
TRACE CHECKING WITH REAL-TIME SPECIFICATIONS

Rocco Deutschmann1, Matthias Fruth 1,2, Horst Reichel 2, Hans-Christian Reuss3

1 Dresden University of Technology, Institute for Combustion Engines and Automotive Engineering
Address: D-01062 Dresden, Germany.
Phone: (+49-351) 463-36587, Fax: (+49-351) 463-32866, e-mail: deutschmann@ivk.tu-dresden.de
2 Dresden University of Technology, Institute for Theoretical Computer Science
Address: D-01062 Dresden, Germany.
Phone: (+49-351) 463-38548, Fax: (+49-351) 463-38348, e-mail:{fruth | reichel}@tcs.inf.tu-dresden.de
3 University of Stuttgart, Institute for Combustion Engines and Automotive Engineering
Address: Pfaffenwaldring 12, D-70569 Stuttgart, Germany.
Phone: (+49-711) 685-8501, Fax: (+49-711) 685-5710, e-mail: reuss@ivk.uni-stuttgart.de

Abstract: Obtaining full models for the validation and verification of embedded systems is often diffi-
cult. The presented approach overcomes this problem by checking finite traces, which does not require
any system model. Traces are generated by test car runs or hardware-in-the-loop simulation. We pro-
pose a canonical extension of linear-time temporal logic (LTL) for real-time specifications. Our algorithm
translates real-time LTL formulae into corresponding Büchi automata that check finite traces. The algo-
rithm has been implemented as part of an industrial validation and verification framework for automotive
electronics and successfully applied to real-world systems.
Keywords: Runtime verification, trace checking, real-time specifications, temporal logic, Büchi automata

1. INTRODUCTION

Due to the increasing complexity of software and
hardware systems,formal methods(Clarkeet al.,
2001) receive increasing attention in automotive
electronics. Contrary to the traditional verification
approaches testing and simulation, formal meth-
ods, like theorem proving and model checking,
cover all possible behaviors of a system; that is,
they find all violations of a system specification.
However, this is only practically feasible for sys-
tems of limited size. For example, model checking
suffers the infamous state explosion problem: in
the worst case, the size of a system model is expo-
nential in its number of boolean variables. Despite
the availability of powerful state-space reduction
techniques, this problem occurs with all kinds of
formal methods and is now considered the main
bottleneck of the formal verification approach.

Semi-formal methodsare designed to com-
bine the advantages of both formal and non-formal
methods. Since they do not explore the full state
space of a system, they are much faster and able to
handle much larger systems than formal methods.
Moreover, they are applied to systems directly in-
stead of system models and they are fully auto-
matic. Highly expressive formal specification lan-
guages increase the probability for finding corner-
case bugs. The use of temporal logics for property
specification allows easy integration with formal
methods.

A prevalent semi-formal technique istrace
checking: first, temporal-logic specifications are
represented as rewriting systems, as by Havelund
& Roşu (2001), alternating automata, as by
Finkbeiner & Sipma (2004), or B̈uchi and fi-
nite automata, as by Giannakopoulou & Havelund

(2001). Then, appropriate algorithms from rewrit-
ing or automata theory are applied in order to
check the truth of given finite execution traces.

For commercial embedded systems, full mod-
els are often not available or particularly expen-
sive to construct, since third-party subsystems are
usually kept secret. Our approach is particularly
suitable for embedded systems, as it does not even
require a partial system model; verification can
start just from a property specification.

In the past, there have been numerous ap-
proaches to combine automata theory and model
checking. Validity checking, also known as
automata-theoretic model checking, has early re-
ceived significant attention (Wolperet al., 1983,
Vardi & Wolper, 1986, 1994), while truth check-
ing, that is, determining if a trace satisfies some
temporal property, has only recently become pop-
ular (Vardi, 1997).

In this paper, we present an automata-
theoretic method for trace checking with real-time
specifications. For the specification of properties,
we develop a canonical extension of linear-time
temporal logic (LTL). We develop an algorithm
that, for a given real-time specification, on-the-fly
constructs an equivalent Büchi automaton and ver-
ifies the system’s execution trace by traversing the
automaton. The algorithm can be executed online,
this means that the system can be monitored while
it is running, and without storing the full trace.

The next section describes LTL and our real-
time extension to it, defines a semantics for finite
traces, and introduces Büchi automata. Section
3 explains our trace checking algorithm, and dis-
cusses possible efficiency improvements. Finally,
we discuss computational limits of the presented
approach, and give an outlook to future work.



2. PRELIMINARIES

This section introduces the fundamental for-
malisms of our approach. First, we recall linear-
time temporal logic (LTL), define its syntax,
infinite-trace and finite-trace semantics. Then,
Büchi automata and a translation from LTL to
Büchi automata are introduced. Finally, we define
a syntactical extension to LTL for the description
of real-time properties.

2.1 Linear-time temporal logic

In runtime verification, reactive systems are
observed by monitoring their execution traces.
Linear-time temporal logic (LTL), invented by
Pnueli (1977), provides effective means for ex-
pressing system properties: state formulae de-
scribe values of boolean variables in a specific
state, and path formulae describe safety and live-
ness properties that apply to each path outgoing of
a specific state.

The set of well-formed LTL formulae is in-
ductively defined as follows, starting from a given
setP of atomic propositions:

1. Each atomic propositionp ∈ P is a for-
mula.

2. If ϕ andψ are formulae, then¬ϕ , ϕ∨ψ,
Xϕ, andϕUψ are formulae.

As usual, we have the abbreviationsϕ ∧ ψ for
¬(¬ϕ∨¬ψ), true for ϕ∨¬ϕ, false for ¬true,
ϕ → ψ for ¬ϕ ∨ ψ, Fϕ for trueUϕ, andGϕ
for ¬F¬ϕ. The strong until operator,U , has a
dual,R, called release, such thatϕRψ stands for
¬(¬ϕU¬ψ).

An infinite trace is an infinite sequence of
statesξ = x0, x1, . . . such thatxi ⊆ P for all
i ≥ 0. An LTL formulaϕ is true in a pointi ≥ 0
of an infinite traceξ, denotedξi � ϕ, if the fol-
lowing holds:

ξi � p iff p ∈ P andp ∈ xi (1)

ξi � ¬ϕ iff ξi 2 ϕ (2)

ξi � ϕ ∨ ψ iff ξi � ϕ or ξi � ψ (3)

ξi � Xϕ iff ξi+1 � ϕ (4)

ξi � ϕUψ iff ξk � ψ for somek≥ i and

ξj � ϕ for all i≤j<k (5)

An infinite traceξ satisfies an LTL formulaϕ, de-
notedξ � ϕ, if ξ0 � ϕ.

2.2 Finite-trace semantics

Although LTL was originally designed for infinite
traces, there are several possible ways of inter-
preting LTL formulae over finite traces. For the

following discussion, we assume that each finite
trace just reflects a limited part of the infinite be-
havior of a reactive system, and has therefore to
be viewed as the prefix of some infinite trace.

Choosing an adequate finite-trace semantics
is often a problem, particularly when next-state or
eventuality formulae must be evaluated at the end
of a trace. In some cases, the truth value of a for-
mula cannot be decided by naively applying the
traditional, infinite-trace semantics to the given fi-
nite sequence of states. For instance, even ifp is
true in all states of a finite trace, it cannot be de-
termined whether the safety formulaGp holds for
the whole, infinite trace; also, it cannot be con-
cluded whether the liveness formulaF¬ p holds
for an infinite extension of this trace, sincep may
be true in some future state.

Eisneret al. (2003) give a good overview of
typical problems with and possible semantics for
dealing with finite traces. They distinguish three
types of finite-trace semantics: weak, neutral, and
strong semantics. In the weak view, a formula is
true if and only if it is true in some infinite ex-
tension of the finite trace. In the strong view, a
formula is true if and only if it evaluates to true
within the given, finite trace. The neutral view is
equivalent to the traditional, infinite-trace seman-
tics.

However, depending on application contexts,
different semantics may be preferable. Most ap-
proaches to checking finite traces, as of Havelund
& Roşu (2001), Giannakopoulou & Havelund
(2001), and Finkbeiner & Sipma (2004), use
neutral semantics. Giannakopoulou & Havelund
(2001) argue that theX operator in LTL is coun-
terintuitive, since users might misattribute some
concept of time to it; accordingly, they use LTL-
X, a variant of LTL without theX operator, thus
avoiding ambiguous interpretations ofX formu-
lae. Roşu & Havelund (to appear) propose a sim-
ple stationary semantics which extends each finite
trace to an infinite one by repeating its last state.

A finite trace is a finite sequence of states
ξ = x0, x1, . . . , xn−1 such thatxi ⊆ P for all
0 ≤ i < n. An LTL formulaϕ is true in a point
0 ≤ i < n of a finite traceξ, denotedξi � ϕ, if
the infinite-trace semantics together with the fol-
lowing modifications holds:

ξi � Xϕ iff i<n− 1 andξi+1 � ϕ (6)

ξi � ϕUψ iff ξk � ψ for somei≤k<n and

ξj � ϕ for all i≤j<k (7)

2.3 Büchi automata

In our approach, temporal specifications are repre-
sented by B̈uchi automata, namely labelled gener-
alised B̈uchi automata (LGBA), that is, B̈uchi au-
tomata with multiple sets of accepting states. For
each LTL formulaϕ, one can construct a corre-
sponding B̈uchi automatonAϕ that accepts pre-



cisely the traces satisfyingϕ (Wolperet al., 1983,
Vardi & Wolper, 1986, 1994).

A generalised B̈uchi automaton (GBA) is a
quadrupleA = (Q, I, δ,F) whereQ is a finite
nonempty set ofstates, I ⊆ Q is the set ofinitial
states, δ : Q → 2Q is thetransition function, and

F ⊆ 22Q is the set of sets ofaccepting states;
note thatF may be empty. Anexecutionof A
is an infinite sequence of statesσ = s0, s1, . . .
such thats0 ∈ I andsi+1 ∈ δ(si) for all i ≥ 0.
An accepting executionofA is an execution such
that, for each accepting setFi ∈ F , at least one
stateqi ∈ Fi occurs infinitely often inσ. A la-
belled gerenalised B̈uchi automaton (LGBA) is a
triple (A,D,L) whereA is a GBA,D is the finite
domain, andL : Q → 2D is the labelling func-
tion. An LGBA accepts a traceξ = x0, x1, . . .
overD if there exists an accepting executionσ =
s0, s1, . . . such thatxi ∈ L(si) for eachi ≥ 0.

2.4 Translating LTL to LGBA

One of the first non-worst-case approaches to the
translation of LTL formulae into B̈uchi automata
was developed by Gerthet al. (1995). This algo-
rithm, based on a tableau construction for LGBA,
was later improved by Danieleet al.(1999). It can
be used on-the-fly, that is, only those parts of the
automaton currently needed for the traversal of the
trace are constructed and stored in memory. Sev-
eral optimisations of these techniques have been
proposed, and some of them are discussed in the
next section.

We now give a brief overview of this algo-
rithm; for more details, consult Gerthet al.(1995)
and Danieleet al. (1999).

Using a tableau procedure, the algorithm con-
structs a graph whose nodes and edges define
states and transitions of the automaton. Each node
consists of five fields:

1. nameis a unique identifier.

2. incoming is the set of nodes that lead to
this node.

3. newis the set of formulae that must hold in
this node and have not yet been processed.

4. old is the set of formulae that must hold
in this node and have already been pro-
cessed.

5. next is the set of formulae that must hold
in all immediate successors of this node.

Nodes are expanded by using a set of generic
rules, which are applied depending on the type of
unprocessed formulae in theirnewfields. In order
to process anewformula for the current node, the
formula is decomposed to new, but simpler, obli-
gations, that are either added to this node, or, by

splitting the current node, to exactly two replacing
nodes.

Starting with a single node, containing pre-
cisely the LTL formula to be translated innewand
“init” in incoming, the algorithm applies tableau
rules until allnewformulae in all nodes have been
processed. It maintains a set of completely ex-
panded nodes, which essentially defines the state
graph. Once the expansion of a node is completed,
it is added to this set, and merged with equiva-
lent nodes if there are any; nodes are equivalent if
they have equalnextandold fields, and they are
merged by merging theirincomingfields. For our
notation of this algorithm, we require all formu-
lae to be in negation normal form, that is, nega-
tion symbols occur only directly in front of propo-
sitions. The algorithm uses the following set of
tableau rules:

1. If new contains an atomic formula (p ∈
P , true, or false), then discard it if it
contradicts with some formula inold, oth-
erwise add it toold.

2. If newcontains a formulaXϕ, then add
Xϕ to old andϕ to next.

3. If newcontains a formulaϕ∧ψ, then add
each ofϕ,ψ to newunless it is already in
old.

4. If new contains a formulaµ of the form
ϕ1Uϕ2, ϕ1Rϕ2, or ϕ1 ∨ ϕ2, split the
current node into two replacing nodes
that are copies of it. Under consid-
eration of the tableau rules inFigure
1, update thenew and next fields of
these nodes: add those formulae from
new1(µ), new2(µ), next1(µ) that are
not already inold to the respectivenew
andnextfields of the new nodes.

µ new1(µ) next1(µ) new2(µ)
ϕ1Uϕ2 {ϕ1} {ϕ1Uϕ2} {ϕ2}
ϕ1Rϕ2 {ϕ2} {ϕ1Rϕ2} {ϕ1, ϕ2}
ϕ1 ∨ ϕ2 {ϕ1} {} {ϕ2}

Fig. 1. Tableau rules for node splitting.

After termination of the algorithm, a GBA
can be obtained from the constructed state graph
as follows: the setQ of states is the set of graph
nodes. The setI of initial states is the set of those
states inQ that have “init” in theirincomingfield.
For each two statess andt, a transitiont ∈ δ(s)
froms to t exists if and only ifs ∈ incoming(t).
To ensure that each formulaϕUψ is eventually
satisfied, we require that for each subformula of
the formϕUψ, F must include a set containing
all nodesq such that eitherϕUψ ∈ new(q) or
ψ ∈ new(q).



The GBA can be extended to an LGBA by set-
ting the finite domainD to2P and the labelling of
a states to L(s) = {X : X ⊇ Pos(s) ∧ X ∩
neg(s) = ∅} wherepos(s) = old(s) ∩ P and
neg(s) = {µ : ¬µ ∈ old(s)∧µ ∈ P}. Thereby,
each states is labelled with all sets in2P that are
compatible withold(s).

2.5 Real-time LTL

In the past, there have been various developments
in the field of real-time logics (Koymans, 1990,
Emersonet al., 1992, Alur & Henzinger, 1993).
Our approach aims on extending LTL for real-time
specifications by annotating discrete-time bound-
aries to temporal operators.

For instance,G (p→ F5,10 q) expresses the
property that for each state satisfyingp, some fu-
ture state in the time range from 5 to 10 satisfiesq.
For real-time systems, the annotated time values
map directly to system times; for instance, “when-
everp holds, q must follow within 5 to 10 mil-
liseconds”.

Our approach is similar to that of real-time
CTL (RTCTL), by Emersonet al. (1992), since
they also annotate next-state and strong until oper-
ators with nonnegative integer timepoints, but for
the branching-time logic CTL. It is similar to met-
ric temporal logic (MTL), presented by Koymans
(1990) and Alur & Henzinger (1993), though their
logic includes past-time operators. However, we
think that LTL is better suited for on-the-fly veri-
fication than CTL, and verifying past-time formu-
lae is not possible online, since it requires trace
storing. Therefore, we expect our approach to be
computationally more efficient.

The set of well-formed real-time LTL
(RTLTL) formulae is inductively defined, using
the defining rules for LTL and the following one:

3. If ϕ andψ are formulae, anda andb in-
tegers, thenXaϕ andϕUa,bψ are formu-
lae.

For RTLTL, we have the additional abbreviations
Fa,bϕ for trueUa,bϕ,Ga,bϕ for ¬Fa,b¬ϕ, and
ϕRa,bψ for ¬(¬ϕUa,b¬ψ).

The finite-trace semantics of RTLTL is de-
fined with respect to that of LTL, by adding two
more rules:

ξi � Xaϕ iff i < n− a andξi+a � ϕ (8)

ξi � ϕUa,bψ iff ξk � ψ for somek such that

i+a≤k≤ i+b, k<n, and

ξj � ϕ for all i≤j<k (9)

Note that RTLTL and LTL are still semanti-

cally equal, since the following equivalences hold:

Xa+1ϕ ≡ XXaϕ (10)
ϕUa+1,b+1ψ ≡ ϕ ∧X(ϕUa,bψ) (11)

ϕU0,b+1ψ ≡ ψ ∨ (ϕ ∧X(ϕU0,bψ) (12)

ϕU0,0ψ ≡ ψ (13)

Hence, one can easily translate RTLTL formulae
into standard LTL formulae by subsequent appli-
cation of the above equivalences as rules.

3. TRACE CHECKING

In our application context, traces are recorded in
the original system or in a test bench: in other
words, they are either generated from a test car run
or from measuring data that is obtained by simu-
lation in a hardware-in-the-loop framework.

System properties are specified in RTLTL,
and then either canonically rewritten into LTL, or
directly used to construct an LGBA, employing
an extended version of the presented tableau al-
gorithm. These formulae are then translated into
Büchi automata, which are either computed once
and optionally stored for later use, or computed
and traversed on-the-fly.

Finally, finite traces, which are either pre-
recorded or read online during a test run, are
checked against arbitrary specifications that are
given by their corresponding B̈uchi automata. The
trace-checking task itself is easy and performed
by classic search algorithms. If a verification run
fails, our tool immediately discovers the source
of the violation, and indicates the respective time
point in the trace.

In this section, we present different opera-
tion modes of our algorithms, featuring canonical
RTLTL-to-LTL translation, symbolic treatment of
real-time formulae for on-the-fly LGBA construc-
tion, and online monitoring. We finally discuss
efficiency improvements which have been inte-
grated into our software or which we intend to
adopt.

3.1 A basic algorithm

The basic algorithm proceeds in three phases:
first, the given real-time specification, an RTLTL
formula ϕ, is translated into an equivalent LTL
formula ϕ′. Then, an LGBAAϕ′ that accepts
precisely the traces satisfyingϕ′ is computed.
Finally, arbitrary finite traces can be verified by
traversing the automaton: classic search algo-
rithms are applied in order to find an accepting
execution of the automaton; for the interpretation
of the given traces, we use a neutral semantics. It
turns out that for finite traces, the LGBA accep-
tance condition reduces to finite automata accep-
tance (Giannakopoulou & Havelund, 2001). Con-
sequently, it suffices to treat all constructed Büchi



automata as finite automata.
For finding accepting executions, both

forward and backward depth-first search are
favourable strategies as long as the trace has been
pre-computed and stored, while backward depth-
first search is the only advisable method for online
trace traversal. A comparison of basic search al-
gorithms for checking finite traces with automata
can be found in Finkbeiner & Sipma (2004).

Correctness and termination of the tableau
procedure for LTL-to-LGBA translation has been
proven in the original papers (Gerthet al., 1995,
Daniele et al., 1999). For a more comprehen-
sive discussion on the correctness of LTL-to-
Büchi translation algorithms in general, the inter-
ested reader is referred to Tauriainen & Heljanko
(2002). Correctness and termination proofs of our
algorithm, including the below described exten-
sions to this basic algorithm, can be found in Fruth
(to appear).

Roşu & Havelund (to appear) propose a use-
ful taxonomy for runtime verification techniques.
Their assessment follows three criteria: first, is the
algorithm trace-storing or non-storing (online)?
Second, is it synchronous or asynchronous, that
is, does it detect errors at the same time as they
occur (very hard to achieve) or not? And third,
is it predictive or exact? For runtime verifica-
tion with real-time specification, we are also con-
cerned with the issue whether real-time formulae
have to be unfolded (consuming a lot of memory),
and we want to know whether the automata are
constructed on-the-fly (memory-efficient).

According to these classification measures,
all our algorithms are asynchronous and exact, and
each of them can be used in a non-storing fashion.
However, they differ in the last two criteria.

In the remainder of this section, we will out-
line functional enhancements of our basic algo-
rithm, regarding the last two points: symboli-
cally representing real-time formulae and on-the-
fly operation. For an exhaustive presentation of
the omitted technical details, we refer to the sec-
ond author’s thesis report on runtime verification
(Fruth, to appear).

3.2 On-the-fly verification

The tableau procedure of Gerthet al. (1995), to-
gether with the improvements of Danieleet al.
(1999), can easily be executed on-the-fly. Nodes
are then expanded on demand, that is, depending
on the propositions that hold in the current state
of the trace. Only completely expanded nodes are
visited. Already visited nodes are remembered by
storing their hash values; when a node experiences
future changes, its hash value also changes, and
it must be revisited. By storing only those parts
of the automaton in memory that are currently
needed for the traversal of the trace, considerable
efficiency improvements can be achieved.

3.3 Real-time LGBA

In the basic algorithm, no matter whether applied
on-the-fly or not, all real-time operators are un-
folded for LGBA construction. Clearly, in order to
find an accepting execution, the unfolding of some
operators is eventually needed. However, finding
a way to avoid unnecessary unfoldings would be
of significant benefit.

For this purpose, nodes of the tableau graph
are allowed to contain real-time operators. The
tableau rules are naturally extended by the equiv-
alences 10 to 13 from 2.5; for instance, satisfying
X5ϕ in the current node requires satisfyingX4ϕ
in all immediate successors of this node. Since
the structure of these rules is completely analog to
that of the existing rules for LTL, they are omitted
here.

3.4 Further efficiency improvements

Several authors have proposed different meth-
ods for achieving reductions in running time
and memory consumption (Danieleet al., 1999,
Somenzi & Bloem, 2000, Giannakopoulou &
Havelund, 2001, Tauriainen, 2003). Danieleet al.
(1999) and Giannakopoulou & Havelund (2001)
describe a revised version of the formerly state-
of-the-art tableau method of Gerthet al. (1995),
eliminating redundancies in the translation phase.
Somenzi & Bloem (2000) and Etessami & Holz-
mann (2000) independently introduce a formula
rewriting phase preceding the automata construc-
tion. They also apply simulation relations in order
to minimise the obtained B̈uchi automata; unfor-
tunately, this technique cannot be used on-the-fly.
Wolper (2001) propose an early formula rewriting
step, as well as early detection of nontrivial incon-
sistencies.

4. CONCLUSION

We have presented a real-time extension to linear-
time temporal logic and a method for checking
finite traces against real-time specifications for-
mulated in this language. Our approach can be
used online, the automata construction can be per-
formed on-the-fly, and RTLTL formulae are un-
folded into LTL only if necessary. All algorithms
have been implemented in the programming lan-
guage Python as part of an industrial validation
and verification framework for automotive elec-
tronics.

The presented verification method is efficient
and scalable. The constructed Büchi automata are
probably already essentially optimal. Büchi au-
tomata are a widely known and well-researched
representation for temporal-logic specifications,
and our results are competitive to those of others;
comparisons with the best available reference al-
gorithms (Danieleet al., 1999, Gastin & Oddoux,



2001) show competitive results for computation
time and memory usage.

Further efficiency gains may be possible by
improving the initial formula rewriting step, by
adding further tableau rules for real-time opera-
tors, and by employing automata-theoretic reduc-
tions methods.

REFERENCES

Alur, R. and Henzinger, T. A. (1993). Real-Time
Logics: Complexity and Expressiveness.In-
formation and Computation, 104(1):35–77.

Clarke, E. M., Grumberg, O. and Peled, D. A.
(2001). Model Checking. The MIT Press.

Daniele, M., Giunchiglia, F. and Vardi, M. Y.
(1999). Improved Automata Generation for
Linear Temporal Logic. In Proceedings of the
11th International Conference on Computer
Aided Verification, volume 1633 ofLecture
Notes in Computer Science. Springer.

Eisner, C., Fisman, D., Havlicek, J., Lustig, Y.,
McIsaac, A. and Van Campenhout, D. (2003).
Reasoning with Temporal Logic on Truncated
Paths. In Proceedings of the 15nd Interna-
tional Workshop on Computer Aided Veri-
fication, volume 2725 ofLecture Notes in
Computer Science. Springer.

Emerson, E. A., Mok, A. K., Sistla, A. P. and
Srinivasan, J. (1992). Quantitative Tempo-
ral Reasoning.Real-Time Systems, 4(4):331–
352.

Etessami, K. and Holzmann, G. J. (2000). Opti-
mizing Büchi Automata. In Proceedings of
the 11th International Conference on Concur-
rency Theory, volume 1877 ofLecture Notes
in Computer Science. Springer.

Finkbeiner, B. and Sipma, H. (2004). Check-
ing Finite Traces using Alternating Au-
tomata. Formal Methods in System Design,
24(2):101–127.

Fruth, M. (to appear). Runtime Verification of
Embedded Real-Time Systems. Diploma the-
sis, Dresden University of Technology, Dres-
den, Germany.

Gastin, P. and Oddoux, D. (2001). Fast LTL to
Büchi Automata Translation. In Proceedings
of the 13th Conference on Computer Aided
Verification, volume 2102 ofLecture Notes in
Computer Science. Springer.

Gerth, R., Peled, D. A., Vardi, M. Y. and Wolper,
P. (1995). Simple On-the-fly Automatic Ver-
ification of Linear Temporal Logic. In Pro-

ceedings of the 15th IFIP WG 6.1 Interna-
tional Symposium on Protocol Specification,
Testing and Verification, volume 38 ofIFIP
Conference Proceedings. Chapman and Hall.

Giannakopoulou, D. and Havelund, K. (2001).
Runtime Analysis of Linear Temporal Logic
Specifications. RIACS Technical Report
01.21, Research Institute for Advanced Com-
puter Science, Moffett Field, California,
USA.

Havelund, K. and Roşu, G. (2001). Monitoring
Programs using Rewriting. In Proceedings
of the 16th IEEE International Conference
on Automated Software Engineering. IEEE
Computer Society Press.

Koymans, R. (1990). Specifying Real-Time Prop-
erties with Metric Temporal Logic.Real-Time
Systems, 2(4):255–299.

Pnueli, A. (1977). The Temporal Logic of Pro-
grams. In Proceedings of the 18th IEEE Sym-
posium on Foundations of Computer Science.
IEEE Computer Society Press.

Roşu, G. and Havelund, K. (to appear). Rewriting-
based Techniques for Runtime Verification.
Automated Software Engineering.

Somenzi, F. and Bloem, R. (2000). Efficient Büchi
Automata from LTL Formulae. In Proceed-
ings of the 12th International Conference on
Computer Aided Verification, volume 1855 of
Lecture Notes in Computer Science. Springer.

Tauriainen, H. (2003). On Translating Linear
Temporal Logic into Alternating and Nonde-
terministic Automata. Research report A83,
Laboratory for Theoretical Computer Sci-
ence, Helsinki University of Technology, Es-
poo, Finland.

Tauriainen, H. and Heljanko, K. (2002). Test-
ing LTL Formula Translation into B̈uchi Au-
tomata. International Journal on Software
Tools for Technology Transfer, 4(1):57–70.

Vardi, M. Y. (1997). Alternating Automata: Uni-
fying Truth and Validity Checking for Tem-
poral Logics. In Proceedings of the 14th In-
ternational Conference on Automated Deduc-
tion, volume 1249 ofLecture Notes in Com-
puter Science. Springer.

Vardi, M. Y. and Wolper, P. (1986). An Automata-
Theoretic Approach to Automatic Program
Verification. In Proceedings of the 1st Sym-
posium on Logic in Computer Science. IEEE
Computer Society Press.

Vardi, M. Y. and Wolper, P. (1994). Reasoning



about Infinite Computations.Information and
Computation, 115(1):1–37.

Wolper, P. (2001). Constructing Automata
from Temporal Logic Formulas: A Tuto-
rial. In Lectures on Formal Methods and
Performance Analysis: Proceedings of the
1st EEF/Euro Summer School on Trends in
Computer Science, Revised Lectures, volume

2090 ofLecture Notes in Computer Science.
Springer.

Wolper, P., Vardi, M. Y. and Sistla, A. P. (1983).
Reasoning about Infinite Computation Paths
(Extended Abstract). In Proceedings of the
24th IEEE Symposium on Foundations of
Computer Science. IEEE Computer Society
Press.


