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Abstract

We analyze pressure stabilized finite element methods for the solu-
tion of the generalized Stokes problem and investigate their stability
and convergence properties. An important feature of the method is
that the pressure gradient unknowns can be eliminated locally thus
leading to a decoupled system of equations. Although stability of the
method has been established, for the homogeneous Stokes equations,
the proof given here is based on the existence of a special interpolant
with additional orthogonal property with respect to the projection
space. This, makes it a lot simpler and more attractive. The resulting
stabilized method is shown to lead to optimal rates of convergence for
both velocity and pressure approximations.
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1 Introduction

Numerical approximation of incompressible flows presents a major difficulty,
namely, the need to satisfy a compatibility condition between the discrete
velocity and pressure spaces ([18], [9] and [15]). This condition which has
been well known since the work of Babuska and Brezzi in the 1970s prevents,
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in particular, the use of equal order interpolation spaces for the two variables,
which is the most attractive choice from a computational point of view.

To overcome this difficulty, stabilized finite element methods that cir-
cumvent the restrictive inf − sup condition have been developped for Stokes-
like problems (see, [19], [14], [20], [16], and [4]). These residual-based meth-
ods represent one class of stabilized methods. They consist in modifying
the standard Galerkin formulation by adding mesh-dependent terms, which
are weighted residuals of the original differential equations. Although for
properly chosen stabilization parameters these methods are well posed for
all velocity and pressure pairs, numerical results reported by several re-
searchers seem to indicate that these methods are sensitive to the choice
of the stabilization parameters. The local stabilization suggested in [20]
has some advantages in this regard. Another class of stabilized methods
has been derived using Galerkin methods enriched with bubble functions
(see, [1] and [3]). Alternative stabilization techniques based on a continuous
penalty method have been proposed and analyzed in [11] and [10].

Recently, local projection methods that seem less sensitive to the choice
of parameters and have better local conservation properties were proposed.
The stabilization by projecting the pressure gradient has been analyzed in
[12]. It was shown that the method is consistent in the sense that a smooth
exact solution satisfies the discrete problem. Though the method may seem
computationally expensive due to the nonlocal behaviour of the projection,
iterative solvers were developped to make the method more efficient ([13]).
Alternatively, a two-level approach with a projection onto a discontinuous
finite element space of a lower degree defined on a coarser grid has been
analyzed in [5], [22], and [23]. In [6] and [7], low order approximations of
the oseen equations were analyzed.

In this paper, we analyze the pressure gradient stabilization method for
the generalized Stokes problem. This kind of problems arise naturally in
the time discretization of the unsteady Stokes problem, or the full Navier-
Stokes equations by means of an operator splitting technique. Unlike the
proof given by [22] and [23], where stability was shown using an inf-sup con-
dition due to [16] and the equivalence of norms on finite dimensional spaces.
Here, the stability of the pressure-gradient method is proved for arbitrary
Qk-elements, by constructing a special interpolant with additional orthogo-
nal property with respect to the projection space. As a result, optimal rates
of convergence are found for the velocity and pressure approximations. Nu-
merical results for two-dimensional generalized Stokes flows are presented.
We observe that, for the computed examples, the accuracy and the rates of
convergence are as predicted by the theory.
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2 Variational formulation

Let Ω be a bounded two-dimensional polygonal region, f ∈ L2(Ω), σ a
positive real number (typically, σ = 1

Δt where Δt is the time step in a time
discretization procedure), and ν the kinematic viscosity coefficient. Then,
the generalized homogeneous Stokes Problem reads
Find (u, p) ∈ V ×Q satisfying:

σu−νΔu +∇p = f in Ω
∇.u = 0 in Ω (1)

u = 0 on ∂Ω

where, V = (H1
0 (Ω))d and Q = L2

0(Ω), with L2
0(Ω) denoting the set of square

integrable functions with null average.
Define the forms

A((u, p); (v, q)) = σ(u,v) + ν(∇u,∇v)− (p,∇.v) + (q,∇.u)
and (2)

F (v, q) = (f ,v) ,

for all (v, q) ∈ V × Q, with (., .), as usual, denoting the L2−inner product
on the region Ω.
Then, the weak formulation of (1) reads in compact notation as

A((u, p); (v, q)) = F (v, q) , ∀(v,q) ∈ V ×Q. (3)

Let Vh and Qh be finite dimensional subspaces of V and Q, respectively.
Then, the Galerkin discrete problem reads
Find (uh, ph) ∈ Vh ×Qh such that:

A((uh, ph); (vh,qh)) = F (vh, qh) , ∀(vh,qh) ∈ Vh ×Qh. (4)

Note that formulation (4) is stable only for velocity and pressure approxi-
mations satisfying the inf-sup condition (see, for example [18]).

3 Pressure gradient stabilization

Let ζh be a shape regular partition of the region Ω into quadrilateral ele-
ments K (see, for example [8]). Denote by hK the diameter of element K
and by h the maximum diameter of the elements K ∈ ζh. The coarser mesh
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partition ζ2h of macro-elements M is obtained by grouping sets of neigh-
bouring four elements of ζh. In order to guarantee stability and converge of
the following method, we assume that for elements K ⊂ M ∈ ζ2h we have
hK ∼ hM .

We then define the equal order continuous finite element spaces

Vh = V 2
h =

{
v ∈ (

H1
0 (Ω)

)2 : v �K∈
(
Qk

h(K)
)2
, ∀K ∈ ζh

}
Qh =

{
q ∈ H1(Ω) : q �K∈ Qk

h(K), ∀K ∈ ζh
}

(5)

whereQk
h denotes the standard continuous isoparametric finite element func-

tions defined by means of a mapping from a reference element. On the ref-
erence quadrilateral the approximation functions are polynomials of degree
less than or equal to k in each variable. We shall also use P k

h to denote the
space of polynomials of degree less than or equal to k over ζh.
Additionally, we define the pressure-gradient finite element space by

Y2h = Y 2
2h = ⊕

M∈ζ2h

(Qk−1,disc
2h (M))2. (6)

where Qk−1,disc
2h (respectively P k,disc

2h ) denote the finite element spaces of dis-
continuous functions across elements of ζ2h.
Define the local projection operator πM : L2(M) → Qk−1

2h (M) by

(w − πMw,φ)M = 0, ∀φ ∈ Qk−1
2h (M) (7)

which generates the global projection πh : L2(Ω) → Y2h defined by

(πhw) �M= πM (w �M ), ∀M ∈ ζ2h , ∀w ∈ L2(Ω). (8)

The fluctuation operator κh : L2(Ω)→ L2(Ω) is given by

κh = id− πh (9)

where, id denotes the identity operator on L2(Ω). For simplicity, we shall
use the same notation id, πM , πh, and κh for vector-valued functions. Thus,
κh∇p is to be inderstood as acting on each component of ∇p seperately.

Now, we are ready to introduce the stabilizing term

S(ph; qh) =
∑

K∈ζh

αK (κh∇ph,∇qh)K =
∑

K∈ζh

αK (κh∇ph, κh∇qh)K (10)
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where αK are element parameters that depend on the local mesh size.

Thus, our stabilized discrete problem reads as: Find (uh, ph) ∈ Vh × Qh

such that

A((uh, ph); (vh,qh)) + S(ph; qh) = F (vh, qh) , ∀(vh, qh) ∈ Vh ×Qh. (11)

This can be written component-wise as: Find (uh, ph, λh) ∈ Vh×Qh×Y2h

such that

σ(uh,vh) + ν(∇uh,∇vh)− (ph,∇.vh) = (f ,vh) , ∀vh ∈ Vh∑
K

αK(∇ph,∇qh)−
∑
K

αK(λh,∇qh)− (qh,∇.uh) = 0 , ∀qh ∈ Qh

−
∑
K

αK(∇ph, ξh) +
∑
K

αK(λh, ξh) = 0 , ∀ξh ∈ Y2h

(12)

where, λ2h is the local L2−projection of ∇ph onto a discrete space Y2h.

In order to investigate the properties of the bilinear formA((uh, ph); (vh,qh))+
S(ph; qh)) on the product space Vh×Qh, we introduce the mesh dependent
norm

‖(vh,qh)‖2 = σ ‖vh‖20,Ω + ν |vh|21,Ω + (σ + ν) ‖qh‖20,Ω + S(qh; qh). (13)

3.1 Stability

The main idea in the analysis of local projection methods is the construction
of an interpolation operator jh : H1(Ω) → Y2h with jhv ∈ H1

0 (Ω) for all
v ∈ H1

0 (Ω), satisfying the usual approximation property

‖v − jhv‖0,K+hK |v − jhv|1,K ≤ Chs
K ‖v‖s,w(K) , ∀v ∈ Hs(w(K)), 1 � s � k+1

(14)
where w(K) denotes a certain local neighbourhood of K.
With the additional orthogonal property

(v − jhv, φh) = 0 , ∀φh ∈ Y2h, ∀v ∈ H1(Ω), (15)

Lemma 1 Let ih : H1(Ω) → Vh be an interpolation operator such that
ihv ∈ H1

0 (Ω) for all v ∈ H1
0 (Ω) with the error estimate

‖v − ihv‖0,K+hK |v − ihv|1,K ≤ Chs
K ‖v‖s,w(K) , ∀v ∈ Hs(Ω), 1 � s � k+1

(16)
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Further, assume that the local inf-sup condition

inf
qh∈Y2h(K)

sup
vh∈Vh(K)

(vh, qh)K
‖vh‖0,K ‖qh‖0,K

� β1 (17)

holds for all K ∈ ζ2h, with a positive constant β1independent of the mesh
size. Then, there exists an interpolation operator jh : H1(Ω) → Y2h with the
properties (14) and (15).

Proof. For the construction of the interpolation operator jh we refer to
Theorem 2.2 in ([21]).

Remark 2 Note that condition (17) can be checked using Stenberg’s tech-
nique on macro-elements M ∈ ζ2h which are equivalent to a reference el-
ement M̂. The inf − sup condition holds if the the null space NM is such
that

NM =
{
qh ∈ Y2h(M) : (vh, qh)M = 0, ∀vh ∈ Vh(M) ∩H1

0 (M)
}

= {0} .
(18)

Note also that the fluctuation operator κh satisfies the approximation
property

‖κhq‖0,M ≤ Chl
M |q|l,M , ∀q ∈ H l(M),∀M ∈ ζ2h, 0 � l � k. (19)

Since, The L2- local projection πM : L2(M) → Y2h(M) becomes the
identity for the space Qk−1(M) ⊂ H l(M), and the kernel of κh contains
P k−1(M) ⊂ Qk−1(M). Then, the Bramble-Hilbert Lemma gives the ap-
proximation properties stated in assumption (19).

Remark 3 The justification that the pair Vh/Y2h = Qk
h/Q

k−1,disc
2h , for k �

1, satisfy (17) follows from (18) using the one-to-one property of the mapping
FM : M̂ → M combined with a positive bilinear function corresponding to
the central node of M̂ (see, [21] and [17]). Further, using the same argument
we can show that Vh/Y2h = Qk

h/P
k−1,disc
2h gives also a stable approximation.

Theorem 4 Let properties (14), (15), and (19) hold and the parameters
αK be such that αK = Ch2

K for each element K ∈ ζh.Then, the bilinear
form of the pressure-gradient stabilized method satisfies

sup
(wh,rh)∈Vh×Qh

(wh,rh)�=0

A((vh, qh) ; (wh,rh)) + S(qh; rh)
‖(wh,rh)‖ ≥ β ‖(vh,qh)‖

for some positive constant β independent of the mesh parameter h.

6



Proof. Let (vh,qh) ∈ Vh×Qh we have:

A((vh, qh) ; (vh, qh))+S(qh; qh) = σ ‖vh‖20,Ω+ν |∇vh|1,Ω+
∑

K∈ζh

αK ‖κh∇qh‖20,K .

(20)
Further, the continuous inf− sup condition implies the existence of vqh

∈ V
(see, [18]) satisfying

(qh,∇ · vqh
) = ‖qh‖20,Ω with ‖vqh

‖1,Ω � ‖qh‖0,Ω
. (21)

Let ṽqh
= jhvqh

, then

A((vh, qh) ; (−ṽqh
,0)) + S(qh; 0) = −σ(vh, ṽqh

)− ν(∇vh,∇ṽqh
)

+ (∇ · ṽqh
,qh)

= −σ(vh, ṽqh
)− ν(∇vh,∇ṽqh

) (22)

+ ‖qh‖20,Ω − (∇ · (vqh
− ṽqh

), qh).

Integrating by parts the fourth term on the right hand of (22), and using
properties (14) and (15) we obtain

|(∇ · (vqh
− ṽqh

), qh)| = |(vqh
− ṽqh

,∇qh)| = |(vqh
− ṽqh

, κh∇qh)|

�

⎛
⎝ ∑

K∈ζh

α−1
K ‖vqh

− ṽqh
‖20,K

⎞
⎠

1
2
⎛
⎝ ∑

K∈ζh

αK ‖κh∇qh‖20,K

⎞
⎠

1
2

� C

⎛
⎝ ∑

K∈ζh

αK ‖κh∇qh‖20,K

⎞
⎠

1
2

‖vqh
‖1,Ω

i.e.

|(∇ · (vqh
− ṽqh

), qh)| � C1

⎛
⎝ ∑

K∈ζh

αK ‖κh∇qh‖20,K

⎞
⎠

1
2

‖qh‖0,Ω . (23)

The first two terms in (22) are estimated by

−σ(vh, ṽqh
)− ν(∇vh,∇ṽqh

) � −σ ‖vh‖0,Ω ‖ṽqh
‖0,Ω − ν |vh|1,Ω |ṽqh

|1,Ω

� −max(σ, ν)(‖vh‖0,Ω + |vh|1,Ω) ‖qh‖0,Ω .
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Therefore, using Young’s inequality, we obtain

A((vh, qh) ; (ṽqh
,0)) + S(qh; 0) � −max(σ, ν)(

1
2δ
‖vh‖20,Ω +

δ

2
‖qh‖20,Ω

+
1
2δ
|vh|21,Ω +

δ

2
‖qh‖20,Ω) + ‖qh‖20,Ω

− δC

2
‖qh‖20,Ω −

C

2δ

∑
K∈ζh

αK ‖κh∇qh‖20,K

i.e.

A((vh, qh) ; (−ṽqh
,0)) + S(qh; 0) � −C1 ‖vh‖20,Ω − C1 |vh|21,Ω + C2 ‖qh‖20,Ω

− C3

∑
K∈ζh

αK ‖κh∇qh‖20,K (24)

when we choose 0 < δ < 1/(max(σ, ν) +
C

2
).

Also,

A((vh, qh) ; (vh, qh))+S(qh; qh) = σ ‖vh‖20,Ω+ν |vh|21,Ω+
∑

K∈ζh

αK ‖κh∇qh‖20,K .

(25)
Let (wh, rh) = (vh−δṽqh

,qh); combining (24) and (25) gives

A((vh, qh) ; (wh, rh)) + S(qh; rh) = A((vh, qh) ; (vh, qh)) + S(qh; qh)
+ δA((vh, qh) ; (−ṽqh

,0))

≥ (σ − δC1) ‖vh‖20,Ω + (ν − δC1) |vh|21,Ω

+ C2 ‖qh‖20,Ω + (1− δC3)
∑

K∈ζh

αK ‖κh∇qh‖20,K

i.e.
A((vh, qh) ; (wh, rh)) + S(qh; rh) ≥ C ‖(vh, qh)‖2 (26)

when we choose 0 < δ < min
{

1/(max(σ, ν) +
C

2
), σ/C1, ν/C1,1/C3

}
.

The norm of (wh, rh) is estimated by

‖(wh, rh)‖2 � σ
(
‖vh‖0,Ω + δ ‖ṽqh

‖0,Ω

)2
+ ν

(
|vh|1,Ω + δ |ṽqh

|1,Ω

)2

+ (σ + ν) ‖qh‖20,Ω +
∑

K∈ζh

αK ‖κh∇qh‖20,K

� σ(‖vh‖0,Ω + δ ‖qh‖0,Ω)2 + ν(|vh|1,Ω + δ ‖qh‖0,Ω)2

+ (σ + ν) ‖qh‖20,Ω +
∑

K∈ζh

αK ‖κh∇qh‖20,K .
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Hence, using Young inequality, we obtain

‖(wh, rh)‖2 � 2(1 + δ)2(σ ‖vh‖20,Ω + ν |vh|21,Ω) +
[
2(1 + δ)2 + 1

]
(σ + ν) ‖qh‖20,Ω

+
∑

K∈ζh

αK ‖κh∇qh‖20,K . (27)

i.e.
‖(wh, rh)‖2 �

[
2(1 + δ)2 + 1

] ‖(vh, qh)‖2 (28)

Thus, (26) and (28) yield the required stability result

sup
(wh,rh) ∈Vh×Qh

(wh,,rh)�=0

A((vh, qh) ; (wh, rh)) + S(qh; rh)
‖(wh, rh)‖ ≥ β ‖(vh, qh)‖ . (29)

Remark 5 For Stokes flow (σ → 0), αK = h2 has proven to be a good
choice for the stabilization parameter ([5]). In addition, the analysis given
in ([2]) reveals that for the current problem αK = σh2

ν is a reasonable choice
because it takes into account the effect of the zero term.

Note that the above theorem guaranties unique solvability of the stabi-
lized discrete problem (11). However, unlike the residual-based stabilization
schemes ([19], [16]), here, we do not have Galerkin orthogonality. As a
consequence we need to estimate the consistency error.

Lemma 6 Assume that the fluctuation operator κh satisfies the approxima-
tion property (19). Let (u, p) ∈ V× (Q∩H l(Ω)), 0 � l � k, be the solution
of the generalized Stokes problem (3) and (uh, ph) ∈ Vh × Qh the solution
of the stabilized problem (11). Then, the consistency error can be estimated
by

A((u− uh, p− ph) ; (vh,qh)) � C

⎛
⎝ ∑

K∈ζh

αKh
2l−2
K |p|2l,K

⎞
⎠

1
2

‖(vh,qh)‖

for all (vh, qh) ∈ Vh ×Qh.

Proof. Subtracting (3) from (11) we obtain

A((uh, ph) ; (vh,qh)) + S(ph; qh)−A((u, p) ; (vh,qh)) = 0 , (30)
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which implies that

A((u− uh, p− ph) ; (vh,qh)) = S(ph; qh). (31)

Using the approximation property (19) of the fluctuation operator κh we
obtain

‖κh∇ph‖0,M � Chl−1
M |∇ph|l−1,M � Chl−1

M |ph|l,M � C̃hl−1
K |ph|l,K .

Hence,

S(ph; qh) �

⎛
⎝ ∑

K∈ζh

αK ‖κh∇ph‖20,K

⎞
⎠

1
2
⎛
⎝ ∑

K∈ζh

αK ‖κh∇qh‖20,K

⎞
⎠

1
2

� C̃

⎛
⎝ ∑

K∈ζh

αKh
2l−2
K |ph|2l,K

⎞
⎠

1
2

‖(vh,qh)‖ . (32)

from which the result of the Lemma follows.

3.2 Error Analysis

As a consequence of the above stability and consistency results we obtain
the following error estimate.

Theorem 7 Assume that the solution (u, p) of (3) belongs to V∩(H s+1(Ω))2×
(Q ∩H l(Ω)), 1 ≤ s, l ≤ k. Then, the following error estimate holds

‖u− uh‖1,Ω + ‖p− ph‖0,Ω ≤ C(hs ‖u‖s+1,Ω + hl ‖p‖l,Ω).

Where, C is a positive constant independent of h.
Proof. Let ũh = jhu and p̃h = ihp be the interpolants of the velocity and
pressure, respectively. Then, Theorem 4 implies the existence of (vh, qh) ∈
Vh ×Qh such that

‖(vh, qh)‖ � C (33)

with

‖ũh − uh‖1,Ω + ‖p̃h − ph‖0,Ω � 3

min
{
σ

1
2 , ν

1
2

} ‖(ũh − uh, p̃h − ph)‖
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with the right hand side satisfying

‖(ũh − uh, p̃h − ph)‖ � 1

β̃

A((ũh−uh, p̃h − ph) ; (vh, qh)) + S(p̃h − ph; qh)
‖(vh, qh)‖

� 1

β̃

A((ũh−u, p̃h − p) ; (vh, qh)) + S(p̃h − p; qh)
‖(vh, qh)‖

+
1

β̃

A((u− uh, p− ph) ; (vh, qh)) + S(p− ph; qh)
‖(vh, qh)‖ .

(34)

Consequently, the consistency estimate of the method implies

A((u− uh, p− ph) ; (vh, qh)) + S(p− ph; qh)
‖(vh, qh)‖ � Chl ‖p‖l,Ω . (35)

The Galerkin terms of A((ũh−u, p̃h − p) ; (vh, qh)) + S(p̃h − p; qh) can be
estimated using the approximation properties of jh and ih. Hence, we get

σ(ũh−u,vh) � σ ‖ũh−u‖0,Ω ‖vh‖0,Ω � Cσhs+1 |u|s+1,Ω ‖(vh, qh)‖ ,
ν(∇ (ũh−u) ,∇vh) � ν |ũh−u|1,Ω |vh|1,Ω � Cνhs |u|s+1,Ω ‖(vh, qh)‖ , (36)

|(p− p̃h,∇ · vh)| � C ‖p− p̃h‖0,Ω |vh|1,Ω � Chl |p|l,Ω ‖(vh, qh)‖ .

The fourth Galerkin term is estimated by applying the orthogonality property
of jh. Then, using αK = Ch2

K we get

|(∇ · (ũh−u), qh)| = |(ũh−u,∇qh)| = |(ũh−u, κh∇qh)|

�

⎛
⎝ ∑

K∈ζh

α−1
K ‖ũh−u‖20,K

⎞
⎠

1
2
⎛
⎝ ∑

K∈ζh

αK ‖κh∇qh‖20,K

⎞
⎠

1
2

� C

⎛
⎝ ∑

K∈ζh

h2
K

αK
h2s

K ‖u‖2s+1,K

⎞
⎠

1
2
⎛
⎝ ∑

K∈ζh

αK ‖κh∇qh‖20,K

⎞
⎠

1
2

i.e.
|(∇ · (ũh−u), qh)| � Chs

K ‖u‖s+1,K ‖(vh, qh)‖ . (37)

The stability term is estimated using the L2−stability of the fluctuation op-
erator κh, the approximation properties of ih and αK = Ch2

K , hence we
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obtain

S(p̃h − p; qh) =
∑

K∈ζh

αK(κh∇(p̃h − p), κh∇qh)

�

⎛
⎝ ∑

K∈ζh

αK ‖κh∇(p̃h − p)‖20,K

⎞
⎠

1
2
⎛
⎝ ∑

K∈ζh

αK ‖κh∇qh‖20,K

⎞
⎠

1
2

� C1

⎛
⎝ ∑

K∈ζh

C2h
2
K h2l−2

K ‖p‖2l,w(K)

⎞
⎠

1
2

‖(vh, qh)‖

i.e.
S(p̃h − p; qh) � Chl

K ‖p‖l,Ω ‖(vh, qh)‖ . (38)

Thus, using (35), (36), (37), and (38) we obtain the required error estimate

‖u− uh‖1,Ω + ‖p− ph‖0,Ω ≤ C(hs ‖u‖s+1,Ω + hl ‖p‖l,Ω).

Remark 8 We note that because of the compatibility of the Qk
h/P

k−1,disc
2h

approximation ([9]) the stability of (11) and the above error estimates hold
also for such approximation.

3.3 Computational aspects

The discretization of (5) leads to the linear system⎡
⎣ A BT 0
B S1 ST

2

0 S2 S3

⎤
⎦
⎡
⎣ U
P

P̃

⎤
⎦ =

⎡
⎣ F1

F2

0

⎤
⎦ (39)

Where, U , P , and P̃ denote the vectors containing the nodal values of ve-
locity, pressure and pressure-gradient, respectively. The matrices B and BT

denote the divergence and gradient matrices, where the rows and columns
associated to the prescribed velocity values have been omitted. The ma-
trices S1 and S3 denote the pressure Laplacian and scaled mass matrix,
while S2 and ST

2 represent the pressure-gradient projection divergence and
gradient matrices. Here, the matrices S1, S2 and S3 depend on the values
of the mesh parameter α = {αK : K ∈ ζh;αK > 0}. The vectors F1 and
F2 represent the discretization of the right hand side terms and eventual
contributions from inhomogeneous boundary conditions.
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Remark 9 Since the functions of Y2h are discontinuous on Ω, the formu-
lation given in (5) leads to a decoupled system of equations for which the
pressure gradient unknowns can be eliminated locally.

In fact, integration of (5) on a patch e ∈ ζ2h leads to the local algebraic
linear system

⎡
⎢⎢⎣
Ae

1 0 Be
1
T 0

0 Ae
2 Be

2
T 0

Be
1 Be

2 Se
1 Se

2
T

0 0 Se
2 Se

3

⎤
⎥⎥⎦
⎡
⎢⎢⎣
U1

U2

P

P̃

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
F e

1

F e
2

0
0

⎤
⎥⎥⎦ (40)

where, U1 and U2 denote vectors containing the the first component and
the second component nodal values of the velocity field, respectively. As
above, P and P̃ denote the corresponding pressure and pressure gradient
nodal values, respectively.

Let {ϕi}N
e
u

i=1 , {ψi}N
e
p

i=1 and
{
ψ̃i

}Ne
p̃

i=1
be the local basis functions on the element

e ∈ ζ2h for Vh, Qh, and Sh, respectively. The matrices Ae
1, A

e
2, B

e
1, B

e
2, S

e
1,

Se
2, and Se

3 are given by

(Ae
1)ij = (Ae

2)ij =
∫

e
(σϕiϕj + ν∇ϕi.∇ϕj)dx, (Be

1)ij = −
∫

e
ψi
∂ϕj

∂x
dx,

(Be
2)ij = −

∫
e
ψi
∂ϕj

∂y
dx, (Se

1) ij =
∑
K∈e

αK

∫
e
∇ψi.∇ψjdx,

(Se
2)ij = −

∑
K∈e

αK

∫
e
∇ψi.ψ̃jdx, and (Se

3)ij =
∑
K∈e

αK

∫
e
ψ̃i.ψ̃jdx.

Because the pressure gradient terms arise only locally, elimination (rather
like static condensation) can be used on the 2h macroelement to yield the
reduced local system.⎡

⎣ Ae
1 0 Be

1
T

0 Ae
2 Be

2
T

Be
1 Be

2 Se
1 − Se

2
TSe−1

3 Se
2

⎤
⎦
⎡
⎣ U1

U2

P

⎤
⎦ =

⎡
⎣ F1

F2

0

⎤
⎦ . (41)

Assembly of the local matrices (41) leads to a global system of the form[
A BT

B Ŝ

] [
U
P

]
=

[
F1

F2

]
. (42)
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Where Ŝ is assembled from the matrices Se
1 − Se

2
TSe−1

3 Se
2.

The work Ŝ now plays a similar role in consideration of linear algebra solu-
tion algorithms to that associated with basic least squares terms in reduced-
based stabilization: see [15] Section 5.5.2.

4 Numerical Results

In this section, numerical results for two-dimensional generalized Stokes
flows are presented. The performance of the Q1

h − Q1
h velocity-pressure

approximation is assessed for αK = σh2

ν . The velocity and pressure norms
displayed confirm the convergence rates predicted by Theorem 3. For both
problems an SOR preconditioned MINRES code is used to solve the algebraic
linear system obtained by elimination of the pressure-gradient unknowns.
More efficient preconditioned iterative linear solvers will be the subject of
future work.

4.1 Test 1 Problem

The first problem consists in solving a generalized Stokes problem in the
unit square [0, 1] × [0, 1], with exact solution:

u(x, y) = (ux, uy)T ; p(x, y) = x− x2

with ux = 2x2(1−x)2y(1− y)(1− 2y) , uy = −2x(1−x)(1− 2x)y2(1− y)2.

Numerical results obtained for σ = 1 and ν = 1, 10−2, 10−3, and 10−4,
respectively, are displayed in figures 1-2. These results indicate that the
error norms ‖u− uh‖0,Ω and ‖u− uh‖1,Ω converge at the predicted rates,
while ‖p− ph‖0,Ω seems to converge one degree higher than predicted. Su-
perconvergence results were also reported by [13] for L2 and H1 norms using
both triangular (P 1 and P 2) and quadrilateral (Q1 and Q2) elements for the
global pressure gradient projection method. This behaviour is believed to
be due to the symmetry of the problem. In Figure 3 we have also displayed
the pressure contours. It is observed that for σ = 1, ν = 1 and ν = 10−4

there no oscillations in the pressure solution and we get the expected vertical
isobars.

4.2 Lid-driven cavity flow

Next, we address the lid-driven cavity problem, with domain Ω as before,
f = 0. Our aim here is to assess the performance of the method using
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a graded mesh near x = 0, x = 1, y = 0, and y = 1. We impose a leaky
boundary condition, that is for x, y ∈ [0, 1] : ux(0, y) = ux(1, y) = 0, ux(x, 0)
= 0, and ux(x, 1) = 1. Numerical results are obtained for ν = 1 and
ν = 10−4, both using σ = 1. Streamlines and elevations for the pressure
field are displayed in figures 4-5. We observe that there are no oscillations
for the pressure for both cases, which shows that the method treats well
the inf-sup condition and the boundary layer for the reaction dominated
regime. Further, the streamlines of figure 4 indicate that for σ = 1 and
ν = 1 the flow is essentially a Stokes-like flow with small counter-rotating
recirculations appearing at the bottom two corners which is in agreement
with similar results found in the literature (see, for example [15]). While for
σ = 1 and ν = 10−4 we observe that a second circulation starts appearing
at the bottom of the cavity.
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Figure 1: Rates of convergence for σ = 1, ν = 1 (left), and ν = 10−2

(right).
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Figure 2: Rates of convergence for σ = 1, ν = 10−3 (left), and ν = 10−4

(right).
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Figure 3: Pressure contours, for σ = 1, ν = 1 (left), and ν = 10−4 (right).
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Figure 4: Exponential distributed streamline plot for σ = 1, ν = 1 (left),
and ν = 10�4 (right).
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Figure 5: Elevation of the pressure field for σ = 1, ν = 1 (left), and
ν = 10�4 (right).
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