
SKIMA: Semantic Knowledge and Information Management

Héctor Pérez-Urbina
Universidad de las Américas,

Puebla
Ex hacienda Sta. Catarina Mártir,

72820, Cholula, México
hectorm.perezua@udlap.mx

Gennaro Bruno
IMAG-LSR,

University of Grenoble
BP 72, 38402,

Saint Martin d’Hères, France
Gennaro.Bruno@imag.fr

Genoveva Vargas-Solar
IMAG-LSR,

University of Grenoble
BP 72, 38402,

Saint Martin d’Hères, France
Genoveva.Vargas-Solar@imag.fr

Abstract

This paper describes SKIMA, a mediation system that
gives transparent access to heterogeneous and distributed
sources considering their semantics and the semantics of
application requirements. It is based on a pivot model
that abstracts concepts and semantic relations based on
the SHIQ(D) description logic [10]. We use this model to
represent application domains and source contents. Our
approach provides an integrated and global view over
local sources and couples it to the description of an
application domain using semantic correspondences. In
order to do so, it applies on inference to reason about
these correspondences and other metadata, and exploits
this knowledge to perform intelligent query processing
tasks. We apply on a first prototype of the ADEMS
framework to validate our approach in the Computer
Assisted Instruction context by configuring SKIMA for a
programmed instruction system.

1. Context and motivation

Currently there is an amazing quantity of
heterogeneous information distributed over a large
number of sources. Retrieving information is becoming a
difficult task in which regular users use their knowledge
in terms of formats, query languages and data models to
obtain acceptable results. Instead of having to use many
tools to retrieve different kinds of information most users
prefer having a single tool that allows managing
heterogeneous information that comes from different
sources. This tool is generally known as mediation system
[15].

The objective of a mediation system is to allow
exploitation of many data sources through one access
point. Users make queries in terms of the global schema
and then the system translates them into queries in terms
of local sources, retrieves the results, integrates them and
returns the answer. In order to do so, there are three main
issues to be considered: sources integration, schema
integration and data integration.
• Sources integration means resolving heterogeneity

both at semantic and structural levels. Heterogeneity
may be structural if differences concern data models,

query languages or internal protocols. Semantic
heterogeneity expresses a difference in the meaning
or in the interpretation of the same data.

• Schema integration consists of building a global
schema by merging partial schemas. Three
generation techniques have been proposed for
resolving these problems. The first concerns schema
merging and it is based on association rules between
hand-written concepts. The second introduces
structural matching algorithms which permit the
automatic resolution of association rules before the
merging. The last generation adopts semantic
knowledge organized as ontologies or conceptual
graphs and stores it in electronic vocabularies for
reducing human intervention.

• Data integration assumes that schema conflicts are
resolved, but introduces new problems as multiple
values of the same entity in different sources, non-
observance of integrity constraints, non-conformity
of the measuring units, different data formats, etc.
Most of these problems are resolved by translation
rules, but their definition is not easy. Many
techniques are explored such as data mining
(searching relations between attributes values) and
ontologies (taking into account meaning in a
context). Description logics [3] have often been
adopted in the context of these rules.

Despite of these three main aspects, classical
mediation systems [7,8,14] fail to take into consideration
semantics to perform tasks such as mediator
configuration, source integration and query processing.
To cope with this limitation current efforts include the
development of mediation systems which apply on
knowledge to perform some of their tasks, such as query
reformulation or metadata representation [1,4,11].
However none of these approaches exploits reasoning on
knowledge (semantics) to both, provide intelligent query
processing and mediation system configuration.

This paper presents a mediation system that
completely applies on semantics in order to perform
intelligent query processing. Similarly, we use semantics
to easily and automatically configure the mediation
system for it to be well adapted to application
requirements regarding a specific domain. We have
chosen Computer Assisted Instruction (CAI) as our
experimental domain because we consider it is a highly

 2

distributed and constantly evolving environment that
requires the use of a great variety of data.

The remainder of this paper is organized as follows.
Section 2 introduces our approach, a mediation system
based on semantics for providing transparent access to
distributed sources for applications. Section 3 presents
SKIMA, a mediation system that considers semantics to
perform intelligent mediation tasks. Section 4 presents a
CAI experimental context and describes our validation
prototype. Finally, Section 5 concludes this paper,
discusses the main results and the future work.

2. General approach

SKIMA is the mechanism we propose, a mediation
system based on semantics that enables applications to
have transparent access to a set of sources. The system
manages data in three levels: a domain schema, a global
schema and a set of local schemata (see Figure 1). The
domain schema represents a specific application domain;
the set of local schemata is the representation of local
sources content, and the global schema is an integrated
and global view over sources. The mediation system
couples local sources to the application domain through
the global schema using semantic correspondences called
mappings.

SKIMA

Application

Domain
schema

Global
schema

Local
schemata

Mappings

Mappings
Mappings

Mappings

Global
query

(Q)

Local
queries

Q1 Qn…

Figure 1. General approach.

Schemata are represented as sets of concepts and their

semantic relations (ontologies) based on the SHIQ(D)
description logic [10]. We use this high expressive
language because it allows to model concepts and their
relations as well as data types (attributes) and domain
constraints (axioms). Schemata are loaded to an inference
engine. Thanks to inference, our approach allows
performing intelligent mediation tasks.

3. SKIMA

SKIMA is composed by four internal components: the
parser, the reformulator, the rewriter and the evaluator.
All four components interact with an inference engine
that manages schemata and other metadata in order to
perform their functions (see Figure 2). In a typical
scenario an application uses the mediation system to
query local sources in terms of its own domain. Before
being executed, queries pass through a four-phase
process.

Application

EvaluatorRewriter

Parser

Flat files Relations Objects

Reformulator

Wrapper Wrapper Wrapper Inference engine

MetadataMetadataSchemata

Q

Q1 Qn…

Figure 2. Architecture.

First, the parser verifies if the query is syntactically

and semantically correct. If so, it is passed to the
reformulator which gets a set of equivalent (or
approximate) queries and passes them to the rewriter. The
rewriter uses mappings in order to translate these queries
expressed in terms of the domain schema into queries
expressed in terms of the local schemata. Finally these
queries and passed to the evaluator which sends them to a
proper source in order to return results to the application.
Further details on query processing are discussed in
section 3.2.

3.1 Metadata

In order to perform query processing, SKIMA applies

on metadata that, as schemata, are represented with
ontologies and are loaded to the inference engine. We
consider two types of metadata: source descriptions and
mappings.
• Source descriptions. SKIMA is able to manage

several sources; nevertheless, an application could
have preferences regarding sources. For example
some applications may prefer to access sources with
a certain level of quality or cost. This is why our
approach considers a set of source descriptions when
processing queries. A source is described in terms of
its quality, cost, availability and location. Each

 3

source has a source description stored in the source
description ontology.

• Mappings. A mapping is a semantic relation
between two concepts a and b from different
schemata. There are three types of mappings: exact
(a ≡ b), used when a and b are semantically
equivalent; sound (a ⊆ b), used when a is subclass
of b; and complete (a ⊇ b), used when a is
superclass of b. Mappings are stored in the mapping
ontology as axioms between concepts.

The source description ontology and the mapping
ontology are managed in the inference engine.

3.2 Querying SKIMA

Queries are posed in terms of the domain schema.
They correspond to a concept definition of the domain
schema. For example, if there were a domain regarding
family concepts, a query could be “women that have
children”, which is a concept definition of the domain
schema. A query is represented as a concept tree and is
attached to a set of source preferences that establishes
which sources could be considered for evaluation.

A concept tree is a structure composed by a set of
nodes that are part of the allowed vocabulary to define a
concept. Allowed nodes include concepts and roles of the
domain schema; logical operators (AND, OR and NOT);
and universal (ALL) and existential (SOME) quantifiers.
These nodes are used to build complex queries. There are
building rules that describe the way a concept tree should
be built for it to represent a concept definition. For
instance leaves are reserved to concepts or roles, SOME
nodes must have exactly two children (the first being a
role while the second a concept), children of OR and
AND nodes must be concepts, etc.

G

G

L

L

Parsing
Rewriting

Evaluation

AND

SOMEWoman

has child Child

I

I

Source
preferences

I

L

Source 1

Source
profile

Source
profile

Q’Q

Reformulation

Source 2

Figure 3. Query processing.

Consider once more the query “women that have
children”. In order to be executed, this query is
represented with a concept tree and then given to the
parser to start the query processing. Figure 3 shows the
concept tree of this specific query and depicts the four
phases of query processing: parsing, reformulation,
rewriting and evaluation.

3.2.1 Parsing

Parsing involves verifying the query syntactically and
semantically. The parser receives a concept tree and
verifies if it represents a concept by checking if building
rules are respected. If the concept tree is well formed i.e.,
is syntactically correct, the parser builds an internal
representation of it called query expression (Q) and
verifies if it is a satisfiable concept in the domain schema
(its definition respects all constraints). If so, Q is
semantically correct and the parser passes it to the
reformulator, otherwise the query is not executed.

We would like to point out the convenience and
importance of verifying the semantics of a query. If an
application posed the query “people who are women and
men”, despite the query is syntactically correct, as it is not
possible that a person is a woman and a man, the query
would not be executed. Semantic verification is
accomplished by simply asking the inference engine
whether a concept (Q) is satisfiable in a specific ontology
(the domain schema).

3.2.2 Reformulation

In a typical scenario, there are not mappings for all
domain concepts; this is why it is important to
reformulate Q in order to increase the possibility of
success in the rewriting phase. Reformulating consists of
getting a set of equivalent (or approximate) domain
concepts of a given query expression for which at least
one mapping exists.

Consider mappings shown in Figure 4. As can be
seen, it is stated that “women with children” (domain
schema) are equivalent to “mothers” (global schema). If
an application posed the query “women”, reformulation
would be necessary to retrieve any results given the fact
the concept “Woman” has no associated mappings. The
reformulator would discover that “women” has one
approximate reformulation: “women that have children”
and would continue the process letting the application
know that there are only approximate results.

Reformulation is accomplished by reasoning on
domain concepts and mappings. It is necessary to get
equivalent or approximate concepts of Q and then, for
each of these reformulations to verify that there is at least
one mapping. Only the reformulations that have
associated mappings are passed to the rewriter. The

 4

reformulator completely applies on subsumption
reasoning tasks to perform the whole process.

est une
Personne

Père
est une

Enfant

est une

Local schemata

Global schema

Domain schema

Woman

Daughter

Man

Child

Son

is married to

has child

is ais a

has child

Persona

Padre

es una

es una

Hijo

es una

Mother

Person

Father

is a

is a

Child

is a

Source 1 Source 2

≡

≡

≡

Madre Mère

Figure 4. Mappings between schemata.

3.2.3 Rewriting

Rewriting consists in translating a set of

reformulations to a set of local concepts. It is done in two
phases; the first phase consists of translating
reformulations to a set of global concepts while the
second phase consists of translating the resultant global
concepts to a set of local concepts.

Figure 4 shows an example of exact mappings
between domain, global and local schemata. Continuing
with the example on reformulations, if the only
reformulation of the given query expression Q were
“women that have children” (Q’), the rewriter would use
mappings to discover that Q’ corresponds to “mothers”
in the global schema and to “madres” and “mères” in the
local schemata, thus, it would pass the local concepts
“Madre@Source1” and “Mère@Source2” to the
evaluator.

Rewriting is accomplished by reasoning on the
mapping ontology. In the first phase the rewriter asks the
inference engine to retrieve the list of equivalent (or
approximate) global concepts for each reformulation.
Similarly, in the second phase the inference engine is

asked to retrieve the list of equivalent (or approximate)
local concepts for each global concept. The rewriter, as
the reformulator, completely applies on subsumption
reasoning tasks to perform the whole process.

3.2.4 Evaluation

Evaluation consists of returning results of a rewritten
query i.e., a set of local concepts, to the application. The
evaluator receives a set of local concepts and sends them
to the proper wrappers for results to be retrieved in local
sources. Once the evaluator gets results from sources, it
combines and integrates them, and finally it returns them
to the application.

In order to choose proper wrappers, the evaluator
reasons on the source description ontology. It asks the
inference engine to retrieve what the source of each local
concept is and then it gets the corresponding source
profile. Only if this profile is compatible to the source
preferences attached to the query, the local concept is sent
to the corresponding wrapper.

3.2.5 Performance

As already said, SKIMA applies on inference to

perform its specific tasks. One could guess there should
be no problems (in terms of performance) while handling
a small number of concepts and be more interested on
performance with many concepts and/or axioms. To this
matter we could say that performance depends, almost
exclusively, on the used inference engine.

We decided to work with Racer [13] (Renamed ABox
and Concept Expression Reasoner) because it can handle
TBoxes with generalized concept inclusions, ABoxes
(based on the unique name assumption) and concrete
domains. It provides the means to verify concept
consistency and concept subsumption w.r.t. a T-box, and
to find inconsistent concepts and the parents and/or
children of a concept, among other useful information.

In terms of performance, a first study was conducted
that uses a very complex ontology derived from a real-
world application with hundreds of named concepts and
several general axioms. Racer can classify all concepts
within seconds (for further details see [12]). We believe
this study demonstrates that Racer is capable of handling
very complex ontologies maintaining a good
performance.

3.3 Configuring SKIMA

In order for an application to use SKIMA it is
necessary to configure it i.e., to provide schemata and
metadata (mappings and source descriptions). In order to
configure the mediation system we apply on the mediator
configuration framework (MCF). MCF contains a
collection of schemata and metadata, and it allows users

 5

to choose a set of schemata and metadata in order to
configure their own SKIMA. MCF is composed by three
components: the schema subscription module, the
mediator configuration module and the schema base.

The schema subscription module is used to add
schemata and metadata to a repository called schema
base. The mediator configuration module provides the
means to choose schemata and metadata from the schema
base given a set of application preferences called schema
profile. The schema profile is a set of preferred schema
characteristics. It is used to specify a domain schema, a
global schema and a set of local schemata with their
related mappings from the schema base.

A schema profile is composed by two parts: the global
schema and the domain schema description in terms of
their names and the local schemata description as a set of
preferred source characteristics in terms of quality, cost,
availability and location. Schema profiles are modeled as
ontologies as well and they are also stored in the schema
base.

MCF has two functions: (1) schema and metadata
subscription and (2) mediator configuration. The schema
subscription module is used to subscribe schemata and
metadata to the schema base. It receives a set of schemata
and their related metadata and stores them in the schema
base. The mediator configuration module is used to
configure a specific SKIMA from a given schema profile.

Figure 5. Mediator configuration framework.

Figure 5 shows MCF with its two sections: schema

subscription and mediator configuration. To subscribe a
schema means loading it into the schema base. In order to
load a schema one must specify its type (domain, global,
local, etc.), its name and its location. In order to configure
a mediator, MCF retrieves the list of schema profiles
contained in the schema base. Once a specific profile is
selected, the framework searches the correspondent
schemata and metadata and returns them to the user.

MCF is a prototype of ADEMS, a general purpose
framework used to instantiate and to configure mediators
taking into account application and source semantics [6].
MCF interacts with an inference engine in order to
perform its functions based on reasoning. We will not
discuss MCF details in this paper for lack of space.

4. Experimentation

Our experimentation context is CAI (Computer
Assisted Instruction) because we consider it is a highly
distributed and constantly evolving environment that
requires the use of a great variety of data. CAI in general
refers to the use of a computer as a tool within the
educational process. CAI refers to practice activities,
tutorials or simulations offered by computers as
supplement of traditional education [5,9].

Our validation prototype is a very simple PI
(Programmed Instruction) system. PI is a method of
presenting new subject matter to students in a graded
sequence of controlled steps [2]. It is based on the
following algorithm:
1. Present initial unit
2. While there are units to present
3. The student reads, assimilates and integrates the

presented information
4. The system asks the student something related to

the unit that has just been presented
5. If the unit is considered to be approved then
6. Present next unit

Students work through the programmed material at
their own speed. After each step they test their
comprehension by answering an examination question(s).
They are then immediately shown the correct answer or
the following unit.

4.1 Schemata and metadata

The domain schema represents the PI domain (see
Figure 6) and contains the following concepts:
• Course represents courses offered by the system. A

course is composed by a set of sections or unities, it
is identified by a name and it is related to a set of
keywords. Every course is managed by an
administrator and it is related to the set of learners
(students) that take the course and to the facilitator
(teacher) that is responsible for the course.

• Section represents unities that compose courses. A
section is identified by a name and can be part of
one or more courses in a certain order. Each section
has a topic and it is related to a set of resources and
to an exercise.

• Topic is used to represent a list of topics. These
topics correspond to the topics of courses and
sections of the system. More than one course or
section may share the same topic.

 6

• Exercise is used to represent evaluations. At the end
of every section learners are given an evaluation to
determine whether they continue with the following
section. These evaluations consist of a set of
questions and are represented by Exercise. Each
exercise has a limit that determines the minimum
needed correct answers for the learner to approve the
associated section.

• Question represents the questions we use to
compose exercises. Each question has a statement, a
set of options and a correct answer.

• Resource represents a set of resources that are used
by sections. We consider four kinds of resources:
text, image, video and audio. Text represents plain
and rich text documents, presentations, worksheets
and Web pages. Image, Video and Audio represent
images, videos and audios of any format. Resources
are described in terms of their name, location,
format, language, quality and size.

• Actor represents the actors of the system; every
actor is identified by a name, a username and a
password. There are three kinds of actors: learners,
facilitators and administrators. Learners or students
are related to the course they are taking, the section
they are currently studying and the grades they got
in previous sections. Facilitators or teachers are

related to the course(s) they teach. Administrators
are related to the course(s) they are responsible for.

We make the assumption that the global schema is a
copy of the domain schema. Classes from the domain
schema are related to their corresponding class from the
global schema with an exact mapping. The local schema
is composed by the representation of sources that store
courses, sections, resources and actors.

We assume that all sources share a source profile that
is compatible with a set of preferences to which all
queries made by the PI system are attached. Source
profiles are stored in the source description ontology
while mappings between the local schema and the global
schema are stored in the mapping ontology.

4.2 Querying local sources

We consider two concepts and two sources in order to
illustrate query processing within the PI domain. Figure 7
shows the two concepts of the global schema we are
interested on and corresponding pertinent local schemata.
Source 1 contains text resources while Source 2 contains
sections that have videos.

We consider the following mappings:
• Texts with format PDF are equivalent to Acrobat

documents in Source 1: (AND Text (EQUAL format
“PDF”)) ≡ AcrobatDocument@Source1.

hasExercise
isExerciseOf

composes
isComposedBy

Learner

Course

hasResource
isResourceOf

SectionResource

Image

Text

Video

isLearnerOf
hasLearner

Audio

name
quality

url

name

Facilitator

Actor

isFacilitatorOf
hasFacilitator

size
format

learns
isLearnedBy

Question

answer
option
statement

order

grade=<section,grade>

Topic

hasTopic
isTopicOf

Exercise

hasQuestion
isQuestionOf

limit

Administrator
isAdministratorOf
hasAdministrator

keyword

language

hasTopic
isTopicOf

name

name

username
password

name

Figure 6. Programmed instruction domain.

 7

• Sections that have resources which are videos are
equivalent to sections in Source 2: (AND Section
(SOME hasResource Video)) ≡ Section@Source2.

Imagine the following queries are made to SKIMA by
the PI system:
• Q1. “Texts with format PDF”: (AND Text (EQUAL

format “PDF”)).
• Q2. “Sections that have videos whose format is

MPEG”: (AND Section (SOME hasResource (AND
Video (EQUAL format “MPEG”)))).

• Q3. “All resources”: Resource.
In order to execute these queries, SKIMA rewrites

them based on existent mappings. Q1 is rewritten to
AcrobatDocument@Source1 and the mediator returns
exact results. Q2 is rewritten to Section@Source2 and
complete results are returned because Source 2 contains
sections that have videos with all kinds of formats, not
only MPEG. Q3 is rewritten to Documents@Source1
which has sound results because Source 1 only contains
text resources, not all kinds of resources.

hasResource
isResourceOf

Section

Resource

Image

Text

Video

Audio

name
quality

url

name

size
format

order

language

…

…

Global schema

Section

name
order

video

Local schemata

Document

AcrobatDocument

WordDocument

NotepadDocument

Source 1

Source 2

…

Figure 7. Schemata.

4.3 Using the PI system

In order to use the PI system the user i.e., a learner,
has to enter his/her username and password. If this
information is valid the user logs in and the system
presents the specific section he/she has to study of the
course he/she is taking. The system shows the name of the
user and information about the section and the
correspondent course. It also shows the list of associated
resources and exercises (see Figure 8).

When the user clicks on a resource, the system
retrieves its metadata and allows the user to open it. In
order to continue with the following section, the learner
must take the section evaluation. When the user clicks on
an exercise the system shows a question and a list of
possible answers (Pressey’s model [2]). If the user gives
as many correct answers as defined in the domain schema
he/she may continue with the following section (until
there are not more sections to be taken), otherwise, he/she
will have to recheck the resources and take the evaluation
again. The PI system uses SKIMA to perform section
evaluation and to retrieve all the information it shows to
the user.

Figure 8. Programmed instruction system.

5. Current status

We have presented SKIMA as a mediation system that
considers semantics to integrate heterogeneous local
sources and to perform intelligent query processing. In
our approach we use inference to both retrieve explicit
knowledge and automatically discover implicit
knowledge. It could be interesting for SKIMA to be
validated by experts in a certain domain. Experts would
configure the mediation system in order to decide whether
it behaves as expected. It is important to consider that
reasoning with application and source semantics can be
computational expensive specially when handling large

 8

amounts of information. This situation motivates the
interest of studying the impact that large amounts of
information have on performance. We consider it is
important studying and implementing query optimization
techniques in order to make query processing as
inexpensive as possible.

We have also introduced MCF, a framework that
configures mediators in an intelligent way by reasoning
on metadata. Perspectives related to MCF include its
future improvement as a complete ADEMS framework
[6]. ADEMS is currently under construction. The
complete framework will allow building more complex
mediation system architectures (centralized, hierarchical
or peer-to-peer) by configuring reusable and cooperative
mediators. Such mediators will provide interactive query
processing which will enable users to drive the process
through the application by choosing preferred
reformulations or rewritings. Mediators will also enhance
query expressiveness by taking into account query
projections and filters on concepts and attributes.

6. References

[1] Arens, Y., Knoblock, C., Shen, W., Query

reformulation for dynamic information integration,
Journal of Intelligent Information Systems – Special
Issue on Intelligent Information Integration, 6(2/3):
99-130, 1996.

[2] Ayala, G., Educación Asistida por Computadora,
http://mail.udlap.mx/~ayalasan/ambientesDeAprendi
zaje/cap01.html, 2003.

[3] Baader, F., Nutt, W., Basic description logics,
chapter 2, pages 47-100, Cambridge University
Press, 2003.

[4] Baker., P., Brass, A., Bechhofer, S., Goble, C., Paton,
N., Stevens, R., TAMBIS: Transparent Access to
Multiple Bioinformatics Information Sources, In
Janice Glasgow, Tim Littlejohn, Francis Major,
Richard Lathrop, David Sankoff, and Chistoph
Sensen, editors, 6th International Conference on
Intelligent Systems for Molecular Biology, pages 25-
34, Montreal, Canada, 1998.

[5] Bangert-Drowns, R. L., Meta-Analysis of Findings on
Computer-Based Education with Precollege
Students, Annual Meeting of the American
Educational Research Association, Chicago, IL,
March – April, 1985.

[6] Bruno, G., Vargas-Solar, G., Collet, C., ADEMS, an
Adaptable and Extensible Mediation Framework:
application to biological sources, In Proceedings of
the Workshop on Advances in Databases and
Information Retrieval, ISBN: 970-36-0070-0,
ENC’03, Tlaxcala, Mexico, September, 2003.

[7] Carey, M., Haas, L., Towards Heterogeneous
Multimedia Information Systems: The Garlic Project,
RIDE-COM, 1995.

[8] Chawathe, S., García-Molina, H., Hammer, J.,
Ireland, K., Papakonstantinou, Y., Ullman, J.,
Widom, J., The TSIMMIS project: Integration of
heterogeneous information sources, In 16th Meeting
of the Information Processing Society of Japan, pages
7-18, Tokyo, Japan, 1994.

[9] Grimes, D. M., Computers for Learning: The Uses of
Computer Assisted Instruction (CAI) in California
Public Schools, Sacramento, CA: California State
Department of Education, 1977.

[10] Horrocks, I., Sattler, U., Tobies, S., Reasoning with
Individuals for the Description Logic SHIQ, In
Proceedings of 17th International Conference on
Automated Deduction, ISBN: 3-540-67664-3, 2000.

[11] Kirk, T., Levy, A., Sagiv, Y., Srivastava, D., The
Information Manifold, In C. Knoblock and A. Levy,
editors, Information Gathering from Heterogeneous,
Distributed Environments, Stanford University,
Stanford, California, 1995.

[12] Möller, R., Haarslev, V., Description Logics Systems,
chapter 8, pages 282-305. Cambridge University
Press, 2003.

[13] Möller, R., Haarslev, V., Racer system description. In
International Joint Conference on Automated
Reasoning, IJCAR’2001, June 18-23, 2001, Siena,
Italy, 2001.

[14] Tomasic, A., Raschid, L., Valduriez, P., Scaling
Access to Heterogeneous Data Sources with DISCO,
Knowledge and Data Engineering, 10(5):808-823,
1998.

[15] Wiederhold, G., "Mediators in the architecture of
future information systems", Computer, pages 38-49,
1992.

