission powers. The antenna position is fixed at a distance of 50 cm from
the sensor. As the transmitted power increases, the attacker’s temperature offset increases and consequently variance of
temperature. (b) illustrates the relationship between Max-Min and temperature change during the third phase. Similarly, as the
transmitted power increases, the attacker’s temperature offset increases, consequently causing Max-Min to increase. Number

of sample per block is m = 32.

variations in the third phase only resulted from IEMI and not an
interference from the drone itself.

8.2 Experimental Results in Small Lab

Figure 5a illustrates the relationship between variance of tempera-
ture and the temperature offset caused by the attacker in the third
phase, for all measurement frequencies of 800 MHz, 900 MHz, and
1 GHz. As we increase the transmitted power, the average tempera-
ture DC offset caused by the attacker increases, and the variance of
temperature due to variation of the channel as the result of drone
movement increases. This means that, unsurprisingly, it is easier
to detect attacks when the attacking signal is stronger. A similar
result can be seen when we use our Min-Max-based approach, as
can be seen in Figure 5b.

To evaluate our algorithms we first calculate noise power n
and then thresholds Ay and A, for both the variance and Min-
Max-based approaches. These depend on noise variance n? defined
in Equation (2), and parameters m and p. To this end, we use the
temperature sensor output in the first phase of the experiment
(where the attacker is not present) to calculate the variance (over a
3 s window of data, i.e., m = 32). We take average these variance
measurements as the noise power. The result of this calculation
is 0.01, which means n? ~ 0.01. This indicates that thresholds, Ay
and Ay for the variance- and Min-Max-based approaches should be
sufficiently higher than n? = 0.01 and n = 0.1, respectively, to obtain
a small false positive rate according to the analysis in Section 7. For

2

instance, /1—‘2’ and Am must be larger than 2 and 7, respectively, to
n n

yield the false positive 1073 for m = 32 (See Figure 3). Note that
there are other factors such as sensor failures and interference that
might result in a higher false positive rate, however, we have only
considered the effect of noise in Section 7. Therefore, these are
minimum thresholds to satisfy the false positive requirement.

To show the performance of RippLE for all possible thresholds,
we plot Receiver Operating Characteristic (ROC) curves for each
approach. A ROC curve represents true positive rates versus false
positive rates of a classifier for all classification thresholds. The best
possible performance of a classifier is when the true positive rate is 1
and the false positive rate is 0. Hence, as the distance of a ROC curve

to point (0, 1) decreases the performance of the classifier improves.
Figures 6a and 6b illustrate ROC curves for variance and Min-Max-
based approaches, respectively. We classify different attacks based
on the amount of temperature offset they add to the sensor output.
As shown in Figures 5a and 5b, the performance of both approaches
improves as the temperature offset, and consequently the variance
and Max-Min, increases due to the attack. This finding is further
confirmed in Figures 6a and 6b. For instance, using the variance-
based approach, we can detect almost 98% of the attacks that change
temperature above 2°C with a false-positive of 0.54% with choosing
Ay = 0.024. If the sensor system is resilient against a few degrees of
temperature change and only offsets above 5°C are important then
we can detect 99.5% and 98.4% of attacks with false-positive rates of
0.54% and 0.27% choosing Ay = 0.024 and Ay = 0.04, respectively.

For the Min-Max-based approach, we are able to detect all the
attacks that add offsets above 7°C within 1482 times of repeating
attack signal with a false-positive rate of 0.2% when we choose A1 =
1.25. For Attacks with AT > 5°C, we can detect 99.7% and 97.5%
of attacks with false positive rates of 0.67% and 0.34% choosing
An = 0.75 and Apr = 1, respectively.

As seen from Figure 6, the Min-Max-based approach slightly
under performs the variance-based, especially to detect smaller
attacks, i.e., AT > 2°C. However, it uses less resource such as
storage space, and computation which is its advantage.

8.3 Experiment in Other Environments

To evaluate RIPPLE in other environments with the minimum multi-
path effect we conduct some experiments in a medium-sized room
and in a park, where there are no walls in the vicinity of the antenna
or the drone.

Medium-sized room. We run the same four phase experiment
similar to the small lab, using the same frequencies and transmis-
sion powers, see Figure 10 in the Appendix, but with a directional
antenna, fewer repetition, and a different distance 3.1 m. The results
align with those obtained in the small lab, indicating that RIPPLE is
not dependent on the size of the room in which the experiments
are conducted.
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Figure 6: True-positive vs. False-Positive Rates for both of the presented approaches — Variance and Min-Max. Number of

samples per block is m = 32.
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Figure 7: Different metrics collected during an experiment
outdoor on the MAX3185 temperature sensor in a large open
field. Even though multipath is reduced to a minimum due to
the open environment, high temperature fluctuations, which
results in high variance and Max-Min, are observed during
the attack when the rotors are spinning and the drone is
vibrating. The antenna is 4 m away from the drone, emitting
a signal with power of around 23 dBm at 915 MHz.

Outdoor Experiments. To further verify our experimental results
from the small lab in an environment with little to no multipath
effect, we re-run the same experiment in a park. We position the
directional antenna around 4 m away from the drone to transmit the
attacking signal toward the drone. Figure 7 shows the result of the
experiment and the output of each detection mechanism. The top
figure shows the temperature recorded during the experiment. The
middle figure shows Max-Min of sensor output for each 2.3 s and
the bottom figure shows the variance of samples during each 2.3 s.
As we see, during the time that the attacker is present and rotors are
spinning, variance and Max-Min are substantially higher than the
time that the attacker is not present and both detection mechanisms
can detect attacks. During a small time window between 250 s
and 300 s, where rotors stop and then shortly start to spin again
while the attack is on we have a higher variance and Max-Min
since the drone is not in a steady state situation and the range of

movements are larger. This indicates that detecting an attack is
easier in situations where the drone is not in a steady state, such
as when the wind has just started to blow. This experiment shows
that even in an environment with the minimum multipath effect
RippLE is efficient and can distinguish reliable sensor data from
unreliable ones. We refer to the Appendix for results of experiments
on other temperature sensors.

8.4 RrppPLE in Flying Drones

In previous experiments, we have artificially created movement
using unbalanced propellers. This helped us to ensure reproducibil-
ity and only cause subtle movements, which is considered to be
the worst case scenario for RippLE. However, to evaluate the per-
formance of RippLE for more realistic movements, we perform ex-
periments on a flying drone. We attach the MAX3185 temperature
sensor to a DJI Phantom 3 and attack the sensor at a frequency
of 875 MHz with an output power of 30 dBm from a distance of
3m while the drone hovers at a height of about 1 m. We use a
high-gain directional antenna to deliver maximum energy to the
target sensor, reduce multipath, and facilitate targeting while the
drone is slightly moving. The result of this experiment is shown
in Figures 8 and 9. In the first experiment, the antenna position
is fixed, while in the second experiment we constantly adjust the
antenna direction to follow the drone’s position. Consistent with
our expectations and previous experiments with artificially induced
movements, temperature fluctuations are easily observable, and
even larger in amplitude due to the increased movements of the
drone. This experiment confirms that detecting an attack in a flying
drone is even easier for RIpPLE, and emphasizes that the results of
the previous experiments are representative while being considered
the worst-case scenario.

9 Discussion

In this section, we cover a few loose ends and discuss potential
limitations and extensions to RIPPLE.

9.1 Noise Distribution Assumptions

In our analysis of the two detection strategies (Variance and Min-
Max in Section 7) we make the assumption that the distribution of
environmental noise is Gaussian. This might lead some to wonder
if this assumption is always true, and what happens if, for whatever
reason, the distribution of environmental noise is different.
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Figure 8: Temperature measurements during the attack with
a fixed antenna when the drone is still and flying. Tempera-
ture variations are greater since the range of movements is
larger compared to previous experiments.
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Figure 9: The drone hovers from the beginning to the end
of the experiment. We constantly adjust the direction of
the antenna to follow the drone. This experiment shows that
even with adjustments in antenna position or direction, large
variations are introduced, allowing RIPPLE to detect attacks.

The short answer is nothing. Neither of our two detection mech-
anisms rely on this assumption to perform their function, so it only
comes into play when deciding what thresholds to pick for the
uncertainty, in order for the flight controller to achieve a certain
level of false positives.

Noise can only affect the performance of the detection if it is of
sufficient amplitude to affect the sensor measurement, regardless of
the distribution. In that case our algorithms will indeed output an
increased uncertainty, since the noise source is external to the drone
and therefore moves (ever so slightly) relative to it. As explained
in detail in Section 5 this will cause an amplitude oscillation in the
temperature measurement (again, regardless of the distribution)
and so lead to increased uncertainty about the real measurement.
However, that is by design since we have no way of knowing if the
noise source is malicious.

9.2 Adversary Evasion Strategies

Throughout the paper we talk about how IEMI signals are detected
because an attacker cannot avoid the fast fading effects of the
channel between themselves and the target sensor system. However,
we have not talked explicitly about what, if any, strategies are
available to the attacker and how attacker behavior could affect the
detection performance.

Could an attacker somehow predict the channel fading and com-
pensate by modulating the transmitted signal? No. The attacker
would have to know every detail about the environment, including
the distance to the moving target with sub-millimeter precision.
This is simply not feasible in practice. Work in other areas of se-
curity confirms this, as channel fading has been used as a basis
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for cryptographic key generation and as a source of entropy for
random numbers.

Could an attacker increase the transmission power to a point
where the oscillations no longer happen? No. In fact, our data
indicates that a stronger adversarial signal only leads to stronger
oscillations, and thus a higher uncertainty value in our detection
algorithms. In theory there is of course an upper bound where
the induced current will cause a denial of service to the on board
electronics of the drone, but we consider such EMP-like attacks to
be out of scope.

Could an attacker transmit at such low power as to make the os-
cillations fall bellow the detection threshold of the flight controller?
Yes. An attacker who transmits a sufficiently weak signal will not
be detected, but that weak signal will also not have an effect on the
sensor measurement. Since the detection algorithm works in the
digital domain, after the sensor measurement has been digitized, we
cannot have a situation where a signal can affect the measurement
value, but not be detected. If the measurement is affected enough
to cause a sample to change, it will cause the uncertainty to go up.

Could an attacker somehow change the value slowly to avoid
detection? No. Even if the adversary transmits a signal that keeps
the new temperature constant, the fact that an external signal,
subject to fast fading, is introduced into the sensor system, means
that there will be oscillations. No amount of careful manipulation
of the values will prevent detection.

It is not practical to account for every single possible attacker
strategy, and the above list does not attempt to be exhaustive. That
being said, we strongly believe, and all the data we have so far is
confirming that, any signal regardless of its shape, phase, timing
characteristics, amplitude, frequency, or anything else we have
been able to test, is subject to the same underlying constraints
imposed by the channel fading. It will cause oscillations, and we
can detect those if they are anyway near strong enough to affect
measurements.

10 Conclusion

In this paper, we present RIPPLE, a fully software-based detection
mechanism against [IEMI attacks. RIPPLE is designed as a lightweight
algorithm that can be executed on almost any microcontroller, and
is intended to be integrated into, e.g., flight controller software
as an optional hardening feature. Being software-based it can be
deployed to legacy systems with a software update, and has negligi-
ble memory requirements. RIpPLE works because of a fundamental
property of the wireless channel called fast fading, a type of small-
scale fading that is unpredictable and random in nature. This means
that it is (practically) impossible for an attacker to avoid detection
in any environment. We propose two versions of our detection al-
gorithm, one based on variance and one Min-Max-based approach.
We evaluate them mathematically and experimentally using a X8+
drone from 3D Robotics, DJI Phantom 3, and 3 COTS temperature
sensors. We demonstrate that RIppLE is effective and robust in dif-
ferent environments. To show the effectiveness of the algorithms,
we present ROC curves for different classes of attacks, which show
excellent performance.
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A Transmission Powers

Due to the non-linear output of our amplifier, we measured the
output power for each frequency used in our experiments and for
different settings of the signal generator. The results are shown in
Figure 10.

B Evaluating other Temperature Sensors

We present some experimental results on two other COTS tem-
perature sensors (KY-013 and MAX6675) and the performance of
RippLE to further validate the applicability of variance- and Min-
Mazx-based approaches. Below we briefly describe the setup and
results.

We first sweep from 50 MHz to 1 GHz to find the best attack fre-
quency for these sensors. Then we place them on the drone and put
the antenna 30 cm away from sensors to see the effect of movement
on the sensor measurement when the antenna is transmitting. In
the first experiment, we mount a KY-013 NTC thermistor temper-
ature sensor on the drone and position the attacker antenna. The
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Figure 10: Power transmission in the small lab with distance
50 cm from the sensor for different frequencies. Powers in
legend are signal generator powers before amplification.
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Figure 11: Illustration of how spinning rotors of the drone af-
fect KY-013 thermistor output in the presence of an attacker.
As it seen, even a small movement of a person in the room
from t = 2s to t = 4s while the antenna is transmitting but
the drone is not moving resulted in temperature fluctuations.
This indicates that not only the drone movements but also
the position and movement of objects in the environment
affect the wirelesses channel and consequently the received
power by a victim sensor, which is unpredictable and make
it (practically) impossible to avoid by the attacker.

attack was performed at 30.8 dBm at frequency 346 MHz. In the
second experiment, we do a similar experiment on the MAX6675
temperature sensor transmitting 25 dBm at frequency 361 MHz. Fig-
ures 11 and 12 show the temperature readings on sensors KY-013
and MAX6675, respectively, when the attack is on, and the drone is
moving. As can be seen in these figures, there is a significant noise
when rotors are spinning while the attack is on, which indicates
that RippLE works well for attack detection on different tempera-
ture sensors. Even a small movement of a person in the room from
t = 2s to t = 4s while the antenna is transmitting but the drone
is not moving resulted in temperature fluctuations according to
Figure 11. This indicates that not only the drone movements but
also the position and movement of objects in the environment affect
the wirelesses channel and consequently the received power by
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Figure 12: Illustration of how spinning rotors of the drone
affect MAX6675 thermocouple sensor output in the presence
of an attacker.
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Figure 13: Experiment setup in the medium-sized room. We
have mounted the temperature sensor on the drone and set
a directional antenna at a distance of 3.1 m from the drone.

a victim sensor, which is unpredictable and make it (practically)
impossible to avoid by the attacker.
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