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It is widely believed that Krylov subspace iterative methods are better
than Chebyshev semi-iterative methods. When the solution of a linear sys-
tem with a symmetric and positive definite coefficient matrix is required
then the Conjugate Gradient method will compute the optimal approximate
solution from the appropriate Krylov subspace, that is, it will implicitly com-
pute the optimal polynomial. Hence a semi-iterative method, which requires
eigenvalue bounds and computes an explicit polynomial, must, for just a little
less computational work, give an inferior result. In this manuscript we iden-
tify a specific situation in the context of preconditioning when the Chebyshev
semi-iterative method is the method of choice since it has properties which
make it superior to the Conjugate Gradient method.
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1 Introduction

Suppose we are interested in solving a system of linear equations
Ar =01 (1.1)

in the situation where A € R"*" is sparse and n is large. Such problems arise ubiqui-
tously in the numerical solution of partial differential equation problems as well as other
areas. One approach is to use iterative methods and leading contenders are methods
of Krylov subspace type. These require matrix vector products with A and compute
a sequence of iterates {x;} from a starting guess xy which belong to nested Krylov
subspaces

xy € xo + span{ro, Aro, A’rg, ... ,Ak_lro}

for k =1,2,...,n where 1, = b — Az, is the residual (see for example [7],[17],[5]). The
most well-known such method is the method of Conjugate Gradients due to Hestenes
and Steifel [10] which is applicable in the case that A is symmetric and positive definite.
Hereafter we denote this method by the abbreviation CG. For indefinite symmetric
matrices, the MINRES method of Paige and Saunders [12] is the Krylov subspace method
of choice and this is the method we employ in our examples in this paper.

Most often, such Krylov subspace methods are used in conjunction with a precondi-
tioner P; the preconditioner should be such that an appropriate Krylov subspace method
applied to P~'A or AP~!, or if it is useful to preserve symmetry to M~ AM~T where
P = MM?T, will give a sequence of iterates which converges rapidly. Even in the sym-
metric case it is not necessary to form any factorization of P in practice and, in fact,
in all cases all that is needed is for a given vector r to be able to solve Pz = r for z.
For this reason, P does not have to be known explicitly as a matrix, but it must be
a linear operator else the preconditioned operator Pt A (or any of the other forms as
above) to which the Krylov subspace method is applied is also not a linear operator.
We comment that there are well-known nonlinear Conjugate Gradient methods such as
that of Fletcher and Reeves [6] (see also Powell [13]) in the Optimization literature, but
generally in the context of solving a system of linear equations it would seem desirable
to maintain linearity by using a linear preconditioner P.

In this paper we explore a practical implication of this simple observation as it relates
to nested iterations when just part of the preconditioner is nonlinear. We give two
practical numerical examples, both for symmetric and indefinite matrices A of saddle-
point form [2]. The first arises from the mixed finite element approximation of the
Stokes problem in computational fluid dynamics and the second from a problem of PDE-
constrained optimization. In both cases we employ the Minimal Residual (MINRES)
method of Paige and Saunders [12] rather than CG because this is the method of choice
for symmetric and indefinite systems. The issue of linear vs nonlinear preconditioning
is as relevant for this iterative method as for CG.
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2 Preconditioning, Krylov subspace methods and
Chebyshev semi-iteration

The MINRES method is a Krylov subspace method based on the Lanczos algorithm,
which is defined as follows. Let v; be a vector such that ||vy|| =1 and let v = 0. Then
the recurrence

Vit Vier = AV = 0;v; — v, 1< j <k, (2.1)

defines an orthogonal basis for ICy(A,vy), when §; =< Av;,v; > and ;4 is chosen
such that ||v;11]| = 1. The relation (2.1) is equivalent to

AVl = Vil + e41[0, . .., 0, Vi),

where Vj, = [vy, Vo, ..., vy and T}, = tridiag(y;, d;,7vi+1), 1 <j < k.
To use MINRES with a preconditioner P = HH”, which must be symmetric positive
definite, we solve the (symmetric) system

H''AH Ty =H"', y=H"z, (2.2)

which is equivalent to (1.1). In practice the matrix H is not required — all that is needed
for a practical algorithm is a procedure for evaluating the action of P~!: see for example
Algorithm 6.1 in [5]. In some cases an obvious preconditioning procedure may be a
nonlinear operator @ = P~1. The theoretical framework for guaranteeing a minimum
convergence rate for the appropriate Krylov subspace is at least more complicated and
may no longer be valid with use of such a nonlinear procedure, although in practice it
is possible that such a procedure may give good results on some examples.

There are flexible Krylov subspace methods which allow for a different precondi-
tioner at each iteration, however, the performance (convergence) of these methods is
more complex and it might be considered generally desirable to stay within the stan-
dard linear convergence framework where possible, especially on less simple application
problems. The most well-known of the flexible methods is the flexible GMRES method
for nonsymmetric matrices [16] though there has been significant research in this area;
for example see [20] and references therein which also include work on symmetric matri-
ces. Simoncini and Szyld present a quite general analysis of Krylov subspace iteration
with preconditioning which is also a Krylov method for the same matrix. In this case
one can view the iterates as lying in some larger dimensional Krylov subspace and often
can establish convergence. The situation we consider here arises in several practical
applications (as illustrated by our examples) and is different in that only a part of the
preconditioner is an iteration for a different matrix.

Any Krylov subspace method (including CG) computes iterates zj, of the form

T = X + qk,l(A)ro (23)

where ¢;_1 is a polynomial of degree k — 1. Often this property is described in terms of
the residuals r, = b — Ax;, rather than the iterates as

& = pr(A)ro
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where pj, is a polynomial of degree k satisfying px(0) = 1. This is easily seen from (2.3)
by multiplication of each side by A and subtraction from b:

e =0b— Az, =b— Azg — Agp_1(A)ro = 19 — Agi—1(A)ro = pe(A)ro

where py(2) = 1—2zqx_1(z) clearly satisfies px(0) = 1. This procedure is clearly reversible
when A is invertible, hence the equivalence of these statements. Now suppose that the
same Krylov subspace method is used on the same problem with a different starting
vector To: we will compute iterates Ty satisfying

T = To + qr—1(A)7o
where 7y = b — AZy. Even for the first iterate we will have

T, = x4+ YArg = o + 7Ab — 7 A%x

T, = 2o+AAR = T + 7Ab — 7 AT,
so that for example

T+ 7, = 2o + T + (7 +7)Ab — A*(yzo + 770).
Correspondingly if To = xy + Ty is chosen as starting vector we get
T, = T + 7Ab — AT,

It is easy to see that T; # xy + Z; whatever the values of the constants v. This is a
simple demonstration that any Krylov subspace method is nonlinear: this fact is in some
sense well-known but sometimes overlooked. The above demonstrates nonlinearity with
respect to the starting vector, but in a similar manner it is easy to show nonlinearity
with respect the the right hand side vector; in correspondence with the above, if Az = b
and AZ = b are solved by a Krylov susbspace method for the same starting vector g
then 1 + 7 is not the first iterate for A(x + ) = b+ b. The sophistication of CG
is that it implicitly computes automatically the best polynomial both with respect to
the eigenvalues of A but also dependent on the components of the initial residual in the
eigenvector directions (see for example [1], page 560, [14], section 2.5).

The Chebyshev semi-iterative method ([8] or see [9], section 10.1.5) by contrast
implicitly computes the same shifted and scaled Chebyshev polynomials of each degree
k independently of the initial guess and right hand side vector provided the same spectral
bounding parameters are used. Precisely, for the Chebyshev method applied to accelerate
Richardson iteration

T = (I - .A).%k,1 +b

we have the Chebyshev iterates {y;} satisfying
r —yp = Sp(A)(x — z0)

where s, is a Chebyshev polynomial of degree k shifted and scaled so that s;(0) = 1.
Since s, does not depend on zy nor on b it is clear that y; is the result of applying a
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fixed linear operator for the approximate solution of (1.1). This is true for each k; of
course using different values k; # ks leads to different linear operators as does varying
the spectral bounding parameters. For larger k the approximation will be better, but in
terms of using a fixed number of Chebyshev semi-iterative steps as a preconditioner, the
important point we emphasise is that this is a linear preconditioner P. The same holds
true if a different splitting than Richardson is used: we will employ a Jacobi splitting in
the examples below.

The basic point here is that although the Chebyshev method computes a sequence
of polynomials in the matrix as a Krylov subspace method does, these polynomials are
fixed by the parameter estimates of the spectral interval or region which are employed,
i.e. the coefficients do not depend on the starting guess nor the right hand side unlike
with CG. That means for any particular choices of the spectral bounding parameters
that a fixed number of steps of the Chebyshev semi-iteration is a fixed linear operator
P and so can be reliably used as a preconditioner for a linear system or in fact as a part
of a preconditioner - this is how we employ it in the examples below.

This is in contrast to even a fixed number of iterative steps of a Krylov subspace
method which is always a nonlinear operator and so does not fit into the theory of
(linear) preconditioning for linear systems of equations. It is of course reasonable that
if sufficiently many iterations of a Krylov subspace method (or any other convergent
iterative method) are employed so that we essentially have convergence to the exact
solution, then the corresponding operator is linear, namely A4~

3 Finite elements: the mass matrix

The major issue with Chebyshev methods is getting good estimates a priori of bounds
for the eigenvalues. Fortunately there are practical situations where such bounds are
analytically known. One such is for the (consistent) mass matrix which arises in finite
element computations.

Suppose that finite element basis functions {¢;,j = 1,..., N} are used for some
problem on a domain €2, then the consistent mass matrix is just the Gramm matrix

Q:{qi,j7i7j:]-7“‘7N}7 qz,]:/¢z¢]
Q

which is symmetric and positive definite because the basis will always be chosen to be
linearly independent. More than twenty years ago the first author established analytic
bounds for the eigenvalues of the matrix diag(Q) '@, equivalently for the generalised
eigenvalues \ satisfying

det(Q —AD) =0

where D = diag(Q) [21]. For example for any conforming mesh of tetrahedral (Py)
elements in 3-dimensions the result is

DN |
INA
>~
VAN
N | Ot
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and for a mesh of rectangular bi-linear (Q;) elements in 2-dimensions

<A< o (3.1)

RS
B ©

For other elements see [21]; the matrix wathen.m in the test set of matrices in matlab
assembled by Higham [11] is precisely such a mass matrix for the ‘serendipity’ finite
element. The bounds are found to be as tight as possible in practical computations in
that there are eigenvalues equal to both the upper and lower bounds.

Such a priori bounds are precisely what are required for Chebyshev semi-iteration:
Chebyshev polynomials shifted from the interval [—1, 1] to [a, §] and scaled so that their
intercept is unity will ensure that the Chebyshev iterates {y;} satisfy

k
VE—1
o=l <2 (Y221 ) o = ol

where k = 3/a. For example, for the Q; element with the required Jacobi splitting the
result is

1
7 = yill> < 2(5)" |z = zoll2

since k =9 . The usual convergence result that is quoted for CG iterates {zj} is based
on precisely these same Chebyshev polynomials and is

k
VE—1
o oula <2 (Y1) llo -l

where ||z]|3 = 2T Az (see for example [5], theorem 2.4, [7], theorem 3.1.1). In all the
computations here which compare CG and Chebyshev for systems with @) the diagonal
scaling is used with both methods.

Figure 1 shows how little in general is lost in using the Chebyshev method rather
than CG for such mass matrices. We give results for the first 20 iterations for both
methods applied to a diagonally preconditioned @ mass matrix with a right hand side
that is a random, normally distributed vector generated by randn in matlab. The easily
computable quantity for monitoring convergence in each case is the residual r, = b— Ax;,
for CG, respectively rp = b — Ay, for Chebyshev, hence we show the values of ||7¢]|2 in
figure 1(a) and the values of ||rg|| 4-1, the quantity that is actually minimized by CG, in
figure 1(b).

4 Numerical Examples

Problems with constraints lead to saddle-point systems — an important class of symmetric
(and nonsymmetric) indefinite matrices. The general structure is

e[ 7301



Chebyshev iteration in Preconditioning 7
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Figure 1: Comparison of convergence of CG and Chebyshev semi-iteration.

where A may either be symmetric (giving the classical saddle-point system) or non-
symmetric (giving a generalized saddle-point system). For a comprehensive survey on
solution methods for saddle-point systems see [2]. We consider only symmetric A here;
in this situation A is symmetric and indefinite and the solver of choice would be the
MINRES method of Paige and Saunders [12].

4.1 Example 1

One of the more important PDE examples of a saddle-point system is the Stokes problem:

Viu+Vp =f
V.-u =0,

see for example [5], chapters 5 and 6. This problem arises as the most common model
for the slow flow of an incompressible fluid. This problem is self-adjoint and most
discretisations — including conforming mixed finite elements in any domain Q C R? —
lead to a symmetric matrix block A which is, in the usual case, a d x d block diagonal
matrix with diagonal blocks which are just discrete Lapacians.

Silvester and Wathen [19] identified and proved that if Ais a spectrally equivalent
approximation of the Laplacian, such as a multigrid cycle, and () as above is the mass
matrix (for the pressure space) then a block diagonal preconditioner of the form

P:[ég} (4.2)

leads to optimal convergence of the MINRES iterative method for any (inf-sup) stable
mixed finite element discretization. That is, the solution of (4.1) will be achieved in
a number of MINRES iterations which is bounded independently of the number of
unknowns in the finite element discretization.
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At each MINRES iteration it is necessary to solve a system of equations with co-
efficient matrix P. Since a multigrid cycle (although certainly not known in general
in the form of a matrix!) is a simple stationary iteration, it is a linear operator. By
using exactly the same number of cycles (here just one V-cycle) with the same number
of pre- and post-smooting steps at every application, this part of the preconditioner is
a fixed linear operator. This is true even for the Algebraic Multigrid (AMG) procedure
that we employ in our example computations. For the other part of the preconditioner
involving the solution of linear systems with @) it is advantageous to use the results as
in the previous section. Now the issue addressed in this manuscript arises: use of CG
(with any preconditioner) for these @) systems will result in a nonlinear preconditioner
even if a fixed number of iterations is employed, whereas a fixed number of steps of a
Chebyshev method for ¢ with Jacobi splitting (i.e. with preconditioner D = diag(Q))
is a linear operator and so preserves the linearity of P.

Some simple numerical results illustrate the issue and show the clear advantage of
the Chebyshev method in this situation. For clarity in our nomenclature, we let A\; <
Ay < oo+ <\, denote the eigenvalues of the symmetrically scaled matrix D_%QD_%
and vy, vy, ..., v, denote the corresponding eigenvectors.

In figure 2 we plot the value of the Euclidean norm of the residual versus the iteration
number in MINRES. In both cases we use Q>—Q; mixed finite elements and the Stokes
system is of size 2467 x 2467. The (1,1) block of (4.2) is given by a single AMG V-
cycle using HSL package HSL_MI20 applied via a matlab interface [3]. The (2,2) block is
approximated using a fixed number of steps of either CG or Chebyshev semi-iteration, as
described above, with diagonal scaling for both methods. In both cases the velocity part
of the right hand side is given by the driven cavity flow problem in IFISS [4], whereas
the pressure part, g, is given by Vini1)2 and vs + V(,11)/2 in figures 2(a) and 2(b)
respectively. The pressure part of the right hand side is in this case not relevant to the
physical problem, but it enables easy description of our particular example and gives an
initial residual which must correspond to some starting guess for the correct physical
right hand side. We use one CG iteration with starting vector v,, in figure 2(a) and two
CG iterations with starting vector v; in figure 2(b). On the same plots are shown the
results with the same number of Chebyshev iterations with the exact spectral bounding
parameters (3.1) for the @, pressure element used here.

4.2 Example 2

Our final example also involves the saddle point system (4.1), but as it arises in the
context of PDE-constrained optimization. Consider the (distributed) optimal control
problem

1 N
I{Lllfni||u—U||§+ﬂ||fH§ (4.3)

)

subject to — V*u = finQ .
with u = ¢ on 09, (4.5)
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Figure 2: Convergence of MINRES when using fixed number of steps of CG and Cheby-
shev semi-iteration in the preconditioner.

where €) is some bounded domain, g and @ are prescribed functions and 3 is a regular-
ization parameter. It can be shown that upon discretization, this problem is equivalent
to solving the saddle point system

A BT X c
ERSIMEL 40
26Q 0 : : .
0 o B =[-Q K] with @ and K denoting the mass and stiffness
matrices respectively [15], [18].

Rees, Dollar and Wathen [15] showed that if we use MINRES to solve this system
then an effective preconditioner is of the form

where A =

26Q 0 0

P=1| 0 Q 0 :
0 0 KQ'KT

where @ and K are approximations to the mass and stiffness matrices. As in the first
example, we can use a fixed number of multigrid iterations, say, for K. The operator
() needs to be an approximation to the mass matrix which preserves linearity of P -
therefore CG is unsuitable but, because of the results in section 3 above, a fixed number
of steps of the Chebyshev semi-iteration with Jacobi splitting should perform well.
Figure 3 illustrates this - here we take Q = [0, 1]* and discretize the problem using
Q; finite elements with mesh size 27° (making A a 2883 x 2883 system). We take the
regularization parameter 3 = 1072. For K we again use one AMG V-cycle using HSL
package HSL_MI20 applied via a matlab interface [3]. @ is one step of either diagonally
scaled CG or Chebyshev semi-iteration, and in both cases the vector d in the right
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hand side is that given by example 1 in [15]. In figure 3(a) the vector c is given by
[BV(m+1)/2 V3)T and the starting vectors for both CG and Chebyshev are v(,,43)/2 for the
(1,1) block and vy for the (2,2) block. In figure 3(b) ¢ = [v,, v3]” and the inital vectors
are V(m+1)/2 and V(m+3)/2-

5 5
T T T T

10 10

= = = Chebyshev = = = Chebyshev

—cG —cG
10° 1 10°
" U
\) \J
\] \J
= . =
X100 8 <100 S
—_— A — A
- Y - .
1 .
A 1
10 Y 10 ‘\
07 K 107} \
A A )
A\ ) LY
3 ]
10715 L L L L L L 10715 L L L L L L
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Number of iterations Number of iterations
(a) One step of CG/Chebyshev, (b) One step of CG/Chebyshev,
_ T 1 _ 2 _ _ T 41 _ 2 _
c = (BVimt1)/2 V3)", Xg = V(m+3)/2, Xg = V2 c= (Vin V3)", Xg = V(m+1)/2> Xg = V(m+3)/2

Figure 3: Convergence of MINRES when using fixed number of steps of CG and Cheby-
shev semi-iteration in the preconditioner.

In both these examples we see failure in the convergence of the outer MINRES itera-
tion when we use CG, presumably because of the nonlinear nature of the preconditioner.
Again, these examples are artificial, but they serve to illustrate behaviour that may oc-
cur in a practical application. The Chebyshev method is covered by the linear theory
and so MINRES convergence in this case is as expected.

5 Conclusions

In the context of preconditioning for Krylov subspace iterative methods for solving
linear systems, the use of a Krylov subspace method in applying the preconditioner —
or part of the preconditioner — leads necessarily to a nonlinear preconditioner. There
are important situations where the Chebyshev semi-iterative method is essentially as
effective as Conjugate Gradients, and it leads to a linear preconditioner provided that
a fixed number of iterations are used. We have illustrated this by giving two examples
where the consistent mass matrix is desired as part of a preconditioner and so this issue
is important.
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