
Formal Verification of Embedded
Real-Time Systems

Diplomarbeit
zur Erlangung des akademischen Grades

Diplom-Informatiker

vorgelegt von

Matthias Fruth

geboren am 30. November 1979 in Dresden

der Fakultät Informatik
der Technischen Universität Dresden

eingereicht am 1. Februar 2005

Verantwortlicher Hochschullehrer: Prof. Dr. rer. nat. habil. Horst Reichel
Betreuer: Dipl.-Ing. Rocco Deutschmann

Acknowledgements

I would like to express my gratitude to all those people who supported me dur-
ing the preparation of this thesis.

Professor Horst Reichel always had time for me. During my whole course of
studies, I could benefit from his valuable support and guidance, and from many
fruitful discussions. He provided the topic.

Rocco Deutschmann patiently supervised my work. He offered me a lot of free-
dom for my research and a friendly working environment.

Matthias Roch arranged a visit to the BMW Research and Innovation Centre
in Munich.

Finally, no part of my studies had been possible without the generous support
from my parents.

Thank you all!

iii

iv

Contents

Contents v

1. Introduction 1

2. Temporal logics 3
2.1. Linear-time temporal logic (LTL) 3
2.2. Finite-trace semantics . 4
2.3. Real-time LTL (RTLTL) . 8
2.4. Equivalences . 11
2.5. Safety and liveness properties . 11
2.6. The truth checking problem . 13

3. Automata theory 15
3.1. Finite automata for finite and infinite traces 15
3.2. Büchi automata . 19
3.3. Translating LTL formulae into Büchi automata 20
3.4. Translating RTLTL formulae into NFA 22
3.5. Checking finite traces . 28
3.6. Complexity . 31

4. Term rewriting 33
4.1. Preliminaries . 33
4.2. Simple rewriting . 35
4.3. Event-consuming rewriting . 37
4.4. Complexity . 40

5. Experiments and results 41

6. Conclusion 43

A. Software 45
A.1. System requirements . 45
A.2. User interface . 45
A.3. Trace syntax . 46
A.4. Property syntax . 47
A.5. Usage examples . 48

List of Figures 49

Bibliography 51

v

CONTENTS

vi

1. Introduction

Motivation In future, all systems will first and foremost be computer systems.
As a consequence of this development, systems in all application domains, re-
gardless whether they are implemented on hardware, software, or hybrid ar-
chitectures, will essentially be concurrent and reactive. While their correct
operation is often critical in several ways, complexity grows rapidly. For these
reasons, verification becomes an absolute necessity.

In the last decades, a variety of verification techniques has been proposed.
Traditional approaches, based on testing and simulation, are often limited to
relatively weak specification languages and partial coverage of a system’s be-
haviour. Formal methods [CGP99] cover all possible execution paths of a system
by exploring a full system model and thus find all violations of the system spec-
ification. Unfortunately, source code of real-world systems is in many cases
unavailable to the verifying party, and then models cannot be constructed.
Furthermore, due to the state explosion problem, formal verification is often
infeasible for large systems.

A solution to these problems is runtime verification [HR01b], a semi-formal1

automatic verification method that checks single execution traces of a running
system against temporal-logic specifications. This approach does not require
additional modelling and can handle much larger systems than formal methods.
In order to achieve acceptable coverage rates, both a sensible selection of input
traces as well as the formulation of exhaustive specifications are required.

Related work Runtime verification with temporal-logic specifications is a
widely researched area. There are several approaches for checking finite traces,
using automata theory [GH01, FS04], term rewriting [HR01b, RH], and others2.

The automata-theoretic methods translate temporal-logic formulae into fi-
nite automata and solve the word problem for given traces. In particular, non-
deterministic and alternating finite automata for infinite words with different
acceptance conditions, namely nondeterministic Büchi automata [GH01] and
alternating Büchi automata [FS04], are used.

Until recently, the tableau method of Gerth, Peled, Vardi, and Wolper
[GPVW95], improved by Daniele, Giunchiglia, and Vardi [DGV99], was undis-
puted as the state-of-the-art algorithm for translating linear-time temporal logic
(LTL) [Pnu77] formulae into nondeterministic Büchi automata. This approach
uses labelled generalised Büchi automata as an intermediate step. It has been
adapted by Giannakopoulou and Havelund [GH01] for checking finite traces

1Some authors [GH01] talk of runtime verification as a light-weight formal method.
2For instance, one approach of Roşu and Havelund [RH01] is based on dynamic programming.

Another, more recent, approach of them [RH] investigates on so-called binary transition
tree finite state machines (BTT-FSMs).

1

1. Introduction

with LTL-X [CGP99] specifications, in which case the constructed automata
are nondeterministic finite automata.

The rewriting-based methods successively apply a set of rewrite rules in order
to transform the initial problem, consisting of a finite trace and a temporal-logic
formula, into simpler problems, until a truth value is obtained. Contrary to
automata-theoretic techniques, this approach benefits from very simple formula
and trace transformations, while the complexity is moved into the rewriting
system.

Topic In this thesis, we explore runtime verification methods for the analysis
of real-time systems. The major goal of this thesis is the development of an
efficient runtime algorithm that checks given real-time traces against real-time
specifications, to be integrated into an industrial validation and verification
framework for automotive electronics. We develop a consistent extension of
the existing representation formalisms for specification formulae, traces, and
verification algorithms to the notion of real-time. In particular, we define a
syntactic extension of LTL for the representation of real-time properties.

We present two algorithms that each take as input a finite real-time trace and
a real-time specification formula, but solve the verification task in different ways:
the first one bases upon the paradigm of automata-theoretic truth checking
[Var97, GH01] and the second one upon term rewriting [BN98, DP01]. In order
to deal with finite traces, we modify the default, infinite-trace semantics of LTL,
ensuing changes in the automata acceptance conditions.

The first algorithm extends the tableau method of [GPVW95] into a pro-
cedure that translates real-time LTL formulae into nondeterministic finite au-
tomata for finite traces. Further improvements of this algorithm allow the
on-the-fly3 evaluation of specifications. We have published preliminary results
of this approach in [DFRR04].

The second algorithm uses an extension of the rewriting-based techniques
proposed in [HR01a] and [RH] for standard LTL formula. Starting with a
finite trace and a real-time LTL formula, a set of rewrite rules is applied until
eventually either true or false is returned. We also adapt an event-consuming
version of this technique which essentially operates online4.

Outline This paper is divided into six chapters and one appendix. In the
chapters 2, 3, and 4, we present the necessary fundamental concepts of temporal
logics, automata theory, and term rewriting. In chapter 5, we discuss correct-
ness checks and conduct a performance evaluation of all algorithms, based on
experimental results. In chapter 6, we conclude and give an outlook to future
work. The appendix provides a reference to the software implementation.

3In this case, on-the-fly operation means that automaton construction and trace traversal
take place simultaneously.

4A runtime verification technique operates online if it does not need to store the trace being
checked.

2

2. Temporal logics

In runtime verification, reactive systems are observed by monitoring their ex-
ecution traces. Both branching-time and linear-time logics provide effective
means for expressing system properties [Var01]; however, linear-time logics like
linear-time temporal logic (LTL) [Pnu77] are much more appropriate for check-
ing finite traces, since its properties relate to single paths.

In the first section, we define the traditional syntax and semantics of LTL.
Subsequently, we discuss modifications of the standard, infinite-trace semantics
towards finite traces. In the third section, we develop a syntactic extension
of LTL for representing real-time properties. Thereafter, we provide a set of
common equivalences that can be used in order to simplify user-provided spec-
ifications. In the fifth section, we show how safety and liveness properties can
be expressed in our framework and provide an introduction to the specifica-
tion of real-time properties. Finally, we formalise the practical task of runtime
verification as a computation problem and study its complexity.

2.1. Linear-time temporal logic (LTL)

The syntax of LTL contains both propositional formulae, describing static prop-
erties of a specific state, as well as temporal formulae, describing safety and
liveness properties that apply to every path outgoing of a specific state. In
addition to the common propositional operators for negation, disjunction, and
conjunction, LTL contains the temporal operators X (strong next), F (future),
G (globally), U (strong until), and R (release). In order to guarantee a consis-
tent semantics, we build our formal description of LTL on a minimal complete
set of operators.

Definition 2.1 (Syntax of LTL)
Let P be a nonempty set of atomic propositions. Then, the set of well-formed
LTL formulae over P is inductively defined as follows:

1. If p ∈ P, then p is a formula.

2. If ϕ and ψ are formulae, then ¬ϕ, ϕ ∨ ψ, Xϕ, and ϕUψ are formulae.

The remaining operators are defined by the following abbreviations:

> def
= p ∨ ¬p for some p ∈ P

⊥ def
= ¬>

ϕ ∧ ψ def
= ¬(¬ϕ ∨ ¬ψ)

ϕ→ ψ
def
= ¬ϕ ∨ ψ

3

2. Temporal logics

Fϕ
def
= >Uϕ

Gϕ
def
= ¬F¬ϕ

ϕRψ
def
= ¬(¬ϕU¬ψ)

For the evaluation of formulae, we require that unary operators have a higher
precedence than binary operators, that is, arguments of unary operators match
as small as possible subformulae and arguments of binary operators match as
large as possible subformulae.

Traditionally, the semantics of LTL is defined with respect to infinite traces.
Informally, a trace is a sequence of events where an event describes the set
of variables that are true at a particular time point in the trace. Since we
consider real-time traces, we expect that all events are in a consecutive order
where the first event is related to the timestamp 0 and directly successive events
are seperated by constant distances of time.

Definition 2.2 (Infinite trace)
An infinite trace is an infinite sequence of events ξ = x0, x1, . . . such that
xi ⊆ P for all i ≥ 0.

Definition 2.3 (Suffix)
Let ξ = x0, x1, . . . be an infinite trace and i ≥ 0. Then, the trace ξi

def
=

xi, xi+1, . . . is called a suffix of ξ.

The satisfiability relation for LTL is defined inductively on the syntactic
structure of its formulae.

Definition 2.4 (Infinite-trace semantics of LTL)
An infinite trace ξ = x0, x1, . . . satisfies an LTL formula ϕ, denoted ξ � ϕ, if
the following holds:

ξ � p for p ∈ P def⇐⇒ p ∈ x0 (2.1)

ξ � ¬ϕ def⇐⇒ ξ 2 ϕ (2.2)

ξ � ϕ ∨ ψ def⇐⇒ ξ � ϕ or ξ � ψ (2.3)

ξ � Xϕ
def⇐⇒ ξ1 � ϕ (2.4)

ξ � ϕUψ
def⇐⇒ ξi � ψ for some i ≥ 0 and (2.5)

ξj � ϕ for all 0 ≤ j < i

Definition 2.5 (Semantic equivalence)
Two formulae ϕ and ψ are equivalent, denoted ϕ ≡ ψ, if, for all traces ξ, we
have ξ � ϕ if and only if ξ � ψ.

2.2. Finite-trace semantics

Although LTL was originally designed for infinite traces, there are several pos-
sible ways of interpreting LTL formulae over finite traces. For the following
discussion, we assume that each (truncated) finite trace just reflects a limited

4

2.2. Finite-trace semantics

part of the infinite behaviour of a reactive system, and has therefore to be
viewed as the prefix of some (maximal) infinite trace.

We adapt the notions of trace and trace suffix to finite sequences of events.

Definition 2.6 (Finite Trace)
A finite trace is a finite sequence of events ξ = x0, x1, . . . , xn such that xi ⊆ P
for all 0 ≤ i ≤ n.

Definition 2.7 (Suffix)
Let ξ = x0, . . . , xn be a finite trace and i ≥ 0. Then, the trace ξi

def
= xi, . . . , xn

is called a suffix of ξ.

Note that ξi = ε if i ≥ |ξ|.
Choosing an adequate finite-trace semantics is often a problem, particularly

when next-state or eventuality formulae must be evaluated at the end of a
trace. In some cases, the truth value of a formula cannot be decided by naively
applying the traditional, infinite-trace semantics to the given finite sequence of
events. For instance, even if p is true for all events of a finite trace, it cannot be
determined whether the safety formula G p holds for the untruncated, infinite
trace; also, it cannot be concluded that the formula F¬p holds for some infinite
extension of this trace, since p might be true for some future event.

Eisner, Fisman, Havlicek and Lustig [EFH+03] give a good overview of typ-
ical problems with and possible semantics for dealing with finite traces. They
distinguish three types of finite-trace semantics: weak, neutral, and strong se-
mantics. In the weak view, a formula is true if and only if it is true in some
infinite extension of the finite trace. In the strong view, a formula is true if
and only if it is true for all infinite extensions of the finite trace, that is, if it
evaluates to true within the given, finite trace. The neutral view uses different
interpretations for weak and strong operators and is – besides this – analogue
to the traditional, infinite-trace semantics.

However, depending on the application context, different semantics may be
preferable. Most approaches to checking finite traces, as of Giannakopoulou
and Havelund [GH01], and Finkbeiner and Sipma [FS04], use neutral semantics.
The authors of [GH01] argue that the X operator in LTL is counterintuitive,
since users might misattribute some concept of time to it; accordingly, they
use LTL-X, a variant of LTL without the X operator, thus avoiding ambiguous
interpretations of X formulae. Havelund and Roşu [HR01a, RH] propose a
simple stationary semantics that extends each finite trace to an infinite one by
repeating its last event infinitely often.

We think that stationary semantics for truncated traces are generally too
simple and do not sufficiently reflect the behaviour of the corresponding max-
imal traces. There are at least three problems: first, states in the truncated
trace cannot be distinguished from states in its artificial extension; this can
be resolved by adding a new proposition that is true precisely in all artificially
added states. Second, repeating a specific state ignores all cases in which at
least one different state occurs; this can already be enough to falsify the truth
value of a formula. We believe that deciding whether a stationary semantics is

5

2. Temporal logics

sufficient for specific classes of traces and formulae is hard. Third, the extended
trace is infinite and therefore more expensive to check.

Definition 2.8 (Finite-trace semantics of LTL)
A nonempty finite trace ξ = x0, . . . , xn satisfies an LTL formula ϕ, denoted
ξ � ϕ, if the infinite-trace semantics together with the following modification
holds:

ξ � Xϕ
def⇐⇒ ξ1 6= ε and ξ1 � ϕ (2.6)

Conversely to infinite traces, ¬Xϕ is not equivalent to X¬ϕ when evaluated
on finite traces. This is because Xϕ and X¬ϕ both evaluate false for the same
trace ξ if the suffix ξ1 is empty, that is, if ξ consists of only one event. Since we
later need a dual to each of our operators, we define the weak next operator Y
by the following abbreviation:

Yϕ
def
= ¬X¬ϕ

In order to overcome all of the above mentioned problems at once, we use
a neutral semantics which respects the finiteness of traces. Thus, contrary to
most previous approaches, our semantics is consistent for all nonempty finite
traces and all LTL formulae.

Definition 2.9 (Consistency)
A logic is consistent if there is no model M and formula ϕ such that ϕ ∧ ¬ϕ
is true inM.

Theorem 2.10 (Consistency of LTL for finite traces)
LTL for finite traces is consistent.

Proof Let ϕ be an LTL formula. We prove this theorem by structural in-
duction on ϕ. Suppose that there is some finite trace ξ = x0, . . . , xn such that
ξ � ϕ and ξ � ¬ϕ.

1. Be ϕ ∈ P. Then, either ϕ ∈ x0 or ϕ /∈ x0, thus the theorem holds in this
case.

2. Be ϕ = Xψ for some formula ψ. Then, ξ � ϕ implies ξ1 6= ε and ξ1 � ψ.
Now, ξ � ¬ϕ implies ξ1 � ¬ψ. But, by the induction hypothesis, the
theorem holds for ψ, and thus this is a contradiction. Hence, the theorem
holds in this case.

3. Be ϕ = ψUµ for some formulae ψ and µ. Then, ξ � ϕ implies that there
is some i ≥ 0 such that ξi � µ and ξj � ψ for all 0 ≤ j < i. Now,
ξ � ¬ϕ implies that there is some 0 ≤ j < i such that ξj � ¬µ. But,
by the induction hypothesis, the theorem holds for µ, and thus this is a
contradiction. Hence, the theorem holds in this case and with it for all
formulae. �

Nevertheless, although finite-trace LTL is consistent, the finite-trace inter-
pretation of LTL formulae is not always intuitive.

6

2.2. Finite-trace semantics

Example With respect to nonempty finite traces, G> is a tautology1 while
GX> is a contradiction2. Also, F⊥ is a contradiction while F Y⊥ is a tautology.

3

Finally, we define the notion of negation normal form. We show that each
formula can be transformed into this form, which is required by some of our
verification algorithms.

Definition 2.11 (Negation normal form)
A formula is in negation normal form if negation symbols only occur in front
of atomic propositions.

In order to show this, we concretise the notion of duality.

Definition 2.12 (Duality)
1. Let ◦ and • be unary operators of a logic. Then, • is dual to ◦ if for all

formulae ϕ the following holds:

¬ ◦ ϕ ≡ •¬ϕ

2. Let ◦ and • be binary operators of a logic. Then, • is dual to ◦ if for all
formulae ϕ and ψ the following holds:

¬(ϕ ◦ ψ) ≡ ¬ϕ • ¬ψ

Note that if an operator • is dual to another operator ◦, then also ◦ is dual to
•. This is a consequence of the fact that ¬ is dual to itself.

Lemma 2.13 (Duality of LTL)
Each temporal operator of LTL has a dual.

Proof Directly from the definitions, we obtain the following dualities: ¬ and
X are dual to itself. ∨ and ∧, F and G, and U and R are dual to each other. �

Theorem 2.14 (Negation normal form for LTL)
For each LTL formula, there is an equivalent formula in negation normal form.

Proof Let ϕ be an LTL formula. We prove this theorem by structural induc-
tion on ϕ.

1. Be ϕ an atomic proposition. Then, it is already in negation normal form.

2. Be ϕ = ◦ψ. By the induction hypothesis, there is a formula ψ′ ≡ ψ in
negation normal form. Thus, ◦ψ′ ≡ ϕ is in negation normal form.

3. Be ϕ = ψ ◦ µ. By the induction hypothesis, there are formulae ψ′ ≡ ψ
and µ′ ≡ µ in negation normal form. Thus, ψ′ ◦ µ′ ≡ ϕ is in negation
normal form.

1A tautology is a formula that is true in all models.
2A contradiction is a formula that is false in all models.

7

2. Temporal logics

4. Be ϕ = ¬◦ψ. Let • be a dual operator of ◦. By the induction hypothesis,
there is a formula ψ′ ≡ ¬ψ in negation normal form. Thus, •ψ′ ≡ ϕ is in
negation normal form.

5. Be ϕ = ¬(ψ ◦ µ). Let • be a dual operator of ◦. By the induction
hypothesis, there are formulae ψ′ ≡ ¬ψ and µ′ ≡ ¬µ in negation normal
form. Thus, ψ′ • µ′ ≡ ϕ is in negation normal form.

Hence, each LTL formula ϕ has an equivalent formula ϕ′ in negation normal
form. �

2.3. Real-time LTL (RTLTL)

In the past, there have been various developments in the field of real-time logics.
Real-time CTL [EMSS92], abbreviated RTCTL, extends CTL by annotating
strong next and strong until operators with nonnegative integer timepoints.
Metric temporal logic [Koy90, AH93], abbreviated MTL, extends LTL in a
similar way, but operators can also be annotated by congruence expressions3.

Our approach extends LTL to real-time by annotating discrete-time intervals
to temporal operators. The resulting logic RTLTL can be seen as a linear-time
variant of RTCTL, where, conversely to MTL, we assume that time proceeds
synchronously, that is, next-time equals next-state. We prefer linear-time to
branching-time temporal logic, since we want to express properties of finite
traces.

For instance, G (p → F5,10 q) expresses the property that for each event sat-
isfying p, some future event in the time range from 5 to 10 satisfies q. For
real-time systems, the annotated time values directly correspond to system
times: provided 1 state represents 1 millisecond, we get “whenever p holds, q
must follow within 5 to 10 milliseconds”.

Definition 2.15 (Syntax of RTLTL)
Let P be a nonempty set of atomic propositions. The set of well-formed RTLTL
formulae over P is inductively defined as follows:

1. If ϕ is an LTL formula, then it is an RTLTL formula.

2. If ϕ and ψ are RTLTL formulae and a and b are integers with 0 ≤ a ≤ b,
then Xa ϕ and ϕUa,b ψ are RTLTL formulae.

The time-bounded analogues of the remaining temporal operators are defined
by the following additional abbreviations:

Ya ϕ
def
= ¬Xa ¬ϕ

Fa,b ϕ
def
= >Ua,b ϕ

Ga,b ϕ
def
= ¬Fa,b ¬ϕ

ϕRa,b ψ
def
= ¬(¬ϕUa,b ¬ψ)

3With congruence expressions one can, for instance, describe that a certain property holds
precisely in those events of a trace that have an index i ≡ 0 (mod 2).

8

2.3. Real-time LTL (RTLTL)

Definition 2.16 (Finite-trace semantics of RTLTL)
A nonempty finite trace ξ = x0, . . . , xn satisfies an RTLTL formula ϕ, denoted
ξ � ϕ, if the following holds:

ξ � p for p ∈ P def⇐⇒ p ∈ x0 (2.7)

ξ � ¬ϕ def⇐⇒ ξ 2 ϕ (2.8)

ξ � ϕ ∨ ψ def⇐⇒ ξ � ϕ or ξ � ψ (2.9)

ξ � Xϕ
def⇐⇒ ξ1 6= ε and ξ1 � ϕ (2.10)

ξ � ϕUψ
def⇐⇒ ξi � ψ for some 0 ≤ i ≤ n and (2.11)

ξj � ϕ for all 0 ≤ j < i

ξ � Xa ϕ
def⇐⇒ ξa 6= ε and ξa � ϕ (2.12)

ξ � ϕUa,b ψ
def⇐⇒ ξi � ψ for some i ≤ n with a ≤ i ≤ b and (2.13)

ξj � ϕ for all j such that 0 ≤ j < i

Finally, the finite-trace semantics of the derived operators is as follows.

Corollary 2.17
Let ξ = x0, . . . , xn be a nonempty finite trace, ϕ and ψ be RTLTL formulae,
and a and b be integers with 0 ≤ a ≤ b. Then the following holds:

ξ � >
ξ 2 ⊥

ξ � ϕ ∧ ψ ⇐⇒ ξ � ϕ and ξ � ψ

ξ � ϕ→ ψ ⇐⇒ ξ 2 ϕ or ξ � ψ

ξ � Yϕ ⇐⇒ ξ1 = ε or ξ1 � ϕ

ξ � ϕRψ ⇐⇒ for all 0 ≤ i ≤ n,
we have ξi � ψ or ξj � ϕ for some 0 ≤ j < i

ξ � Fϕ ⇐⇒ ξi � ϕ for some 0 ≤ i ≤ n
ξ � Gϕ ⇐⇒ ξi � ϕ for all 0 ≤ i ≤ n
ξ � Ya ϕ ⇐⇒ ξa = ε or ξa � ϕ

ξ � ϕRa,b ψ ⇐⇒ ξa = ε or

for all 0 ≤ i < n with a ≤ i ≤ b,
we have ξi � ψ or ξj � ϕ for some 0 ≤ j < i

ξ � Fa,b ϕ ⇐⇒ ξi � ϕ for some 0 ≤ i ≤ n, a ≤ i ≤ b
ξ � Ga,b ϕ ⇐⇒ ξi � ϕ for all 0 ≤ i ≤ n, a ≤ i ≤ b

The following result states that RTLTL is expressively equivalent to LTL.

Theorem 2.18 (Expressiveness of RTLTL)
For each RTLTL formula, there is an equivalent LTL formula, and vice versa.

9

2. Temporal logics

Proof The direction from LTL to RTLTL is trivial. For the opposite direc-
tion, note that the following equivalences hold:

X0 ϕ ≡ ϕ (2.14)
Xa+1 ϕ ≡ XXa ϕ (2.15)
ϕU0,0 ψ ≡ ψ (2.16)

ϕU0,b+1 ψ ≡ ψ ∨ (ϕ ∧ X (ϕU0,b ψ)) (2.17)
ϕUa+1,b+1 ψ ≡ ϕ ∧ X (ϕUa,b ψ) (2.18)

Now, each subformula of ϕ that matches the left-hand side of one of the equiv-
alences is replaced by the corresponding right-hand side, until no matching
subformula remains. �

Theorem 2.19 (Complexity of RTLTL to LTL translation)
Given an RTLTL formula ϕ, there is an equivalent LTL formula of size 2O(|ϕ|).

Proof The algorithm from the proof of theorem 2.18 transforms a given
RTLTL formula ϕ into an equivalent LTL formula ϕ′. We prove by structural
induction on ϕ that the resulting LTL formula has length 2O(|ϕ|).

1. If ϕ is already an LTL formula, then the assertion trivially holds.

2. If ϕ = Xa ψ, then we have |ϕ| = 1 + log a+ |ψ|. By the induction hypoth-
esis, there is an LTL formula ψ′ ≡ ψ such that |ψ′| = 2O(|ψ|). Exhaustive
application of the translation rules produces the formula ϕ′ = X · · ·Xψ′
(a times X) such that ϕ′ ≡ ϕ. Hence,

|ϕ′| = 1 + log a+ 2O(|ψ|) ≤ 2O(log a+|ψ|) = 2O(|ϕ|).

3. If ϕ = µUa,b η, then we have |ϕ| = 1 + log a + log b + |µ| + |η|. By the
induction hypothesis, there are formulae µ′ ≡ µ and η′ ≡ η such that
|µ′| = 2O(|µ|) and |η′| = 2O(|η|). By a applications of rule 2.18, b − a
applications of rule 2.17, one application of rule 2.16, and a number of
rule application to µ and η, we obtain an LTL formula ϕ′ ≡ ϕ. Each
application of rule 2.17 adds six, and each application of rule 2.18 adds
three new symbols to a formula. Hence,

|ϕ′| ≤ 1 + 6 log b+ 2O(|µ|) ≤ 2O(log a+log b+|µ|+|η|) = 2O(|ϕ|).

�

Theorem 2.18 lets us generalise a number of interesting results from the last
section.

Corollary 2.20 (Consistency of RTLTL)
RTLTL for finite traces is consistent.

Corollary 2.21 (Duality of RTLTL)
Each temporal operator of LTL has a dual.

Corollary 2.22 (Negation normal form for RTLTL)
For each LTL formula there is an equivalent formula in negation normal form.

10

2.4. Equivalences

2.4. Equivalences

Before a temporal-logic formula is evaluated by means of automata-theoretic or
rewriting-based trace checking, logical equivalences are used in order to elim-
inate redundancies and to reduce the number of temporal operators. This is
done by replacing all subformulae matching the left-hand side of a rule with
the corresponding instance of the right-hand side of this rule.

The result are more succint formulae and thus less time and space require-
ments for automata construction and rewriting. Somenzi and Bloem [SB00],
Etessami and Holzmann [EH00], and Tauriainen [Tau03] present compilations
of such rules. We introduce our rule set by the following theorem.

Theorem 2.23
Let ϕ and ψ be RTLTL formulae and a a natural number. Then the following
holds:

• ϕ ∨ ¬ϕ ≡ >

• ϕ ∧ ¬ϕ ≡ ⊥

• X⊥ ≡ ⊥

• Y> ≡ >

• F> ≡ >

• F⊥ ≡ ⊥

• G> ≡ >

• G⊥ ≡ ⊥

• ϕU> ≡ >

• ϕU⊥ ≡ ⊥

• ϕR> ≡ >

• ϕR⊥ ≡ ⊥

• F0,a> ≡ >

• F0,a⊥ ≡ ⊥

• G0,a> ≡ >

• G0,a⊥ ≡ ⊥

• ϕU0,a> ≡ >

• ϕU0,a⊥ ≡ ⊥

• ϕR0,a> ≡ >

• ϕR0,a⊥ ≡ ⊥

• F GFϕ ≡ GFϕ

• GF Gϕ ≡ F Gϕ

• XϕUXψ ≡ X (ϕUψ)

• YϕR Yψ ≡ R (ϕYψ)

Proof All equivalences follow directly from definition 2.16. �

2.5. Safety and liveness properties

Properties of reactive systems can be classified into two groups: safety proper-
ties and liveness properties. Safety properties express that “nothing bad ever
happens” and liveness properties express that “something good eventually hap-
pens”. A system has a safety property if none of its executions contains the bad
feature, and it has a liveness property if all of its executions have the good trait.
Following Stirling [Sti01], we formally define generic specification patterns for
safety and liveness properties.

11

2. Temporal logics

Definition 2.24 (Safety and liveness properties)
1. Let ϕ be a “bad” feature. Then, a generic safety property is defined as

Safety(ϕ)
def
= G¬ϕ

2. Let ϕ a “good” feature. Then, a generic liveness property is defined as

Liveness(ϕ)
def
= Fϕ

Finally, we consider a number of typical examples for specification formulae
in RTLTL. Some of them have been taken from [Fru02].

Example We start with basic examples for the generic properties introduced
in definition 2.24. A simple safety property might express that all states of the
system are free from errors. This results in the following property:

G¬error.

A simple liveness property might express that from the current state, it is
possible to reach a state where the system hast been started but is not ready.
Since LTL is limited to single traces, we must also require that this state is
included in the current execution trace:

F (started ∧ ¬ready).

Safety properties that contain liveness properties as their prominent feature
are called fairness properties. They express that “something good happens
infinitely often”. For instance, the following formula expresses the fact that a
process is activated infinitely often during the regarded execution trace:

GF activation.

Fairness properties are particularly important in model checking; for an intro-
duction, consult [HR00] or [CGP99].

Now, we want to discuss property specification in three more realistic situa-
tions. In the first example, we want to model the requirement that the presence
of an error symptom for a period of 10 events propagates an error during the
next two events. In order to avoid vacous satisfaction of our property, we first
check whether the error symptom is actually present in the execution trace to
be checked:

F error symptom.

If it is, then we check next whether it occurs for a period of 10 events, which is
the precondition of raising an error:

F G0,10 error symptom.

Finally, we check the whole property:

G (G0,10 error symptom→ F0,2 error).

12

2.6. The truth checking problem

In the second example, we want to model the requirement that each request
is followed by a grant within the next ten to twenty events. In RTLTL, this
reads

G (request→ F10,20 grant).

It is easy to observe that finite traces never satisfy this property. However, the
verification engineer in charge can rewrite this specification using the finite-
trace semantics of the X operator, such that it gets the desired meaning. In
doing so, the original specification is only checked on a trace prefix which is
maximal with respect to the inclusion of time-bounded subformulae:

G (X20> → (request→ F0,20 grant)).

In the third example, we want to model the requirement that the minimal
distance between the first and the second signal is exactly 5 events. For this,
we write

G (first signal→ (G0,4 ¬second signal ∧ X5 second signal)).

Hence, we believe that our semantics is truly universal and there is no need
to think about stationary semantics. 3

2.6. The truth checking problem

In this section, we formalise the problem of checking finite traces as a com-
putability problem and state complexity results for LTL and RTLTL. We start
with the definition of the truth checking problem for finite traces.

Definition 2.25 (The truth checking problem for finite traces)
The truth checking problem for finite traces, denoted TCPfin, is defined as
follows: Given a finite trace ξ and a formula ϕ, does ξ � ϕ hold?

The best known upper bound for the complexity of truth checking with
LTL specifications is that of the labelling algorithm for CTL model checking
[CGP99]. Since CTL and LTL coincide for single paths, this method can also
be used for checking the truth of an LTL formula.

Proposition 2.26 (Complexity of TCPfin for LTL [MS03])
The truth checking problem for finite traces ξ and LTL formulae ϕ can be solved
in time O(|ξ| × |ϕ|).

As a direct consequence of this proposition and theorem 2.18, we get the
following worst-case complexity result for RTLTL.

Corollary 2.27 (Complexity of TCPfin for RTLTL)
The truth checking problem for finite traces ξ and RTLTL formulae ϕ can be

solved in time O(|ξ| × 2|ϕ|).

We conjecture that the stated upper bounds for both computability problems
are essentially optimal.

13

2. Temporal logics

14

3. Automata theory

Automata theory has proven to be a useful and important tool in formal ver-
ification. In 1982, Sherman [SPH82] showed that the set of execution traces
that satisfy a given formula of propositional dynamic logic (PDL) can be recog-
nised by a finite automaton on infinite words. In the following year, Wolper,
Vardi, and Sistla [WVS83, VW94] presented the first translation procedure from
linear-time temporal logic to finite automata for infinite words. In 1985, model
checking was invented by contributions of Lichtenstein and Pnueli [LP85] and
Clarke, Emerson, and Sistla [CES86]. Automata-theoretic model checking was
first mentioned by Vardi and Wolper [VW86], and it was shown that, for each
LTL formula ϕ, it is possible to construct a corresponding nondeterministic
Büchi automaton Aϕ that accepts precisely the traces satisfying ϕ. With the
growing interest in light-weight formal methods, truth checking, that is, deter-
mining whether a trace satisfies some temporal property, is now becoming a
significant alternative to full formal methods [Var97].

In the first section, we introduce finite automata for finite and infinite words
and reason about their expressive power. Subsequently, different types of au-
tomata for infinite words, so-called Büchi automata are introduced. In the third
section, a well-known translation procedure from LTL formulae into Büchi au-
tomata is presented. In the fourth section, we improve this method such that
RTLTL formula can be translated into finite automata for finite traces. The
actual verification algorithm is presented in the fifth section. Finally, we study
the complexity of both the translation and the verification algorithms.

3.1. Finite automata for finite and infinite traces

In our approach, temporal specifications are represented by nondeterministic
finite automata. First, we recall a couple of basic definitions.

Definition 3.1 (Words, languages, and operations)
Let Σ be a finite set, usually referred to as alphabet.

1. A word is a finite sequence a0 . . . an such that ai ∈ Σ for all 0 ≤ i ≤ n.

2. An ω-word is an infinite sequence a0a1 . . . such that ai ∈ Σ for all i ≥ 0.

3. The empty word is denoted by ε.

4. The concatenation operation · on a word u and a word or ω-word v is

defined as u · v def
= uv.

5. A language is a set of words.

15

3. Automata theory

6. An ω-language is a set of ω-words.

7. The star operation on a language L is defined as follows:

• L0 def
= {ε}

• Li+1 def
= Li · L

Note that, although automata theory is originally concerned with words rather
than traces, we will from now on only use the latter notion.

We are now able to define finite automata for finite [HMU01] and infinite
[Tho97] traces. Remember that our notation requires traces to be nonempty,
corresponding to our finite-trace semantics for LTL and RTLTL. We start with
a generic definition of finite automata for infinite traces, which are commonly
referred to as ω-automata.

Definition 3.2 (ω-automaton)
1. An ω-automaton is a tuple A = (Q,Σ,∆, I, A) where Q is the finite

nonempty set of states, Σ is the finite alphabet, ∆ ⊆ Q × Σ × Q
is the transition relation, I ⊆ Q is the set of initial states, and
A : Qω → {true, false} is the acceptance component.

2. An execution of A on an infinite trace ξ = x0, x1, . . . is an infinite se-
quence of states σ = s0, s1, . . . such that s0 ∈ I and (si, xi, si+1) ∈ ∆ for
all i ≥ 0.

3. An execution σ of A is accepting if A(σ) = true.

4. An ω-automaton is called deterministic if, for each s ∈ Q and a ∈ Σ,
{s′ | (s, a, s′) ∈ ∆} ≤ 1. Otherwise it is called nondeterministic.

In fact, ω-automata are a generalisation of finite automata for infinite words
with different acceptance components. The acceptance component is that part
of an ω-automaton that checks a specific acceptance condition for

in(σ) = {q ∈ Q | q occurs infinitely often in σ}.

Generally, four equivalent acceptance conditions are distinguished: Büchi con-
dition, Muller condition, Rabin condition, and Streett condition [Tho97]. The
corresponding ω-automata are named after the respective acceptance condition
as Büchi automata, Muller automata, Rabin automata, and Streett automata.
In the next section, we will focus on Büchi automata.

Similar to the previous definition, we define finite automata for finite traces.
They have the same structure as finite automata for infinite traces, but a simpler
acceptance condition.

Definition 3.3 (Nondeterministic finite automaton)
1. A nondeterministic finite automaton (NFA) is a tuple
A = (Q,Σ,∆, I, F) where Q is the finite nonempty set of states, Σ
is the finite alphabet, ∆ ⊆ Q×Σ×Q is the transition relation, I ⊆ Q
is the set of initial states, and F ⊆ Q is the set of accepting states.

16

3.1. Finite automata for finite and infinite traces

2. An execution of A on a finite trace ξ = x0, . . . , xn is a sequence of states
σ = s0, . . . , sn+1 such that s0 ∈ I and (si, xi, si+1) ∈ ∆ for all 0 ≤ i ≤ n.

3. An execution σ of A is accepting if sn+1 ∈ F .

4. A nondeterministic finite automaton is called deterministic if, for each
s ∈ Q and a ∈ Σ, {s′ | (s, a, s′) ∈ ∆} ≤ 1.

In this work, we only consider nondeterministic finite automata, which are ex-
pressively equivalent, but more succinct, compared to their deterministic coun-
terparts.

Definition 3.4 (Regular and ω-regular languages)
A language (ω-language) is called regular (ω-regular) if it is accepted by a
finite automaton. The language accepted by an automaton A, denoted L(A),
is the set of all traces for which A has an existing execution.

In order to compare the expressive power of different automata types, we
define regular expressions for finite traces and ω-regular expressions for infinite
traces.

Definition 3.5 (Regular and ω-regular expressions)
1. The sets of regular expressions and ω-regular expressions over a

finite alphabet Σ are defined as follows:

a) If a ∈ Σ, then a is a regular expression.

b) If r and s are regular expressions, then (r), (rs), and (r)∗ are regular
expressions.

c) If r and s are regular expressions, then (rsω) is an ω-regular expres-
sion.

d) If r and s are regular expressions, then (r|s) is a regular expression.

e) If r and s are ω-regular expressions, then (r|s) is an ω-regular ex-
pression.

f) If r is a regular expression, then it is an ω-regular expression.

2. If q and r are regular expressions and s and t are ω-regular expressions
over Σ, then the following holds:

a) L(a) = {a} for a ∈ Σ.

b) L((r)) = L(r).

c) L((qr)) = L(q)L(r).

d) L((r)∗) = L(r)∗.

e) L((s|t)) = L(s) ∪ L(t).

f) L((rsω)) = L(r)L(s)ω.

3. A regular or ω-regular expression is star-free if it does not contain the
star operator.

17

3. Automata theory

For convenience, parantheses in regular expressions can be omitted, and the
binding priorities of the connectives descend in the order ω, star, concatenation,
alternative.

In order to reason about the expressiveness of different logics, it is important
to describe which languages and ω-languages are definable by formulae of a
particular logic. We formalise this notion as follows.

Definition 3.6 (Languages and ω-languages defined by a formula)
The language L(ϕ) and the ω-language Lω(ϕ) defined by an RTLTL formula ϕ
are:

• L(ϕ) = {ξ ∈ Σ∗ | ξ � ϕ}

• Lω(ϕ) = {ξ ∈ Σω | ξ � ϕ}

Finally, we now state important facts that describe the expressive power of
LTL and finite automata for finite and infinite traces. We do not provide “real”
proofs for them, but instead give directions to the appropriate references.

Proposition 3.7 (Expressiveness of LTL for infinite traces)
Let L be an ω-language. Then, the following properties are equivalent:

1. L is definable in LTL.

2. L is definable by a star-free ω-regular expression.

3. L is recognisable by an LWAA1.

We sketch the proof: let L be an ω-language. Then, by Kamp [Kam68] and
Thomas [Tho81], L is LTL-definable if and only if it is definable by a star-free
ω-regular expression. By Löding and Thomas [LT00] this is if and only if L is
LWAA-recognisable.

Proposition 3.8 (Expressiveness of finite automata for infinite traces)
Let L be an ω-language. Then, the following properties are equivalent:

1. L is recognisable by a nondeterministic Büchi automaton (NBA).

2. L is definable by an ω-regular expression.

We sketch the proof: let L be an ω-language. Then, by Büchi [Büc62], L is
NBA-recognisable if and only if it is definable by an ω-regular expression.

Proposition 3.9 (Expressiveness of LTL for finite traces)
Let L be a language. Then, the following properties are equivalent:

1. L is definable in LTL.

2. L is recognisable by an NFA.

1A linear weak alternating automaton (LWAA) is an alternating finite automaton for infinite
words with a linear transition relation. LWAA are weaker than ω-automata.

18

3.2. Büchi automata

3. L is definable by a regular expression.

We sketch the proof: let L be a language. Then, by Büchi [Büc60], L is LTL-
definable if and only if it is NFA-recognisable. By Kleene’s theorem [HMU01],
this is if and only if L is definable by a regular expression.

Hence, we can be convinced that NFA are the suitable automata-theoretic
representation for LTL formulae. Nevertheless, we will continue to make use
of standard algorithms and intermediate represenations that were originally
designed for ω-automata.

3.2. Büchi automata

The first studied and now most popular automata-theoretic representation for
temporal-logic properties are Büchi automata [Büc62]. In this section, we
present Büchi automata with different but equivalent acceptance conditions.

Definition 3.10 (Nondeterministic Büchi automaton (NBA))
A nondeterministic Büchi automaton (NBA) is an ω-automaton where
A(σ) = true if and only if in(σ) ∪ F 6= ∅ for a designated set F ⊆ Q of final
states.

Contrary to finite automata for finite words, nondeterministic Büchi automata
have a greater expressive power than their deterministic counterparts.

When finite automata are generated from temporal-logic formulae, it is of-
ten more convenient to construct generalised Büchi automata first, which use
a set of sets of final states for determining acceptance. The literature distin-
guishes state-based [GPVW95] and transition-based [GO01] generalised Büchi
automata. Here, only state-based generalised Büchi automata are used, that
is, those that have an acceptance condition in terms of states rather than tran-
sitions.

Definition 3.11 (Generalised Büchi automata (GBA))
1. A generalised Büchi automaton (GBA) is a tuple A = (Q,∆, I,F)

whereQ is the finite nonempty set of states, ∆ ⊆ Q×Q is the transition
relation, I ⊆ Q is the set of initial states, and F ∈ 2Q is the set of
sets of accepting states.

2. An execution of A on an infinite trace ξ = x0, x1, . . . is an infinite se-
quence of states σ = s0, s1, . . . such that s0 ∈ I and (si, si+1) ∈ ∆ for all
i ≥ 0.

3. An execution σ of A is accepting if, for each F ∈ F , there is a state
s ∈ F that occurs infinitely often in σ.

In order to recognise languages over a given alphabet Σ, we need to add
labels to either states or transitions. In our case, we use a labelling function
for states. We obtain labelled generalised Büchi automata.

19

3. Automata theory

Definition 3.12 (Labelled generalised Büchi automata (LGBA))
1. A labelled generalised Büchi automaton (LGBA) is a tuple A =

(Q,Σ,∆, I,F ,L) where Q is the finite nonempty set of states, Σ is the
finite alphabet, ∆ ⊆ Q×Σ×Q is the transition relation, I ⊆ Q is the
set of initial states, F ∈ 2Q is the set of sets of accepting states,
and L : Q→ 2Σ is the labelling function.

2. An execution of A on an infinite trace ξ = x0, x1, . . . is an infinite se-
quence of states σ = s0, s1, . . . such that s0 ∈ I and (si, xi, si+1) ∈ ∆ for
all i ≥ 0.

3. An execution σ = s0, s1, . . . of A on an infinite trace ξ = x0, x1, . . . is
accepting if, for each i ≥ 0, xi ∈ L(si), and, for each F ∈ F , there is a
state s ∈ F that occurs infinitely often in σ.

3.3. Translating LTL formulae into Büchi automata

The first approach to the translation of LTL formulae into Büchi automata that
was not worst-case was developed in 1995 by Gerth, Peled, Vardi, and Wolper
[GPVW95] and later improved by Daniele, Giunchiglia, and Vardi [DGV99].
Their algorithm translates a given LTL formula into a GBA state graph, then
into an LGBA, and finally into an NBA. An important feature of this method
is that it can be used on-the-fly, that is, the automaton construction is guided
by the trace traversal such that only those parts of the automaton currently
needed are constructed and stored in memory.

The main concept of the algorithm is a tableau procedure that constructs a
GBA state graph by successively expanding a single node that just contains the
LTL formula to be translated. This formula must be in negation normal form
and must not contain →, F, or G operators (note that all LTL formulae can be
translated into equivalent formulae of this form).

Nodes of the GBA state graph consist of five fields:

1. index - a unique identifier.

2. incoming - the set of nodes that lead to this node.

3. new - the set of formulae that must hold in this node and have not yet
been processed.

4. old - the set of formulae that must hold in this node and have already
been processed.

5. next - the set of formulae that must hold in all immediate successors of
this node.

A node is expanded by heuristically taking an unprocessed formula out of
its new field and then, depending on the type of this formula, deterministically
applying a tableau rule to the node. By this, the formula is decomposed into
new but simpler formulae. The tableau rules can be distinguished into such

20

3.3. Translating LTL formulae into Büchi automata

Formula Changes to the node
> ∈ P no changes
⊥ ∈ P discard node
p ∈ P old := old ∪ {p}, if ¬p /∈ old

discard node, otherwise
¬p, p ∈ P old := old ∪ {¬p}, if p /∈ old

discard node, otherwise
ϕ ∧ ψ old := old ∪ {ϕ ∧ ψ}

new := new ∪ ({ϕ,ψ} − old)
Xϕ old := old ∪ {Xϕ}

next := next ∪ {ϕ}

Figure 3.1.: Non-splitting tableau rules for LTL to GBA translation.

Formula Changes to first node Changes to second node
ϕ ∨ ψ old := old ∪ {ϕ ∨ ψ} old := old ∪ {ϕ ∨ ψ}

new := new ∪ ({ϕ} − old) new := new ∪ ({ψ} − old)
ϕUψ old := old ∪ {ϕUψ} old := old ∪ {ϕUψ}

new := new ∪ ({ϕ} − old) new := new ∪ ({ψ} − old)
next := next ∪ {ϕUψ}

ϕRψ old := old ∪ {ϕRψ} old := old ∪ {ϕRψ}
new := new ∪ ({ψ} − old) new := new ∪ ({ϕ,ψ} − old)
next := next ∪ {ϕRψ}

Figure 3.2.: Splitting tableau rules for LTL to GBA translation.

that modify or completely discard a node (see figure 3.1) and such that split a
node into exactly two modified replacing nodes (see figure 3.2).

A node is completely expanded if its new field is empty. The algorithm
maintains completely and incompletely expanded nodes as two seperate sets,
whereof the set of completely expanded nodes defines the state graph. Once a
node is completely expanded, is is checked whether there is already an equivalent
node in the state graph (two nodes are equivalent if they have equal next and old
fields). If that is the case, both nodes are merged, by merging their incoming
fields. If it is not, the node is added to the state graph and a new node is
created which has this node in incoming, this node’s new field as next field and
all other fields empty.

The algorithm starts with exactly one node that contains precisely the for-
mula to be translated in new and “init” in incoming. The algorithm terminates
when all nodes are completely expanded and returns the state graph.

Now, a GBA A = (Q,∆, I, F) can be obtained from the complete state
graph. The acceptance condition ensures that all U formulae are eventually
fulfilled.

• The set Q of states is the set of all graph nodes.

• The transition relation is ∆ := {(s, t) ∈ Q×Q | s ∈ incoming(t)}.

21

3. Automata theory

• The set of initial states is I := {s0}.

• The set F of sets of final states contains, for each subformula of type ϕUψ,
one set F of accepting states such that s ∈ F if and only if ψ ∈ old(q) or
ϕUψ /∈ old(q).

In the following step, this GBA is extended to an LGBAA′ = (Q,Σ,∆, I,F ,L)
by adding a labelling function. Thereby, each state s is labelled with all sets in
2P that are compatible with old(s).

• The alphabet is Σ := 2P .

• The labelling of a state s ∈ Q is

L(s) := {x |x ⊆ P ∧ x ⊇ pos(s) ∧ x ∩ neg(s) = ∅}

where pos(s)
def
= old(s) ∩ P and neg(s)

def
= {µ | ¬µ ∈ old(s) ∧ µ ∈ P}.

For the sake of model checking, there exist efficient methods for translating
such LGBA into NBA [GO01, Tau03]. In general, there is the following upper
bound for the complexity of LTL to NBA translations.

Proposition 3.13 (LTL to NBA translation [MSS88, VW94])
Given an LTL formula ϕ, one can build (in time 2O(|ϕ|)) a nondeterministic

Büchi automaton Aϕ = (Q,Σ,∆, I, F) where |Q| = 2O(|ϕ|) and Σ = 2P such
that Lω(Aϕ) is exactly the set of traces in which the formula ϕ is true.

3.4. Translating RTLTL formulae into NFA

We extend the algorithm of Gerth, Peled, Vardi and Wolper [GPVW95] such
that it can use arbitrary RTLTL formulae as input and such that the resulting
automata are just NFA. Consequently, the used specification formulae are more
succinct and thus can be parsed more efficiently. Also, the obtained automata
have a simpler acceptance condition, what makes them more intuitive and leads
to more efficient trace traversal. Simultaneously with these simplifications, the
designation of final states in the state graph becomes slightly more complicated.

In order to process RTLTL formulae, we impose additional requirements on
the formula to be translated. This formula must be in negation normal form
and must not contain →, F, Fa,b, G, or Ga,b operators (note that all RTLTL
formulae can be translated into equivalent formulae of this form).

We keep the structure of nodes and the operational principles of the original
algorithm but modify the used tableau rules, such that all RTLTL operators
can be recognised. We also distinguish tableau rules that update or discard
nodes (see figure 3.3) from such that split nodes (see figure 3.4).

After termination of our algorithm, we obtain an NFA A = (Q,Σ,∆, I, F)
from the complete state graph by labelling states with sets of atomic proposi-
tions and designating a set of final states as follows:

• The set Q of states is the set of all graph nodes together with a new node
s0 representing init.

22

3.4. Translating RTLTL formulae into NFA

Formula Changes to the node
> ∈ P no changes
⊥ ∈ P discard node
p ∈ P old := old ∪ {p}, if ¬p /∈ old

discard node, otherwise
¬p (p ∈ P) old := old ∪ {¬p}, if p /∈ old

discard node, otherwise
ϕ ∧ ψ old := old ∪ {ϕ ∧ ψ}

new := new ∪ ({ϕ,ψ} − old)
Xϕ old := old ∪ {Xϕ}

next := next ∪ {ϕ}
X0 ϕ new := new ∪ ({ϕ} − old)
Xa+1 ϕ old := old ∪ {Xa+1 ϕ}

next := next ∪ {Xa ϕ}
Yϕ old := old ∪ {Yϕ}

next := next ∪ {ϕ}
Y0 ϕ new := new ∪ ({ϕ} − old)
Ya+1 ϕ old := old ∪ {Ya+1 ϕ}

next := next ∪ {Ya ϕ}
ϕU0,0 ψ new := new ∪ ({ψ} − old)
ϕUa+1,b+1 ψ old := old ∪ {ϕUa+1,b+1 ψ}

new := new ∪ ({ϕ} − old)
next := next ∪ {ϕUa,b ψ}

ϕR0,0 ψ new := new ∪ ({ψ} − old)

Figure 3.3.: Non-splitting tableau rules for RTLTL to NFA translation.

• The labelling of a state s ∈ Q is

L(s) := {x |x ⊆ P ∧ x ⊇ pos(s) ∧ x ∩ neg(s) = ∅}

where pos(s)
def
= old(s) ∩ P and neg(s)

def
= {µ | ¬µ ∈ old(s) ∧ µ ∈ P}.

• The alphabet is Σ := 2P .

• The transition relation is

∆ := {(s, a, t) ∈ Q× Σ×Q | s ∈ incoming(t) ∧ a ∈ L(t)}.

• The set of initial states is I := {q ∈ Q | init ∈ incoming(q)}.

• The set F of final states is the set of those states s ∈ Q such that the
following holds:

– old(q) does not contain any formula of type Xϕ, Xa+1 ϕ, or
ϕUa+1,b+1 ψ.

– If old(q) contains a formula of type ϕUψ or ϕU0,b ψ, then it also
contains the formula ψ.

23

3. Automata theory

Formula Changes to first node Changes to second node
ϕ ∨ ψ old := old ∪ {ϕ ∨ ψ} old := old ∪ {ϕ ∨ ψ}

new := new ∪ ({ϕ} − old) new := new ∪ ({ψ} − old)
ϕUψ old := old ∪ {ϕUψ} old := old ∪ {ϕUψ}

new := new ∪ ({ϕ} − old) new := new ∪ ({ψ} − old)
next := next ∪ {ϕUψ}

ϕU0,b+1 ψ old := old ∪ {ϕU0,b+1 ψ} old := old ∪ {ϕU0,b+1 ψ}
new := new ∪ ({ϕ} − old) new := new ∪ ({ψ} − old)
next := next ∪ {ϕU0,b ψ}

ϕRψ old := old ∪ {ϕRψ} old := old ∪ {ϕRψ}
new := new ∪ ({ψ} − old) new := new ∪ ({ϕ,ψ} − old)
next := next ∪ {ϕRψ}

ϕR0,b+1 ψ old := old ∪ {ϕR0,b+1 ψ} old := old ∪ {ϕR0,b+1 ψ}
new := new ∪ ({ψ} − old) new := new ∪ ({ϕ,ψ} − old)
next := next ∪ {ϕR0,b ψ}

ϕRa+1,b+1 ψ old := old ∪ {ϕRa+1,b+1 ψ} old := old ∪ {ϕRa+1,b+1 ψ}
next := next ∪ {ϕRa,b ψ} new := new ∪ ({ϕ} − old)

Figure 3.4.: Splitting tableau rules for RTLTL to NFA translation.

For our algorithm, we have extended the original GBA acceptance condition
(for infinite traces), used by Gerth, Peled, Vardi, and Wolper [GPVW95], into
an NFA acceptance condition (for finite traces). The original acceptance con-
dition adds, for each subformula of type ϕUψ, one set F to the set F of sets
of accepting states such that s ∈ F if and only if ψ ∈ old(q) or ϕUψ /∈ old(q).
Since our logic also contains the X operator, we designate all states that do not
contain X or Xa+1 formulae or unfulfilled U or Ua,b formulae in their old field as
final. Since in our approach the next field is also used for next-state conditions
resulting from weak operators like Y, R, and their time-bounded variants, we
cannot use the simplified acceptance condition proposed by Giannakopoulou
and Havelund [GH01], who, for a translation of LTL-X formulae into NFA,
designate all states that do not contain U formulae in their next field as final.

We now present proofs for termination and correctness of our algorithm. For
this, we follow [GPVW95]. Let Old(s) and Next(s) denote the values of old(s)
and next(s) at the point where the node s is completely expanded.

Theorem 3.14 (Termination)
Given an RTLTL formula in negation normal form, the algorithm eventually
returns an NFA.

Proof The algorithm starts with a single one node. Newly generated nodes
only contain formulae generated from other nodes’ new and next fields, and
only finitely many of them. Let τ be a ranking function that measures the
complexity of a formula (see figure 3.5). We observe the following: the applica-
tion of a tableau rule to a formula of rank 0 immediately removes the formula
from the new field without adding new formulae to the node’s new and next
fields. Moreover, each application of a tableau rule removes a formula from
the new field, while adding only finitely many formulae of lower rank. Also,

24

3.4. Translating RTLTL formulae into NFA

Formula ϕ Rank τ(ϕ)
>,⊥, p,¬p (p ∈ P) 0
ψ ∨ µ, ψ ∧ µ, ψUµ, ψ Rµ 1 +max{τ(ψ), τ(µ)}
Xψ,Yψ 1 + τ(ψ)
Xa ψ,Ya ψ 1 + a+ τ(ψ)
ψUa,b µ, ψ Ra,b µ 1 + a+ b+max{τ(ψ), τ(µ)}

Figure 3.5.: A ranking function for RTLTL formulae in negation normal form.

by generating new nodes from completely processed nodes’ next fields, no new
formulae are introduced (all formulae come from the old node’s next field).
Therefore, by the principle of well-founded induction, the algorithm eventually
terminates. �

Lemma 3.15
1. When a node s is updated to become a new node s′, the following holds:

(∧
old(s) ∧

∧
new(s) ∧ X

∧
next(s)

)
←→(∧

old(s′) ∧
∧
new(s′) ∧ X

∧
next(s′)

)
.

2. When a node s is split into nodes s1, s2 the following holds:

(∧
old(s) ∧

∧
new(s) ∧ X

∧
next(s)

)
←→(((∧

old(s1) ∧
∧
new(s1) ∧ X

∧
next(s1)

)
∨(∧

old(s2) ∧
∧
new(s2) ∧ X

∧
next(s2)

))
.

Proof This follows directly from the tableau rules and the definition of LTL.
�

Definition 3.16 (rooted, same-time descendant)
1. A node s is rooted if it is the initial node with which the tableau con-

struction started or if it has been created from a completed node t by
setting new(s) := next(t).

2. A node r is a same-time descendant of a node s if it has been created
from s by successive application of tableau rules.

Lemma 3.17
Let s be a rooted node and t1, . . . , tn be all its same-time descendant nodes.
Let Ξ be the set of formulae that are in new(s) when it is created.

1. Then,∧
Ξ←→

∨
1≤i≤n

(∧
Old(ti) ∧ X

∧
Next(ti)

)
.

25

3. Automata theory

2. Let ξ be a finite trace. If ξ �
∨

1≤i≤n(
∧
Old(ti) ∧ X

∧
Next(ti)), then

there exists some 1 ≤ i ≤ n such that the following holds:

a) ξ �
∧
Old(ti) ∧ X

∧
Next(ti).

b) For each µU η ∈ Old(ti) and for each µUa,b η ∈ Old(ti), if ξ � η,
then η ∈ Old(ti).

c) For each Xψ ∈ Old(ti), we have ξ1 6= ε, and, for each Xa ψ ∈ Old(ti),
we have ξa 6= ε.

Proof

1. This is an immediate consequence of Lemma 3.15.

2. Suppose that ξ �
∨

1≤i≤n(
∧
Old(ti) ∧ X

∧
Next(ti)).

a) This is trivial.
b) Suppose that µU η ∈ Old(ti). By the U-rule, a node s such that

µU η ∈ Old(s) has two same-time descendant nodes s1 and s2 such
that µ ∈ Old(s1) and η ∈ Old(s2). Moreover, by Lemma 3.15, every
node containing a U formula in old is equivalent to some same-time
descendant node that has either µ or η in Old. By (a), we have

ξ �
∧

(Old(ti) ∪ {µ}) ∧ X
(∧

(Next(ti) ∪ {µU η})
)

or ξ �
∧

(Old(ti) ∪ {η}) ∧ X
∧
Next(ti).

Hence, if ξ � η, then η ∈ Old(ti). The case Ua,b ψ is completely
analogue.

c) Suppose that Xψ ∈ Old(ti). By (a), we have ξ � Xψ. From the
semantics of X it follows that ξ1 6= ε. The case Xa ψ is completely
analogue. �

Lemma 3.18
Let ξ be a finite trace such that ξ �

∧
Old(s) ∧ X

∧
Next(s).

1. Then, there exists a transition from s to s′ in A such that ξ1 �
∧
Old(s′)∧

X
∧
Next(s′).

2. Let Γ = {η |µU η ∈ Old(s) ∧ η /∈ Old(s) ∧ ξ1 � η}. Then, there exists a
transition from s to s′ such that Γ ⊆ Old(s′).

3. For each Xψ ∈ Old(ti), we have ξ1 6= ε, and, for each Xa ψ ∈ Old(ti), we
have ξa 6= ε.

Proof When a node s has been expanded completely, a node s′ with
new(s′) = Next(s) is generated. Then, Lemma 3.17 guarantees that a suc-
cessor as required exists. �

Lemma 3.19
Let A be the NFA constructed from the RTLTL formula ϕ. For every direct
successor s of the initial state, we have ϕ′ ∈ Old(s) for some ϕ′ ≡ ϕ.

26

3.4. Translating RTLTL formulae into NFA

Proof Since A exists, the starting node has not been discarded, and thus
ϕ 6= ⊥. All tableau rules add ϕ or an equivalent formula to old. �

Lemma 3.20
Let A be the NFA constructed from the RTLTL formula ϕ. Then,

ϕ↔
∨

s∈I,(s,s′)∈∆

(
∧
Old(s′) ∧ X

∧
Next(s′)).

Proof Set Ξ := {ϕ} and apply Lemma 3.17. �

Lemma 3.21
Let A be the NFA constructed from the RTLTL formula ϕ and ξ = x0, . . . , xn
a finite trace. If there exists an accepting execution σ = s0, . . . , sn+1 of A on ξ
such that s0 is taken to be an initial state of A, then ξ �

∧
Old(s1).

Proof Let ϕ ∈ Old(s1). We prove this lemma by structural induction on ϕ.
We have ϕ 6= ⊥, since there is not tableau rule that adds ⊥ to old. Also, ξ � >.

1. Be ϕ = p for p ∈ P. Since σ is an execution on ξ, we have (s0, x0, s1) ∈ ∆,
and, by the definition of ∆, x0 ∈ L(s1). Since p ∈ Old(s1), the tableau
rules do not allow ¬p ∈ Old(s1), and therefore p ∈ pos(s1). By the
definition of L, we have x0 ⊇ pos(s1), thus p ∈ x0. Hence, ξ � p.

2. Be ϕ = ¬p for p ∈ P. Since σ is an execution on ξ, we have (s0, x0, s1) ∈
∆, and, by the definition of ∆, x0 ∈ L(s1). Since ¬p ∈ Old(s1), the
tableau rules do not allow p ∈ Old(s1), and therefore p ∈ neg(s1). By the
definition of L, we have x0 ∩ neg(s1) = ∅, that is p /∈ x0. Hence, ξ 2 p,
that is ξ � ¬p.

3. Be ϕ = Xψ. Then, Xψ ∈ Old(s1), and, since σ is accepting, σ2 6= ε
and thus ξ1 6= ε. Since σ is an accepting execution on ξ, also σ1 is an
accepting execution on ξ1. Since Xψ ∈ Old(s1), by the X-rule, we have
ψ ∈ Next(s1) and thus ψ ∈ Old(s2). Then, by the induction hypothesis,
ξ1 � ψ. Hence, ξ � Xψ.

4. Be ϕ = Yψ. If ξ1 = ε, then ξ � Yψ and we are done. So be ξ1 6= ε. Since
σ is an accepting execution on ξ, also σ1 is an accepting execution on
ξ1. Since Yψ ∈ Old(s1), by the Y-rule, we have ψ ∈ Next(s1) and thus
ψ ∈ Old(s2). Then, by the induction hypothesis, ξ1 � ψ. Hence, ξ � Yψ.

5. Be ϕ = µR η. Since µR η ∈ Old(s1), by the R-rule, we have, for all
1 ≤ i ≤ n+1, {µR η, η} ⊆ Old(si) or {µ, η} ⊆ Old(sj) for some 1 ≤ j < i.
Then, by the induction hypothesis, we have, for all 0 ≤ i ≤ n, ξi � η or
ξj � µ for some 0 ≤ j < i. Hence, ξ � µR η.

6. Be ϕ = µU η. Since µU η ∈ Old(s1), by the U-rule, we have, for all
1 ≤ i ≤ n+ 1, {µU η, µ} ⊆ Old(si), or η ∈ Old(si) for some 1 ≤ i ≤ n+ 1
and µ ∈ Old(sj) for all 1 ≤ j < i. Then, by the induction hypothesis, we

27

3. Automata theory

have, for all 0 ≤ i ≤ n, ξi � µ, or ξi � η for some 0 ≤ i ≤ n and ξj � µ
for all 0 ≤ j < i. Since σ is accepting, we have the latter case. Hence,
ξ � µU η.

7. The cases ϕ = Xa ψ, ϕ = Ya ψ, ϕ = µUa,b η, and ϕ = µRa,b η are com-
pletely analogue. �

Theorem 3.22 (Soundness)
Let A be the NFA constructed from the RTLTL formula ϕ and ξ be a finite
trace. If A has an accepting execution σ = s0, . . . , sn on ξ, then ξ � ϕ.

Proof From Lemma 3.21 it follows that ξ �
∧
Old(s0). By Lemma 3.19, we

have ϕ ∈ Old(s0). Hence, ξ � ϕ. �

Theorem 3.23 (Completeness)
Let A be the NFA constructed from the RTLTL formula ϕ and ξ = x0, . . . , xn
be a finite trace. If ξ � ϕ, then A has an accepting execution σ = s0, . . . , sn+1

on ξ.

Proof By Lemma 3.20, there exists a node s1 ∈ I such that ξ �
∧
Old(s1) ∧

X
∧
Next(s1). Now, one can construct the execution σ by repeatedly using

Lemma 3.20. Namely, if ξi �
∧
Old(si+1) ∧ X

∧
Next(si+1), then choose si+2

to be a successor of si+1 with ξi+1 �
∧
Old(si+2) ∧ X

∧
Next(si+2). Hence,

Lemma 3.18 guarantees that we can choose each si+2 such that σ is accepting.
�

Finally, we can establish the following total correctness property, which is a
direct consequence of the theorems 3.14, 3.22, and 3.23.

Corollary 3.24 (Total Correctness)
Given an RTLTL formula ϕ in negation normal form, the above algorithm
returns an NFA A such that L(A) = L(ϕ).

3.5. Checking finite traces

With our knowledge about finite traces, temporal logics for real time, and for-
mula to automata translations, we now compose the desired runtime verification
algorithm.

3.5.1. The basic algorithm

The basic algorithm takes an RTLTL formula ϕ and a finite trace ξ as its
arguments and then proceeds in three stages. First, ϕ is transformed into
an equivalent RTLTL formula ϕ′ in negation normal form. Then, an NFA A
that accepts precisely the traces satisfying ϕ′ is computed. Finally, the truth
checking problem for ξ and ϕ is being solved using classic search algorithms.

However, depending on the application context, different search strategies
are suitable. Both forward and backward depth-first search are favourable as

28

3.5. Checking finite traces

long as the trace has been pre-computed and stored, while forward depth-first
search is the only advisable method for online trace traversal. Also, as we will
see later, only forward depth-first search can be used on-the-fly. A comparison
of search strategies for checking finite traces with automata can be found in
Finkbeiner and Sipma’s paper [FS04].

In our case, traces can be recorded in the original system or in a test bench:
in other words, they are either generated from a test car run or from measur-
ing data that is obtained by simulation in a hardware-in-the-loop framework.
Traces can either be computed once and stored for later processing, or computed
and traversed on-the-fly.

3.5.2. On-the-fly operation

The basic algorithm can easily be executed on-the-fly when depth-first search
is used. We follow the general approach presented by Courcoubetis, Wolper,
Vardi, and Yannakakis [CVWY92] for on-the-fly emptiness checking for Büchi
automata. Similar to their method, which relies on a nested depth-first search
in two levels, we integrate the node expansion procedure within the search (see
figure 3.3).

Input: A finite trace ξ = x0, . . . , xn, an RTLTL formula ϕ.
Output: The truth value for ξ � ϕ.

1. Compute a formula ϕ′ ≡ ϕ in negation normal form.

2. Create a node s0 such that index := 0, incoming := {init}, new :=
{ϕ′}, old := ∅, and next := ∅. Completely expand s0, create all same-
time descendant nodes s1, . . . , sm of it, and expand them as well.

3. Set i := 0 and open := 〈(s0, i), . . . , (sm, i)〉.

4. If open = 〈〉, then return false. Otherwise, set (s, i) := head(open)
and open := tail(open).

5. If xi /∈ L(s), then go to 4.

6. If i = n, then return true if s is accepting and go to 4 otherwise.

7. Completely expand all direct successor nodes of s and their same-
time descendant nodes s1, . . . , sm of s and set open := concat(〈(s1, i+
1), . . . , (sm, i+ 1)〉, open).

8. Go to 4.

Figure 3.6.: On-the-fly algorithm for RTLTL to NFA translation.

Our method works as follows: first, the input formula is translated into nega-
tion normal form (step 1). Then, the starting node for the tableau and all its
same-time descendant nodes are being created and expanded (step 2). After
that, the trace index i is being initialised and, for each of the created nodes, a

29

3. Automata theory

pair consisting of the node and the index of the first event is added to the list of
open pairs (step 3). If there are no open pairs, the algorithm terminates, return-
ing false, since no accepting execution of the trace has been found; otherwise,
the next open node and its corresponding trace index are taken from the list
(step 4). If the respective trace event is a valid label for the current state, the
transition from the previous state (or from s0 for states created in step 2) to the
current state is enabled for this event; otherwise the current state is discarded
and a new one is chosen in step 4 (step 5). If the trace index equals n, that
is, if the regarded event was the last one of the trace, the algorithm terminates
returning true if s satisfies the acceptance condition and backtracking at step 4
otherwise (step 6). If the trace index is less than n, the transition to this node
is enabled and there are unprocessed events until the end of the trace; then, all
direct successor nodes of the current node and all their same-time descendant
nodes are being created and, together with the index of the next event, added
to the list of open pairs (step 7). Finally, the loop is started again in step 4
(step 8).

We end this section with the mandatory termination and correctness proofs.

Theorem 3.25 (Termination)
Given a finite trace and an RTLTL formula in negation normal form, the algo-
rithm eventually returns true or false.

Proof Since the on-the-fly algorithm uses the same tableau rules as the clas-
sic one, each node has only finitely many same-time descendants. Once the
algorithm has been initialised by steps 1 to 3, open can only be extended by
new elements in step 7. When this happens, each new element contains the
index of the successor event. Thus, eventually, the algorithm terminates or all
elements of open contain the event index n. In the latter case, the algorithm
terminates in step 6. �

Theorem 3.26 (Soundness)
Let ξ be a finite trace and ϕ be an RTLTL formula. If the algorithm returns
true, then ξ � ϕ.

Proof If the algorithm returns true, it has terminated in step 6. Then, ξ
has fulfilled the condition in step 5 and the automaton must therefore have an
accepting execution on it. Hence, theorem 3.22 implies ξ � ϕ. �

Theorem 3.27 (Completeness)
Let ξ be a finite trace and ϕ be an RTLTL formula in negation normal form.
If ξ � ϕ, then the algorithm returns true.

Proof It is easy to see that the on-the-fly algorithms starts with all same-
time descendant nodes of the initial node of the classic algorithm. Also, for each
node, all successor nodes and their same-time descendants are created. Thus,
the on-the-fly algorithm constructs an automaton with the same states and
transitions as the classic algorithm does. By theorem 3.23, ξ � ϕ implies that

30

3.6. Complexity

the automaton has an accepting execution on ξ. The algorithm only returns
false if all possible executions have been exploited. Since there is an accepting
execution for ξ, it is eventually found, and true is returned in step 6. �

Corollary 3.28 (Total Correctness)
Given a finite trace ξ and an RTLTL formula ϕ in negation normal form, the
above algorithm returns true if and only if ξ � ϕ.

3.5.3. Further efficiency improvements

Several authors have proposed additional technical improvements of the basic
algorithm, which can be used in order to achieve further reductions in running
time and memory consumption.

Gerth, Vardi, Peled, and Wolper [GPVW95] propose that early splitting of
nodes shall be avoided. Instead, splitting tableau rules can be applied such that
the target node is only updated with additional information that is later, once
the first node is completely expanded, used to create the second node. Daniele,
Giunchiglia, and Vardi [DGV99] propose significant modifications that result
in fewer formulae to be stored and earlier detection of redundancies and incon-
sistencies; this results in smaller automata and thus finding matching states
faster. In his extensive analysis of translations from LTL into nondeterminis-
tic and alternating Büchi automata, Tauriainen [Tau03] uses powerful tools as
language containment checking and boolean optimisation techniques in order
to simplify resulting automata. All these ideas are compatible to our on-the-fly
algorithm.

Giannakopoulou and Havelund [GH01] argue that nodes with different old
fields can be regarded as equivalent as long as they have equal next fields; un-
fortunately, this potential state-space reduction is not possible in our approach,
since we use old in the acceptance condition. Several authors [SB00, EWS01,
Ete02, FW02, Fri03, GBS02] apply simulation relations in order to minimise
Büchi automata obtained from LTL formulae; again, this technique is only ap-
plicable to completely constructed automata and can in particular not be used
on-the-fly.

3.6. Complexity

We finish this chapter with an overview about the computational complexity
of the presented translation from RTLTL to NFA, the complexity of the word
problem for NFA, and the complexity of the resulting truth checking problem
for NFA.

Theorem 3.29 (Complexity of RTLTL to NFA translation)
Given an RTLTL formula ϕ in negation normal form, there is an equivalent

NFA A such that L(A) = L(ϕ) with 2O(|ϕ|) states.

Proof The algorithm from section 3.4 translates a given RTLTL formula ϕ
into an equivalent NFA. We prove by structural induction on ϕ that the resulting
NFA has 2O(|ϕ|) states. Without loss of generality, we assume that ϕ is already
in negation normal form.

31

3. Automata theory

1. If ϕ does not contain any temporal operator, then A just contains one
state, and we are done.

2. Let ϕ = Xa+1 ψ. It is easy to see that ϕ is only propagated through the
next fields, and the constructed automatonA has a+2 = 2O(log a) = 2O(|ϕ|)

states.

3. Let ϕ = µR η. By the induction hypothesis, the automata for µ and η
have size 2O(|µ|) and 2O(|µ|). Hence, one application of the R-rule then
constructs the automaton for A such that it has

1 + 2O(|µ|) + 2O(|η|) ≤ 2O(|µ+η|) ≤ 2O(|ϕ|)

states.

4. Let ϕ = µRa+1,b+1 η. By the induction hypothesis, the automata for µ, η,
and µRi,j η (i ≤ a, j ≤ b) have size 2O(|µ|), 2O(|µ|), and 2O(|ϕ|). Hence, at
most b+1 applications of the Ra+1,b+1-rule then construct the automaton
for A such that it has at most

O(b) · (2O(|µ|) + 2O(|η|)) ≤ 2O(log b+|µ+η|) ≤ 2O(|ϕ|)

states.

5. The other cases are completely analogue. �

Note that our restriction on input formulae without →, F, Fa,b, G, and Ga,b
operators can cause an exponential blowup when formulae containing such op-
erators are translated into the required notation. Nevertheless, this does not
affect the validity of this theorem, since this blowup can be avoided by introduc-
ing additional rules for these operators. Also, in the average case, this problem
does not occur.

Theorem 3.30 (Complexity of the word problem for NFA)
The word problem for finite traces ξ and NFA with n states can be solved in

time O(n|ξ|) and space O(log n× |ξ|).

Proof Each NFA state can have at most n outgoing transitions, that is, at
most n direct successor states. Checking a given finite trace ξ for acceptance
involves checking all possible sequences of states of length |ξ|. Assuming that
transitions are ordered by the index of their starting state, only one state index
for each event of ξ must be stored for backtracking, requiring log n space per
event. �

The last result is a direct consequence of the previous two.

Corollary 3.31 (Complexity of TCPfin via NFA)
Let ξ be a finite trace and ϕ be an RTLTL formula which is given by an NFA.

Then, the truth checking problem can be solved in time 2O(|ϕ|×|ξ|) and space
2O(|ϕ|) × |ξ|.

32

4. Term rewriting

Term rewriting provides a powerful and established theoretical framework for
reasoning in all kinds of logics. The main advantage of rewriting over automata
theory as a foundation for runtime verification is that logics and combinatorics
can be decoupled, That means that the generic inference rules of the underly-
ing logic can be executed independently from the specific rewrite rules of the
specification logic. Consequently, the semantics of the “embedded” logic can
be represented very simply and efficiently. Also, there does not exist any dis-
tinction such as that between automata generation and trace traversal in the
automata-theoretic approach anymore; instead, traces and formulae are pro-
cessed simultaneously.

The most promising results for the application of term rewriting in run-
time verification have been reported by Havelund and Roşu [HR01a, RH], who
present a rewriting-based algorithm that checks finite traces against LTL for-
mulae. Their algorithm uses Maude, a highly efficient rewriting system, which
exhibits the power feature of memoisation, that is, rewrite patterns can be
cached for faster execution in future. Since our framework is not compatible to
Maude, we have optimised our rewrite rules such that they can be efficiently
executed in a deterministic manner, without complicated heuristics.

In the first section, we give a brief introduction to the theory of term rewrit-
ing. Subsequently, we present two rewriting-based runtime verification algo-
rithms, each based on a different set of rewrite rules, which both extend the
techniques of [HR01a, RH] to RTLTL and use a neutral instead of a stationary
semantics. Finally, we study the complexity of both approaches.

4.1. Preliminaries

We now present the theoretical basics of term rewriting, following the text-
book of Baader and Nipkow [BN98] and the survey of Dershowitz and Plaisted
[DP01].

Definition 4.1 (Signature)
A signature Σ is a set of function symbols, where each f ∈ Σ is associated
with a non-negative integer n, the arity of f . For n ≥ 0, we denote the set of
all n-ary elements of Σ by Σ(n). The elements of Σ(0) are also called constant
symbols.

Definition 4.2 (Term)
Let Σ be a signature and V be a set of variables such that Σ ∩ V = ∅. Then,
the set T (Σ, V) of all Σ-terms over V is defined as follows:

1. V ⊆ T (Σ, V).

33

4. Term rewriting

2. For all n ≥ 0, all f ∈ Σ(n), and all t1, . . . , tn ∈ T (Σ, V), we have
f(t1, . . . , tn) ∈ T (Σ, V).

Definition 4.3 (Subterm)
A term t is a subterm of the term u if one of the following holds:

1. t = u.

2. u = f(u1, . . . , un) and t is a subterm of ui for some 1 ≤ i ≤ n.

Definition 4.4 (Context)
Let � be a new symbol which does not occur in Σ∪V . Then, a Σ-context over
V is a term t ∈ T (Σ, V ∪ {�}) where � represents a hole.

That is, a context is a term where one of the variables has a prominent role.

Definition 4.5 (Substitution)
Let Σ be a signature and V be a set of variables. Then, a T (Σ, V)-substitution
is a function σ : V → T (Σ, V).

The application of a substitution σ to a term simultaneously replaces all oc-
curences of a variable v by σ(v).

Definition 4.6 (Rewrite rule, rewrite system, rewrite relation)
Let Σ be a signature and V be a set of variables.

1. A rewrite system R is a set of rewrite rules l → r such that l, r ∈
T (Σ, V).

2. The rewrite relation →R is the smallest relation such that for all con-
texts t ∈ T (Σ, V ∪ {�}), rules l → r ∈ R, and substitutions σ, we have
t[lσ]→R t[rσ].

3. A derivation for →R is a sequence t0 →R→ t1 →R→ . . . where ti ∈
T (Σ, V) for all i ≥ 0.

That is, every set of rewrite rules induces a rewrite relation on the set of terms.
If a rewrite rule is applied to a term t[lσ] where lσ is an instance of the left-hand
side of a rule l→ r, then each occurence of lσ is replaced by the corresponding
instance rσ of the right-hand side of the rule, thereby rewriting t[lσ] to t[rσ].

We would like to remark that this introduction is not aimed on designing
or using “real” rewriting system. Contrariwise, our approach rather benefits
from two important design constraints: first, our system does not provide any
of the advanced features that customary rewriting engines usually have, like
memoisation and heuristic rule application. Second, proving termination of our
rewrite relation is simple. Hence, an exposition of equational logic, which may
be relevant for systems like Maude, it is out of scope here.

34

4.2. Simple rewriting

4.2. Simple rewriting

In this section, we describe our first rewriting-based algorithm for checking finite
traces against RTLTL formulae. This method extends Havelund and Roşu’s
approach [HR01a, RH] to real-time formulae with a neutral semantics. Note
that although the rules are defined recursively, they can easily be implemented
in a way such that each temporal operator is evaluated iteratively rather than
recursively.

The algorithm starts with a nonempty finite trace ξ = x0, . . . , xn and an
RTLTL formula ϕ that does not contain the → operator (note that all RTLTL
formulae can be translated into equivalent formulae of this form). We suppose
that p ∈ P is an atomic proposition and that simple expressions of the form
p ∈ x, ξ = ε, and ξ 6= ε are evaluated instantly whereever they occur in a
derivation.

In both of the next two algorithms, we use the following set of rewrite rules
for termination an evaluation when true or false is reached, and for rewriting
trivial RTLTL formulae and boolean expressions:

ξ ` true → true

ξ ` false → false

ξ ` F0,0 ϕ → ξ ` ϕ
ξ ` G0,0 ϕ → ξ ` ϕ

ξ ` ϕU0,0 ψ → ξ ` ψ
ξ ` ϕR0,0 ψ → ξ ` ψ

true ∨ ϕ → true

true ∧ ϕ → ϕ

false ∨ ϕ → ϕ

false ∧ ϕ → false

These rules shall be used in order to simplify formulae before each application
of a rewrite rule from without this set. In addition, this algorithm uses the
following set of rewrite rules:

ξ ` > → true

ξ ` ⊥ → false

ξ ` p → p ∈ x0

ξ ` ¬ϕ → ξ 0 ϕ

ξ ` ϕ ∨ ψ → ξ ` ϕ ∨ ξ ` ψ
ξ ` ϕ ∧ ψ → ξ ` ϕ ∧ ξ ` ψ
ξ ` Xϕ → ξ1 6= ε ∧ ξ1 ` ϕ
ξ ` Yϕ → ξ1 = ε ∨ ξ1 ` ϕ
ξ ` Fϕ → ξ ` ϕ ∨ (ξ1 6= ε ∧ ξ1 ` Fϕ)
ξ ` Gϕ → ξ ` ϕ ∧ (ξ1 = ε ∨ ξ1 ` Gϕ)

ξ ` ϕUψ → ξ ` ψ ∨ (ξ ` ϕ ∧ ξ1 6= ε ∧ ξ1 ` ϕUψ)

35

4. Term rewriting

ξ ` ϕRψ → ξ ` ψ ∧ (ξ ` ϕ ∨ ξ1 = ε ∨ ξ1 ` ϕRψ)
ξ ` Xa ϕ → ξa 6= ε ∧ ξa ` ϕ
ξ ` Ya ϕ → ξa = ε ∨ ξa ` ϕ

ξ ` F0,b+1 ϕ → ξ ` ϕ ∨ (ξ1 6= ε ∧ ξ1 ` F0,b ϕ)
ξ ` Fa+1,b+1 ϕ → ξ1 6= ε ∧ ξ1 ` Fa,b ϕ

ξ ` G0,b+1 ϕ → ξ ` ϕ ∧ (ξ1 = ε ∨ ξ1 ` G0,b ϕ)
ξ ` Ga+1,b+1 ϕ → ξ1 = ε ∨ ξ1 ` Ga,b ϕ

ξ ` ϕU0,b+1 ψ → ξ ` ψ ∨ (ξ ` ϕ ∧ ξ1 6= ε ∧ ξ1 ` ϕU0,b ψ)
ξ ` ϕUa+1,b+1 ψ → ξ ` ϕ ∧ ξ1 6= ε ∧ ξ1 ` ϕUa,b ψ

ξ ` ϕR0,b+1 ψ → ξ ` ψ ∧ (ξ ` ϕ ∨ ξ1 = ε ∨ ξ1 ` ϕR0,b ψ)
ξ ` ϕRa+1,b+1 ψ → ξ ` ϕ ∨ ξ1 = ε ∨ ξ1 ` ϕRa,b ψ

We now provide proofs for termination and correctness of this algorithm.

Theorem 4.7 (Termination)
Given a finite trace ξ and an RTLTL formula ϕ, the algorithm eventually returns
true or false.

Proof Let τ be a ranking function that measures the complexity of a formula
(see figure 4.1). The truth values true and false and any simple expression

Formula ϕ Rank τ(ϕ)
>,⊥, p 0
¬ϕ,Xψ,Yψ,Fψ,Gψ 1 + τ(ϕ)
ψ ∨ µ, ψ ∧ µ, ψUµ, ψ Rµ 1 +max{τ(ψ), τ(µ)}
Xa ψ,Ya ψ,Xa ψ,Ga,b ψ 1 + a+ τ(ψ)
ψUa,b µ, ψ Ra,b µ 1 + a+ b+max{τ(ψ), τ(µ)}

Figure 4.1.: A ranking function for RTLTL formulae.

that can instantly be evaluated to true or false have rank 0. We observe that
for each rewrite rule, the right-hand side only contains finitely many formulae
and each formula on the right-hand side has lower rank than each formula on
the left-hand side. Therefore, each derivation of a formula consists of finitely
many derivations of formulae of lower rank. Hence, each derivation is finite and
derives true or false. �

Theorem 4.8 (Soundness and Completeness)
Let ξ be a finite trace and ϕ be an RTLTL formula. Then, ξ ` ϕ if and only if
ξ � ϕ.

Proof All rewrite rules l → r can be regarded as equivalences l ≡ r which
follow directly from definition 2.16 and corollary 2.17. �

Finally, we can establish the following total correctness property, which is a
direct consequence of theorem 4.7 and theorem 4.8.

36

4.3. Event-consuming rewriting

Corollary 4.9 (Total Correctness)
Given a finite trace ξ and an RTLTL formula ϕ, the algorithm eventually returns
ξ � ϕ.

4.3. Event-consuming rewriting

The major drawback of the simple algorithm is that, in general, it takes multiple
traversals to check a trace. Havelund and Roşu [HR01a, RH] have proposed
a so-called event-consuming variant of the simple algorithm that can be used
online, that is, it needs at most one traversal and therefore only needs to store
one event of the trace being checked.

The event-consuming algorithm starts with a nonempty finite trace ξ =
x0, . . . , xn and an RTLTL formula ϕ in negation normal form that does not
contain the → operator (note that all RTLTL formulae can be translated into
equivalent formulae of this form). As in the simple algorithm, we suppose that
p ∈ P is an atomic proposition and that simple expressions of the form p ∈ x,
ξ = ε, and ξ 6= ε are evaluated instantly whereever they occur in a derivation.

In the event-consuming approach, the formula to be evaluated on a trace
is transformed into another formula that has to be evaluated on the suffix
obtained by omitting the first event. We say that the formula “consumes” the
event. Consuming an event is represented by the function

{ . } : Formula× Event→ Formula.

The basic two rewrite rules distinguish between final and non-final events,
that is, such events that are located at the end of a trace and such that are not.

ξ ` ϕ → ϕ{x0} if ξ1 = ε

ξ ` ϕ → ξ1 ` ϕ{x0} if ξ1 6= ε

The event consumption function is given in the remainder of this section.
When a definition is executed by the rewriting system, it can be treated as a
rule. The consumption of final events x is defined as follows:

>{x} def
= true

⊥{x} def
= false

p{x} def
= p ∈ x

¬p{x} def
= p /∈ x

(ϕ ∨ ψ){x} def
= ϕ{x} ∨ ψ{x}

(ϕ ∧ ψ){x} def
= ϕ{x} ∧ ψ{x}

(Xϕ){x} def
= false

(Yϕ){x} def
= true

(Fϕ){x} def
= ϕ{x}

(Gϕ){x} def
= ϕ{x}

37

4. Term rewriting

(ϕUψ){x} def
= ψ{x}

(ϕRψ){x} def
= ψ{x}

(Xa+1 ϕ){x} def
= false

(Ya+1 ϕ){x} def
= true

(F0,b+1 ϕ){x} def
= ϕ{x}

(Fa+1,b+1 ϕ){x} def
= false

(G0,b+1 ϕ){x} def
= ϕ{x}

(Ga+1,b+1 ϕ){x} def
= true

(ϕU0,b+1 ψ){x} def
= ψ{x}

(ϕUa+1,b+1 ψ){x} def
= false

(ϕR0,b+1 ψ){x} def
= ψ{x}

(ϕRa+1,b+1 ψ){x} def
= true

The consumption of non-final events x is defined as follows:

>{x} def
= true

⊥{x} def
= false

p{x} def
= p ∈ x

¬p{x} def
= p /∈ x

(ϕ ∨ ψ){x} def
= ϕ{x} ∨ ψ{x}

(ϕ ∧ ψ){x} def
= ϕ{x} ∧ ψ{x}

(Xϕ){x} def
= ϕ

(Yϕ){x} def
= ϕ

(Fϕ){x} def
= ϕ{x} ∨ Fϕ

(Gϕ){x} def
= ϕ{x} ∧ Gϕ

(ϕUψ){x} def
= ψ{x} ∨ (ϕ{x} ∧ ϕUψ)

(ϕRψ){x} def
= ψ{x} ∧ (ϕ{x} ∨ ϕRψ)

(Xa+1 ϕ){x} def
= Xa ϕ

(Ya+1 ϕ){x} def
= Ya ϕ

(F0,b+1 ϕ){x} def
= ϕ{x} ∨ F0,b ϕ

(Fa+1,b+1 ϕ){x} def
= Fa,b ϕ

(G0,b+1 ϕ){x} def
= ϕ{x} ∧ G0,b ϕ

(Ga+1,b+1 ϕ){x} def
= Ga,b ϕ

(ϕU0,b+1 ψ){x} def
= ψ{x} ∨ (ϕ{x} ∧ ϕU0,b ψ)

38

4.3. Event-consuming rewriting

(ϕUa+1,b+1 ψ){x} def
= ϕ{x} ∧ ϕUa,b ψ

(ϕR0,b+1 ψ){x} def
= ψ{x} ∧ (ϕ{x} ∨ ϕR0,b ψ)

(ϕRa+1,b+1 ψ){x} def
= ϕ{x} ∨ ϕRa,b ψ

Remember that this algorithm also uses the set of simplification rules intro-
duced at the beginning of the previous section.

We now provide proofs for termination and correctness of this algorithm.

Theorem 4.10 (Termination)
Given a finite trace ξ and an RTLTL formula ϕ in negation normal form, the
algorithm eventually returns true or false.

Proof It is easy to observe that the event consumption function { . } is only
applied finitely often for each event in the finite trace. Also, the basic rewrite
rules are applied at most once for each event. Showing termination of the
remaining rewrite rules is analogue to the proof of theorem 4.7. �

Theorem 4.11 (Soundness and Completeness)
Let ξ be a finite trace and ϕ be an RTLTL formula in negation normal form.
Then, ξ ` ϕ if and only if ξ � ϕ.

Proof From definition 2.16 and corollary 2.17 we can easily derive that, for
each RTLTL formula ϕ and for each event x0 ∈ P, the following holds:

1. If ξ1 = ε, then (ξ ` ϕ) ≡ (ϕ{x0}).

2. If ξ1 6= ε, then (ξ ` ϕ) ≡ (ξ1 ` ϕ{x0}).

Consequently, these rewrite rules are sound. Also from definition 2.16 and
corollary 2.17, the simplification rules from the previous section are sound. �

Finally, we can establish the following total correctness property, which is a
direct consequence of theorem 4.10 and theorem 4.11.

Corollary 4.12 (Total Correctness)
Given a finite trace ξ and an RTLTL formula ϕ in negation normal form, the
algorithm eventually returns ξ � ϕ.

We conclude this section with an example.

Example Let P = {p, q, r} be a set of atomic propositions, ξ = {q}, {q, r}
be a trace, and ϕ = pR (q ∨ r) be a formula. Then, one possible derivation of
ξ ` ϕ is as follows:

{q}, {q, r} ` pR (q ∨ r)
{q, r} ` (pR (q ∨ r)){q}
{q, r} ` (q ∨ r){q} ∧ (p{q} ∨ (pR (q ∨ r)))
{q, r} ` (q{q} ∨ r{q}) ∧ (p{q} ∨ (pR (q ∨ r)))

39

4. Term rewriting

{q, r} ` (true ∨ false) ∧ (false ∨ (pR (q ∨ r)))
{q, r} ` pR (q ∨ r))

(pR (q ∨ r))){q, r}
(q ∨ r){q, r}
q{q, r} ∨ r{q, r}
true ∨ true
true

3

4.4. Complexity

We close this chapter with an overview about the computational complexity
of the presented rewriting-based runtime verification algorithms. The first two
facts have already been proven by Roşu and Havelund [RH].

Proposition 4.13 (TCPfin for LTL via simple rewriting [RH])
Let ξ be a finite trace and ϕ be an LTL formula. Then, solving ξ ` ϕ by simple

rewriting needs O(|ξ||ϕ|) time.

Proposition 4.14 (TCPfin for LTL via event-consuming rewriting [RH])
Let ξ be a finite trace and ϕ be an LTL formula in negation normal form. Then,

solving ξ ` ϕ by event-consuming rewriting needs O(2|ϕ|) space.

Theorem 4.15 (TCPfin for RTLTL via simple rewriting)
Let ξ be a finite trace and ϕ be an RTLTL formula. Then, solving ξ ` ϕ by

simple rewriting needs O(|ξ||ϕ|) time and O(|ξ| × |ϕ|2) space.

Proof We can observe that, for each subformula of ϕ and for each suffix of
ξ, the trace is traversed at most once. In particular, that holds for formulae
containing real-time operators. Thus, the time upper bound from proposition
4.13 holds.

Each RTLTL formula ϕ has O(|ϕ|) subformulae. When a formula is evaluated
on a trace, at most one backtracking point may be set for each formula and each
event. At each backtracking point, the formula of size O(|ϕ|) must be stored.

�

Theorem 4.16 (TCPfin for RTLTL via event-consuming rewriting)
Let ξ be a finite trace and ϕ be an RTLTL formula in negation normal form.

Then, solving ξ ` ϕ by event-consuming rewriting needs O(|ξ| × 2|ϕ|) time and
O(2|ϕ|) space.

Proof We can observe that the trace is being traversed only once. Since pro-
cessing RTLTL formulae does not involve more complex rules than processing
standard LTL formulae, the space upper bound from proposition 4.13 holds.

Each expression derived from the initial truth checking problem can be rewrit-
ten to a truth value in linear time. Since this is done at most once per event,
we have the time upper bound. �

40

5. Experiments and results

In the last sections we have seen that translating LTL formulae to NFA, solving
the word problem for NFA, and solving the truth checking problem for finite
traces by means of online techniques are all computationally hard problems.
However, theoretical upper bounds and practical feasibility of algorithms dif-
fer. When we applied our algorithms to artificially generated problems for the
purpose of benchmarking and to industrial systems in the field of automotive
electronics, verification was almost always accomplishable in runtime – as re-
quired.

We test the software implementation of our algorithms with respect to two
requirements: correctness and performance. In order to check the correctness
of temporal-logic to automata translations, Tauriainen and Heljanko [TH02]
suggest constructing the automata Aϕ and A¬ϕ for the input formula ϕ and
then performing the soundness test

Aϕ ∩ A¬ϕ = ∅

and the completeness test

Aϕ ∪ A¬ϕ = Σ∗.

For this purpose, they randomly generate LTL formulae and then automatically
inspect the computed Büchi automata.

Given that such a procedure tends to be rather complicated and expensive,
we instead test the correct translation for a broad range of manually selected
examples. This is also our first choice for testing the implementation of the
rewriting-based algorithms, since they are much simpler. In addition to exam-
ining the results for sample truth checking problems, we also ensure the correct
functionality of each method and each class of the software implementation
through unit tests.

In the sequel, we focus on performance issues. Several authors propose meth-
ods for conducting benchmarks of LTL to Büchi automata translations: For
example, Daniele, Giunchiglia, and Vardi [DGV99] use a random distribution
in order to generate test formulae. Gastin and Oddoux [GO01] construct pa-
rameterised test formulae of the forms

θn := ¬((GF p1 ∧ · · · ∧ GF pn)→ G (q → F r))

and

ϕn := ¬(p1 U (p2 U (· · · U pn) · · ·)).

For our first performance tests, we used parameterised formulae similar to
those of [GO01] in order to find possible bottlenecks in algorithms and imple-
mentation. It turned out that evaluating intricately nested formulae was par-
ticularly hard for the automata-theoretic algorithms when checking very long

41

5. Experiments and results

traces, while usually no problems emerged from the presence of real-time oper-
ators. The implementation of the rewriting-based algorithms was subsequently
optimised by replacing recursively defined rewrite rules with their equivalent
iterative variants, which can be taken from definition 2.16 and corollary 2.17.

In order to compare the performance of our algorithm with that of other
runtime verification algorithms, we used the traffic-light example of Roşu and
Havelund [RH]. In this example, a sample trace is generated by repeating the
sequence

green, yellow, red, green, yellow, red, green, yellow, red, red

as often as desired and then checking this trace against the specification formula

green→ (¬redU yellow).

On a PC equipped with an AMD Athlon XP 2500+ processor with 1833
MHz and 512 MB RAM, we benchmarked execution time and memory usage
using the profiling tools profile and hotshot of Python and the Windows
XP Task Manager. The results are listed in figure 5.1.

Algorithm Trace length CPU time Memory
NFA, forward 100,000 5 s 6.7 MB
NFA, on-the-fly 100,000 4 s 6.7 MB
Rewriting, simple 100,000 3 s 6.7 MB
Rewriting, event-consuming 100,000 8 s 6.7 MB
NFA, forward 1,000,000 58 s 67.6 MB
NFA, on-the-fly 1,000,000 43 s 67.6 MB
Rewriting, simple 1,000,000 31 s 67.6 MB
Rewriting, event-consuming 1,000,000 82 s 67.6 MB

Figure 5.1.: Performance evaluation on the traffic-light example.

Overall, these results are at least as good as those of Roşu and Havelund
[RH], who have used the same example to evaluate simple and event-consuming
rewriting algorithms for LTL. Their implementation of the simple approach
was not able to finish checking a trace of 10,000 events within 10 hours. With
their implementation of the event-consuming approach, they reported to need 3
seconds for a trace of 100,000 events and 1,500 seconds for a trace of 10,000,000
events. When the memoisation feature of Maude was enabled, checking the
last trace with the event-consuming algorithm took them only 185 seconds.

Hence, though our simple rewriting algorithm usually needs to perform mul-
tiple traversals of the trace, its iterative implementation is considerably faster
than that of our event-consuming algorithm. Therefore, the simple algorithm
is always favourable for traces that are available offline and can be stored in
memory completely. Nevertheless, subject to a full rewriting engine becoming
available, the event-consuming algorithm could put its clearly more advanced
design into practice and outperform the simple approach for both online and
offline operation, then taking advantage of automatic rewriting of intermediate
terms and caching of frequently used rewrite patterns.

42

6. Conclusion

In this thesis, we have presented runtime verification methods for the analysis
of real-time systems.

For this purpose, we have developed a syntactic real-time extension of LTL,
called RTLTL. We have modified the standard semantics of LTL, which is de-
fined for infinite traces, and defined a new finite-trace semantics for RTLTL,
which, as far as we know, is different from all existing approaches in runtime
verification. Our semantics is consistent and enjoys the existence of duals for
each operator. This permits specifications that are very succint and more effi-
cient to check than such in standard LTL. Also, the specification of properties
in RTLTL is much more intuitive, since the X operator has a definite meaning
here.

We have comprehensively exposed the fundamentals of automata theory and
term rewriting. Based on the theory of both fields, we have presented dif-
ferent methods for checking finite traces against real-time specifications. All
algorithms have been implemented in an industrial validation and verification
framework for automotive electronics.

The automata-theoretic methods extend existing algorithms into translation
procedures from RTLTL formulae into NFA. This is at the same time an im-
provement in terms of the used logic (which now allows more intuitive and
more succinct specification formulae) as well as in terms of the used automata
(which are now simpler and suitable for finite traces). A given formula can be
translated into a finite automaton on-the-fly while the corresponding trace is
being traversed.

The rewriting-based methods extend existing algorithms for LTL towards
RTLTL and towards our semantics for finite traces. Both use very simple and
intuitive rewrite rules, which are easily adaptable to different logics. The simple
rewriting algorithm cannot be used online, but it is our fastest method for all
considered real-world applications. In order to optimise it for offline trace check-
ing, we suggest using backward depth-first search in a way similar to that used
in the classic CTL labelling algorithm for model checking. The event-consuming
approach would profit greatly from an implementation in the rewriting system
Maude. However, Maude is not yet compatible to the enclosing framework of
our tool.

Our runtime verification algorithms all consist of a fully formal specification
component and a semi-formal verification component. All presented algorithms
are fully automatic and do not require any additional modelling. The event-
consuming rewriting algorithm can be used online, ergo in a genuine runtime-
verification manner.

Our complexity analysis has shown that truth checking for finite traces and
RTLTL specifications is in general a hard task. Under practical considerations,

43

6. Conclusion

however, the results of the performed experiments show that our algorithms are
efficient, scalable, and competitive to the best available reference algorithms. In
the intended application domain, these algorithms are in many respects more
powerful than traditional testing.

Future work shall be concerned with the study of different logics, property
specification patterns, optimisations of the verification algorithms, and coverage
control.

In order to support more succinct and more intuitive specifications, we sug-
gest to enrich the logic RTLTL with past operators and to consider MTL as an
alternative specification language.

For the specification of real-world systems, defining common analytical pat-
terns can improve the verification process and ensure correct specification of
nontrivial behaviour. This includes defining patterns for rising and falling edges
of signals as well as a introducing a more extensive system of specification pat-
terns, as proposed by Dwyer, Avrunin, and Corbett [DAC99].

For the initial rewriting step that takes place on each user-provided specifi-
cation formula, an improvement of our set of equivalences may be beneficial.

The algorithm for RTLTL to NFA translation can be enhanced to an online
method if it is modified such that deterministic finite automata are produced.
Simplest, the classic powerset algorithm for NFA determinisation can be used.
If this transformation is not executed on-the-fly, according to our experiments,
only a slight degradation of efficiency must be expected.

Last but not least, since runtime verification never covers full system be-
haviour, coverage statistics shall complement the validation of single traces.
Good starting points for a study of those are the papers of Chockler, Kupfer-
man, and Vardi [CKV03] and of Finkbeiner, Sankaranarayanan, and Sipma
[FSS02].

44

A. Software

All algorithms described in this thesis have been implemented in the software
tool rttc. This software is provided as a source-code module written in the
programming language Python1.

Documentation is available in three forms: first, this chapter serves as a
complete reference manual to the programming interface, that is, to all visible
methods of the module. Second, an HTML documentation generated by Doxy-
gen2 and Pythfilter3 describes all methods and classes of the module in a
more technical way. Third, the source code itself contains further comments on
the implementation details.

A.1. System requirements

The software requires version 2.2 or above of the Python interpreter.

A.2. User interface

A.2.1. Settings

Time resolution of single events in seconds
possible values all fractions greater than 0
default value 0.01
get method getRealTimeResolution()
set method setRealTimeResolution(float)

Search algorithm
possible values 0 for forward DFS

1 for backward DFS
2 for on-the-fly forward DFS

default value 2
get method getSearchAlgorithm()
set method setSearchAlgorithm(int)
Note that this setting is ignored unless the verification method is NFA ac-

ceptance.

1See http://www.python.org/.
2Doxygen is a documentation system for various programming languages. More information

on Doxygen is available at http://www.doxygen.org/.
3Since Doxygen is not directly applicable to Python source code, we have used Matthias Baas’

pythfilter as a preprocessing step. More information on using Doxygen with Python source
code is available from his homepage at http://i31www.ira.uka.de/∼baas/pydoxy/.

45

A. Software

Verification method
possible values 0 for simple rewriting

1 for NFA acceptance
2 for event-consuming rewriting

default value 0
get method getVerificationMethod()
set method setVerificationMethod(int)

A.2.2. Initialisation

At first, in order to access the software, the Python module rttc must be
imported by calling import rttc. Then, an instance of the trace checker can
be created by initialising a TraceChecker object t, that is, by calling t =
rttc.TraceChecker().

A.2.3. Verification

The main method of the software is TraceChecker.check. It is executed on
a TraceChecker object t by calling t.check(string, string) with the first
argument containing the path to a stored trace and the second argument con-
taining a valid property string. This method returns True if the trace satisfies
the given property and False otherwise.

A.3. Trace syntax

In order for the algorithms to work reliably and efficiently, valid traces have
to comply with a number of assumptions which are not checked within this
software:

• The trace is a list of events, seperated by linebreaks.

• The first trace line contains only variable names, seperated by tabulators.
Variables names that are referenced in the property may only occur once
in the list of variables names. All variable names of the trace are translated
into lower case, and valid properties may only contain lower-case variable
names (as defined below).

• All following trace lines contain only float or int values, seperated by
tabulators. The first value of each trace line is the timestamp of the
corresponding event. All trace lines are ordered by their timestamps, in
ascending order. The first line must correspond to timestamp 0.

• For each timestamp, there must be exactly one complete trace line, that
is, one line containing values for every variable of the property. Note that
there may be arbitrarily many incomplete lines before and after complete
lines.

46

A.4. Property syntax

A.4. Property syntax

In this section, we describe the input syntax of valid properties by giving EBNF4

expressions for them. Note that, although they are usually allowed, optional
spaces have been omitted here for better reading; they are only mandatory
where indicated by the symbol t. Except in the middle of 〈value〉 expres-
sions, parantheses can always be used to avoid ambiguity, but they are never
mandatory.

A.4.1. Atomic formulae

letter ::= a | · · · | z
digit ::= 0 | · · · | 9

chraracter ::= 〈letter〉 | 〈digit〉 |
variableName ::= 〈character〉 {〈character〉}

value ::= [−] 〈digit〉 . 〈digit〉 {〈digit〉}
arithmeticComparison ::= 〈variableName〉 〈comparisonRelation〉 〈value〉

truthV alue ::= true | false
atomicFormula ::= 〈arithmeticComparison〉 | 〈truthV alue〉

A.4.2. Propositional operators

unaryPropositionalOperator ::= !

binaryPropositionalOperator ::= && | || | -> | <->

A.4.3. LTL operators

unaryLTLOperator ::= F | G
binaryLTLOperator ::= U | R

A.4.4. RTLTL operators

unaryRTLTLOperator ::= (F | G) [〈value〉,〈value〉] | (X | Y) [〈value〉]
binaryRTLTLOperator ::= (U | R) [〈value〉,〈value〉]

4EBNF stands for Extended Backus-Naur Form, which is a common notation for the descrip-
tion of formal languages [HMU01].

47

A. Software

A.4.5. RTLTL formulae

unaryOperator ::= 〈unaryPropositionalOperator〉 |
〈unaryLTLOperator〉 |
〈unaryRTLTLOperator〉

binaryOperator ::= 〈binaryPropositionalOperator〉 |
〈binaryLTLOperator〉 |
〈binaryRTLTLOperator〉

formula ::= 〈atomicFormula〉 |
〈unaryOperator〉 t 〈formula〉 |
〈formula〉 t 〈binaryOperator〉 t 〈formula〉

A.5. Usage examples

import rttc
t = rttc.TraceChecker()

t.check(’trace.txt’, ’G error = 0’)
t.check(’trace.txt’, ’G error_count < 10’)
t.check(’trace.txt’, ’blocked = 1 U start = 1’)

t.check(’trace.txt’, ’F G[0,0.1] error_symptom = 1’)
t.check(’trace.txt’,

’G (G[0,0.1] error_symptom = 1 -> F[0,0.02] error = 1)’)

t.check(’trace.txt’, ’G (request = 1 -> F[0.1, 0.2] grant = 1)’)
t.check(’trace.txt’,

’G (X[0.2] true -> request = 1 -> F[0.1,0.2] grant = 1)’)

48

List of Figures

3.1. Non-splitting tableau rules for LTL to GBA translation. 21
3.2. Splitting tableau rules for LTL to GBA translation. 21
3.3. Non-splitting tableau rules for RTLTL to NFA translation. . . . 23
3.4. Splitting tableau rules for RTLTL to NFA translation. 24
3.5. A ranking function for RTLTL formulae in negation normal form. 25
3.6. On-the-fly algorithm for RTLTL to NFA translation. 29

4.1. A ranking function for RTLTL formulae. 36

5.1. Performance evaluation on the traffic-light example. 42

49

LIST OF FIGURES

50

Bibliography

[AH93] Rajeev Alur and Thomas A. Henzinger. Real-Time Logics:
Complexity and Expressiveness. Information and Computation,
104(1):35–77, 1993.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[Büc60] J. Richard Büchi. Weak second order arithmetic and finite au-
tomata. Zeitschrift für mathematische Logik und Grundlagen der
Mathematik, 6:66–92, 1960.

[Büc62] J. Richard Büchi. On a decision method in restricted second order
arithmetic. In Proceedings of the 1960 International Congress on
Logic, Methodology, and Philosophy of Science. Stanford University
Press, 1962.

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Auto-
matic Verification of Finite-State Concurrent Systems Using Tem-
poral Logic Specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244–263, 1986.

[CGP99] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, 1999.

[CKV03] Hana Chockler, Orna Kupferman, and Moshe Y. Vardi. Coverage
Metrics for Formal Verification. In Proceedings of the 12th IFIP WG
10.5 Advanced Research Working Conference on Correct Hardware
Design and Verification Methods (CHARME 2003), volume 2860
of Lecture Notes in Computer Science. Springer-Verlag, 2003.

[CVWY92] Costas Courcoubetis, Moshe Y. Vardi, Pierre Wolper, and Mi-
halis Yannakakis. Memory-Efficient Algorithms for the Verifica-
tion of Temporal Properties. Formal Methods in System Design,
1(2/3):275–288, 1992.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett.
Patterns in Property Specifications for Finite-State Verification.
In Proceedings of the 21st International Conference on Software
Engineering (ICS 1999). ACM Press, 1999.

[DFRR04] Rocco Deutschmann, Matthias Fruth, Horst Reichel, and Hans-
Christian Reuss. Trace Checking with Real-Time Specifica-
tions. In Proceedings of the 5th Symposium on Formal Methods

51

BIBLIOGRAPHY

for Automation and Safety in Railway and Automotive Systems
(FORMS 2004), 2004.

[DGV99] Marco Daniele, Fausto Giunchiglia, and Moshe Y. Vardi. Improved
Automata Generation for Linear Temporal Logic. In Proceedings of
the 11th International Conference on Computer Aided Verification
(CAV 1999), volume 1633 of Lecture Notes in Computer Science.
Springer-Verlag, 1999.

[DP01] Nachum Dershowitz and David Plaisted. Rewriting. In Alan Robin-
son and Andrei Voronkov, editors, Handbook of Automated Reason-
ing, volume 1. The MIT Press, 2001.

[EFH+03] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony
McIsaac, and David Van Campenhout. Reasoning with Temporal
Logic on Truncated Paths. In Proceedings of the 15nd International
Workshop on Computer Aided Verification (CAV 2003), volume
2725 of Lecture Notes in Computer Science. Springer-Verlag, 2003.

[EH00] Kousha Etessami and Gerard J. Holzmann. Optimizing Büchi Au-
tomata. In Proceedings of the 11th International Conference on
Concurrency Theory (CONCUR 2000), volume 1877 of Lecture
Notes in Computer Science. Springer-Verlag, 2000.

[EMSS92] E. Allen Emerson, Aloysius K. Mok, A. Prasad Sistla, and Jai
Srinivasan. Quantitative Temporal Reasoning. Real-Time Systems,
4(4):331–352, 1992.

[Ete02] Kousha Etessami. A Hierarchy of Polynomial-Time Computable
Simulations for Automata. In Proceedings of the 13th International
Conference on Concurrency Theory (CONCUR 2002), volume 2421
of Lecture Notes in Computer Science. Springer-Verlag, 2002.

[EWS01] Kousha Etessami, Thomas Wilke, and Rebecca A. Schuller. Fair
Simulation Relations, Parity Games, and State Space Reduction for
Büchi Automata. In Proceedings of the 28th International Collo-
quium on Automata, Languages and Programming (ICALP 2001),
volume 2076 of Lecture Notes in Computer Science. Springer-
Verlag, 2001.

[Fri03] Carsten Fritz. Constructing Büchi Automata from Linear Temporal
Logic Using Simulation Relations for Alternating Büchi Automata.
In Proceedings of the 8th International Conference on Implemen-
tation and Application of Automata (CIAA 2003), volume 2759 of
Lecture Notes in Computer Science. Springer-Verlag, 2003.

[Fru02] Matthias Fruth. Überwachung von Java-Programmen mittels Java
PathFinder. Bachelor thesis, Dresden University of Technology,
Dresden, Germany, 2002.

52

BIBLIOGRAPHY

[FS04] Bernd Finkbeiner and Henny Sipma. Checking Finite Traces Us-
ing Alternating Automata. Formal Methods in System Design,
24(2):101–127, 2004.

[FSS02] Bernd Finkbeiner, Sriram Sankaranarayanan, and Henny Sipma.
Collecting Statistics over Runtime Executions. In Proceedings of the
2nd Workshop on Runtime Verification (RV 2002), volume 70 of
Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

[FW02] Carsten Fritz and Thomas Wilke. Simulation Relations for Alter-
nating Büchi Automata. Extended Technical Report, Christian-
Albrechts-Universität Kiel, Kiel, Germany, 2002.

[GBS02] Sankar Gurumurthy, Roderick Bloem, and Fabio Somenzi. Fair
Simulation Minimization. In Proceedings of the 14th International
Conference on Computer Aided Verification (CAV 2002), volume
2404 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

[GH01] Dimitra Giannakopoulou and Klaus Havelund. Automata-Based
Verification of Temporal Properties on Running Programs. In Pro-
ceedings of the 16th IEEE International Conference on Automated
Software Engineering (ASE 2001). IEEE Computer Society Press,
2001.

[GO01] Paul Gastin and Denis Oddoux. Fast LTL to Büchi Automata
Translation. In Proceedings of the 13th Conference on Computer
Aided Verification (CAV 2001), volume 2102 of Lecture Notes in
Computer Science. Springer-Verlag, 2001.

[GPVW95] Rob Gerth, Doron A. Peled, Moshe Y. Vardi, and Pierre Wolper.
Simple On-the-fly Automatic Verification of Linear Temporal Logic.
In Proceedings of the 15th IFIP WG 6.1 International Symposium
on Protocol Specification, Testing and Verification (PSTV 1995),
volume 38 of IFIP Conference Proceedings. Chapman and Hall,
1995.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. In-
troduction to Automata Theory, Languages, and Computation.
Addison-Wesley, second edition, 2001.

[HR00] Michael R. A. Huth and Mark D. Ryan. Logic in Computer Sci-
ence: Modelling and reasoning about systems. Cambridge Univer-
sity Press, 2000.

[HR01a] Klaus Havelund and Grigore Roşu. Monitoring Programs using
Rewriting. In Proceedings of the 16th IEEE International Confer-
ence on Automated Software Engineering (ASE 2001). IEEE Com-
puter Society Press, 2001.

53

BIBLIOGRAPHY

[HR01b] Klaus Havelund and Grigore Roşu, editors. Proceedings of the 1st
Workshop on Runtime Verification, volume 55 of Electronic Notes
in Theoretical Computer Science. Elsevier, 2001.

[Kam68] Johann A. W. Kamp. Tense Logic and the theory of linear order.
PhD thesis, University of California, Los Angeles, California, USA,
1968.

[Koy90] Ron Koymans. Specifying Real-Time Properties with Metric Tem-
poral Logic. Real-Time Systems, 2(4):255–299, 1990.

[LP85] Orna Lichtenstein and Amir Pnueli. Checking That Finite State
Concurrent Programs Satisfy Their Linear Specification. In Pro-
ceedings of the 12th ACM Symposium on Principles of Program-
ming Languages (POPL 1985), 1985.

[LT00] Christof Löding and Wolfgang Thomas. Alternating Automata and
Logics over Infinite Words. In Proceedings of the IFIP International
Conference on Theoretical Computer Science, Exploring New Fron-
tiers of Theoretical Informatics (IFIP TCS 2000), volume 1872 of
Lecture Notes in Computer Science. Springer-Verlag, 2000.

[MS03] Nicolas Markey and Philippe Schnoebelen. Model Checking a Path
(Preliminary Report). In Proceedings of the 14th International Con-
ference on Concurrency Theory (CONCUR 2003), volume 2761 of
Lecture Notes in Computer Science. Springer-Verlag, 2003.

[MSS88] David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Weak alter-
nating automata give a simple explanation of why most temporal
and dynamic logics are decidable in exponential time. In Proceed-
ings of the 3rd IEEE Symposium on Logic in Computer Science
(LICS 1988), 1988.

[Pnu77] Amir Pnueli. The Temporal Logic of Programs. In Proceedings
of the 18th IEEE Symposium on Foundations of Computer Science
(FOCS 1977). IEEE Computer Society Press, 1977.

[RH] Grigore Roşu and Klaus Havelund. Rewriting-based Techniques for
Runtime Verification. Automated Software Engineering (to appear).

[RH01] Grigore Roşu and Klaus Havelund. Synthesizing Dynamic Pro-
gramming Algorithms from Linear Temporal Logic Formulae. Tech-
nical Report 01.15, Research Institute for Advanced Computer Sci-
ence, Moffett Field, California, USA, 2001.

[SB00] Fabio Somenzi and Roderick Bloem. Efficient Büchi Automata
from LTL Formulae. In Proceedings of the 12th International Con-
ference on Computer Aided Verification (CAV 2000), volume 1855
of Lecture Notes in Computer Science. Springer-Verlag, 2000.

54

BIBLIOGRAPHY

[SPH82] Rivi Sherman, Amir Pnueli, and David Harel. Is the Interesting
Part of Process Logic Uninteresting?: A Translation from PL to
PDL. In Proceedings of the 9th ACM Symposium on Principles of
Programming Languages (POPL 1982), 1982.

[Sti01] Colin Stirling. Modal and Temporal Properties of Processes.
Springer-Verlag, 2001.

[Tau03] Heikki Tauriainen. On Translating Linear Temporal Logic into
Alternating and Nondeterministic Automata. Research report A83,
Laboratory for Theoretical Computer Science, Helsinki University
of Technology, Espoo, Finland, 2003.

[TH02] Heikki Tauriainen and Keijo Heljanko. Testing LTL formula trans-
lation into Büchi automata. International Journal on Software
Tools for Technology Transfer (STTT), 4(1):57–70, 2002.

[Tho81] Wolfgang Thomas. A combinatorial approach to the theory of ω-
automata. Information and Computation, 48:261–283, 1981.

[Tho97] Wolfgang Thomas. Languages, Automata, and Logic. In Grzegorz
Rozenberg and Arto Salomaa, editors, Beyond Words, volume 3 of
Handbook of Formal Languages. Springer-Verlag, 1997.

[Var97] Moshe Y. Vardi. Alternating Automata: Unifying Truth and Valid-
ity Checking for Temporal Logics. In Proceedings of the 14th Inter-
national Conference on Automated Deduction (CADE 1997), vol-
ume 1249 of Lecture Notes in Computer Science. Springer-Verlag,
1997.

[Var01] Moshe Y. Vardi. Branching vs. Linear Time: Final Show-
down. In Proceedings of the 7th International Conference on
Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS 2001), volume 2031 of Lecture Notes in Computer
Science. Springer-Verlag, 2001.

[VW86] Moshe Y. Vardi and Pierre Wolper. An Automata-Theoretic Ap-
proach to Automatic Program Verification. In Proceedings of the
1st Symposium on Logic in Computer Science (LICS 1986). IEEE
Computer Society Press, 1986.

[VW94] Moshe Y. Vardi and Pierre Wolper. Reasoning about Infinite Com-
putations. Information and Computation, 115(1):1–37, 1994.

[WVS83] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning
about Infinite Computation Paths (Extended Abstract). In Pro-
ceedings of the 24th IEEE Symposium on Foundations of Computer
Science (FOCS 1983). IEEE Computer Society Press, 1983.

55

	Contents
	Introduction
	Temporal logics
	Linear-time temporal logic (LTL)
	Finite-trace semantics
	Real-time LTL (RTLTL)
	Equivalences
	Safety and liveness properties
	The truth checking problem

	Automata theory
	Finite automata for finite and infinite traces
	Büchi automata
	Translating LTL formulae into Büchi automata
	Translating RTLTL formulae into NFA
	Checking finite traces
	Complexity

	Term rewriting
	Preliminaries
	Simple rewriting
	Event-consuming rewriting
	Complexity

	Experiments and results
	Conclusion
	Software
	System requirements
	User interface
	Trace syntax
	Property syntax
	Usage examples

	List of Figures
	Bibliography

