
A computational justification
for guessing attack formalisms

Tom Newcomb and Gavin Lowe

Oxford University Computing Laboratory,
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

{tom.newcomb, gavin.lowe}@comlab.ox.ac.uk

Abstract. Recently attempts have been made to extend the Dolev-Yao
security model by allowing an intruder to learn weak secrets, such as
poorly-chosen passwords, by off-line guessing. In such an attack, the
intruder is able to verify a guessed value g if he can use it to produce a
value called a verifier. In such a case we say that g is verifier-producing.
The definition was formed by inspection of known guessing attacks.
A more intuitive definition might be formed as follows: a value is verifi-
able if there exists some computational process that can somehow recog-
nise a correct guess over any other value. We formalise this intuitive
definition, and use it to justify the soundness and completeness of the
existing definition. Specifically we show that a value is recognisable if and
only if the value is either Dolev-Yao deducible or it is verifier-producing.
In order to do this it was necessary to clarify the definition of verifier
production slightly, revealing an ambiguity in the original definition.

1 Introduction

Problem Statement. Some security protocols are vulnerable to guessing
attacks, where an intruder can guess a value not otherwise known to him, and
verify the correctness of this guess using messages he has learned. This is a
problem particularly for protocols that use user-chosen passwords.

For example, consider the following simple protocol, which aims to authen-
ticate a user a to a server s using a shared password p as a symmetric key:

Message 1. s → a : ns

Message 2. a → s : {|ns|}p.

An intruder overhearing this exchange would be able to guess a value for p, and
use it to decrypt the ciphertext from Message 2. If the result is equal to the
plaintext from Message 1, the intruder may deduce that (with high probability)
he has guessed p correctly. Of course, this ‘guessing’ may be automated, by
iterating through some suitable dictionary, using each value in turn.

We assume that values have no entropy: for example, an intruder is not able
to test whether a sequence of bits he encounters represents a nonce or a key,
and he can never immediately detect if he decrypts a piece of ciphertext with

the wrong key. We also assume that certain values used in protocols have a
non-negligible probability of being guessed using a feasible amount of resources,
for example, if they appear in a dictionary. We consider only off-line guessing
attacks where the intruder does not require interaction with the protocol in order
to check correctness of a guess; on-line attacks can be detected and prevented
using other means, such as blocking multiple incorrect guesses.

These attacks are not captured by the standard Dolev-Yao model [6] where
an intruder’s knowledge at any moment is defined as the closure of directly
observed messages under a set of production steps.

Previous work. Lowe [7] has extended the Dolev-Yao model to allow the
intruder to perform guessing attacks as follows. At any point in the protocol
the intruder can guess a value and then attempt to verify that guess; if the
verification is successful he may add the guess to his knowledge and continue.

By Lowe’s definition, an intruder verifies a value g if he can use it to produce
a verifier v satisfying any of: (a) v can be produced in two different ways; (b) v is
a value the intruder already knew; or (c) v is an asymmetric key, and the intruder
knows its inverse. These conditions were formed by inspection of known guessing
attacks, and appear slightly ad-hoc: it is stated in [7] that ‘it is hard to be sure
that there are no others.’ Also, the formalisation of this definition is quite lengthy
and contains some unnatural subtleties.

There are other extensions of the Dolev-Yao model that capture guessing
attacks [2–5]. However, these are all reformalisations of Lowe’s original definition
in different frameworks; we expect that results about Lowe’s framework can be
easily adapted for these other extensions.

This paper. We propose a more intuitive, computational definition that cap-
tures the essence of guess verification: an intruder can verify a guess of g if there
exists a program that behaves in an observably different way on input g than on
any other input. We refer to this definition by saying the value is recognisable.

Despite being simpler and more natural, there is a major disadvantage of
this definition: it involves a quantification over all programs, making it difficult
to automate directly. On the other hand, [7] uses verifier production in a deci-
sion procedure for the automatic verification of protocols, which is shown to be
effective on real-world examples.

We relate these two definitions by proving that a guess is recognisable if
and only if it is either deducible within the Dolev-Yao model or it is verifier-
producing. This is a non-trivial result because the arbitrary recognising program
may: make use of programming control structures, e.g. conditionals and loops;
possess redundancy (i.e. behaviour not optimal or necessary for the guessing at-
tack), which is not permitted in a verifier-production trace; or create malformed
terms (e.g. by decrypting a ciphertext with the wrong key), which might be
useful in a guessing attack but is not allowed in a verifier-production trace.

Contribution. The contribution of our work can be seen as follows. We give
a justification for the definition of verifier production: technically, we show that
Lowe’s algorithm is sound and complete with respect to our more computational
model. This gives us a decision procedure (i.e. that given in [7]) for finding

guessing attacks for our more natural definition of guess verification. We also
expose an ambiguity in the verifier-production definition.
Related Work. The guessing formalism in [2] is shown to be sound with
respect to a computational model, but complete only with respect to the spi-
calculus, another algebraic model. We are not aware of any other computational
studies of verifier-production techniques for analysing guessing attacks.
Organisation. In Section 2, we give the existing definition of guess verification
from [7]. We motivate and describe our new definition in Section 3, and formalise
it in Section 4. We prove the completeness and soundness of the original definition
with respect to our new definition in Sections 5 and 6 respectively. Conclusions
and future work are given in Section 7. We omit or sketch some proofs because
of lack of space; the full proofs can be found in [8].

2 Existing definition: verifier production

In this section, we give the definition of guess verification from [7]; for more
explanation and motivation, consult that paper.

First, we describe the standard Dolev-Yao deduction rules. These describe
how an intruder may use learned and initially-known facts to deduce new facts:

{f, f ′} `pair (f, f ′), {(f, f ′)} `fst f, {(f, f ′)} `snd f ′,
{f, k} `enc {|f |}k, {{|f |}k, k−1} `dec f.

A series of deductions IK |=tr IK ′ is defined by the following rules:

IK |=〈〉 IK ,
S ⊆ IK ∧ S `l f ∧ IK ∪ {f} |=tr IK ′ ⇒ IK |=〈S`lf〉_tr IK ′.

We refer to tr as a D-Y trace, and say that IK ′ (or a value in IK ′) is D-Y
deducible from IK .

We now give the verifier-production definition of guess verification. An in-
truder verifies a guess g using verifier v from knowledge IK if there exist
IK ′, S, S′, l, l′ such that either Conditions (1)–(5) hold, or Condition (6) holds.

Firstly, the intruder uses the initial knowledge and the guess to perform a
sequence of deductions, one of which must produce the verifier v:

IK ∪ {g} |=tr IK ′, (1)
S `l v in tr. (2)

It must be impossible to obtain the information necessary for the deduction
without knowing g:

6 ∃IK ′′ · (IK |= IK ′′ ⊇ S). (3)

The verifier must satisfy one of the following properties: (a) it can be produced
in a second, different way; (b) the intruder already knew the value; or (c) it is
an asymmetric key, and the intruder knows its inverse.

S′ `l′ v in tr ∧ (S, l) 6= (S′, l′) (a)
∨ v ∈ IK ∪ {g} (b)
∨ v ∈ ASYMMETRIC KEYS ∧ v−1 ∈ IK ′. (c)

(4)

Finally, deductions that simply undo previous deductions are prohibited. With-
out this condition, certain false attacks are detected:

∀(S′′ `l′′ v′′) in tr · ¬(S `l v undoes S′′ `l′′ v′′) ∧
¬(S′ `l′ v undoes S′′ `l′′ v′′), (5)

where undoes is defined by the following rules and their symmetric opposites:

{(f, f ′)} `fst f undoes {f, f ′} `pair (f, f ′),
{(f, f ′)} `snd f ′ undoes {f, f ′} `pair (f, f ′),

{{|f |}k, k−1} `dec f undoes {f, k} `enc {|f |}k.

Alternatively, the guess could be an asymmetric key whose inverse is already
known by the intruder:

g ∈ ASYMMETRIC KEYS ∧ g−1 ∈ IK . (6)

We will say that a value g is verifier-producing from knowledge IK if it
is verifiable according to the above definition. This definition is quite lengthy
and contains some subtleties. It is not unreasonable to have doubts about its
correctness. In particular, one might ask whether the three sub-conditions of
Condition (4) cover all possible ways of verifying a guess.

3 A new definition: recognisability

In this section we show how guessing can be defined more intuitively. We imagine
that any intruder performing an off-line guess verification invokes a procedure
that can tell the difference between correct and incorrect guesses. This procedure
may utilise values that the intruder has overheard or initially knew.

To formalise this, we say that a guess of g is recognisable from a sequence
of knowledge K if there exists a program P that behaves in some observably
different way when provided with input K_〈g〉 than when provided with K_〈g′〉
for any value g′ 6= g. To put this in mathematical notation:

∃P · ∀g′ 6= g · P (K_〈g〉) 6' P (K_〈g′〉),

where ' is observable equivalence on programs. Without loss of generality, we
may assume that K contains no repetitions, i.e. it corresponds naturally to a
knowledge set, as for verifier production.

We restrict the intruder so he can only guess atomic data values (i.e. he
cannot guess a term built up using encryption or pairing). We also only consider
well-formed knowledge sequences K. Such restrictions are also imposed by the
verifier-production framework to which we will be relating our definition.

Our definition might be considered too general because although it guaran-
tees that g produces a uniquely recognisable output, we may not a priori know
what that output is. For example, consider a program P that takes a guess
and outputs it in some numeric form. P will produce a unique output for every

guess, but it is certainly not verifying anything. An alternative definition might
say that the program P must output 0 for a wrong guess and 1 for a correct
guess. Within our framework, these two definitions are equivalent (Theorem 15).
Examples like this are not possible because we prevent programs from inspecting
values in this way: we have already made the assumption that values have no
entropy so there can be nothing to gain from inspecting values at the bit level.

We finish this section with a simple example. Consider the knowledge se-
quence K = 〈v, {|v|}g〉 where g is a symmetric key. A suitable program P to
distinguish K_〈g〉 from K_〈g′〉, for any g′ 6= g, would: accept the input guess
in a formal parameter x; decrypt {|v|}g with x; compare the result with v; output
1 or 0 if the test is true or false respectively.

4 A language for programs

Here we present a formal language for the program P in the previous section.
We begin by introducing terms and programs, and finish with an example.
Terms. We assume a set of atomic data. A subset of data is keys, which is
partitioned into symmetric keys and asymmetric keys. A symmetric function ·−1

on asymmetric keys associates k with its inverse key k−1.
Our programs will store terms in their registers, which are values from an

abstract datatype representing concrete bit sequences. The set of terms is gen-
erated by the following grammar:

t ::= D | pair(t1, t2) | fst(t) | snd(t) |
enc(t1, t2) | dec(t1, t2) | enca(t1, t2) | deca(t1, t2),

where terminals D are drawn from a set of atomic data. These terms represent:
the pairing of data together; the two ways of unpairing data; symmetric key en-
cryption/decryption; and asymmetric key encryption/decryption. We deal only
with terms that have been fully reduced, according to the following rewrite rules:

fst(pair(t1, t2)) ; t1, snd(pair(t1, t2)) ; t2, pair(fst(t1), snd(t1)) ; t1,
dec(enc(t1, t2), t2) ; t1, enc(dec(t1, t2), t2) ; t1,

deca(enca(t1, t2), t2−1) ; t1, enca(deca(t1, t2−1), t2) ; t1.

We use a different notation for terms than that used in verifier production.
We take (f, f ′) as syntactic sugar for pair(f, f ′), and {|f |}k as syntactic sugar for
enc(f, k) or enca(f, k), depending on whether k is symmetric or asymmetric.

Note that while every term in the verifier-production framework has a coun-
terpart in our framework, the converse is not true: there are terms that cannot be
mapped backwards in the above translation, such as fst(f) where f is not a pair.
We call these terms malformed (as opposed to well-formed). We observe that mal-
formed terms are precisely those that contain fst, snd, dec, deca, enc(. . . , t)
where t is not a symmetric key, or enca(. . . , t) where t is not an asymmetric key.
Recall that the inverse-key function ·−1 is defined over atomic values; therefore
it can never be applied to malformed terms. We need malformed terms in order

to model such arbitrary behaviour as decrypting a ciphertext with the wrong
key (for example, the wrong guess).
Programs. A program is a sequence of instructions of the following forms:

rk := pair(ri, rj), rk := fst(ri), rk := snd(ri),
rk := enc(ri, rj), rk := dec(ri, rj), rk := enca(ri, rj), rk := deca(ri, rj),

goto k, if ri = rj goto k, output k,

where i, j, k are natural numbers. The assignment instructions mimic operations
on terms. We also have unconditional and conditional jumps, and outputs.

A program P takes as input a finite sequence of well-formed terms. The
input is copied into registers r0, . . . , rn−1, where n is the length of the input. All
other registers are undefined, except a special integer register called the program
counter (PC) which starts at 0. We then enter a fetch/execute loop as follows,
halting if the PC ever encounters an empty location.

If there is an assignment instruction rk := t at PC, then the register rk is
updated to the term t′ which is formed from t by substituting names of reg-
isters with their values. For example, if r2 and r3 hold terms enc(v, k) and v′

respectively, then execution of the instruction r1 := pair(r2, r3) causes r1 to sub-
sequently hold pair(enc(v, k), v′). Immediately after this, a top-level reduction
may take place in rk, according to the ; relation, to ensure the term is in its
fully reduced form. If an uninitialised register is encountered on the right-hand
side of an assignment, then it halts. Finally, the PC is increased by one.

Unconditional jumps goto n update the PC to n. Conditional jumps if ri =
rj goto n change the PC to n if the terms in ri and rj are syntactically identical;
otherwise the PC is increased by one. Unconditional jumps are instances of jumps
with conditional r0 = r0, and will therefore not be mentioned in proofs.

An output command output k sends the number k to the program’s output
stream, and increases PC by one.

The observable behaviour of a program P with an input K is the (possibly
infinite) sequence of numbers that appears on the output steam during execution.
We write P (K) ' P ′(K ′) to mean that the output of P with input K is identical
to that of P ′ with input K ′.
An example. We present a program P that performs the verification de-
scribed by the example in Section 3. Recall that the intruder is attempting to
guess a symmetric key g with initial knowledge K = 〈v, enc(v, g)〉. Therefore
the program should expect input of the form Kx = K_〈x〉 = 〈v, enc(v, g), x〉,
where x is a guess of g. Here is P itself:

0. r3 := dec(r1, r2) 1. if r0 = r3 goto 4 2. output 0
3. goto 5 4. output 1 5.

When P is run with input Kg, it assigns the term v to r3 and outputs 1
before terminating. With input Kg′ for any g′ 6= g the decryption does not
reduce; r3 instead holds the term dec(enc(v, g), g′) and the program outputs 0.

In contrast, g is not recognisable with the knowledge K ′ = 〈enc(v, g)〉. A
program could attempt to decrypt the term with the guess, as in P above, but
it then has no way of telling whether the decryption succeeded.

5 Completeness

In this section we demonstrate the completeness of verifier production with re-
spect to recognisability by proving the following theorem.

Theorem 1 If g is recognisable from knowledge sequence K, then g is either
deducible or verifier-producing from knowledge sequence1 K.

If g is already deducible from K, the theorem is trivially satisfied. We therefore
assume that g is not deducible from K throughout the proof. In particular, this
means that g is not a member of K, and hence K_〈g〉 contains no repetitions.

We now show how an instance of the recognisability problem can be reduced
to a slightly simpler problem which we call distinguishability. Let’s suppose that
a guess g is recognisable by the program P with initial knowledge K. That means
that for all g′ 6= g, we have P (K_〈g〉) 6' P (K_〈g′〉).

It suffices to consider just one such g′ which has the following property:
g′ does not appear as a subterm in K and is not the inverse of any key appearing
as a subterm in K. We say that g′ is fresh from K. For intuition, freshness is
required to ensure that P is actually recognising g as opposed to recognising g′.

We say that K_〈g〉 and K_〈g′〉 (for g′ fresh) are distinguishable when there
exists a program P such that P (K_〈g〉) 6' P (K_〈g′〉).

Proposition 2 If a value g is recognisable with knowledge sequence K, then
for some g′ fresh from K, the knowledge sequences K_〈g〉 and K_〈g′〉 are
distinguishable.

5.1 Normalising distinguishing programs

In this section we present a series of program transformations, which convert a
program into a normal form from where it is easier to relate its behaviour to a
verifier-production guessing attack trace.

The transformations: simplify the output of programs to just a binary signal;
unravel programs so they contain no control structures; add extra registers so
each register is assigned to at most once; and ensure that a certain form of
undoing step cannot occur. We define our normal form as the smallest such
program, in an effort to comply with Condition (5) of verifier production.

We are considering the distinguishability of the two knowledge sequences
K_〈g〉 and K_〈g′〉. However, for conciseness and generality, we consider dis-
tinguishability of two arbitrary non-empty knowledge sequences of equal length,
without repetitions, which we call K and K ′.
Adding signal. Consider the following new instructions: signal ri = rj and
signal ri hasinv rj . Their semantics dictate that the program outputs a 1 if
the test is true, and a 0 otherwise, and then terminates. The hasinv test is true
exactly when the value of ri is an asymmetric key k and the value of rj is k−1.

1 Strictly speaking, the definition of verifier-producing uses a knowledge set, as op-
posed to a sequence; we blur the distinction.

Allowing these instructions in our programs adds no expressive power. We can
henceforth equivalently consider such programs.
Unravelling. We now remove all control structures. We define an unravelled
program to be a program that has no if , goto or signal instructions, except
that it has a signal instruction at the end. It is enough to consider unravelled
programs: we can unwind all loops just enough to distinguish K and K ′.
Unique register assignments. We define an unravelled program to have
the unique-reg property if a previously undefined register is assigned to at every
assignment instruction; this is easily obtained by adding registers. This eases our
proofs by allowing us to unambiguously refer to the unique value assigned to a
register during the execution of a program, and the instruction that assigned to
that register in the program. We write P (K) for the mapping from registers to
terms when program P with input K reaches the final instruction.
No-tail-undo. Here we present a program transformation that will later en-
sure Condition (5) of verifier production is met. A program satisfies the no-tail-
undo property if it doesn’t have one of the following shapes (for any i, j, k, q):

. . . ri := fst(rk) . . . rq := pair(ri, rj) signal rk = rq

or
. . . rj := snd(rk) . . . rq := pair(ri, rj) signal rk = rq

and P (K) has ri = ti, rj = tj and rk = rq = pair(ti, tj) for some ti, tj . It’s
always possible to transform a program into an equivalent one with this property.
Smallest Normalised Programs (SNPs). We define a smallest normalised
program (SNP) that distinguishes K from K ′ as a program with minimal instruc-
tions that satisfies all of the above properties, and gives output 〈1〉 for K and 〈0〉
for K ′. The following theorem shows that it is enough to consider SNPs.

Theorem 3 If K and K ′ are distinguishable then they are distinguishable by a
Smallest Normalised Program (SNP).

Lemmas about SNPs. We now state some lemmas about SNPs that will be
useful later when comparing recognisability and verifier production.

Lemma 4 In P (K), all registers have distinct values except (possibly) the reg-
ister assigned to in the last assignment.

The idea is that if two such registers have the same value, one is redundant so
can be removed, creating a shorter equivalent program.

Lemma 5 No SNP has two instructions with identical right-hand sides.

Lemma 6 The program P does not perform any ‘undoing.’ Specifically, it does
not contain all of the instructions in any of the following sets (with any instan-
tiation of the register names).

– rk := pair(ri, rj), rl := fst(rk).

– rk := pair(rj , ri), rl := snd(rk).
– rj := fst(ri), rk := snd(ri), rl := pair(rj , rk).
– rj := enc(ri, rk), rl := dec(rj , rk).
– rj := dec(ri, rk), rl := enc(rj , rk).
– rj := enca(ri, rn), rl := deca(rj , rm), where P (K) has rn = k and rm =

k−1 for some asymmetric key k.
– rj := deca(ri, rm), rl := enca(rj , rn), where P (K) has rn = k and rm =

k−1 for some asymmetric key k.

In each case, rl = ri in both P (K) and P (K ′); hence removing rl produces a
shorter program.

Thanks to the no-tail-undo transformation, we can also show that an extra
form of undoing does not occur.

Lemma 7 For any i, j, k, q, if P (K) has ri = t, rj = t′, and rq = rk =
pair(t, t′) then we cannot have both ri := fst(rk) and rq := pair(ri, rj) in P ;
neither can we have both rj := snd(rk) and rq := pair(ri, rj) in P .

5.2 Well-formedness of deductions in SNPs

Suppose program P distinguishes K from K ′, so gives output 1 on input K,
and 0 on K ′. We show that P never produces malformed terms in its registers
on input K; this will allow us to write down a well-formed Dolev-Yao trace.
Throughout this section, all values of registers referred to are values in P (K).

Recall that a term is malformed if it contains fst, snd, dec or deca, or
enc(. . . , t) or enca(. . . , t) where t is not an appropriate key. We say that a term
is unreduced if it has shape pair(. . .) and was created with an instruction of the
form ri := pair(. . .) with no reduction applying, or similarly for the other term
constructors. Note that non-reduced terms cannot be atoms.

Proposition 8 Any malformed register values in P (K) are unreduced.

Proof. We prove the proposition by induction over initial segments of the pro-
gram. For the empty initial segment of P , we only need to consider input regis-
ters. These are not malformed so there is nothing to prove.

We now suppose the induction hypothesis holds for all registers appearing in
some initial segment of the program: registers that are malformed are unreduced.
Consider the next instruction in the program that produces a malformed term in
a register ri. We need to show that no reduction occurs in ri for that assignment.
We prove one case; other cases are similar.

Case ri := pair(rj , rk). We suppose that a reduction applies and estab-
lish a contradiction. For a reduction to apply, we must have rj = fst(t) and
rk = snd(t) for some t. These are malformed, so by induction are unreduced
and must have been created by instructions rj := fst(rp) and rk := snd(rq),
where rp and rq both have value t. By Lemma 4, registers cannot have
the same value like this, so p = q. We now have a pattern of instructions
rj := fst(rp) . . . rk := snd(rp) . . . ri := pair(rj , rk) in the program P . This
contradicts the ‘no undoing’ property proved in Lemma 6.

Proposition 9 In P (K), malformedness is hereditary: a register assigned to by
an instruction using a malformed register is itself malformed.

Proof. Consider an assignment instruction where one of the registers used on the
right-hand side is malformed. If a reduction doesn’t occur, then the new term
will contain the malformed one as a substring. So, for each instruction we assume
a reduction does apply and reach a contradiction. We prove one illustrative case.

Case ri := pair(rj , rk). If a reduction occurs, then rj = fst(t) and rk =
snd(t) for some t. By Proposition 8 we know these register are unreduced, so
there must be previous instructions rj := fst(rp) and rk := snd(rq) where rp = t
and rq = t. Apply Lemma 4 to find that p = q, but this means the program is
performs an ‘undoing’ operation, which contradicts Lemma 6.

Theorem 10 P (K) does not contain any malformed terms.

Proof. Suppose there is a malformed term in a register. As the input is well-
formed, this must be a register created in an assignment. All assignment in-
structions must contribute to the condition in the signal instruction, else they
are redundant and can be removed. We can then apply Proposition 9 to deduce
that one of the two registers used in the signal instruction must be malformed.

Now consider the final signal instruction itself. A ri hasinv rj condition
could never be true if one of ri and rj is malformed, so the condition must be
of the form ri = rj . By Proposition 8, we know that ri and rj were created in
the same way. For example, if they are both pairs then they were created with
instructions ri := pair(rp, rq) and rj := pair(rp′ , rq′), such that no reduction
applies for these instructions in P (K). So, in order that ri = rj , we must have
had rp = rp′ and rq = rq′ . By Lemma 4, we must have p = p′ and q = q′, which
contradicts Lemma 5. Cases for other instructions run similarly.

5.3 Dolev-Yao deduction traces for SNPs

The above theorem tells us that we can form a corresponding D-Y trace from
P (K). For each instruction we form a deduction in the natural way. For example,
from rk := pair(ri, rj) we get f, f ′ `pair (f, f ′), where registers ri, rj and rk have
the values f , f ′ and pair(f, f ′) respectively. Deductions for other instructions are
produced analogously. Theorem 10 guarantees well-formed Dolev-Yao deductions
in each case, resulting in a valid D-Y trace. Now that this translation is well
defined, we will use it implicitly in proofs.

Let tr be the corresponding D-Y trace of P (K). We show that no deduction
in tr undoes any other deduction.

Theorem 11 For all pairs of deductions S `l v and S′ `l′ v′ in tr, we do not
have S `l v undoes S′ `l′ v′.

Proof. All register values are in P (K). We suppose, for a contradiction,
S `l v undoes S′ `l′ v′. We consider one illustrative case of undoes.

Suppose {f, f ′} `pair (f, f ′) and {(f, f ′)} `fst f both in tr. This means we
have rp := pair(ri, rj) and rq := fst(rk) in P , with rp = rk = pair(f, f ′),
ri = rq = f , and rj = f ′. If the assignment to rp appears before that to rq

in P , then Lemma 4 demands that p = k; so we have rk := pair(ri, rj) and
rq := fst(rk) in P , which contradicts Lemma 6. Alternatively, if the assignment
to rq appears first, then i = q; we have ri := fst(rk) and rp := pair(ri, rj) in P ,
which contradicts Lemma 7.

Suppose value g is recognisable from knowledge K. Recall from Proposition 2
that this means there is some fresh g′ such that Kg = K_〈g〉 and Kg′ = K_〈g′〉
are distinguishable. By Theorem 3, we can deduce that they are distinguished
by an SNP P . We now show that P distinguishes g from g′, as opposed to vice-
versa: the signal condition is true for input Kg and false for Kg′ . The following
two propositions are proved in a similar way to those of Section 5.2.

Proposition 12 Under the assumption that the signal condition in P (Kg′) is
true, each register with g′ as a subterm is such that: the register has value g′ and
it is the last input register; or the register contains g′ as a strict subterm and it
is unreduced.

Proposition 13 Under the assumption that the signal condition in P (Kg′) is
true, the property of containing g′ as a subterm is hereditary in the following
sense: a register assigned to by an instruction using a register with g′ as a sub-
term will also contain g′ as a subterm.

The following proposition tells us that P is recognising g rather than g′.

Proposition 14 The program P distinguishes Kg from Kg′ : the signal condi-
tion in P is true for input Kg and false for input Kg′ .

Proof. We suppose for a contradiction that the signal condition is true for Kg′ .
This makes the above propositions applicable.

The register holding g′ must contribute to the condition in the signal in-
struction, otherwise P could not distinguish Kg and Kg′ . Proposition 13 tells us
that g′ must be a subterm of a register used in the signal instruction in P (Kg′).

This signal condition can’t be ri hasinv rj . We know one of these registers
must contain g′, and to be a key it would therefore have to actually be g′. In
order that this hasinv condition is true, the other register must be g′

−1; this is
impossible because g′ is fresh in K, so g′

−1 doesn’t appear in the input Kg′ .
Hence the signal condition must be of the form ri = rj . If these registers both

have the value g′, Proposition 12 says we must have i = j and P (Kg) could never
be false. Otherwise, we know that both ri and rj are unreduced, and we end up
with the same argument as in the last paragraph of the proof of Theorem 10.

As an aside, we note that this proposition validates our comment about the
generality of our definition of recognisability made back in Section 3.

Theorem 15 A value g is recognisable with knowledge K if and only if it is
recognisable by a program that outputs 〈1〉 for g, and 〈0〉 for any g′ 6= g.

5.4 SNP deductions are verifier producing

We are finally ready to prove that recognisability implies verifier production.
Recall that we assume some value g is recognisable from knowledge K, and g is
not D-Y deducible from K, i.e. there is no K ′ such that K |= K ′ 3 g. It remains
to show that g is verifier producing in order to prove Theorem 1.

Recall that Proposition 14 says there is an SNP P and some fresh g′ such that
the signal condition in P is true for Kg = K_〈g〉, and false for Kg′ = K_〈g′〉. By
Theorem 10 we get the corresponding D-Y trace of P (Kg), which we denote T .

Ideally we would use T directly as the guess attack trace tr in the definition
of verifier producing, but unfortunately this doesn’t always work due to the
exact statement of Condition (3), which states that S, the set of facts from
which v is deduced, is not itself deducible without g. For example, consider
the following initial knowledge IK : 〈v, {|v, x|}g, (((v, x), y), z)〉, and suppose we
wish to show that g is guessable. The trace T produced by an SNP will be:
〈{{|v, x|}g, g} `dec (v, x), {(v, x)} `fst v〉. In this trace, v acts as the verifier
because it is also contained in the initial knowledge (i.e. Condition (4b) applies).
However, we are forced to set S = {(v, x)}, which does not satisfy Condition (3).

In such a case we need to extract the initial portion of T that produces the
first already-known term, and make this the verifier v. We can then deduce v in
a way that doesn’t require the guess g. Applying this to our example, we end
up with the longer trace 〈{{|v, x|}g, g} `dec (v, x), {(((v, x), y), z)} `fst ((v, x), y),
{((v, x), y)} `fst (v, x)〉. Verifier production is now satisfied when (v, x) acts as
the verifier, and S = {{|v, x|}g, g}. This example shows that attacks produced by
verifier production are not necessarily optimal.

In the rest of this section we formalise this procedure and show that the
resulting trace is a suitable witness for g being verifier producing.

Define a relation f ; f ′ iff there exists a deduction S `l f ′ in T with f ∈ S.

Lemma 16 There exists a sequence f0 ; f1 ; f2 ; · · · ; fn, for some
n ≥ 0, such that f0 = g and fn is the value of one of the registers in the signal
instruction of P .

Proof. If there is no such chain, then the result of the signal is independent of
the guess, giving a contradiction.

Proposition 17 The guess g is verifier-producing from initial knowledge se-
quence K.

Proof. Let IK be K converted from a sequence to a set. Take a chain of facts
from Lemma 16. We perform a case analysis.
Case 1: There is some fi that is D-Y deducible from IK , i.e. for some tr1

and IK 1, we have IK |=tr1 IK 1 and fi ∈ IK 1. Pick the lowest such i, and let
v = fi. We know i > 0 as by assumption g is not D-Y deducible, so fi−1 is
not D-Y deducible. We conclude that there is a deduction S `l v in T such
that 6 ∃IK ′′ · (IK |= IK ′′ ⊇ S), and IK ∪ {g} |=T IK 2 with S `l v in T (for
some IK 2). We have satisfied conditions (1), (2), and (3) in the definition of
verifier production with tr = tr1

_T and IK ′ = IK 1 ∪ IK 2.

We now establish Condition (4). If v ∈ IK ∪ {g} then (4b) holds, so suppose
v 6∈ IK ∪{g}. Take S′ `l′ v to be the deduction in tr1 that produces v. We have
S 6= S′ because S is not D-Y deducible from IK whereas S′ is. Hence (4a) holds.

We are left with Condition (5). By assumption, tr1 stops at the first produc-
tion of v, which means that v never appears on the left-hand side of a deduction
rule in tr1; therefore there’s no deduction in tr1 that undoes S `l v or S′ `l′ v.
There cannot be a deduction in T that undoes S `l v by Theorem 11. Finally,
suppose there is a deduction in T that undoes S′ `l′ v. This deduction must
produce something s in S′; this deduction can therefore be removed as s is al-
ready deduced earlier in the trace. It is important to realise that removing this
deduction doesn’t invalidate anything we’ve already shown: in particular, this
deduction can not be S `l v because s is used to deduce v so can’t be v.
Case 2: There is a chain from Lemma 16 of length greater than 1, but none
of the fi is D-Y deducible from IK . Let v = fn, tr = T , and let IK ′ be such
that IK ∪ {g} |=T IK ′. Then there is a deduction in tr that produced v of the
form S `l v. Note that this fulfils conditions (1), (2), and (3). Now case split on
the final instruction in P :

Case signal ri = rj . From Lemma 16 we know that one of these registers,
say ri, has value v in P (Kg); therefore so does rj . If rj is an input register, then
v ∈ IK ∪{g}, and we have fulfilled Condition (4b). Otherwise, rj is produced in
a D-Y deduction S′ `l′ v in tr. To satisfy (4a) we now show (S, l) 6= (S′, l′) by
supposing for a contradiction that l = l′ = pair (other cases run analogously).
Then P must contain instructions ri := pair(rp, rq) and rj := pair(rp′ , rq′),
where the values of rp and rp′ are identical, similarly rq and rq′ . By Lemma 4,
we must have p = p′ and q = q′. But this contradicts Lemma 5.

Case signal ri hasinv rj . Register ri, which has value v in P (Kg), must be
a key, and rj must hold the inverse v−1. Also, v is an asymmetric key from the
semantics of hasinv, thus satisfying Condition (4c).

Finally, Condition (5) follows immediately from Theorem 11.
Case 3: There is no chain of facts from Lemma 16 with length greater than 1.
This means that the input register holding g or g′ is used directly in the signal
instruction. Call this register ri, and the other register rj . Note that ri is not used
in the production of rj without breaking the assumption about chain length. So
we have IK |= IK ′ 3 rj for some IK ′. We now split cases depending on the type
of signal instruction in P .

Case signal ri = rj . In P (Kg), for this condition to be true we must have
rj = g also. This would mean that IK |= g, breaking one of the main assumptions
of this section: that g is not already D-Y deducible from IK .

Case signal ri hasinv rj . This means that IK |= IK ′ 3 g−1 and g ∈
ASYMMETRIC KEYS . This does not quite satisfy Condition (6) of verifier
production which asks only that g−1 ∈ IK . We assume the stronger version of
Condition (6) stated below.

The last part of this proof reveals a deficiency in the definition of verifier
production from [7]. Condition (6) was designed to capture the possibility that an
intruder could use g as the verifier without performing any deductions because he

already knows g−1. However, it doesn’t allow for the fact that he may not directly
know g−1 but it is deducible from the initial knowledge without requiring g.

For example, consider a knowledge set K = {{|g−1|}k, k} for a symmetric
key k, and suppose that the intruder wishes to verify a correct guess of g. In-
tuitively, he can extract g−1 from K using the trace 〈{{|g−1|}k, k} `dec g−1〉.
This doesn’t satisfy Condition (6) because g−1 is not in the initial knowledge.
It doesn’t satisfy Conditions (1)–(5) either, because the deduction in Condi-
tion (2) would have to be the one deduction in the trace, so S = {{|g−1|}k, k};
but S doesn’t satisfy Condition (3), that S is not deducible without g.

A weakening of Condition (6) is required. We rewrite it as:

g ∈ ASYMMETRIC KEYS ∧ ∃IK ′ · IK |= IK ′ 3 g−1. (6)

In [7] an implicit assumption was made that the set IK is already closed with
respect to the deduction operators. Under this assumption, the two versions
of Condition (6) are identical. This assumption is not explicitly stated in [7]
although it is enforced in the FDR implementation described there.

6 Soundness

We now prove the soundness of verifier production with respect to recognisability.

Theorem 18 If g is deducible or verifier producing from knowledge sequence K,
then g is recognisable from K.

Proof. Deducible implies recognisable. If K |= K ′ 3 g then there exists a
sequence of D-Y deductions that produces g using K. We use these deductions
to construct a program by converting each deduction in turn into an instruction.
For example, for a deduction {f1, f2} `pair (f1, f2), we add the instruction ri :=
pair(rj , rk), where rj and rk are the registers storing f1 and f2, respectively.

Eventually we have a program P such that P (K) computes g, say in regis-
ter ri; if g ∈ K, then this program is empty and i is the position of g in K. Now
add the instruction signal ri = rj , where j is the position of g in Kg (and of g′

in Kg′). We have a program which distinguishes Kg and Kg′ for all g′.
Verifier producing implies recognisable. First we deal with the case

that the updated version of Condition (6) is true. Construct the (possibly empty)
program P using the trace from K |=tr K ′ 3 g−1, as above, to obtain g−1 in rj .
Then append signal ri hasinv rj , where ri contains the inputted guess. This
condition will be true when the guess is g, and false for any other value.

We now deal with Conditions (1)–(5). Take a verifier-producing trace tr of
minimal length. Construct a program P to calculate v using tr. We then add
a signal instruction depending on which part of Condition (4) is true: if (4a)
holds, compare the two registers which hold the different derivations of v; if (4b)
holds, compare the register containing v with the register holding the correct
piece of initial knowledge; if (4c) holds, use the signal . . . hasinv . . . instruction
to test the registers holding v and v−1. It is clear that the program P (Kg) ends
up with the equality test being true. One can also show that P (Kg′) ends up
being false for any datum g′ 6= g: see [8].

7 Conclusions

Summary. We have presented a new, natural way of capturing off-line guess
verification. Central to our definition is the existence a computational process
that can recognise the guess, thereby performing the verification. This is in con-
trast to previous verifier-production definitions which detect behaviour assumed,
by inspection of known attacks, to be characteristic of guess verification.

We have shown that a previous formalisation of guess verification via verifier
production [7] is equivalent to our recognisability definition. Aside from resolving
an ambiguity in this previous definition, the contributions of this can be seen in
two ways: it gives justification for the verifier-production definitions of guessing
attacks; and it provides a decision procedure for our more natural definition.

Future work. This paper is not complete in its comparison with Lowe’s
original work. The guessing definition in [7] is parameterised by a given set
of Dolev-Yao style deductions, whereas we have assumed a standard set of such
deductions. While it appears easy in most cases to modify our proofs to deal with
different deduction sets, proving the more general result seems much harder.

Abadi and Gordon define secrecy in the Spi Calculus [1] as follows: a value x
is secret if a protocol run using x is testing-equivalent to a run using a different
value x′. This is clearly very similar in spirit to our definition of recognisability.
However, Spi seems a little too strong to test for guessing attacks: it allows the
intruder to test whether a message was encrypted with a particular key, even
if the result of the decryption contains nothing recognisable (cf. the example at
the end of Section 4). We would like to study the relationship more formally.

Acknowledgements. Thanks are due to Eldar Kleiner for constructive com-
ments about this paper. This work was partially funded by the US Office of
Naval Research under grant N00014-04-1-0716.

References

1. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi cal-
culus. Information and Computing, 148(1):1–70, 1999.

2. T. Chothia. Guessing attacks in the pi-calculus with a computational justification.
http://www.lix.polytechnique.fr/∼tomc/, May 2004.

3. E. Cohen. Proving protocols safe from guessing. In Proc. Foundations of Computer
Security, 2002.

4. R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle. Guess what? here is a new tool
that finds some new guessing attacks (extended abstract). In Workshop on Issues
in the Theory of Security (WITS), pages 62–71, 2003.

5. S. Delaune and F. Jacquemard. A theory of dictionary attacks and its complexity.
In Proc. 17th Computer Security Foundations Workshop (CSFW), pages 2–15, 2004.

6. D. Dolev and A. Yao. On the security of public-key protocols. Communications of
the ACM, 29(8):198–208, August 1983.

7. G. Lowe. Analysing protocols subject to guessing attacks. Journal of Computer
Security, 12(1), 2004.

8. T. Newcomb and G. Lowe. A computational justification for guessing attack for-
malisms. Research Report 05-05, Oxford University Computing Laboratory, 2005.
http://web.comlab.ox.ac.uk/oucl/publications/tr/rr-05-05.html.

