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Conformal Maps to Multiply-Slit Domains and

Applications
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By exploiting conformal maps to vertically slit regions in the complex
plane, a recently developed rational spectral method [27] is able to solve
PDEs with interior layer-like behaviour using significantly fewer collocation
points than traditional spectral methods. The conformal maps are chosen
to ‘enlarge the region of analyticity’ in the solution: an idea which can be
extended to other numerical methods based upon global polynomial inter-
polation. Here we show how such maps can be rapidly computed in both
periodic and nonperiodic geometries, and apply them to some challenging
differential equations.

Oxford University Computing Laboratory
Numerical Analysis Group
Wolfson Building
Parks Road
Oxford, England OX1 3QD October, 2008



2 N. HALE AND T. W. TEE

1 Introduction

Numerical methods based upon global interpolation perform well when the underlying
solution is sufficiently smooth. For example, when a real function f can be continued
analytically to the closed ellipse Eρ with foci ± 1 and semiaxis lengths that sum to ρ, the
Chebyshev spectral method using N + 1 collocation points approximates the derivative
of f on [−1, 1] with an error that decays at a rate O(ρ−N) as N →∞ [25]. Often, such
rapid convergence means only a few degrees of freedom are necessary to achieve a high
degree of accuracy, but if f has singularities in the complex plane close to [−1, 1] so that
ρ ≈ 1, convergence can be too slow for the method to be effective.

However, in these situations it is often the case that f may be continued analytically
into a larger, non-elliptical region. By constructing a suitable conformal map g to
such a region, the largest ellipse with foci ±1 in which f ◦ g is analytic can be made
larger than that of f alone, and applying the numerical method to f ◦ g will result in
an improved convergence rate. This idea of ‘enlarging the ellipse of analyticity’ was
exploited with convincing results in the adaptive rational spectral method of Tee and
Trefethen [27], and the transplanted quadrature methods of Hale and Trefethen [18].
Figure 1 shows the result of applying one such map g in the linear rational spectral
method of Berrut et al. [3] when approximating the first derivative of the Runge-type
function f(x) = 1/(1 + 400x2) on [−1, 1].
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Figure 1: The function f(x) = 1/(1 + 400x2) has singularities at ±0.05i, making the
largest ellipse in which it is analytic very narrow (left, dashed). By finding a conformal
map from an ellipse to the slit plane (left, solid), the composition f ◦ g is analytic in
a much larger ellipse (centre). The improvement over the standard Chebyshev spectral
method in approximating the derivative by using the linear rational collocation method
[3] with this map g is dramatic (right).

The question remains as to how such a map g should be constructed, and to narrow
the countless number of possibilities it is necessary to make further assumptions about
the properties of f . In [27] it is assumed that f is analytic in the entire complex plane
except along a pair of vertical slits extending from complex conjugate points to infinity,
an assumption which accounts for a number of scenarios such as when f has poles or
branch points with a common real part. The purpose of this paper is to present maps
allowing the more general situation, where not just one but multiple pairs of vertical
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slits are removed from the complex plane.
In §2 we present such maps suitable for methods based upon algebraic polynomial

interpolation, which were originally considered in the second author’s doctoral thesis
[26]. We show that due to the special geometry of these slit regions, the integrals in the
Schwarz–Christoffel formulation of the maps can be computed analytically. Further we
describe how the maps may be expressed in such a way that half of the unknowns in the
parameter problem enter only linearly, allowing both a fast and accurate computation.

In §3 we turn our attention to periodic analogues of these multiple-slit maps, which
can be applied to numerical methods based upon trigonometric polynomial interpolation.
Using what we believe to be a new technique loosely based on Schwarz–Christoffel ideas,
the map to a periodically repeating sets of conjugate slits is again expressed in an explicit
form with a reduced parameter problem.

Finally, as the example and discussion above suggests, we are motivated in this work
by practical applications involving the solution of differential equations. In §4 we apply
the multiple-slit maps within the linear and adaptive rational spectral methods [3, 27]
to solve some challenging near-singular ordinary and partial differential equations.

2 Ellipse to Infinite Slits

We have mentioned already the importance of the ellipse with foci ±1 in determining the
geometric convergence of the Chebyshev spectral method for analytic functions, but this
ellipse Eρ appears also within convergence results of other polynomial based methods.
Gauss and Clenshaw–Curtis quadrature [5, 23] and Legendre spectral methods [9] for
example each converge geometrically at a rate determined by ρ, which can be seen as
a consequence of rapidly decreasing Chebyshev coefficients and rapidly converging best
polynomial approximations for functions analytic in this region [29, §4]. In order to
improve convergence rates of such numerical methods as those above by enlarging the
region of analyticity in the manner suggested in the introduction, we seek conformal
maps from the ellipse to slit regions in the complex plane. We consider first mapping to
only a single pair of conjugate slits

Sδ+iε = C \ {[δ − iε, δ − i∞] ∪ [δ + iε, δ + i∞]} , ε > 0, (2.1)

but then allow more generality with multiple slits S{δ+iε} with tips at {δk ± iεk}nk=1.
To achieve this, we make use of two important conformal mapping tools; the Schwarz–

Christoffel formulae and the Schwarz reflection principle. If P is a polygon with vertices
w1, w2, . . . , wn and interior angles α1π, α2π, . . . , αnπ, the Schwarz–Christoffel formula for
the disk [11, (2.4)]

h(z) = A + C

∫ z n
∏

k=1

(

1− ξ

zk

)ak−1

dξ, (2.2)

defines a conformal map h from the unit disk to the interior of P, where A and C
are complex constants and z1, z2, . . . , zn are prevertices such that h(zk) = wk for k =
1, 2, . . . , n. There are two main difficulties associated with computing conformal maps
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from Schwarz–Christoffel formulae; integrating the right-hand side of (2.2), and the
so-called parameter problem of determining prevertices so that h(zk) = wk is satisfied.
Numerical quadrature is usually required to evaluate the integral and in general the
parameter problem is nonlinear with no analytic solution; thus solving the system of
equations for the prevertices can be a computationally expensive process. Finding an
explicit expression by evaluating the integral analytically can significantly reduce the
time needed to compute the map.

The other important tool is the Schwarz reflection principle, which states that if an
analytic function extended to a straight or circular boundary arc maps this boundary to
another straight or circular arc, then this function can be continued analytically across
the arc by reflection.

2.1 Single Slit

The map to the single slit is composed of two separate stages. The first, appearing in
an article by Szegő [24] (who attributes it to Schwarz), maps the interior of the ellipse
Eρ to the unit disk by

h1(z) = 4
√

m sn

(

2K

π
arcsin(z)|m

)

, (2.3)

where sn(·|m) is the Jacobi elliptic sine function [1, (16.1.5)] with parameter m ∈ (0, 1).
This map sends the interval [−1, 1] to [−m1/4, m1/4], and the ellipse parameter is related
to m by

ρ = exp

(

πK ′(m)

4K(m)

)

, (2.4)

where K(m) and K ′(m) are complete elliptic integrals of the first and second kind
respectively [1, (16.1.1)]. Figure 2 shows h1 as a further composition of simpler maps.

The second stage of the map sends the unit disk to the slit plane (2.1) with [−m1/4, m1/4]
mapping to [−1, 1]. Since the boundary of Sδ+iε describes a polygon (with vertices at in-
finity) we may use the Schwarz–Christoffel formula (2.2), and by symmetry the vertices,
prevertices, and interior angles in the map can be taken to be

w1 = δ + iε, z1 = exp(iθ), α1 = 2,
w2 =∞, z2 = −1, α2 = −1,
w3 = w1, z3 = z1, α3 = 2,
w4 =∞, z4 = 1, α4 = −1.

(2.5)

Substituting this information into (2.2), the map from the unit disk to the single conju-
gate slit plane can be written in the form

h2(z) = A + C

∫ z ((1− z1)(1− z1)

4(ξ − 1)2
+

(1 + z1)(1 + z1)

4(ξ + 1)2

)

dξ. (2.6)

Integrating (2.6) exactly, and noting that z1z1 = 1, z1 + z1 = 2 cos(θ), we find

h2(z) = A− C

(

1− cos(θ)

2(z − 1)
+

1 + cos(θ)

2(z + 1)

)

, (2.7)
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Figure 2: The conformal map g = h2 ◦ h1 from the ellipse Eρ to the single slit plane
Sδ+iε decomposed into a sequence of maps. The first three panels show Szegő’s map
(2.3) from the ellipse to the unit disk, where the principal operations are arcsin and
the Jacobi elliptic function sn. The map from the disk R3 to Sδ+iε is given by the
Schwarz–Christoffel formula (2.2).

where the four real unknowns A, C, θ and m are determined by the four real conditions
h2(±m1/4) = ±1, Re (h2(z1)) = δ, and Im (h2(z1)) = ε. Solving this system leads to

cos(θ) = sign(δ)

√

(δ2 + ε2 + 1)−
√

(δ2 + ε2 + 1)2 − 4δ2

2
, (2.8)

m1/4 =
−ε +

√

ε2 + sin2(θ)

sin(θ)
, (2.9)

A =
cos(θ)

m1/4
, C =

1−√m

m1/4
. (2.10)

Thus the conformal map g = h2 ◦ h1 maps the interior of the ellipse Eρ to the slit plane
Sδ+iε, with ρ related to δ and ε through (2.4), (2.8) and (2.9).

Theorem 1 If g = h2 ◦ h1 maps Eρ to S0+iε, the ellipse parameter satisfies

ρ− 1 ∼ π2

4 log(4/ε)
, as ε→ 0+. (2.11)
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Figure 3: As in Figure 2c-d, but for the multiple slit map. The prevertices of the slits
are located symmetrically with respect to the real axis around the unit disk and labelled
in anti-clockwise order. The vertices of S{δk+iεk}

n
k=1

are labelled from right to left with
the even-indexed vertices and their conjugates located at infinity.

Proof From (2.4) and the series expansion of the exponential we note that

ρ− 1 ∼ πK ′

4K
, as

K ′

K
→ 0. (2.12)

Using (2.8) and (2.9) one can show that 4
√

m =
√

1 + ε2 − ε, and ignoring powers of ε greater

than one, we find that 1 − m ∼ 4ε as ε → 0. Next recall that K ′ ∼ π/2 [1, (17.3.11)] and

K ∼ log(16/(1−m))/2 [1, (17.3.26)] as m→ 1, or equivalently as ε→ 0, from which it follows

that K ′/K ∼ π/ log(4/ε) as ε→ 0. Substituting this into (2.12) gives the required result. �

2.2 Multiple Slits

We now consider the more general case, allowing for multiple pairs of conjugate slits
with n tips at {δk ± iεk}nk=1, and seek a map from the ellipse Eρ to the region

S{δk+iεk}
n
k=1

= C \
n
⋃

k=1

{[δk − iεk, δk − i∞] ∪ [δk + iεk, δk + i∞]} (2.13)

(Fig 3b). As before the map is considered in two stages: from the ellipse to the unit
disk using (2.3), and then from this disk to the region S{δk+iεk}

n
k=1

. Again this slit plane
is a polygon, and substituting the interior angles and symmetry of the prevertices into
the Schwarz–Christoffel formula (2.2) we find the map from the disk to the n-slit plane
(2.13) can be expressed as

h3(z) = A + C

∫ z (ξ − z1)(ξ − z1)

(ξ − 1)2(ξ + 1)2

n−1
∏

k=1

(ξ − z2k+1)(ξ − z2k+1)

(ξ − z2k)(ξ − z2k)
dξ. (2.14)
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This can then be rewritten in partial fraction form as

h3(z) = A + C

∫ z ( a0

(ξ − 1)2
+

b0

(ξ + 1)2
+ i

n−1
∑

k=1

ak

(

1

ξ − z2k
− 1

ξ − z2k

))

dξ, (2.15)

where the coefficients of the partial fraction expansion in the integrand are

a0 =

∏n−1
j=0

(

1− cos(θ2j+1)
)

2
∏n−1

j=1

(

1− cos(θ2j)
) , b0 =

∏n−1
j=0

(

1 + cos(θ2j+1)
)

2
∏n−1

j=1

(

1 + cos(θ2j)
) , (2.16)

ak =

∏n−1
j=0

(

cos(θ2k)− cos(θ2j+1)
)

2 sin3(θ2k)
∏n−1

j=1
j 6=k

(

cos(θ2k)− cos(θ2j)
) , k = 1, 2, . . . , n− 1. (2.17)

Thus integrating (2.15) exactly gives

h3(z) = A + C

( −a0

z − 1
+
−b0

z + 1
+ i

n−1
∑

k=1

ak (log(z − z2k)− log(z − z2k))

)

, (2.18)

where the 2n + 2 real unknowns A, C, θ1, θ2, . . . , θ2n−1, and m can be determined from
the 2n + 2 real conditions

h3(±m1/4) = ±1, (2.19)

Re(h3(z2k−1)) = δk, k = 1, 2, . . . , n,

Im(h3(z2k−1)) = εk, k = 1, 2, . . . , n.

In solving this parameter problem, we suggest that rather than considering all of
the prevertices {zk}2n−1

k=1 amongst the unknowns (or more precisely their corresponding
real-valued arguments {θk}), a more efficient approach arises in considering (2.18) with
the 2n + 2 real parameters A, b0, a0, . . . , an−1, θ2, θ4, . . . , θ2n−2 and m. In doing so, the
system (2.19) separates into a linear system in the n + 2 unknowns A, b0, {ak}n−1

k=0 and a
smaller nonlinear system in the n unknowns {θ2k}n−1

k=1 and m 1. To see this, suppose the
latter n parameters have been chosen and observe that as z passes anticlockwise through
z2k on the upper half of the unit circle, the kth term in the summation on the right-hand
side of (2.18) causes a jump of akπ in the real part of h3. The actual jump required is
the horizontal distance to the next slit tip, and thus choosing ak = (dk+1 − dk)/π will
give exactly this spacing. Solving a simple 3×3 linear system then ensures that A, a0, b0

are chosen so that h(±m1/4) = ±1 and Re(h3(z1)) = δ1.
This leaves a nonlinear system in the n unknowns {θ2k}n−1

k=1 and m to determine the
vertical distance of the n slit tips from the real line. The unknowns {θ2k} are subject to

1The separation of a nonlinear problem as described above forms the basis of the Variable Projection
method of Golub and Pereyra, and the corresponding FORTRAN routine VARPRO [15] developed some
30 years ago. A recent review by the original authors can be found in [14], where the better conditioning
and faster convergence of the reduced problems are demonstrated.
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strict inequality constraints 0 < θ2 < θ4 < . . . < θ2n−2 < π, but these can be eliminated
by transforming to an unconstrained set of variables

φk = arcsin

(

2

(

θ2k − θ2k−2

θ2k+2 − θ2k−2

)

− 1

)

, k = 1, 2, . . . , n− 1, (2.20)

where θ0 = 0, θ2n = π. The new variables take arbitrary real values, and the {θ2k} can
be recovered by solving the system of linear equations

(

1− sin(φk)

2

)

θ2k−2 − θ2k +

(

1 + sin(φk)

2

)

θ2k+2 = 0, k = 1, 2, . . . , n− 1. (2.21)

A similar transformation can be used to eliminate the constraint on m.
To solve the nonlinear system (2.19c), we require the positions of the slit tips

h3(z2k−1), but locating these by computing the preimages {z2k−1} from (2.16)-(2.17)
at first seems cumbersome. However, we simply note these points are the zeros of the
integrand in (2.14) and furthermore that on the unit circle between the poles {z2k} the
integrand is monotonic, allowing the single root between each two consecutive poles to
be located by a simple algorithm combining Newton iteration and bisection. The sys-
tem (2.19) can then be solved using any nonlinear system solver, such as the MATLAB
routine fsolve, although we choose to use the freely available Newton–Armijo solver
implemented in the routine nsold by Kelley [19]. We have found that the treatment
of the parameters in this separable form allows faster and more robust solution of the
parameter problem than by considering {θk}2n

k=1 as the unknowns directly.
Once the parameter problem is solved, h1 can be computed (with ρ related to m

as in (2.4)), and the map from the ellipse Eρ to the multiply slit domain S{δk+iεk}
n
k=1

is given by g = h3 ◦ h1. To evaluate this numerically, we require a means of com-
puting the complete elliptic integrals K(m), K ′(m) and the Jacobi elliptic functions
sn(·|m), cn(·|m), dn(·|m). For real arguments these may be computed with the stan-
dard MATLAB routines ellipke and ellipj respectively. For complex arguments the
elliptic functions can be computed via ellipjc from Driscoll’s Schwarz–Christoffel Tool-
box [10], which uses an algorithm based on the descending Landen transformation [1,
(16.12)]. The MATLAB code below evaluates the map using these routines, although
due to space constraints we omit the code necessary to form and solve the system of
nonlinear equations to determine z2k={z2k}n−1

k=1 and m=m 2. Additionally, we find in
practice that the elliptic parameter m can often be very close to 1, making it beneficial
to use the ascending Landen transform [1, (16.14)] with the complementary parameter
m1 = 1−m (which can be better represented in IEEE arithmetic).

m14 = m^(.25); % 4th root of elliptic paramter

L = -.5*log(m)/pi;

2A full code for computing the map to a multiply slit region appears in [26], although without taking
advantage of the linear and nonlinear separation. For a general outline of methods for solving parameter
problems in Schwarz–Christoffel maps, see [11, Chapter 3.1].
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−1−1 11

Figure 4: The image of the ellipse Eexp(πK ′/4K) and smaller ellipses Eexp(jπK ′/40K), j =
1, . . . , 9 under the maps (2.3) and (2.18) to S(3+2i,1+3i,−3+i)/4. If the assumption on the
analyticity of f is incorrect, but f is analytic within say the largest region on the right,
then convergence of the numerical method based on this map would be only 10% less
than had the assumption been correct. The second largest region corresponds to 20%
less, and so on.

[K Kp] = ellipkkp(L); % elliptic integrals

h1 = m14*ellipjc(2*K*asin(z(:))/pi,L); % the map to the disk (2.3)

% evaluate the summation on the rhs of (2.18)

ZZ = repmat([-m14;m14;h1],1,n-1); Z2K = repmat(z2k.’,length(h1)+2,1);

ZZ1 = ZZ - Z2K; idx1 = find(real(ZZ1)<0 & imag(ZZ1)>=0);

WW1 = log(ZZ1); WW1(idx1) = WW1(idx1) - 2i*pi;

ZZ2 = ZZ - conj(Z2K); idx2 = find(real(ZZ2)<0 & imag(ZZ2)<0);

WW2 = log(ZZ2); WW2(idx2) = WW2(idx2) + 2i*pi;

ak = diff(d)/pi; % ak given by jumps in delta

sumlogs = 1i*((WW1 - WW2)*ak); % the summation

% system of equations for A, a0, b0

M = (1-m14)^2/(4*m14); M = [2/(m14^2-1) .5 .5 ; -1 -M 1+M ; 1 -1-M M];

rhs = [ak’*(angle(z2k)-pi)+d(1) ; [-1;1]-sumlogs(1:2)];

lhs = -(1-m14^2)/(1+m14^2)*(M*rhs);

A = lhs(1); a0 = lhs(2); b0 = lhs(3);

g = A + a0./(h1-1) + b0./(h1+1) + sumlogs(3:end); % the map g(z) = h3(h1(z))

For example, in mapping to the region with slits at (3 + 2i, 1 + 3i,−3 + i)/4 we find;

m = 0.523231225073770;

z2k = [0.830135290736502 + 0.557562013657515i

0.221599693267731 + 0.975137721526374i];

and substituting these values to the code above, we plot in Figure 4 the image of the
ellipse Eρ with ρ = πK ′(m)/4K(m), as well as the images of the smaller ellipses where
ρ 7→ ρj/10, j = 1, . . . , 9.
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3 Periodic Strips to Periodic Infinite Slits

If the fundamental region for methods based upon algebraic polynomial approximation
is the ellipse with foci at ±1, the corresponding region for trigonometric polynomial
approximation is an infinite strip about the real axis. For example, when a 2π-periodic
function f can be continued analytically to the closed strip of half-height η, the Fourier
spectral method with N collocation points approximates f ′ on [−π, π] with an error
that decays at a rate O(e−ηN) as N → ∞ [25]. A similar result governs convergence
of the trapezium rule applied to 2π-periodic analytic functions [8], and such results are
a consequence of the exponential decay of coefficients in the Fourier expansion of f [7,
Chapter 2.10].

If we assume as before, that a function f is analytic in each 2π-periodic vertical strip
excluding one or more pairs of conjugate slits extending to infinity, then to enlarge the
region of analyticity we seek a 2π-periodic map g from the infinite strip Ση of half-height
η to such a slit plane. We derive this map first to the region

Sδ+iε = C \
∞
⋃

j=−∞

[(δ + 2jπ)± iε, (δ + 2jπ)± i∞], ε > 0, (3.1)

with just one pair of slits in each period (Fig 5b), before generalising to allow an arbitrary
number of slits (Figure 5c). Rates of convergence can then be improved by applying the
numerical methods to the 2π-periodic function f ◦ g, or by using g to define a linear
trigonometric rational interpolant [2] (see §4 for more detail).

−π−π−π πππ 3π3π3π −3π−3π−3π δ δ1δ2δ3

ε
ε1
ε2

ε3

η

−η

Figure 5: The maps of §3. In §3.1 we derive a map from the infinite strip Ση (left) to
the single periodic slit plane Sδ+iε (centre) which preserves intervals on the real line of
width 2π. In §3.2 we re-derive this using a different approach, which is then generalised
to produce a map from Ση to a multiple periodic slit plane, such as S{δk+iεk}

3
k=1

(right).

3.1 Single Slit

The periodic map from the strip Ση to the single periodic slit plane Sδ+iε can be derived
directly using a sequence of elementary maps, and by repeated application of the Schwarz
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reflection principle, the problem reduces to mapping the interior of a rectangle R1 of
width π and height

η =
πK ′

K
(3.2)

to a semi-infinite strip R4 (Figure 6). The first map in the sequence rescales R1 to
a width K and height K ′, which the Jacobi elliptic function sn2(z|m) maps to the
upper-half plane R2 when K = K(m) and K ′ = K ′(m) are complete elliptic integrals of
parameter m [20, (13.2)]. The upper-half plane is then mapped to itself by the Möbius
transformation

z 7→ (1−m)z

1−mz
, (3.3)

before a square root takes this to the upper-right quadrant R3. Observing sin(z/2) maps
the semi-infinite strip R4 to R3 [20, (10.5)], we use the inverse of this to map to R4.
Combining the above, reflecting across Re(z) = 0 and translating in the real direction
by a distance δ, the 2π-periodic map from Ση to Sδ+iε is

g(z) = δ + 2 arcsin

(
√

(1−m)sn2(K
π
z|m)

1−msn2(K
π
z|m)

)

, (3.4)

where the elliptic parameter m is related to ε by

m = sech2(ε/2), (3.5)

and the height η of the strip is given by substituting the complete elliptic integrals K(m)
and K ′(m) into (3.2). Noting that sn2(K

π
(z+2π)|m) = sn2(K

π
z|m) [1, (16.8.1)], it is clear

that g is 2π-periodic, although we have not enforced that (3.4) satisfies g(±π) = ±π.
However, as the boundary of the map is invariant under a horizontal translation of R1

this can be achieved by replacing z by (z + g−1(π)− π) in the right-hand side of (3.4) if
required.

Theorem 2 The half-height η of the strip mapped to Sδ+iε by (3.4) satisfies

η ∼ π2

2 log(8/ε)
, as ε→ 0+. (3.6)

Proof Recall from Theorem 1 that K ′ ∼ π/2 and K ∼ log(16/(1 −m))/2 as m → 1, which
substituted into (3.2) implies

η ∼ π2

log (16/(1 −m))
, as m→ 1. (3.7)

From the asymptotic expansion of (3.5) for small ε, one can show that 1−m ∼ ε2/4 as ε→ 0,

which combined with the above gives the result required. �
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√
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m

ε

R1 R2 = sn2(KR1/π |m)

R3 =
√

m1R2/(mR2 − 1) R4 = 2arcsin(R3) = g(R1)− δ

→

←

→

Figure 6: The separate stages of the map g from a periodic rectangle of half-height η to
the the periodic plane with slits at 2jπ + iε, j = 0,±1, . . .. It is interesting to note that
as with the map shown in Figure 2, the key operations are arcsin and sn, only here the
order in which they are applied is reversed.

3.2 Multiple Slits

We next consider the map to a region with multiple slits removed from each periodic
interval, which we denote by

S{δk+iεk}
n
k=1

= C \
{

∞
⋃

j=−∞

n
⋃

k=1

[(δk + 2jπ)± iεk, (δk + 2jπ)± i∞]

}

. (3.8)

The Schwarz–Christoffel formula for a periodic map from a strip to a general polygon
can be found in [11, 13], but the situation here is simplified as the interior angles of
S{δk+iεk} are integer multiples of π; 2π at the tip of a slit, 0 at infinity and π on the real
axis. By symmetry we need only consider mapping the upper half of Ση to the upper
half of S{δk+iεk}

n
k=1

, and the Schwarz–Christoffel map to an n-slit region is given by

h(z) = A + C

∫ z ∞
∏

j=−∞

n
∏

k=1

sinh π
2
(ξ − z2k − jT )

sinh π
2
(ξ − z2k−1 − jT )

dξ, (3.9)

where the period T of the vertices is unknown and must be determined as part of the
solution. However, the infinite product makes the integral in this representation difficult
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to manipulate analytically, and evaluating it numerically when solving the parameter
problem is computationally expensive. In order to proceed, we take a different approach.

Recall the foundation of the Schwarz–Christoffel transformation is that the derivative
of the map g : D → P can be expressed as a product g′ =

∏

gk of canonical functions
gk, which have piecewise constant argument along ∂D [11, Chapter 2]. When this is
the case, g is piecewise linear along the boundary and thus maps D to the interior of a
polygon. If D is also a polygon and the jumps in argument of g′ occur at prevertices
z = zk where ∂D has an interior angle βkπ, then P will have corners at wk = g(zk) with
interior angles

αkπ = βkπ − [arg g′]
z+

k

z−k
. (3.10)

We propose to recompute the map to a single-slit region using an idea based upon these
facts, i.e. find a function g′ piecewise constant along the boundary of the periodic strip
with jumps in argument that lead to angles which create a slit domain.

Neglecting one of the symmetry arguments in the previous derivation that will not
be applicable in the multiply slit case to follow, we take as our initial domain R1 the
rectangle [−π, π]× [0, η]. This is then scaled by K/π to give

R2 = [−K, K]× [0, iK ′], (3.11)

where as usual K and K ′ are complete elliptic integrals, and are related to η by (3.2).
Figure 7 shows how the third Jacobi elliptic function dn(z|m) has piecewise constant
argument on the boundary of R2 [20, p.176]. The interval [K,−K] + iK ′ is mapped
periodically by dn to the imaginary axis, with dn((2j+1)K + iK ′|m) = 0 and dn(2jK+
iK|m) = ∞ for all integers j [1, (16.2,16.8.3,16.5)]. Travelling from right to left, the
argument of dn(z = zR + iK ′|m) jumps by −π on either side of zR = (2j + 1)K and by
π across zR = 2jK. Substituting these jumps to (3.10), we find the interior angles of
dn(∂R2|m) at these points are 2π and 0. Thus it follows that a map of the form

h4(z) = A + C

∫ z

dn(ξ|m)dξ (3.12)

must periodically map the boundary ∂R2 to a slit region, where h((2j + 1)K + iK ′)
and h(2jK + iK ′), j = 0,±1, . . . are the tips of slits and points at infinity respectively.

The lower edges of the rectangle [−K, 0], [0, K] are mapped by dn to [m
1/2
1 , 1], [1, m

1/2
1 ] so

that h4([−K, K]) is a real interval, and one can also show the vertical lines ±K +[0, iK ′]
are mapped by dn to the real axis [1, (16.8.3,16.20.3)], therefore connecting the slit tips
to the real axis under h4 as shown in Figure 7(bottom left).

There are two further steps to complete the map (3.12) to S0+iε; to find an explicit
expression for h4 by integrating the elliptic function dn(·|m), and to solve the parameter
problem to ensure the tip of the slit is positioned correctly and repeated with the correct
period. For x ∈ R2 the integral of dn is [1, (16.24.3)]

∫ x

dn(ξ|m)dξ = arcsin(sn(x|m)), (3.13)
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0

0

0

0

0
0

π−π

K−K

K ′

1
√

m1

ε

dn(R2|m)R2 = KR1/π

Sπ+iε = 2
∫ R2 dn(ξ|m)dξ

Figure 7: The rectangle R2 (top left) is mapped to the right half-plane by the elliptic
function dn(·|m) (right); in particular the top boundary is mapped to the imaginary
axis. By considering the jumps in argument of this function along the boundary of
R2, we show its integral h4 maps to the slit region Sπ+iε (bottom left). The key in
constructing maps to multiple slit regions is that a positive linear combination of shifted
elliptic functions will map to the same region on the right (see Figure 8).

which is sometimes referred to as the amplitude am(x|m) [1, (16.1.4)]. Writing z =
x + 2NzK : x ∈ R2 we find

∫ z

dn(ξ|m)dξ =

∫ x

dn(ξ|m)dξ +

Nz
∑

j=1

∫ x+2jK

x+2(j−1)K

dn(ξ|m)dξ (3.14)

= arcsin(sn(x|m)) + Nzπ.

Thus allowing for scaling and horizontal translation, the map h4 takes the form

h4(z = x + 2NzK : x ∈ R2) = A + C(arcsin(sn(x|m)) + Nzπ), (3.15)

where the unknown real parameters A, C and m are determined by the three real
conditions, |h(K) − h(−K)| = 2π, h(K + iK ′) = iε. Solving this system, the map
g(z) = δ + h4(

K
π
z) from Ση to Sδ+iε is given by

g(z) = δ + (2Nz + 1)π + 2 arcsin (sn (Kx/π|m)) , (3.16)

where
z = x + 2Nzπ : x ∈ R2 ∪ R2 (3.17)

and as before m = sech2(ε/2) is related to η by (3.2). Again it is not enforced that
g(±π) = ±π, but this can be achieved by a horizontal translation of z in the right-
hand side of (3.16) (with x and Nz adjusted appropriately). In particular, shifting
z 7→ z + K(m) we find that (3.16) reproduces (3.4).



CONFORMAL MAPS TO MULTIPLY-SLIT DOMAINS AND APPLICATIONS 15

000

0

π−π

K−K

K ′
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√

m1
√

m1

ε1
ε2

δ1δ2

dn(R2−y1|m) dn(R2−y2|m)
∑

k

akdn(R2−yk|m)R2 = KR1/π

A +
∑

k

∫ R2 akdn(ξ−yk|m)dξ

Figure 8: The upper boundary of the rectangle R2 (top left) is mapped to the imaginary
axis by each of the shifted elliptic functions dn(z−y1|m) and dn(z−y2|m) (centre), and
any positive linear combination of these two functions will also map to the imaginary
axis (right). As in Figure 7, the interior angles of this sum satisfy (3.10) so that its
integral maps to a slit plane (bottom left), where the preimages of the slit tips are the
roots of the integrand.

We now extend the idea used above to the situation of a multiply slit target region.
The key observation is that for any yk ∈ R, the shifted elliptic functions dn(z−yk|m) will
each be 2K(m)-periodic in the real direction and map [K,−K] + iK ′ to the imaginary
axis. Furthermore, the linear combination

h′
5(z) =

n
∑

k=1

akdn(z − yk|m), {ak > 0} (3.18)

will have these same properties for any {ak > 0} (Figure 8). Now, as before, traversing
the upper boundary of ∂R2 from right to left, the argument under h′

5 jumps by −π and
π each time we cross a root or pole respectively, and substituting these jumps to (3.10)
we find that

h5(z) = A +

n
∑

k=1

ak

∫ z

dn(ξ − yk|m)dξ (3.19)

periodically maps the strip Ση to a multiply slit region (with n slits). We can express h5

explicitly by writing (z − yk) = xk + 2Nz,kK where xk ∈ R2 and applying (3.14) to give

h5(z) = A +
n
∑

k=1

ak(arcsin(sn(xk|m)) + Nz,k) : xk = (z − yk)− 2Nz,kK ∈ R2. (3.20)

It then just remains to find parameters A, {ak}nk=1, {yk}nk=1 and m so that the slit tips
are positioned at {δk + iεk}nk=1.
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Since the boundary of the slit map will not change under horizontal translation of
R1, one of the yk is arbitrary and we assume without loss of generality that

K = y1 > y2 > . . . > yn > −K. (3.21)

If {zk}nk=1 are the preimages of the slit tips given by h5, the remaining 2n + 1 free
parameters are chosen to match the 2n+1 real conditions h5(zk) = δk + iεk, k = 1, . . . , n
and the period of the slit domain |h5(z1) − h5(z1 + 2K)| = 2π. In the form (3.20)
there seems no obvious way to explicitly relate these points {zk} to the shifts {yk} and
coefficients {ak}. The preimages of the points at infinity present no problem, since they
are the poles of h′

5 which are in turn the poles (yk + 2jK) + iK ′, j = 0,±1,±2, . . . , k =
1, . . . , n of dn(z − yk|m). However, the prevertices of the slit tips are the zeros of h′

5

(where the jumps take place) which lie along the line Imz = iK ′ between each of the
poles, and can be computed with little difficulty in a similar way to the multiple slit
map from the ellipse.

Furthermore, as in the previous section the parameter problem can be reduced to
two weakly coupled linear and nonlinear components, each with n+1 and n parameters
respectively. Since Re(arcsin(sn(z|m))) jumps at z = iK ′ by a distance −π, Re(h(z))
jumps at z = yk + iK ′ by a distance −akπ and

A = δ1 − π, (3.22)

ak = −(δk+1 − δk)/π, k = 1, . . . , n− 1,

an = −((δ1 − 2π)− δn)/π,

can be chosen instantly to match the position of the first slit, the correct distance
between consecutive slits and a period of 2π. Thus the nonlinear system only needs to
solve for the heights of the slits through the n parameters {yk}nk=2 and m, which can be
transformed to an unconstrained problem in a similar manner as in the previous section.

Again omitting the code to form and solve this nonlinear system to find the cor-
rect values for the parameters yk = {yk}Nk=1and m = m, the following MATLAB code
computes the map g = h5(Kz/π) from Ση to S{d(k)+iεk}

N
k=1

.

L = -.5*log(m)/pi; [K Kp] = ellipkkp(L); % elliptic integrals

ZZ = repmat(K*z(:).’/pi,length(yk),1); % R2 (repeated)

YK = repmat(yk,1,length(z)); % yk (repeated)

ZZ1 = ZZ - YK; % z - yk

Nz = floor(.5*(real(ZZ1)/K+1)); % ZZ1 = X + 2*Nz*K : Re(X)\in[-K,K)

sn = ellipjc(ZZ1 - 2*Nz*K,L); % elliptic function sn(X|m)

gk = asin(sn) + Nz*pi; % gk

A = d(1) - pi; % constant A

ak = -diff([d ; (d(1)-2*pi)])/pi; % ak given by jumps in real part

g = A + gk.’*ak; % g = A + sum_k ak*gk
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−2π−2π −π−π 00 ππ 2π2π δ1δ2δ3

ε1
ε2
ε3

-η

η

Figure 9: As in Fig 4, but here showing the images of the strips ΣjπK ′/10K , j = 1, . . . , 10
(left, not to scale) under the map (3.20). As before, if the 2π-periodic function f is only
analytic in the curved regions on the right, then the numerical method induced by g con-
verges at a rate only 10%, 20%, . . . slower than had f been analytic in S(3π+2i,π+3i,−3π+i)/4.

For example, in the map to the region with slits at (3π +2i, π +3i,−3π + i)/4+2jπ, j =
0,±1, . . . we find

m = 0.999620736713857;

yk = [5.325344471289760

2.564368861260099

-2.384269371859549];

which can be used to produce Figure 9.

4 Applications

We now demonstrate how the maps derived in this paper can be applied to spectral
methods for solving differential equations, in particular those whose solutions u exhibit
localised regions of rapid variation indicative of nearby singularities in the complex plane.
One manner in which this might be achieved is to consider the map g as a change of
variables, and apply the spectral method to approximate u ◦ g directly as in mapped-
spectral methods [21]. The drawback of this approach however is that it requires both
the tedious processes of rewriting the differential equation into new coordinates and of
computing derivatives of the map. Instead we use g to define a linear rational interpolant
[4]

rN [g](x) =

N
∑′′

k=0

(−1)k

x− g(xk)
u(g(xk))

N
∑′′

k=0

(−1)k

x− g(xk)

, xk = − cos(kπ/N), (4.1)

obtained by taking the usual barycentric weights for polynomial interpolation in Cheby-
shev points, but interpolating instead at the mapped Chebyshev points g(xk). This in-
terpolant can be differentiated to form the basis of a linear rational collocation method
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[3, 6], and the following theorem demonstrates the convergence the interpolant (4.1) and
its derivatives:

Theorem 3 ([26]) If rN [g] is the linear rational interpolant (4.1) defined by a confor-
mal map g from a closed ellipse Eρ in which u ◦ g is analytic, then

r
(n)
N [g](x)− u(n)(x) = O(ρ−N), as N →∞ (4.2)

for all x ∈ [−1, 1] and all integers n ≥ 1.

Experiments (both our own and those of [3]) show little difference between the
mapped-polynomial and linear rational approaches in practice, although further inves-
tigation is certainly warranted. For periodic problems we use the spectral collocation
method based upon the linear rational trigonometric interpolant [2], for which a similar
theorem to the above holds.

4.1 Example 1

As our first example, we consider the ODE

ε
d2u

dx2
+ x(x2 − 1/2)

du

dx
+ 3(x2 − 1/2)u = 0, −1 < x < 1, ε > 0, (4.3)

u(−1) = −2, u(1) = 4.

This two-point boundary value problem appears in [22, Fig. 10.1], only above it has
been differentiated so the solution u here is the derivative of the solution in [22]. The
ODE has turning points at x = 0,±1/

√
2, and u has interior layers at the latter two of

these points 3. We make an educated guess in choosing the conformal map by supposing
u has singularities along the lines Rez = ±1/

√
2, and, based upon the width of the

interior layers, that the closest of these to the real axis are positioned at the four points

w = ±1/
√

2± i2.5
√

ε. (4.4)

It is important to note that a crucial feature of the methodology we are suggesting is
that it is not necessary to locate singularities to any great accuracy (as suggested by
Figures 4 and 9), nor is it at all required that the solution have an particular singularity
structure. The true solution might have a pole, a branch point, a string of poles, or
perhaps be something like the error function, which is entire but grows so rapidly in the
complex plane that it may be considered ‘numerically singular’. To simplify exposition,
we refer to the slit tips {δk ± iεk} as if they were singularities of the solution u.

Solving the parameter problem for the map g = h3 ◦h1 from §2 for ε = 10−5 with the
assumptions (4.4), we find m = 0.999526181050237 and zk = i (the latter is evident by

3It is suggested in [22] that the turning point at x = 0 might also cause ‘turning point behaviour’,
and a grid highly clustered about this point is used. In our own computations we find this unnecessary,
and map only to slits with real parts at ±1/

√
2 where the solution varies rapidly.
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Figure 10: Left: An approximate solution to (4.3) with ε = 10−5 obtained from the
rational spectral method with 123 grid points (dots) defined by the map g. Right: the
improvement in convergence of the transformed grid (solid) over the Chebyshev grid
(dashed) as the number of collocation points N + 1 is increased. As the plot has a
log-linear scale, straight lines represent geometric convergence.

symmetry), with which we can compute g and the differentiation matrices of the linear
rational collocation method (concise MATLAB codes for computing these matrices can
be found in [27]). Figure 10a shows this solution to (4.3) for ε = 10−5 with 123 grid
points (the same values as used in [22]), and Figure 10b compares the convergence of this
approach against the standard Chebyshev method as the number of collocation points
N + 1 increases.

4.2 Time-dependent problem

In general the locations of the singularities (or any singular-type behaviour) in the
underlying solution are not known in advance. In [27] they are approximated on the fly
using a Padé approximation technique, which is easily extended to the case of multiple
singularities and periodic problems. The algorithm for this adaptive method for time-
dependant problems is as follows.

Given a function u at collocation points x
(m)
0 , x

(m)
1 , . . . , x

(m)
N and time t = tm:

1. Approximate the location of nearby singularities of u.

2. Adapt collocation points:
compute the parameters of the map g with slit tips at these singularites,
define x

(m+1)
k = g(− cos(kπ/N)), k = 0, . . . , N .

3. Advance in time:
interpolate u to {x(m+1)

k },
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construct new differentiation matrices given by g,
compute u at t = tm+1 using time-stepping method.

For periodic problems the algorithm is unchanged other than using the periodic version
of the slit map to adapt the equally spaced collocation points (2k−N)π/N, k = 1 . . . , N .
The algorithm can also be modified to solve time-independent problems.

In the examples to follow, we discretise temporally by a highly accurate 7-stage,
13th-order fully implicit Runge-Kutta RADAU IIA method with step size control [16].
Our MATLAB implementation uses coefficients from Hairer and Wanner’s FORTRAN
77 subroutine RADAUP [17] and follows the structure of the MATLAB routine radau5

written by Engstler [12]. We impose small relative and absolute error tolerances of 10−10

and 10−12 respectively so that the results are dominated by spatial rather than temporal
errors. In practice one could use any time stepping routine which allows the option of
pausing after each time step to adapt the grid points.

We consider a time-dependent Allen-Cahn equation, with initial and boundary con-
ditions taken from [28, p34.m]:

∂u

∂t
= ε

∂2u

∂x2
+ u(1− u2), −1 < x < 1, t > 0, (4.5)

u(x, 0) = 0.53x + 0.47 sin(−1.5πx), u(−1) = −1, u(1) = 1.

The solution u has stable equilibria at ±1 and an unstable equilibrium at 0. Regions of
the solution near ±1 are flat, and the interfaces between these regions remain unchanged
for an exponentially long time as a function of ε before changing abruptly, a phenomenon
known as metastability. Figure 11 summarises the result of solving (4.5) using the
adaptive spectral method for the parameter ε = 10−4, which is 100 times smaller than
that used in [28, p34.m].

4.3 Periodic time-dependant problem

As our final example, we consider the viscous Burgers’ equation

∂u

∂t
= υ

∂2u

∂x2
− u

∂u

∂x
, −π < x < π, t > 0, υ > 0, (4.6)

with periodic initial and boundary conditions

u(x, 0) = 0.5 cos(2x)− sin(3x), u(x, t) = u(x + 2π, t). (4.7)

As the problem is periodic, we use a conformal map of the form derived in §3 and a
periodic implementation of the adaptive spectral method based upon the trigonometric
linear rational interpolant [2]. Figure 12 shows the result of using this method to solve
(4.6) with υ = 10−2. The initial solution quickly develops three steep fronts, which travel
horizontally before ultimately smoothening out as time progresses. The singularities (or
singular-type behaviour) nearby in the complex plane responsible for these fronts are
tracked using a trigonometric version of the Padé approximation described in [27], and a
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Figure 11: Solutions of the metastable problem (4.5) with ε = 10−4 using the adaptive
rational spectral method. The first row shows the solution computed using 57 collocation
points (dots), whilst the second row shows the poles used in the corresponding compu-
tation (crosses). The third row shows log-linear plots of approximation error against
the number of collocation points N + 1 for the rational adaptive (solid) and Chebyshev
(dashed) spectral methods.
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Figure 12: As Figure 11 but for Burgers’ equation (4.6) with υ = 10−2 using the periodic
map of §3 and the periodic implementation of the adaptive spectral method. The stan-
dard Fourier spectral method fails to obtain a solution with fewer than 280 collocation
points, and even with N = 512 is accurate only to around 3 digits.
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conformal map chosen appropriately. Using this technique we are able to find an accurate
representation of the solution using relatively few collocation points, for example 3 digits
of accuracy with around 50 points, whereas the standard Chebyshev method will not
converge with fewer than 280 points. With 100 points one can obtain a solution accurate
to around 8 or 9 digits, whilst the Chebyshev method with 512 points is accurate only
to about 3 or 4.
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