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Executive Summary

In the progress of realising the Semantic Web, developing and supporting Semantic Web
query languages are among the most useful and important research problems. In [PFT+04],
we have provided a unified framework for OWL-based rule and query languages. In this
report, we focus on the problems of query answering for Semantic Web query languages
(such as RDF, OWL DL and OWL-E) in the OWL-QL specification.
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Chapter 1

Introduction

In the progress of realising the Semantic Web, developing and supporting Semantic Web
query languages are among the most useful and important research problems. In [PFT+04],
we have provided a unified framework for OWL-based rule and query languages. In this
report, we will

• fill the gap between the theoretical foundations of the unifying framework intro-
duced in [PFT+04] and the W3C work on the RDF semantics and the SPARQL
query language;

• investigate query answering within the OWL-QL formalism, inparticular for queries
over OWL DL and OWL-E ontologies;

• study various optimisation techniques of combining DL reasoners with database, in
order to handle large data sets; and

• report our implementations of an OWL-QL server and a hybrid DL/Database sys-
tem called Instance Store.

The rest of the report is organised as follows. Chapter 2 provides a connection between
the theoretical foundations of the unifying framework introduced in [PFT+04] and the
W3C work on the RDF semantics and the SPARQL query language.

Chapters 3 to 5 investigate query answering within the OWL-QL formalism. Chap-
ter 3 presents the OWL-QL formalism, the basic rolling-up techniques to reduce OWL-
QL query answering to OWL DL knowledge satisfiability and an implementation of an
OWL-QL server. Chapter 4 presents the formal semantics for datatype expression en-
abled queries and shows how to reduce query answering in OWL-E-QL to knowledge
base satisfiability in OWL-E. Chapter 5 discusses a fuzzy extension of OWL-QL.

Chapter 6 and 7 study various optimisation techniques of combining DL reasoners
with databases. Chapter 6 provides an in-depth description of the algorithms and im-

1



1. INTRODUCTION

plementation of a hybrid DL/Database system called Instance Store. Chapter 7 presents
some early ideas on how to optimise instance realisation.

Chapter 8 concludes this report.

2 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0



Chapter 2

Querying the Semantic Web with
Ontologies

2.1 Introduction

The main aim of this chapter to recast the RDF model theory in a more classical logic
framework, and to use this characterisation to shed new light on the ontology languages
layering in the semantic web. In particular, we will show howthe models of RDF can be
related to the models of DL based ontology languages, without requiring any change on
the existing syntactic or semantic definitions in the RDF and OWL-DL realms.

We first introduce the notion of minimal models for RDF graphs,and we use this no-
tion to characterise RDF entailment. RDF minimal models can also be seen as classical
first order structures, that we call DL interpretations. These structures provide the seman-
tic bridge between RDF and description logics based languages. The intuition beyond DL
interpretations is that it singles out the concepts and the individuals from an RDF minimal
model – possibly in a polymorphic way when the same node is given both the meaning as
a class and as an individual. The natural DL interpretation is the one in which concepts
and individuals are disjoint. The class of RDF graphs which allow only for natural DL
models are called DL compatible.

Once we have characterised RDF graphs in terms of their minimal models, it is possi-
ble to understand the notion of logical implication betweenRDF graphs and DL formulas.
In particular, in this chapter we analyse the problem of querying RDF graphs with DL on-
tologies. We define the certain answer and the possible answer of a query to an RDF
graph given an ontology; this is based on the notion of natural DL interpretation of the
RDF graph. Finally, we prove an important reduction result. That is, given an RDF graph
S and a queryQ, the answer set ofQ to S (as defined by W3C) is the same as the certain
answer ofQ to S given the empty KB. This shows a complete interoperability between
RDF and DLs. For example, in absence of ontologies, it would bepossible to use OWL-

3



2. QUERYING THE SEMANTIC WEB WITH ONTOLOGIES

QL to answer queries to RDF graphs, or to use SPARQL to answer queries to ABoxes.

2.2 RDF Model Theory revisited

We first define the notion of minimal model for an RDF graph.

Definition 1 (Minimal Model)
A ground instantiationof an RDF graphS is obtained by replacing each bnode inS,
if any, with some URI. Arestricted ground instantiationof an RDF graphS is obtained
by replacing each bnode inS, if any, with some element of the set of the URIs appear-
ing in S together with a set of fresh URIs – that is, not appearing elsewhere in S– in
correspondence to each bnode symbol inS.

An RDFminimal modelIRDF of an RDF graphS is a restricted ground instantiation of
the graph.

Note that a minimal model is always finite if the RDF graph is finite, that a ground RDF
graph has a unique minimal model, and that a minimal model is aground RDF graph.

As the following lemma shows, the minimal models of an RDF graph containexplic-
itly all the information entailed by the graph itself.

Lemma 2 (RDF entailment and minimal models)

1. An RDF graphS entails an RDF graphE (as defined in [Hay04a]), writtenS |= E ,
if and only if each minimal model ofS contains some ground instantiation ofE .

2. RDF entailment is NP-complete in the dimension of the RDF graphs.

3. RDF entailment is polynomial in the dimension of the graphs if E is acyclic or
ground.

The proof is based on a reduction to the problem of conjunctive query containment, and
by using the interpolation lemma in [Hay04a].

A DL interpretationof an RDF graph shows how models of RDF can be seen as
interpretations in classical logic.

Definition 3 (DL Interpretation of an RDF minimal model)
A DL interpretation of an RDF minimal modelis a description logics (DL) interpretation
I(IRDF) = 〈∆, Λ, C, R, F, O, .I〉, where∆ is an abstract domain,Λ is the union of all
XML schema datatype value spaces,C is a set of atomic concepts,R is a set of atomic
roles,F is a set of datatype features,O is a set of individuals, and.I is an interpretation
function giving the extension to concepts, roles, and features, such that:

4 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0
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C ⊆ URI-references\ RDF-vocabulary

R ⊆ URI-references\ RDF-vocabulary

F ⊆ URI-references\ RDF-vocabulary

O ⊆ URI-references\ RDF-vocabulary

∆ ⊇non-emptyO

.I =



















for eachC ∈ CCI = {o ∈ O | 〈o,rdf:type, C〉 ∈ IRDF}

for eachR ∈ RRI = {〈o1, o2〉 ∈ O × O | 〈o1, R, o2〉 ∈ IRDF}

for eachF ∈ FF I = {〈o, l2v(l)〉 ∈ O × Λ | 〈o, F, l〉 ∈ IRDF}

for eacho ∈ OoI = o

Note that there may be several DL interpretations of a singleRDF minimal model, de-
pending on which URI references are associated to concept names, to role names, to
datatype features, and to individuals.

An URI reference may be associated to more than one DL syntactic type: polymorphic
meanings of URIs are allowed. However note that, just like in the case of contextual
predicate calculus (as defined in [CKW93]), there is no interaction between the distinct
occurrences of the same URI as a concept name, or as a role name,or as a feature name,
or as an individual. This absence of interaction is requiredfor classical first order DLs
such as OWL-lite or OWL-DL. For example, given the triple〈ex:o , rdf:type , ex:o 〉
within an RDF minimal model, it is possible to have a DL interpretation associated to it
where bothC andO include the URIex:o , and such that the individualex:o is in the
extension of the conceptex:o .

The above definition of DL interpretation of an RDF minimal model is sloppy as far
as the role of datatypes is concerned. In fact, in a DL interpretation distinct datatypes
should be introduced explicitly. This can be easily inducedby the structure of the lexical
form of the XML-schema typed literals themselves.

A DL interpretation of an RDF minimal model isdatatype-freeif the RDF literals are
also interpreted as individuals inO, and noΛ nor datatype features are given.

Definition 4 (DL compatible RDF graph)
Given an RDF minimal modelIRDF, the setŝC, R̂, F̂, Ô are defined as the minimum sets
such that:

for each〈o,rdf:type, C〉 ∈ IRDF, theno ∈ Ô, C ∈ Ĉ;

for each〈o1, R, o2〉 ∈ IRDF, theno1, o2 ∈ Ô, R ∈ R̂;

for each〈o, F, l〉 ∈ IRDF andl is a literal, theno ∈ Ô, F ∈ F̂.

A natural DL interpretationof an RDF graphS is the DL interpretation of an RDF mini-
mal model ofS whereC = Ĉ, R = R̂, F = F̂, O = Ô.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 5



2. QUERYING THE SEMANTIC WEB WITH ONTOLOGIES

An RDF graphS is a DL compatible RDF graphif for some of its minimal modelŝC, R̂,
F̂, Ô are mutually disjoint.

Note that checking whether an RDF graph is DL compatible and building a natural DL
interpretation takes polynomial time with respect to the dimension of the graph. Ground
DL compatible RDF graphs have a unique natural DL interpretation.

2.3 Querying with Ontologies

In the previous section we have characterised RDF graphs in terms of their minimal mod-
els. It is now possible to understand the notion of logical implication between RDF graphs
and DL formulas. We have thus achieved full semantic interoperability between the RDF-
like languages and the DL-like languages in the semantic web. In particular, in this section
we analyse the problem of querying RDF graphs with DL ontologies.

Definition 5 (Querying RDF graphs with DL ontologies)
Given an RDF graphS, consider the DL knowledge basesΣS,i, each one with the same
TBox expressing some given ontology KB and with the ABox assertions as in the natural
DL interpretation associated to theith minimal model ofS. Given a first order queryQ
over the alphabet ofS without the RDF vocabulary, consider the setAS

Q, which includes
for eachi the answer set ofQ to ΣS,i (in agreement with the semantics as specified in the
Knowledge Web deliverable D2.5.1). Thecertain answerof Q to S given the KB is the
intersection of all the answer sets inAS

Q; a possible answerof Q toS given the KB is any
of the answer sets inAS

Q.

A special case of the theorem above is when we restrict the query to ground DL compat-
ible RDF graphs. This corresponds to querying the unique DL interpretation (trivially)
associated to the ground DL compatible RDF graph.

Theorem 6 (Querying RDF graphs with empty ontologies)
Given an RDF graphS and a first order queryQ over the alphabet ofS without the RDF
vocabulary, the answer set ofQ to S (in agreement with the RDF entailment semantics,
as in Lemma 2) is the same as the certain answer ofQ to S given the empty KB.

The problem of query answering with the empty KB is polynomial with respect to the
dimension ofS.

The proof is based on a reduction to the problem of conjunctive query containment. Note
that in this case it is enough to encode as an ABox only the natural interpretation associ-
ated to the so calledcanonical model, i.e., the minimal model whose bnodes have been
associated to distinct fresh URIs.

Note that a special case of first order query – without the RDF vocabulary – is the case
of positive queries, which corresponds to an open formula inthe form of a disjunction of

6 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0
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conjunctions of, possibly existentially quantified, non-RDF atoms. Positive queries can be
expressed in RDF as a disjunction of RDF graphs, with the proviso that the only allowed
RDF property isrdf:type , and that bnodes do not appear as objects ofrdf:type
triples.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 7



Chapter 3

OWL-QL

Here we address the OWL Query Language (OWL-QL), how to reduce query answering
of OWL-QL into Knowledge Base Satisfiability and an implementation of an OWL-QL
server.

3.1 Introduction

The OWL-QL specification, proposed by the Joint US/EU ad hoc Agent Markup Lan-
guage Committee,1 is a language and protocol for query-answering dialogues using knowl-
edge represented in the Ontology Web Language (OWL). It is a direct successor of the
DAML Query Language (DQL) [Fik03], also released by the Joint US/EU ad hoc Agent
Markup Language Committee. Both language specifications go beyond the aims of other
current web query languages like XML Query [Boa03], an XML [Bra04] query language,
or RQL [KAC+02], an RDF [Bec04] query language, in that they support the useof in-
ference and reasoning services for query answering.

The OWL-QL specification suggests a reasoner independent andmore general way for
agents (clients) to query OWL knowledge bases on the SemanticWeb. The specification
is given on a structural level with no exact definition of the external syntax. By this it
is easily adoptable for other knowledge representation formats (such as RDFS and first
order logics), but on the semantic level OWL-QL is properly defined, due to the formal
definition of the relationships among a query, a query answerand the knowledge base(s)
provided by the specification (see [FHH03], page 10–11, Appendix Formal Relationship
between a Query and a Query Answer).

1Seehttp://www.daml.org/committee/ for the members of the Joint Committee.
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3.1.1 Queries

OWL-QL queries are conjunctive queries w.r.t. some knowledge bases (or simplyKBs). A
query necessarily includes aquery patternthat is a collection of OWL statements (axioms)
where some URI references [Ber98] or literals are replaced by variables. In a query,
the client can specify for which variables the server has to provide a binding (must-bind
variables), for which the server may provide a binding (may-bind variables) and for which
variables no binding (don’t-bind variables) should be returned. In this report, must-bind
variables, may-bind variables and don’t-bind variables are prefixed with “?”, “∼” and
“ ! ”, respectively.

A client uses an answer KB pattern to specify which knowledgebase(s) the server
should use to answer the query. Ananswer KB patterncan be either a KB, a list of KB
URI references or a variable (of the above three kinds); in thelast case, the server is al-
lowed to decide which KB(s) to use. The use of may-bind and don’t-bind variables is one
of the features that clearly distinguish OWL-QL from standard database query languages
(such as SQL [ANS92]) and other web query languages (such as RQL [KAC +02] and
XML Query [Bra04]).

Here is an example of a query pattern and an answer KB pattern.

queryPattern: {(hasFather Bill ?f) }

answerKBPattern: {http://owlqlExample/fathers.owl }

Figure 3.1: A query example

Assume that the KB referred to in the answer KB pattern includes the following OWL
statements

SubClassOf(Person

restriction(hasFather someValuesFrom(Person)))

Individual(Bill type(Person)),

which assure that every person has a father that is also a person and that Bill is a person.
It could then be inferred that Bill has a father, but we can’t name him, so the OWL-QL
server can’t provide a binding and returns an empty answer collection. This is of course
different if f is specified as a may-bind (∼f ) or don’t-bind (!f ) variable, in both cases an
OWL-QL server should return one answer, but without a bindingfor ∼f resp.!f .

Assume now that the KB includes the additional statement that Mary has Joe as her
father and a query with a must-bind variable for the child (?c ). The type of the variable
f for the father would change the answer set as follows:

queryPattern: {(hasFather ?c ?f) }
If f is a must-bind variable (?f ), a complete answer set contains only persons
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whose father is known, in this example (hasFather Mary Joe) where Mary is a bind-
ing for ?c and Joe is a binding for?f .

queryPattern: {(hasFather ?c !f) }
If f is a don’t-bind variable (!f ), a complete answer set contains all known persons
since it is specified that all persons have a father, but without a binding for!f . In
this example (hasFather Mary !f), (hasFather Joe !f) and (hasFather Bill !f) should
be in the answer set.

queryPattern: {(hasFather ?c ∼f) }
If f is a may-bind variable (∼f ), the complete and non-redundant answer set con-
tains all known persons since it is specified that all personshave a father, but a bind-
ing for∼f is only provided in case the father is known. In this example (hasFather
Mary Joe), (hasFather Joe∼f) and (hasFather Bill∼f) should be in the answer set.

An optional query parameter allows the definition of a pattern that the server should
use to return the answers. Thisanswer patternnecessarily includes the format of all
variables used in the query pattern. If no answer pattern is specified, a two item list whose
first item is the querys must-bind variables list and whose second item is the querys may-
bind variables list is used as the answer pattern. This is different to the DQL specification,
where, for the case that no answer pattern was specified, the query pattern is used as the
answer pattern.

Another option for a query is to include aquery premise(a set of assumptions) to
facilitate “if-then” queries, which can’t be expressed otherwise since OWL does not sup-
port an “implies” logical connective. E.g., to ask a question like “If Bill is a person, then
does Bill have a father?” the query premise part includes an OWLKB or a KB reference
stating that Joe is a person and the query part is the same as inFigure 3.1. The server
will treat OWL statements in the query premise as a regular part of the answer KB and all
answers must be entailed by this KB.

3.1.2 Query-Answering Dialogues

To initiate a query-answering dialogue the clients sends a query to an OWL-QL server.
The server then returns ananswer bundle, which includes a (possibly empty) answer set
together with either atermination tokento end the dialogue or aprocess handleto allow
the continuation of the query-answering dialogue. A termination token is eitherend to
indicate that the server can’t for any reasons provide more answers ornoneto assert that
no more answers are possible. If a server is unable to deal with a query, e.g., due to
syntactical errors, arejectedtermination token is sent in the answer. The specification
also allows the definition of further termination token, e.g., to provide information about
the rejection reasons.

Since an answer bundle can be very large and the computation can take a long time,
the specification also allows to specify ananswer bundle size boundthat is an upper bound
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for the number of answers in an answer bundle. If the client specified an answer bundle
size bound in the query, the server does not send more answersthen allowed by the answer
bundle size bound.

To continue a dialogue the client sends aserver continuationrequest including the
process handle and an answer bundle size bound for the next answer bundle. A server
continuation must not necessarily be sent from the same client. The client can also pass
the process handle to another client that then continues thequery answering dialogue.
If the server can’t deliver any more answers for a server continuation request, it sends a
termination token together with the probably empty answer set.

If the client does not want to continue the dialogue, the client can send aserver ter-
minationrequest including the process handle. The server can use a received server ter-
mination request to possibly free resources. Figure 3.2 illustrates the query-answering-
dialogue.

Figure 3.2: The query-answering dialogue

The specification provides some attributes for a server to promote the delivered quality
of service or the so calledconformance level. A server can guarantee to benon-repeating,
so no answers with the same binding are delivered. The strictest level is called aterse
server and only the most specific answers are delivered to theclient. An answer is more
general (subsumes another) if it only provides fewer bindings for may-bind variables or
has less specific bindings for variables that occur only as values of minCardinality or
maxCardinality restrictions, e.g., if the KB is true for a binding of 4 for a maxCardinality
variable, then it will also be true for a binding of 5, 6,. . .. Since this demand is very high
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for a server that produces the answers incrementally, a lessrestrictive conformance level
is serially terse, where all delivered answers are more specific that previously delivered
answers. Finally servers that guarantee to terminate with termination tokennoneare
calledcomplete.

3.2 Reducing Query Answering to ABox Reasoning

In this section, we show that query answering ofacyclic conjunctive queries(a formal
definition of which is presented in Section 3.2.2) can be reduced to ABox reasoning.
Before presenting the details of the reduction, we would liketo mention two points here.

• Since there exist no efficient decision procedure for theSHOIQ(D+) DL, the
underpinning of OWL DL, we consider theSHIQ DL in this section.

• Please note that may-bind variables are a combination of distinguished (must-bind)
and non-distinguished (don’t-bind) variables and are therefore not treated in further
detail here. Therefore, in the following reduction we will not consider may-bind
variables.

3.2.1 Conjunctive Queries

A conjunctive queryq is of the formq〈~x〉 ← conj(~x; ~y; ~z). The vector~x consists of so
called distinguished or must-bind variables that will be bound to individual names of the
knowledge base used to answer the query. The vector~y consists of non-distinguished or
don’t-bind variables, which are existentially quantified variables. The vector~z consists
of individual names, andconj(~x; ~y; ~z) is a conjunction of atoms. An atom is of the form
v1:C or 〈v2, v3〉:r whereC is a concept name,r is a role name andv1, v2, v3 are individ-
ual names from~z or variables from~x or ~y. The left hand side of the query, i.e.,q〈~x〉 ←,
might be omitted, since it is clear from the prefixes which variables are distinguished ones.
Recall that must-bind variable names in a query are prefixed with ?, don’t-bind variables
are prefixed with!, individual names are not prefixed. Concept names are writtenin upper
case letters, while role and individual names are written inlower case.

3.2.2 Query Graphs

A conjunctive queryq can be represented as a directed labelled graphG(q) := 〈V,E〉,
whereV is a set of vertices, andE is a set of edges. The setV consists of the union of
the elements in~x, ~y, and~z. The setE consists of all pairs〈v1, v2〉, such thatv1, v2 ∈ V
and〈v1, v2〉:r is an atom inq. A nodev ∈ V is labelled with a conceptC1 ⊓ . . . ⊓ Cn

such that, for eachCi, v: Ci is an atom inq. Each edgee ∈ E is labelled with a set of role
names{r — 〈v1, v2〉:r is an atom inq}.
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The functionL(v), v ∈ V returns the label forv. If L(v) is empty, the top concept
(⊤) is returned. The functionL(e), e ∈ E returns a set of edge labels fore. The function
L−(e), e ∈ E returns a set of inverted edge labels, such thatL−(e) = {r|r− ∈ L(e)}.
The functionflip(G, 〈v1, v2〉), 〈v1, v2〉 ∈ E creates a new graphG′ := 〈V ′, E ′〉, with
V ′ := V , E ′ := (E \ {〈v1, v2〉}) ∪ {〈v2, v1〉}, andL(〈v2, v1〉) = L−(〈v1, v2〉). The
functionpred(v1), v1 ∈ V returns a set of vertices{v1|v1, v2 ∈ V ∧ 〈v2, v1〉 ∈ E}.

Two verticesv1, v2 ∈ V are adjacent, ifL(〈v1, v2〉) 6= ∅ or L(〈v2, v1〉) 6= ∅. The
vertexv1 ∈ V is reachable fromv2 ∈ V , if v1 is adjacent tov2 or if there is a another
vertexv3 ∈ V such thatv3 is adjacent tov1, andv2 is reachable fromv3. The graphG(q)
is cyclic, if there is av ∈ V , such thatL(〈v, v〉) 6= ∅ or if there is av′ ∈ V , such thatv is
adjacent tov′ and if one element is removed fromL(〈v, v′〉), v′ is still reachable fromv.
q is an acyclic conjunctive query ifG(q) is not cyclic.

3.2.3 The Rolling-up Technique

If a query contains only distinguished variables, one couldreplace all variables with in-
dividual names from the knowledge base and use a sequence of instantiation queries to
determine if the statement is true in the knowledge base. To compute a complete query
answer set with this approach, it is necessary to test all possible combinations of individ-
ual names. This is very costly, and furthermore, this approach is not applicable to queries
with non-distinguished variables.

In 2001 Tessaris [Tes01] proposed a rolling-up technique that can be used to eliminate
non-distinguished variables from a query. The technique isapplicable to acyclic conjunc-
tive queries and the OWL-QL server implemented in Manchesteruses this technique to
compute the query answers.

The basic idea behind the rolling-up technique is to convertindividual-valuedproperty
atoms into concept atoms. The rationale behind this rollingup can easily be understood
by the use of nominals. Theindividual-valuedproperty atom〈a, b〉: r can be transformed
into the equivalent concept atoma : ∃r.{b}. If we replaceb with a non-distinguished
variable!y, the corresponding role atom〈a, !y〉: r can be transformed into the equivalent
concept atoma : ∃r.⊤ because!y does not have to be bound to a named individual.
Furthermore, other concept atoms about the individualb (being rolled up) can be adsorbed
into the rolled up concept atom. For instance, the conjunction

〈a, b〉: r ∧ b: D

can be transformed intoa: ∃r.({b} ⊓ D). Similarly, the conjunction

〈a, !y〉: r ∧ !y: D

can be transformed intoa: ∃r.D becauseD is equivalent to⊤ ⊓ D.
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Queries with One Distinguished Variable

Using the rolling-up technique introduced above, we can reduce query answering of
queries with only one distinguished variables to retrieval(the problem of determining
the set of individuals that instantiate a given concept). The process is best illustrated
using the query graphG(q) of a queryq (Figure 3.3). For the readers convenience the
distinguished variables are represented by a filled node (•), whereas non-distinguished
variables and individuals are represented by an unfilled node (◦).

Figure 3.3: A query and its query graph.

First of all, the query graph is transformed into a tree with the distinguished variable
as root. The functionflip(G, e), e ∈ E is applied to change edge directions if neces-
sary to transform the graph into a proper tree. The left hand part of Figure 3.4 shows
the resulting tree. Then the rolling-up starts from the leaves of the tree. A leaf, e.g.,!z,
is selected and the vertex and its incoming edge are replacedby conjoining the concept
∃L(pred(!z), !z).L(!z) to the label ofpred(!z). The right hand part of Figure 3.4 shows
the result of the first rolling-up step. The⊤ conjunct could be omitted without changing
the semantics. This step is applied to each leaf until only the distinguished variable at the
root is remaining. The label of the root node can now be used toretrieve the individual
names that are valid bindings for the distinguished variable. For this example these are in-
stances of the conceptPERSON⊓ ∃owns. ⊤ ⊓ ∃ loves.( ⊤⊓∃haschild −. ⊤) .

?w:PERSON

!x

!y !z

owns

loves
haschild−

?w:PERSON

!x

!y:⊤⊓ ∃ haschild−.⊤

owns

loves

Figure 3.4: Two states of a query graph in the rolling-up process.

Queries with Individual Names

In a DL that supports the oneOf constructor, which allows thedefinition of a concept by
enumerating its instances, the rolling-up can use the individual name directly in the con-
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cept expression. Nodes for an individual name can then be treated like a non-distinguished
variable with the concept{individual name} as label. For example, the query〈?x〉 ←
〈?x, mary 〉:loves is rolled-up into a retrieval query for instances of the concept
∃ loves. {mary }. Unfortunately most reasoners do not support the oneOf construc-
tor, but it is still possible to deal with such queries using aso called representative con-
cept [Tes01]. The representative concept is a so far unused concept name, which is used
instead of the individual name, the ABox being extended with an assertion stating that the
individual is an instance of its representative concept. E.g., the query could be answered
by retrieving the concept instances of∃ loves.P mary, after the assertionmary:P mary

is added to the KB.

Boolean Queries

If the vector~x is empty, i.e., the query contains no distinguished variables, the query an-
swer is true, iff the knowledge base entails the query with the non-distinguished variables
treated as existentially quantified. The boolean queryq ← 〈acar, !x〉:ownedby ∧
!x:PERSONagainst the knowledge base in Example 1 should be answered with true,
since the existence of such a person is entailed by the KB.

Example 1
KB = {T , A}
T = {CAR ⊑ ∃ownedby.PERSON}
A = {acar:CAR}

We can arbitrarily select a non-distinguished variable andtreat it as if it were a dis-
tinguished one and apply the rolling up techniques presented in previous sections. For
instance, the above query can be rolled up to!x:PERSON⊓ ∃ownedby −. {acar }. If
!x would have been a distinguished variable, the query could have been answered with a
retrieval query, but here only the assertion must hold that such a thing exists. It must not
necessarily be named in the knowledge base.

To answer the query with true, we must prove that the negated rolled-up concept
causes an inconsistency in the knowledge base. This is equalto adding a statement that the
rolled-up concept implies bottom. In this example the knowledge base becomes indeed
inconsistent if we add a statement that there is no instance of the conceptPERSONthat
ownsacar , i.e., adding the axiom (PERSON⊓ ∃ownedby −. {acar }) ⊑ ⊥. Therefore
the query answer is true, otherwise the query answer would have been false.

Queries with Multiple Distinguished Variables

If a query contains multiple distinguished variables, the query can not be rolled-up into
a single DL retrieval query. To avoid a test of all possible combinations of individual
names, as necessary for the simple approach described in Section 3.2.3, the rolling-up
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technique is nevertheless helpful. To start the query answering process, one of the dis-
tinguished variables is selected as the root node, and all other variables are treated as
non-distinguished. The query graph is transformed into a tree and the rolling-up pro-
cess is applied as described above for the case with only one distinguished variable. The
retrieved individual names are candidates for the binding of the variable. This step is
repeated for all distinguished variables.

Not every combination of the retrieved candidates is possible, and to determine the
valid combinations further boolean tests are necessary. Toavoid as many boolean tests as
possible further optimisations can be used at this point.

3.2.4 Optimisation Techniques

One promising approach is to use an iterative process that eliminates unsuitable combi-
nations as soon as possible. Consider, e.g., the query and itsquery graph in Figure 3.5,
where?x has four candidates (i.e.,x1 . . . x4), ?y has two candidates (y1, y2), and?z has
ten candidates (z1, . . . , z10) after the rolling-up.

Figure 3.5: An example query with its query graph and candidates.

If we had not used the rolling-up to retrieve the candidates,the number of necessary
boolean tests would have been factorial in the number of named individuals in the KB.
With the rolling-up and boolean tests for all possible candidate combinations, the number
of tests is still the product of the number of candidates, i.e., 80 tests in this example.
An optimised strategy could start at the variable with the most candidates (i.e.,?z) and
retrieve the concept instances of∃ s−.Py1

, wherePy1
is the representative concept fory1.

In this way, one can determine which of the candidates for?z are related toy1. This is
repeated fory2. By testing for valid pairs first, one can skip many unnecessary test, e.g.,
if y1 andz1 are not related, no tests for candidates of?x are necessary. The process is
repeated for the variable with the next highest number of candidates (i.e.,?x). Compared
to the 80 boolean tests necessary before, this approach needs four retrieval queries to
determine the valid candidate combinations. However, how many retrieval queries are
necessary, depends on the number of candidates for the distinguished variables, but it is
clearly cheaper than a test of all candidates and much cheaper than a test of all individual
names in the KB.

Another optimisation could use structural knowledge aboutthe roles in the KB to
exclude impossible candidate combinations even before theabove tests are used. The
system developed in Manchester does not yet fully implementthese optimisations.
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3.3 An Implementation of an OWL-QL Server

3.3.1 Used Tools, Products and Languages

The implementation was realised in Java. The reason for thisis that all other components
that are used in this project, e.g., the DAML+OIL to DIG converter or the DIG interface
classes, are also written in Java, and a rich number of frameworks for web services are
also available in Java. To realise such a project in the givenamount of time also makes
it necessary to fall back on as much experience with tools andlanguages as possible,
otherwise too much time would be spent on familiarisation with new tools. Java was,
therefore, the best candidate for the implementation language, and the set up of other
tools was more or less easy.

As an application server Jakarta Tomcat2 with the Axis3 web service framework was
chosen. Axis is Apache’s most recent web service framework,and compared to its suc-
cessor Apache SOAP it supports the Web Service Description Language (WSDL). Ap-
plication developers can generate the Java classes for a webservice client from a .wsdl
file.

JUnit4 served as a testing framework for the project and an Ant5 script deploys both
the client and the server application to the Tomcat web server and can also run the JUnit
tests to assert that the deployed files work as expected. For CVS versioning the savannah
project server of the Hamburg University of Applied Sciences was used. Apache’s log4J6

served as a logging framework. It is easy to use and provides several predefined cate-
gories, such as info, warning and error. A configuration file defines the verbosity and the
output medium on an application or on a per class level. During the development various
outputs were logged, but due to performance losses this is reduced to only error logging
in the final version of the prototype.

To parse the queries, a small parser was generated using JavaCC (Java Compiler Com-
piler),7 which is similar to the well known Lex/Yacc programs or theirsuccessors Flex/
Bison.8 The differences to Lex/Yacc are that JavaCC produces Java code instead of C. Fur-
thermore it is a LL(k) parser generator, i.e., it parses top-down, while Yacc is a LALR(1)
parser generator that parses bottom-up. Top-down parsing is completely sufficient for
parsing the queries, and the use of a Java parser allows smooth interaction with the other
components.

The Description Logic reasoner Racer9 is used in this implementation.

2http://jakarta.apache.org/tomcat
3http://ws.apache.org/axis
4http://www.junit.org
5http://ant.apache.org
6http://logging.apache.org/log4j/docs
7https://javacc.dev.java.net
8http://dinosaur.compilertools.net
9http://www.sts.tu-harburg.de/ ∼r.f.moeller/racer
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3.3.2 System Architecture

OWL-QL was designed as an agent-to-agent communication protocol and the knowledge
bases used to answer a query may be distributed over various sources in the Semantic Web.
Due to this requirement a web service architecture was chosen for the project realisation.
Web services allow communication with different clients, i.e., a .NET application can
interact with the service or a client written in Java or anything else that supports HTTP as a
communication protocol. In addition, web services are selfdescribing and their interfaces
can be explored by parsing their web services description language (WSDL) [CGM+04]
file.

Web services were favoured here over other middleware such as CORBA or Java RMI.
They are well standardised now and are able to use multiple high level protocols, such as
HTTP or SMTP, to communicate with a remote service and do not depend on a specific
programming language. Java RMI is in comparison only usable between Java applica-
tions, which is a clear limitation for an agent-to-agent communication protocol. CORBA
does not expose this restriction, but compared to web services it is not so easy to use.
Furthermore, much more efforts are currently made to extendweb service standards and
frameworks or services such as registries to promote an available service. The rich set of
additional tools and services, like transaction services,concurrency control or authentica-
tion available for CORBA will surely also be available for web services in the future and
currently theses services are not needed for the realisation of a DQL server.

Part of this project is also an example web client that allowsa user to send queries to
the server and then displays the answers as an HTML document.

Figure 3.6 shows the architecture of the implemented OWL-QL server, together with
the implemented client application. The OWL-QL server part is the main component
of this work and is responsible for the rolling-up process asexplained in Section 3.2.3.
The web service offers three methods: one to initiate a querydialogue, one to request
more answers for a process handle of a formerly asked query and one to terminate a
query-answering dialogue. This component then interacts with the main OWL-QL server
and forwards the received parameters to the relevant methods of the OWL-QL server
component.

The reasoner could be any reasoner that supports the DIG [Bec03a] interface. This
implementation has been tested with Racer,10 since Racer implements all ABox reasoning
methods defined in the DIG interface.

The grey box symbolises other client applications such as a rich Java Swing GUI, a
.NET application, another web service that uses the DQL server as part of its service or
any other application that can use a web service.

The web service client and the server of the provided implementation are both located
on the same physical machine and therefore hosted by the sameTomcat instance. This is

10http://www.sts.tu-harburg.de/ ∼r.f.moeller/racer
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Figure 3.6: The chosen software architecture.

not necessary and can be changed easily.

3.3.3 Components

This section provides details of various component of the architecture.

The Web Service Interface

To start a query-answering-dialogue a client calls thequery() method of the DQL web
service with the necessary parameters to answer the query (the query, the URL of a knowl-
edge base and optionally an answer bundle size bound and an answer pattern). A method
parameter for the premise is already implemented, but the values are currently ignored,
since the allowed time for the project made it necessary to focus on the main parts and
the premise can easily be added later without major changes to the query-answering al-
gorithm. The premise should be transferred to the reasoner before the queries are sent,
since statements in the premise have to be treated as if they were a normal part of the
knowledge base.

The web service interface also offers the methodnextResults() , which allows
the request of further answers for a given process handle. The methodterminate()
ends a query-answering-dialogue for a given process handle. Currently all answers are
produced for the first query call and if more answers are available than allowed by the
answer bundle size bound, the rest of the answers is stored onthe server together with the
process handle.

Figure 3.7 shows a UML class diagram of the interface class that was used to create
the web service and Figure 3.8 shows the classes that are relevant for the web service.
All these classes are in the packagedql.server.webservice . DQLService is
an implementation of theIDQLService interface and the classesAnswerSet and
QueryAnswer are types that are used to deliver query answers to a client.
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TheDQLService class is not the real implementation; the class follows the facade
design pattern and delegates the parameters to the corresponding components and delivers
query answers to the client.

Figure 3.7: The web service interface.

Figure 3.8: The web service package.

The OWL-QL Server Component

The main component is the classDQLServer . It passes the query to a query parser
component, the knowledge base to a converter (a component that converts DAML+OIL
or OWL to DIG statements) and forwards the converted knowledge base to the reasoner.
It also initiates the rolling-up process on the produced query graph and finally returns
the computed answers back to theDQLService class. TheDQLServer class is not
responsible for storing answers in a cache, since this is notpart of the query answering
process. Instead theDQLService facade class uses the classAnswerSetCache that
is responsible for storing and returning cached answers.

All parts that belong to the main component are stored in the packagedql.server .
The UML deployment diagram in Figure 3.9 illustrates the components that are incor-
porated in the realisation of the service. The components labelled with library are not
developed as part of this project.
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Figure 3.9: An UML deployment diagram of the OWL-QL service.

The Query Parser

The queries are currently not written in DAML+OIL or OWL, since only a subset of
these languages is supported (conjunctive queries) and thesyntax of a query would be
very long in DAML+OIL or OWL. An extended version of the servercould of course
allow a DAML+OIL or OWL query syntax and use a parser such as theone provided
with the Jena framework11 to read the queries.

The different types of variables are indicated by a prefix, asintroduced in in the OWL-
QL specification: ! is the prefix to indicate a don’t bind variable and ? is the prefix for
must-bind variables. May-bind variables are currently notsupported as already mentioned
in Section 3.1.1. To parse the query a small parser was implemented with JavaCC. JavaCC
needs a .jj file as input containing an EBNF grammar [Wir77, fSI96] together with actions
and token definitions as regular expressions. Table 3.1 shows the used EBNF grammar.
The non-terminals arequery , term , crName , objectName androleFiller and
the terminals are characters, like ’(’, or defined regular expression, denoted as<MB>,
<DB>and<ID> for a must-bind variable, a don’t-bind variable or an individual, concept
or role name respectively. The regular expression<STDCHAR>is used as shortcut. The
parser also builds the query graph as described in Section 3.2.2 while parsing a query.
To realise this, a graph object is instantiated before the parsing starts, and the actions
for the non-terminals contain corresponding Java method calls to add a node, a role or a
concept assertion to a node. The grammar file for JavaCC and allfiles that are generated
by JavaCC are in the Java packagedql.server.parser . Table 3.1 shows the EBNF
grammar used to parse the queries.

11http://jena.sourceforge.net
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query → term ("," term) *
term → crName "(" objectName roleFiller ")"
crName → <ID>
objectName → <MB> | <DB> | <ID>
roleFiller → ("," objectName)?

<MB : ["?","#","a"-"z","A"-"Z","0"-"9","_"]
(":","#","a"-"z","A"-"Z","0"-"9","_") * >

<DB : ["!","#","a"-"z","A"-"Z","0"-"9","_"]
(":","#","a"-"z","A"-"Z","0"-"9","_") * >

<ID : ["#","a"-"z","A"-"Z","0"-"9","_"]
(":","/",".","?","-","#","a"-"z","A"-"Z","0"-"9","_ ") * >

Table 3.1: The EBNF grammar for the query parser.

Knowledge Base Loading

The knowledge bases are passed to the classDQLServer as URIs, so they could refer-
ence a file on the local file system or they could point to a knowledge base available over
the Hyper Text Transfer Protocol (HTTP) or the File TransferProtocol (FTP). The URIs
must end with .daml for a DAML+OIL knowledge base or with .owlfor an OWL knowl-
edge base. The OWL standard12 specifies three sublanguages, which are called OWL
Lite, OWL DL and OWL Full. Current Description Logic reasoners are not able to use
all features of OWL Full, which is the most expressive sublanguage of OWL. Knowledge
bases that contain such unsupported features are rejected by the DQL server.

Depending on the type of the ontology (DAML+OIL or OWL) they are passed to the
appropriate DIG converter. Both converters are libraries from the University of Manch-
ester and transform DAML+OIL or OWL into DIG statements. These statements are then
passed to the reasoner that is currently connected to the OWL-QL server.

Interaction with the Reasoner

The connection to a reasoner is established over the DIG Interface [Bec03a], which is a
standardised XML interface for Description Logics systemsdeveloped by the DL Imple-
mentation Group (DIG).13

A part of the DIG project is the Java API to communicate with DIG compliant reason-
ers, like Racer or FaCT++. All parts of the DIG project are available from the Sourceforge
home page.14

The OWL-QL Server tries to read the URL for the reasoner from a properties file that
is named dqlserver.properties and is located in the packagedql.server .

12http://www.w3.org/TR/2004/REC-owl-features-20040210
13http://dl.kr.org/dig
14http://dig.sourceforge.net
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If this property file is not accessible the OWL-QL server triesto connect tohttp://
localhost:8080 to see if a local reasoner is available there. If none of this works, all
query() method calls will cause an exception.

The classExtendedResponse in the packagedql.server implements methods
that facilitate the analysis of the reasoner’s response, e.g., to see if the knowledge base
loading was successful one has to call only one method with the reasoner response as a
parameter.

Currently all interactions with the reasoner are performed in a kind of batch mode, i.e.,
all requests (tell and ask) are collected for the first phase of the algorithm and if necessary
also for the second phase to check the candidates for must-bind variables and then sent
to the reasoner at once. This limits the network transportation overhead to a minimum,
since the reasoner may not necessarily run on the same physical machine as the OWL-QL
server.

The DIG interface was chosen since it offers an implementation independent way
for the communication with a reasoner. The standard becomesmore and more accepted
and has currently been updated to version 1.1. This additional indirection, compared to
a direct connection to a reasoner over its proprietary interface, may cause longer query
answering times, but it was preferred since it allows an easyswitch between all reasoners
that support the interface.

Recently the Jena framework has been extended to support the connection of OWL or
DAML+OIL knowledge bases to a DL reasoner over the DIG standard, so this framework
could be an alternative to the converters used here. The DQLServer class could build a
Jena model for the knowledge bases and use it to interact withthe reasoner. Currently
the implementation is not yet included in an official Jena release and very little docu-
mentation15 is available along with a technical report about the experiences with the DIG
standard during the extension of Jena [Dic04], so this is only an alternative for a future
version of the OWL-QL server. It would also be necessary to test if a switch to Jena would
increase the performance, otherwise there is no need to change the components.

The Query Graph Component

All classes that belong to the graph representation of a query are bundled in the pack-
agedql.server.querygraph . Figure 3.10 shows an UML class diagram of these
classes.

The classGraph implements the rolling-up technique as described in Section 3.2.3.
The graph contains a list of its nodes and a node is represented by the Java classNode.
The nodes manage their relations to other nodes with an adjacent list. An adjacent list is
more applicable than a centrally managed matrix for the relations since the graph is build
incrementally while parsing the query. For each role assertion a directed edge is added

15http://jena.sourceforge.net/how-to/dig-reasoner.htm l
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Figure 3.10: The UML class diagram of the query graph classes.

from the outgoing node to its successor and vice versa, but the inverse direction is kept
separately, since it is only needed to traverse the graph andis not part of the query. The
classNodeIterator allows a convenient iteration over all related nodes. Although the
query is represented as a directed graph the term leaf is usedhere. This is explained by
the fact that the underlying undirected graph is per definition in tree form and a node is
called leaf here, if it is a leaf in the underlying undirectedgraph.

The methodstartRollingUp() initialises the rolling-up process. First all indi-
viduals are replaced by their representative concepts (seeSection 3.2.3 for an explana-
tion), then all individual or don’t-bind leaves are rolled-up until only one node is left or
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this process must stop since only must-bind variables are leaves. If only one node is left,
the query can be transformed to a boolean query or to a conceptinstance query. Otherwise
the rolling-up technique is used to compute candidates for the bindings of the must-bind
variables as described in Section 3.2.3.

After this first rolling-up phase the generated queries are sent to the reasoner. If the
query contains at most one must-bind variable the reasoner already returns the final query
answer, otherwise the reasoner returns candidates for the bindings of the must-bind vari-
ables. If at least one of the must-bind variables has no candidates for its binding, the
query has an empty answer set and the query-answering algorithm terminates. Otherwise
boolean queries for each possible candidate combination are sent to the reasoner to test
which combinations are valid answers.

Query Types

In this implementation all interactions with the reasoner are regarded as queries. There
are mainly two types of them: ask queries that want to know something from the reasoner,
e.g., which individuals are instances of a concept, and tellqueries that pass information
to the reasoner, e.g., that an individual is an instance of a concept. The terms tell and ask
are also used in the DIG specification. Since there are different types of queries for tell
as well as for ask queries, the packagedql.server.query contains different query
type classes arranged in an inheritance hierarchy, together with two interfaces that allow
users of the classes to interact with all (ask) queries in thesame way. Tell queries are
only used for the representative concepts of individuals and to state that all representative
concepts are disjoint,16 i.e., the tell queries are derived directly from the abstract query
superclass, while ask queries are arranged in a deeper inheritance hierarchy under the
abstract classAskQuery . Figure 3.11 shows the type hierarchy without the subclasses
of the abstract classAskQuery for a better overview. The classAskQuery with its
subclasses is illustrated in Figure 3.12.

Query Answers

Query answers are returned in a set represented by the Java classAnswerSet . An an-
swer set contains at least one answer and at most as many answers as allowed by the
answer bundle size bound variable or all computed answers ifthe sizeBound variable is
zero or negative. Normally the Java class Integer with the value null would be more appli-
cable, but for a web service the class Integer and the primitive typeint are both mapped
to the XML schema typexsd:int for transportation over the SOAP protocol and both
types are then unmarshalled to an primitive Java type int. Therefore, theDQLServer

16Current Description Logic reasoners impose the Unique NameAssumption (UNA) for individuals, and
the disjointness axiom keeps this for the representative concepts.
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Figure 3.11: The UML class diagram of the query classes.

class works with Integer as preferred and theDQLService class, which is the web in-
terface facade, works withint and does the mapping to Integer.

In addition to the answers for a query an answer set also includes the termination
token or the process handle, whichever is appropriate.

On the server side the answers are stored in the classServerAnswerSet . This
class can be stored in the answer set cache and provides a method to receive an answer
set of a specified size for delivery to the client. In this way it is easy to prepare the next
answer set for the specified size of anextResults() request. In addition, the use of
a simpler answer set class as the return value of the web service avoided the implemen-
tation of special serializers and deserializers for the class. If the class complies with the
Java Bean Standard, which specifies that a class has to have an empty default constructor
andgetVariable() plussetVariable() methods for each used instance variable
and nothing else, the default Java Bean serializer class can be used for serialization and
deserialization. This also saves time for the client implementers of the web service, since
they also need not implement a serializer.

A query can have two kinds of answer. If the query contained nomust-bind variables
the returned answer set consists of only one answer with trueas its value if all parts of the
query are entailed by the used knowledge base and false otherwise. The returned answer
contains no bindings in this case. If the query contained at least one must-bind variable
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Figure 3.12: The UML class diagram of the AskQuery subclasses.

the answer set may contain more answers. Each answer contains one binding for each
must-bind variable. These bindings are stored in a map. If all must-bind variables in a
query are replaced by their binding, and all remaining don’t-bind variables are treated as
existentially quantified, the query must be entailed by the knowledge base used to answer
the query.

The classesServerAnswerSet andAnswerSetCache both reside in the pack-
agedql.server (see Figure 3.13), while the classesAnswerSet andQueryAnswer
together with their interfaces are located in thedql.server.webservice package,
since they are delivered to the client of the web service. A UML class diagram for this
package was already given in Section 3.3.3 on page 20.

The Answer Set Cache

If a query has more answers than the server is allowed to return, the remaining answers
are stored in an answer set cache. The corresponding Java class isAnswerSetCache in
the packagedql.server . The class is implemented as a singleton, to ensure that only
one instance is available in the system. This is necessary for two reasons:

1. Web services can’t guarantee (without extra efforts) that two requests from the
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Figure 3.13: The UML class diagram of the packagedql.server .

same client are mapped to the same object on the server, i.e.,if the query( )
method is executed by one object this object need not be the one that also han-
dles anextResults() request for the client. This makes it impossible to store
the answers in an instance variable. This behaviour is knownas web sessions. In a
session the state of the application is saved on a per client basis. Web services can
be forced to support sessions, but a normal configuration does not support this.

2. The OWL-QL specification allows any client that has a valid process handle to
request more answers for this handle, even if the originalquery() request was
sent by another client. For this reason a normal web session would also not be
suitable.

With a singleton only one instance of a class is available andthis instance stores
the answer sets and returns them on demand. When an answer set becomes empty it is
removed from the cache and if a client requests an answer set that is not in the cache an
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empty answer set with an end termination token is returned.

A Query Processing Sequence

Figure 3.14 is an UML sequence diagram illustrating the collaboration of the components
during a query answering process. The actorDQL web service is also a software
component, namely the web service answering the query request, but the server itself is a
component with a clear boundary to the offered web service, i.e., the web service can be
seen as a client of the component.

Figure 3.14: The UML sequence diagram for query answering.

Several actions have been taken to improve performance. Oneoptimisation is to exe-
cute fast tasks that may cause an end of the query-answering process as early as possible,
e.g., parsing a query is normally fast, since queries are much shorter than for example a
knowledge base and if there is a syntax error in the query noneof the other components
need to be involved.

In two cases the process is finished after the first query phase. One case is, if at most
one must-bind variable was in the query, then the first reasoner response already includes
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the query answer. The other is, if the query is not entailed bythe knowledge base. This
results in an empty candidate set for at least one must-bind variable or a returned false
value for a boolean query asking if a specified individual exists in the knowledge base or
is an instance of a given concept.

In all other cases a second interaction with the reasoner is necessary to verify all
possible combinations of the received binding candidates.This is the most costly part of
the implementation besides the loading time for a knowledgebase that is determined by
the size of the knowledge base itself.

Error Handling

The specification defines that if for any reasons a server can not deal with a query it has
to return the termination tokenrejectedin an empty answer set. In addition to this, the
provided implementation also defines agetErrorMessage() method that contains an
explanation of the caused error or failure.

Whenever an error occurs in the DQL server component, e.g., a syntax error in the
query or knowledge base or the reasoner may be unavailable for some reason, the error is
caught, logged and re-thrown with an appropriate description of the exception. The DQL
web service (that is the facade class DQLService) catches all exceptions, creates an empty
answer set with rejected termination token and the message of the caught exception, i.e.,
whenever the service is available the client will receive ananswer set for its query and in
case of an error this answer set also provides an explanation.

Testing

JUnit17 is a regression testing framework to support developers in the software develop-
ment process. A good introduction into test driven softwaredevelopment is given by Kent
Beck [Bec02], one of the authors of JUnit. For each software unit the developer should
write a test that executes defined methods and asserts that defined conditions are met be-
fore and/or after a method has been executed. A regression test runs the unit tests of all
components. This can help to find possibly occurring side effects, after a change in one
of the components. If a tests does not result in a defined condition, the test fails and there-
fore also the whole test suite fails. For example the EclipseIDE18 has a build in graphical
user interface for JUnit that signals green if all tests wereexecuted as expected and red
otherwise and the used deployment tool Ant also supports theexecution of JUnit tests as
part of a software build process.

For the server, tests were implemented for all larger components, which test different
methods against predefined results. The tests can be executed on demand and they are

17http://www.junit.org
18http://www.eclipse.org
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also part of the defined Ant deployment process for the OWL-QL server components.
The tests help to assure that specified requirements for the software, e.g., defined by the
OWL-QL specification, are met and they save time, since it is not necessary to test every
class after a change again by executing the class’s main method with different examples.

The Client Interface

Another part of this implementation is a web service client.This was not specified as part
of the project, but is rather useful to demonstrate the system. In addition, it shows one
possibility of how the provided web service may be used.

The implementation is not described in much detail, since itis not of the realisation of
a DQL server, but the system architecture diagram on page 19 shows the general layout of
the client. It is mainly composed of one servlet19 that collects the parameters that a user
enters into an HTML form and passes the parameters to the DQL web service. All classes
needed for the interaction with the web service were build bythe wsdl2java program
that is a part of the Jakarta Axis framework, see also Section3.3.1. After the servlet
has received a result from the DQL web service the request is forwarded to a JavaServer
Pages (JSP)20 page. JSP are much easier to use for HTML output than a servlet, since a
servlet can generate output only by using Java’sPrintWriter classes while JSP can
conveniently switch between Java and HTML parts.

The figures on the following pages illustrate the client interface. Figure 3.15 shows
the front-end for the user. It allows to specify a local knowledge base file or the URL of
a knowledge base, the answer bundle size bound, the query andan answer pattern. It is
necessary to use the fully qualified names for concept, role and individual names as in
the knowledge base itself. The user can also specify a process handle and request more
answers for this. If there are answers stored for the processhandle on the server the server
will return them.

Figure 3.16 shows the answer page. If the answer included a process handle to indicate
that the client can make further calls, the client can chooseone of three options: to request
more answers (then the size bound for the next answer set mustbe given), to terminate
this request and hereby allow the server to free resources orto start a new call. If the
server has no more answers in its cache a termination token isreturned and the user has
only the option to ask a new query. This is displayed in Figure3.17.

3.4 Related Work

This section introduces other available systems to query OWLknowledge bases and high-
lights the differences to the system realised in Manchester.

19http://java.sun.com/products/servlet/whitepaper.htm l
20http://java.sun.com/products/jsp/whitepaper.html
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Figure 3.15: The DQL client start page.

3.4.1 The Stanford OWL-QL Server

The Knowledge Systems Laboratory (KSL) of the Stanford University provides an OWL-
QL implementation that supports DAML+OIL and OWL knowledge bases. The system
uses the first order logic theorem prover JTP21 [FJF03] to answer the queries. The OWL-
QL server is implemented as a wrapper around the theorem prover. A query consists of
DAML+OIL or OWL statements (in RDF triple notation) with URI references replaced
by variables. Compared to acyclic conjunctive queries, the supported query language is
therefore richer. Unfortunately the system does not answerall allowed queries. For some
queries the server simply terminates the communication with a client.

As an example, consider again the KB specified in Example 2. The query〈?x〉 ←
?x:CAR ∧ 〈?x, !y〉:ownedby ∧ !y:PERSON is correctly answered with the binding
acar for ?x. However, the slightly modified query〈?x〉 ← ?x:CAR ∧ 〈?x, !y〉:ownedby
∧ !y:CAR, asking for a car that is owned by a car, is also answered with the bindingacar
for ?x.

Example 2

21http://www.ksl.stanford.edu/software/JTP
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Figure 3.16: A DQL client answer page with further answers available.

Figure 3.17: A DQL client answer page with termination token.

KB = {T , A}
T = {CAR ⊑ ∃ownedby.PERSON}
A = {acar:CAR}

The implementation was also tested with a second, more complicated query, see Ex-
ample 3, against the KB in Figure 3.18. The query asks for individuals that have anr
successor that is aC and has itself an r successor. The difficulty is that in this case there
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is no nameable instance of the conceptC, but it can be inferred that eitherc1 or c2 is a
C. If !y is a don’t-bind variable, as in this case, the query has exactly one answer, namely
a1 as a binding for?x andb1 as a binding for?z. The Stanford’s OWL-QL server does
not find the correct answer tuple but ends the dialogue with termination token end and is
compliant with the specification in this case.

For the slightly modified query in Example 4, in which the individual name b1 is used
instead of the must-bind variable?z, the KSL implementation providesa1 , c1 , andc2
as a binding for?x. The last two answers are, however, incorrect.

Example 3
〈?x, ?z〉 ← 〈?x, !y〉:r ∧ 〈!y,?z〉:r ∧ !y:C

Figure 3.18: The knowledge base used for the queries in Example 3 and 4.

Example 4
〈?x〉 ← 〈?x, !y〉:r ∧ 〈!y,b1〉:r ∧ !y:C

It seems that the system has difficulties with non-distinguished variables, and queries
often cause unexpected results. The reasons for this behaviour could be due to the com-
munication with the used theorem prover or in the theorem prover itself. If the imple-
mentation is improved in this respect, however, it would provide a powerful and complete
implementation of the OWL-QL specification. For practical use, the system would benefit
from better error handling and error explanation and a detailed documentation would be
desirable.

3.4.2 The new Racer Query Language

The recently introduced new Racer Query Language (nRQL) [HMW04] is not geared
to the DQL specification, therefore it misses all the protocol specific elements, such as
termination tokens or the delivery of answers in a bundle with a specifiable size bound. In
addition nRQL does not support non-distinguished variables. Although nRQL is far away
from the OWL-QL specification, it is nevertheless a step towards better query support,
and it is therefore introduced here very briefly. The query language itself is very rich,
as it supports the retrieval of variable bindings in arbitrary concept and role expressions.
In contrast to the other systems introduced here, all variables are distinguished, even if
they are not included in the answer. For an example, the reader may again consider the
KB in Example 2 (page 33). The nRLQ query(retrieve (?x) (and (?x CAR)
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(?y PERSON) (?x ?y ownedby))) returns all cars that are owned by a person.
Although only cars are in the answer, a named individual mustexist in the KB that is
specified as owner of the car. As a result the query answer for this example is empty.

Another feature, which was added to nRQL, is negated query atoms, implemented
using a negation as failure semantics. This is contrary to the Open World semantics
normally used in DL systems (and also by RACER). nRQL uses the same operator (not )
for negated query atoms and for concept negation, which could probably lead to confusion
and the users have to be careful with the formulation of such aquery. The nRQL query
(retrieve ( ?x) (not ( ?x PERSON))) , using the negation as failure semantics,
therefore returnsacar . Due to the Open World semantics for concept negation, the
modified query(retrieve ( ?x) ( ?x (not PERSON))) returns an empty answer
set, since RACER cannot prove thatacar is not an instance of the conceptperson .

nRQL offers more features than the ones described here and fordetails the reader is
referred to the RACER documentation.22

3.5 Discussion

3.5.1 The OWL-QL Specification

In general, OWL-QL provides a flexible framework in conducting a query-answering
dialogue using knowledge represented in OWL. It allows the definition of additional pa-
rameters, delegation of queries to another server or the continuation of a query dialogue
by other clients that know a valid process handle. If the client specifies an answer bundle
size bound, the specification allows an OWL-QL server to compute all answers at once
or to compute the answers incrementally, as long as the answer set returned to the client
contains not more answers than specified by the answer bundlesize bound. The specifi-
cation also allows the definition of further termination token, e.g. to provide information
about the rejection reasons.

The current version of OWL-QL, however, has the following limitations.

External Syntax The specification does not provide any exact syntax definition or a
specification of how to communicate the supported conformance level to a client and also
other mechanism like time-outs for a query are not specified.This is due to the focus on
providing an abstract specification on a structural level and to allow the various syntactical
preferences of the different web communities to fit the standard to their needs. An OWL-
QL server therefore has to provide this information in a documentation or in an XML
Schema [Bir01] [Tho01].

22The documentation, which includes a section about nRQL, is available from the RACER download
page:http://www.cs.concordia.ca/ ∼haarslev/racer/download.html
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Semantics As the external syntax has not (yet) been specified, the formal semantics
of OWL-QL is presented in a quite general way, and is only included as an appendix of
the specification. In particular, the fact that the relationship between the OWL model-
theoretic semantics and the OWL-QL semantics has not been specified is not very satis-
factory.

Boolean Queries The specification does not specify how to answer boolean queries,
i.e., queries with only don’t-bind variables or queries with an empty variable list. How to
implement a system that can answer queries with only don’t-bind variables is described
in Section 3.2.3. In the absence of variables query answering is identical to instance
checking. In both cases the answer set is empty, instead the answer to such a query is
either yes/true or no/false.

Query classes The OWL-QL specification does not introduce the query classesthat
DQL provides. Since it is difficult for some reasoners to implement all of these require-
ments, DQL explicitly allows a partial implementation. A DQL server can restrict it-
self to specialquery classes, e.g. a server may only support queries that conform to
a pattern like?x rdf:type C , where C is an DAML+OIL class expression, or?x
daml:subClassOf ?y and reject all other queries. The server is then said to apply
to these query classes. Until now it is up to the implementer of an OWL-QL server to
provide a documentation of supported query classes and how,if at all, this is communi-
cated to a client. In a real agent-to-agent protocol, however, a client should be able to
determine the supported query classes and this is one of the issues a future specification
should address.

In short, for an implementer of an OWL-QL server, OWL-QL acts asa guide without
a concrete external syntax, a formal relationship with the OWL model-theoretic semantics
and proper means to communicate the supported query classesor the conformance level.
Until now every implementation has to fill (some of) these gaps and to provide a detailed
documentation of how these gaps have been filled.

3.5.2 OWL-QL Systems

Efforts are currently being made, to develop better query support for knowledge represen-
tation systems. The establishment of OWL as a W3C recommendation may also promote
the proposed OWL-QL specification23 and so encourage improvements for the currently
available systems or the development of new query answeringsystems.

So far, all introduced systems have some drawbacks. The Stanford implementation
covers all features defined by the OWL-QL specification, but delivers in some cases in-
correct answers and rejects some queries, without providing an answer. The Manchester

23http://ksl.stanford.edu/projects/owl-ql
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implementation does not support all DQL features and is restricted to acyclic conjunctive
queries. Both systems are available as Java applications andthe Stanford implementation
is also available as a servlet, while the Manchester implementation is also available as
a web service. Both provide a web client interface and are ableto deal with OWL and
DAML+OIL knowledge bases.

nRQL provides richer query support, but is not meant as an OWL-QL implementation
and is therefore missing many DQL features. In addition, therestriction that a binding is
required for all variables, even for those not expected to appear in the answer set, would
make it difficult to formulate queries such as the one in Section 3.4 against the KB in
Figure 3.18. Apart from this, nRQL is easy to use, and the documentation provides a
good introduction to the new features of nRQL.

For all described systems there are still improvements possible. One main topic for
query answering systems is scalability. The query answering times for knowledge bases
with large amounts of individuals are still far away from theresults achieved by databases.
For the implementation developed in Manchester, the boolean queries that are necessary
to check valid combinations of variable bindings, can causemajor delays in case of many
candidates. The system would clearly benefit of a further optimisation of this phase in the
query answering process, some of which were discussed in Section 3.2.4.
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Chapter 4

Querying with OWL-E-QL

This chapter describes how to query with OWL-E-QL, which is anextension of OWL-QL
by using OWL-E as the ontology language and by enabling the useof datatype expression
in queries. As details of OWL-QL have already been addressed in Chapter 3, we only have
to cover: (i) what is OWL-E, (ii) what is the semantics of datatype expression enabled
queries, and (iii) how to provide reasoning services for query answering in OWL-E-QL.
As a side issue, we also include a short survey on the datatypepredicates used in existing
Web-related query languages.

4.1 Formal Semantics

4.1.1 Datatypes and Datatype Predicates

Most existing ontology-related formalisms focus on eitherdatatypes (such as RDF(S)
and OWL datatyping) or predicates (such as the concrete domain and the type system
approach). Pan ([Pan04]) presents a datatype group approach, which provides a unified
formalism for datatypes and datatype predicates.

In a datatype group, datatypes and datatype predicates serve different purposes. A
datatyped is characterised by its lexical spaceL(d), value spaceV (d) and lexical-to-value
mappingL2V (d). It can be used to represent its member values through typed literals.
A typed literalsis of the form“v”ˆˆu, wherev is a Unicode string, called thelexical
form of the typed literal, andu is a URI reference of a datatype. Adatatype predicate
(or simply predicate) p is characterised by an aritya(p), or a minimum arityamin(p) if
p can have multiple arities, and a predicate extension (or simply extension) E(p). For
instance,>int

[20] is a (unary) predicate witha(>int
[20]) = 1 andE(>int

[20]) = {i ∈ V (integer) |

i > L2V (integer)(“20”)}. This example shows that predicates are defined based on
datatypes (e.g.,integer) and their values (e.g., the integerL2V (integer) (“20”), i.e.,
20). Predicates are mainly used to represent constraints over values of datatypes which
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Abstract Syntax DL Syntax Semantics
rdfs:Literal ⊤D ∆D

owlx:DatatypeBottom ⊥D ∅
u a predicate URIref u uD

not(u) u

if u ∈ DG , ∆D \ uD

if u ∈ ΦG \ DG , (dom(u))D \ uD

if u 6∈ ΦG ,
⋃

n≥1
(∆D)n \ uD

oneOf(“s1”ˆˆd1 . . .“sn”ˆˆdn) {“s1”ˆˆd1, . . . , “sn”ˆˆdn} {(“s1”ˆˆd1)
D} ∪ · · · ∪ {(“sn”ˆˆdn)D}

domain(v1, . . . , vn) [v1, . . . , vn] vD

1 × · · · × vD

n

and(P,Q) P ∧ Q PD ∩ QD

or(P,Q) P ∨ Q PD ∪ QD

Table 4.1: OWL-E datatype expressions

they are defined over.

On the other hand, datatypes and datatype predicates are closely related to each other.
Datatypes can be regarded asspecialpredicates with arity 1 and predicate extensions
equal to their value spaces; e.g., the datatypeinteger can be seen as a predicate with arity
a(integer) = 1 and predicate extensionE(integer) = V (integer). They arespecial
because they have lexical spaces and lexical-to-value mappings that ordinary predicates
do not have.

The reader is referred to [Pan04] for more details about the datatype group approach.

4.1.2 OWL-E: Extending OWL with Datatype Expressions

Although OWL is rather expressive, it has a very serious limitation; i.e., it does not support
customised datatypes and datatype predicates. It has been pointed out that many poten-
tial users will not adopt OWL unless this limitation is overcome [Rec04]. To overcome
these limitations, [PH04] proposes OWL-E, equivalent to theSHOIQ(G) DL, which
is a decidable extension of both OWL DL and DAML+OIL, which provides customised
datatypes and predicates; in fact, [Pan04] shows that all the basic reasoning services of
OWL-E are decidable.

OWL-E provides datatype expressions based on the datatype group approach [Pan04],
which can be used to represent customised datatypes and datatype predicates. Table 4.1
shows the kind of datatype expression OWL-E supports, whereu is a datatype predi-
cate URIref,“si”ˆˆdi are typed literals,v1, . . . , vn are (possibly negated) unary supported
predicate URIrefs,P , Q are datatype expressions andΦG is the set of supported predicate
URIrefs in a datatype groupG. OWL-E provides some new classes descriptions, which
are listed in Table 4.2, whereT, T1, . . . , Tn are datatype properties (whereTi ⊑*/ Tj, Tj ⊑*/ Ti

for all 1 ≤ i < j ≤ n),1 R is an object property,C is a class,E is a datatype expres-
sion or a datatype expression URIref, and♯ denotes cardinality. Note that the first four are

1 ⊑* is the transitive reflexive closure of⊑.
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Abstract Syntax DL Syntax Semantics
restriction({T}

someTuplesSatisfy(E) )
∃T1, . . . , Tn.E {x ∈ ∆I | ∃t1, . . . , tn.〈x, ti〉 ∈ TI (for all

1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ ED}

restriction({T}
allTuplesSatisfy(E) )

∀T1, . . . , Tn.E {x ∈ ∆I | ∀t1, . . . , tn.〈x, ti〉 ∈ TI (for all
1 ≤ i ≤ m) → 〈t1, . . . , tn〉 ∈ ED}

restriction({T} minCardinality(m)
someTuplesSatisfy(E) )

>mT1, . . . , Tn.E {x ∈ ∆I | ♯{〈t1, . . . , tn〉 | 〈x, ti〉 ∈ TI (for all
1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ ED} ≥ m}

restriction({T} maxCardinality(m)
someTuplesSatisfy(E) )

6mT1, . . . , Tn.E {x ∈ ∆I | ♯{〈t1, . . . , tn〉 | 〈x, ti〉 ∈ TI (for all
1 ≤ i ≤ m) ∧ 〈t1, . . . , tn〉 ∈ ED} ≤ m}

restriction(R minCardinality(m)
someValuesFrom(C) )

>mR.C {x ∈ ∆I | ♯{y | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≥ m}

restriction(R maxCardinality(m)
someValuesFrom(C) )

6mR.C {x ∈ ∆I | ♯{y | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≤ m}

Table 4.2: OWL-E introduced class descriptions

datatype group-based class descriptions, and the last two are qualified number restrictions.

4.1.3 Queries and Query Graphs

In this chapter, we consider acyclic conjunctive queries that allow datatype expressions.
Formally, aqueryq is of the form

~x: q ← conj(~x; ~y; ~z)

whereconj(~x; ~y; ~z) is a conjunction ofatoms, ~x is a set of distinguished (or must bind)
variables that will be bound to individual names of the knowledge base used to answer
the query,~y is a set of non-distinguished (don’t-bind variables) that are existentially quan-
tified variables, and~z consists of individual names or typed literals. Each atom has one
of the formsv1 : C,2 〈v2, v3〉 : r, 〈v4, v5〉 : s, 〈t1, . . . , tn〉 : E, whereC is a concept de-
scription,r is anindividual-valuedproperty,s is adata-valuedproperty,E is a datatype
expression,v1, . . . , v4 are individual names from~z or individual-valuedvariables from~x
or ~y, andv5 andt1, . . . , tn are typed literals from~z or data-valuedvariables from~x or ~y.
If conj(~x; ~y; ~z) is empty, the query returnstrue.

Here is an example queryq1

?x: q1 ← 〈!y, ?x〉: hasParent ∧ !y: Male ∧ 〈!y, !z〉: birthY ear
∧ 〈!y, !w〉: marriedY ear ∧ !z: (=int

[1960] ∨ =int
[1962]) ∧ 〈!w, !z〉:>,

where?x is a distinguishedindividual-valuedvariable,!y is a non-distinguishedindividual-
valued variable, !z, !w are non-distinguisheddata-valuedvariables,hasParent is an
individual-valuedproperty,Male is a concept name,birthY ear andmarriedY ear are
data-valuedvariables,≥1940,≤1990 are unary datatype predicates and> is a binary datatype
predicate.

2We avoid the more common notation ofC(v1) etc. because it is confusing whenC is a complex
concept description.
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A conjunctive queryq can be represented by a directed labelled graphG(q), called
query graph, in which there is a normal vertexx for each individual, typed literal or vari-
ablex in the query, and a normal edger from a normal nodex to a normal vertexy
for each property atom〈x, y〉 : r in the query. Obviously, there are two kinds of nor-
mal vertices, viz. individual-valuedvertices anddata-valuedvertices. For the readers
convenience the distinguished variables are represented by a filled vertex (•), whereas
non-distinguished variables and individuals are represented by an unfilled vertex (◦). Be-
sides normal vertices, a query graph can contain special vertices, calleddatatype vertices,
which represent datatype expressions. For each datatype expression atom〈t1, . . . , tn〉: E
in a query, there exist datatype edges (represented by dotted lines) inG(q) which relate
data-valuedverticest1, . . . , tn to the datatype vertexE, labelled with the positions of
t1, . . . , tn in 〈t1, . . . , tn〉 : E. For instance, query (4.1.3) corresponds to the query graph
presented in Figure 4.1.

{} {Male}
• ◦ ◦ =int

[1960] ∨ =int
[1962]?x !y !z

◦ >
!w

hasParent birthY ear

marriedY ear 2
1

1

Figure 4.1: A Query Graph

A query graphG(q) is a tuple〈Vn,En,Vd,Ed〉, whereVn is the set of all the normal
vertices,Vd is the set of all the datatype vertices,En is the set of all the normal edges and
Ed is the set of all the datatype edges. Eachindividual-valuedvertexv ∈ Vn is labelled
with L(v), which is a set of concept descriptions.Datatype-valuedvertices do not have
labels. Each normal edgee ∈ En is labelled withL(e) = r such that〈start(e), end(e)〉: r
is a property atom inq, wherestart andend are functions that return the starting and
ending vertices of an edge, respectively. Each datatype vertex p ∈ Vd is labelled with
L(p) = E whereE is a datatype expression. To simplify the presentation, we useL(p) to
represent a datatype vertexp in query graphs. Each datatype edgeg ∈ Ed is labelled with
L(g), which is an integer and represents the position ofstart(g) in the corresponding
datatype expression atom of the queryq.

Two verticesv1, v2 ∈ Vn∪Vd are adjacent, ifL(〈v1, v2〉) 6= ∅ orL(〈v2, v1〉) 6= ∅. Let
v1, v2, v3 be vertices, apathconnects two vertices and it is defined recursively as follows.

• if L(〈v1, v2〉) 6= ∅, the set{〈v1, v2〉:L(〈v1, v2〉)} is a path connectingv1 to v2;

• if the setφ is a path connectingv1 to v2, the setφ′ is a path connectingv2 to v3 and
φ ∩ φ′ = ∅, thenφ ∪ φ′ is a path connectingv1 to v3;

• if φ is a path fromv1 to v2, then it is a path fromv2 to v1 as well.
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A normal pathis a path that all vertices on it are normal vertices. A(normal) cycleis
a (normal) path connecting a variable vertex to itself. A query graphG(q) is (normally)
cyclic if a sub-graph of it is a (normal) cycle. A queryq is (normally) acyclic ifG(q) is
not (normally) cyclic.

A datatype vertexp is local (w.r.t. aindividual-valuedvertexv) if all the relateddata-
valuedvertices (by some datatype edges) ofp are adjacent tov; in this case, we callv the
masterindividual-valuedvertex of the datatype vertexp. A queryq is said to be only with
local datatype expressions if each datatype vertexp is local w.r.t. someindividual-valued
vertexv in G(q). In this chapter, we consider normally acyclic conjunctivequeries only
with local datatype expressions.

4.2 Datatypes and Datatype Predicates in Web-related
Query Languages

The goal of this section is to give an overview of how to include constraint expressions in
query language for the Semantic Web context, and which kind of expressions should be
supported. This overview is built from two sources. One source are existing SW query
languages. As the SW shouldn’t be an island, we have also drawn information from
common query language of other areas, namely RDBMSs (SQL) and XML (XQuery).

RDF itself and all extensions (as RDFS, OWL) and query languagesdon’t specify
their own data model for atomic data (RDF literals), but reusethe work done in the XML
area, especially XML Schema [BE01].

We use the terminology from XQuery and XPath Data Model [FMM+04] to describe
literal values:

• An atomic type is a primitive simple type or a type derived by restriction from
another atomic type.

• the set of primitive types is listed in the specification (seeFigure 4.2).

Of the XML Data Model, only atomic types and values can be usedin the Semantic Web
context, list and union values aren’t allowed for RDF literals. This means that some of the
XQuery operators and functions are not applicable in the this context. On the other hand,
functions for RDF-related data types (RDF nodes, RDF collections) have to be provided.

[HBEV04] have described important features for RDF query languages. The follow-
ing of these are related to data types and built-in functions:

• direct support for collection-related functions

• support for XML Schema datatypes
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Figure 4.2: XQuery Data Model Type Hierarchy (from [FMM+04]

• support for URI-related functions (e.g. namespace filtering)

• multi-language support

We will refer to these in the later sections

4.2.1 Handling of variable constraints in existing query languages

Essentially there are two approaches to handling variable constraints:

• Constraint expressionsbuilt-in functions return arbitrary atomic types, the result-
ing constraint expression(s) must be of type boolean.
SQL, XQuery and all SQL-like RDF languages (e.g. RDQL, RQL, SeRQL, SPARQL)
use (part of) a where clause to add such constraint expressions to a query.3

• Constraint predicates there are only built-in predicates, which are satisfied if the
arguments are in the relation specified by the correspondingconstraint clause op-
erator (e.g.(sum ?x ?y ?z) is satisfied if?x = ?y+?z. This approach is used by
rule-based RDF languages, e.g. SWRL, TRIPLE, QEL and DQL4

3XQuery operators are just syntactic sugar to facilitate inline operators (e.g. in ’2+2’) additionally to
prefix expressions.

4DQL uses a knowledge base where some nodes are variables to specify a query. No built-in predicates
are part of the specification, only equality is supported (implicitly).
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These approaches are different in style and syntax, but equally powerful. A language
having n constraint predicates can be converted to a language with one constraint predicate
(’satisfied’) which is satisfied if the boolean argument equals ’true’ and n constraint clause
operators/functions. For example, the conjunctive constraint clause

(greaterThan ?x ?y) ∧ (sum ?x ?a ?b) ∧ (sum ?y ?c ?d)
could be translated to

(satisfied (?a+?b >?c+?d))
As the latter type of expressions is used in SQL and XQuery, aswell as in all non-rule-
based RDF query languages, it seems reasonable to integrate such a syntactic approach
into rule-based languages as well (possibly as alternativesyntax).

4.2.2 Built-in Functions/Predicates in current RDF query languages

In RDQL, a query consists of an RDF graph template specifying the structure of matching
subgraphs and additional constraints of the form<variable operator constant>. Equality
operators (=, !=), comparison operators (<, >) and a pattern matching operator for strings
(˜ =) are available. There is no formal specification of these operators. Boolean operators
to construct more complex expressions are also provided.

SeRQLprovides numeric comparison operators, string pattern matching and functions
for RDF node type checks (isResource, isLiteral). These can becombined using boolean
operators.

SPARQLSPARQL is based on RDQL, but it is planned to rely on XQuery operators
and functions instead of the ones provided in RDQL. Details are not yet provided ([PS04],
section 12).

SWRLbuilt-in predicates are mostly based on corresponding XQuery functions and
operators. For primitive datatypes a selection of the most important XQuery expressions
are supported. Additionally, predicates regarding collections and URIs are provided.

4.2.3 RDF(S) Related Predicates

Support for Collections RDF as well as OWL have a notion of collections. While
current query languages allow to query these inderectly by referring to the graph structure
for representation of the collection, there is no direct support.

A query language should have the following functions related to collections:

• (member ?c ?x) satisfied if?c is a collection and contains?x.

• (union ?r ?c ?d), (intersection ?r ?c ?d), (subtraction ?r ?c ?d) the common set
operator and bind?r to the respective resulting set.

For Sequences, the following operators are useful:
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• (indexOf ?r ?c ?x) binds?r to position of?x in ?c.

• (concat ?r ?c ?d) bindsr to the concatenation of?c and?d.

These operators should be able to work on linked lists (as used in OWL-DL) as well.
It is an interesting question how XQuery sequence support and RDF collections support
could be aligned.

Support for Resource Types A query may also require that an RDF node is of a specific
type. For example, this is necessary to return the transitive closure of all anonymous
resources connected to a non-anonymous resource. Following types exist:

• Literal.

• Resource

– Anonymous resource

– Non-Anonymous resource

A predicate(nodeType ?x ?t) is satisfied if?t is one of these four type specifiers, and
?x is a resource of the requested type.

URI predicates While in general URIs are supposed to be opaque, in RDF it is of-
ten useful to split them into their namespace and local name parts. Thus, the following
functins should be provided:

• (namespace ?r ?u) binds?r to the namespace part of uri?u.

• (localname ?r ?u) binds?r to the local name part of uri?u.

4.2.4 Functions and operators for XML atomic types

XQuery already provides an extensive set of functions and operators on common atomic
types as string, numerics and date. The most promising approach seems to draw on these
efforts and take over at least the semantics of these functions as defined in [MME04].
We refer to this document and the SWRL specification [HPSB+04] regarding a suitable
subset of XQuery operators for the RDF context.
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4.3 An Extended Rolling-up Algorithm

In general, query answering with datatypes is harder than that without datatypes. If a
datatype-free query contains only distinguished variables, one could replace all variables
with individual names from the knowledge base and check if the grounded query is log-
ically implied by the knowledge base. This is impossible fornon-datatype-free queries
because there are infinite numbers of typed literals.

In this section, we extend the rolling up technique presented in [Tes01] to support
query answering with normally acyclic conjunctive querieswith local datatype expres-
sions. The basic idea behind the rolling-up technique is to convertdata-valuedproperty
atoms and datatype expression atoms into concept atoms. Informally speaking, there are
three cases.

• No datatype expression atoms:The rationale behind this rolling up can easily be
understood by the use of the oneOf constructor for datatypes. The data-valued
property atom〈a, “18”ˆˆxsd: integer〉 : age can be transformed into the equiva-
lent concept atoma: ∃age.{“18”ˆˆxsd: integer}, where{“18”ˆˆxsd: integer} is the
datatype containing only one value, i.e., the integer 18. Now let us consider the
data-valuedproperty atom〈a, !y〉: age where we have a non-distinguished variable
instead of a typed literal. Similarly, it can be transformedinto the equivalent con-
cept atoma: ∃age.⊤D, where⊤D is the datatype predicate that represents the whole
datatype domain.

• Datatype expressions with arity 1: A unary datatype expression atom with the
rolled up data-valuedvariable can be absorbed into the corresponding concept
atom. For instance,〈a, !y〉 : age ∧ !y :<int

[20] can be transformed into the equiva-
lent concept atoma: ∃age. <int

[20].

• Datatype expressions with arbitrary arities: Similarly, a datatype expression
atom with arbitrary arity can be absorbed into the corresponding master concept
atom. For instance,〈a, !y〉: income ∧ 〈a, !z〉: expense ∧ 〈!y, !z〉:> can be trans-
formed into the equivalent concept atoma: ∃income, expense. >. In this example,
the datatype predicate> is local w.r.t. the individuala.

In what follows, we present the rolling-up algorithm in moredetails. Given a query
graph5 G = 〈Vn,En,Vd,Ed〉 and anindividual-valuedvertexv ∈ Vn, the query graph
can be transformed into a normal tree (with rootv0), in which the direction of each normal
edge points from the rootv0 to the leaves. The directions of normal edges can be satisfied
by the application of theflip(G, 〈x, y〉) function when necessary. Theflip(G, 〈x, y〉)
function returns a new graphG′ = 〈Vn

′,En
′,Vd

′,Ed
′〉 with Vn

′ = Vn,En
′ = (En \

5We will specify the kind of requirement for such a query graphlater in the chapter.
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〈x, y〉) ∪ 〈y, x〉,Vd
′ = Vd,Ed

′ = Ed, andL(〈y, x〉) = Inv(L(〈x, y〉)).6

The process can be illustrated using the query graphG1 of the queryq1:

?x: q1 ← 〈!y, ?x〉: hasParent ∧ !y: Male ∧ 〈!y, !z〉: birthY ear
∧ 〈!y, !w〉: marriedY ear ∧ !z: (=1960 ∨ =1962) ∧ 〈!w, !z〉:>,

{} {Male}
• ◦ ◦ =1960 ∨ =1962
?x !y !z

◦ >
!w

hasParent birthY ear

marriedY ear 2
1

1

flip(G1, 〈!y, ?x〉) returns the following query graphG12, which contain a normal tree.

{} {Male}
• ◦ ◦ =1960 ∨ =1962
?x !y !z

◦ >
!w

hasParent− birthY ear

marriedY ear 2
1

1

As the resulting normal tree contains no datatype vertices,we should reduce type
literal atoms and datatype expression vertices.

The reduction of typed literal vertices anddata-valuedvertices can be satisfied by the
application of the functionremoveTL(G). Let t be a typed literal vertex representing
the typed literal“s”ˆˆu, d the datatype vertext is adjacent to,7 L(d) = E, i the label
(integer) of the datatype edge connectingt andd. removeTL(G) rewrites the label of
d asE |

i=“s”ˆˆu, which is a parameterised datatype expression, and removest and the
datatype edge connectingt andd. For instance, given the query graphG2 of the queryq2

?x: q2 ← ?x: Person ∧ 〈?x, !y〉: age ∧ 〈!y, “18”ˆˆxsd: integer〉:> .

{Person}
• ◦ >
?x !y

“18”ˆˆxsd:integer

age 1

2

removeTL(G2) returns the following query graphG22.

{Person}
• ◦ >|2=“18”ˆˆxsd:integer?x !y

age 1

Note that the> predicate has the arity ofa(>) = 2 and extensionE(>) = {〈i, j〉 |
i > j andi ∈ V (integer) andj ∈ V (integer)}, while the parameterised predicate

6The functionInv(r) returns the inverse of a propertyr; e.g.,Inv(love) = love− andInv(love−) =
love.

7Here we assume that each typed literal vertex is adjacent to only onedatatype vertex.
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>|2=“18”ˆˆxsd:integer has aritya(>|2=“18”ˆˆxsd:integer) = 1 andE(>|2=“18”ˆˆxsd:integer) = {i |
i > L2V (integer) (“18”) andi ∈ V (integer)}.

The reduce of datatype expression vertices anddata-valuedvertices can be satisfied by
the application of the functionremoveDV (G). Letd be a datatype expression vertex, the
arity of L(d) is n, v the masterindividual-valuedvertex ofd, v1, . . . , vn thedata-valued
vertices betweenv andd. removeDV (G) adds the concept description∃s1, . . . , sn.E
into L(v), wheresi = L(〈v, vi〉), E = L(d), and removes the datatype vertexd and all
datatype edges connectingd andv1, . . . , vn. This step is applied on all datatype vertices in
the query graph.removeDV (G) then removes all thedata-valuedvertices and the normal
edges connecting them and correspondingindividual-valuedvertices. The resulting query
graph is a normal tree. For instance,removeDV (G12) returns the following normal tree
G13.

{}
{ Male,∃birthY ear.(=1960 ∨ =1962),

∃marriedY ear, birthY ear. > }
• ◦
?x !y

hasParent−

Finally, the rolling-up from the leaves of the normal tree tothe rootv0 can be satis-
fied by the application of the functionremoveLeaf(G). Let l be a leaf,v the adjacent
individual-valuedvertex of l. removeLeaf(G) adds the concept description∃r.C into
L(v), wherer = L(〈v, l〉), C = C1 ⊓ . . . ⊓ Cn whereC1, . . . , Cn ∈ L(l) (if L(l) = ∅,
C = ⊤; if l represents an individuala, C = {a}), and removesl and the normal edge
connectingv andl. This step is applied to each leaf until only the distinguished variable
at the root is remaining - here the order of the reduction of leaves is not important. For
instance,removeLeaf(G13) returns the following normal treeG14.

{∃hasParent−.(Male ⊓ ∃birthY ear.(=1960 ∨ =1962) ⊓ ∃marriedY ear, birthY ear. >)}
•
?x

Therefore, with the help of the rolling-up algorithm, queryanswering of queryq1 is
reduced to the problem of retrieving all the instances of theconcept description

∃hasParent−.(Male ⊓ ∃birthY ear.(=1960 ∨ =1962) ⊓ ∃marriedY ear, birthY ear. >).

In the rest of this chapter, when we say we roll up a vertexx of a query graph, we
mean we roll up the query graph into a normal tree with only onevertexx.
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4.4 Reducing Query Answering in OWL-E-QL to Knowl-
edge Base Satisfiability in OWL-E

4.4.1 Boolean Queries

If there are no distinguished variables in a normally acyclic query, there are two possibil-
ities here:

1. There exist some non-distinguished variables in a queryq. We can randomly pick up
a non-distinguished variable!x from q and and roll up!x. Hence, we can transform
theq into

q ← !x: C

whereC is the conjunction of all the concept descriptions in the label of theindividual-
valuedvertex representing!x in the resulting query graph. Therefore, query answer-
ing of q is reduced to concept satisfiability ofC.

2. There exist no non-distinguished variables in a queryq. We can randomly pick up
an individuala from q and choose it as the root of the normal tree and apply the
rolling-up algorithm. Therefore, we can transform theq into

q ← a: C

whereC is the conjunction of all the concept descriptions in the label of theindividual-
valuedvertex representinga in the resulting query graph. Therefore, query answer-
ing of q is reduced to instance checkinga: C.

4.4.2 Acyclic Queries without Datatype Expression Atoms

In this section, we consider acyclic queries with only classatoms,individual-valuedprop-
erty atoms anddata-valuedproperty atoms. We assume that the knowledge base is con-
sistent.

All Variables are Distinguished

Given a queryq, the algorithm of answering queries in which all variables are distin-
guished consists of the following steps:

1. Roll-up eachindividual-valuedvariable?vi in q and retrieve a set of individualsOi

as candidates of?vi. Let us take the following queryq3 as an example:

〈?v1, ?v2, ?u1, ?u2〉: q3 ← 〈?v1, ?v2〉: brother ∧ 〈?v1, ?u1〉: age ∧ 〈?v2, ?u2〉: age.

We can roll up?v1 and?v2 and retrieve their candidatesO1 andO2.
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2. Get the valid candidate combinations. We construct a super-queryq′ of q by remov-
ing all the datatype property atoms fromq. Each candidate combination is tested
by the corresponding boolean query, which is constructed byreplacing each distin-
guished variable inq′ with its corresponding candidate in the combination. Note
that if there are only datatype property atoms in a query, then all the combination
are valid. In the above example, the datatype property atoms-free super queryq′3 of
q3 is

〈?v1, ?v2〉: q
′
3 ← 〈?v1, ?v2〉: brother.

If O1 = {a1, a2}, O2 = {b1, b2, b3}, we can test the candidate combination〈?v1 →
a1, ?v2 → b1〉 by replacing?v1 with a1 and?v1 with b1 in the queryq′3 and turn it
into a boolean query as follows:

q′′3 ← 〈a1, b1〉: brother.

If the above query returnstrue, then the candidate combination is valid; otherwise,
it is not.

If there exists no valid combination, the result of a query isan empty set; other-
wise, we proceed with step 3. We call objects in valid combinationsc-valid (c for
combination) candidates of corresponding variables.

3. Get the values for all thedata-valuedvariables. This can be done in two steps.

(a) Get the explicitly stated individuals and values pairsEIDPairs for each
data-valuedvariable?ui. Let 〈?vi, ?ui〉 : s be a datatype property atom,
Objects(?vi) be the set of c-valid candidates of?vi. For each c-valid can-
didatec ∈ Objects(?vi) of ?vi, if there exists any sub-propertys′ of s such
that s′(c, t) is in the ABox, we store the mapping〈?vi 7→ c, ?ui 7→ t〉 into
EIDPairs.

(b) Get the implicitly stated individuals and values pairsIIDPairs for eachdata-
valuedvariable?ui that does not appear inEIDPairs. Let 〈?vi, ?ui〉 : s be
a datatype property atom,Objects(?vi) be the set of c-valid candidates of
?vi. For each c-valid candidatec ∈ Objects(?vi) of ?vi, we check the most
specific classD of c and see ifD implies any fixed value for any sub-property
s′ of s. There can be several cases here:

i. there exist a sub-class∃s′. =t of D, or

ii. there exist sub-classes∃s′.d and∀s′. =t of D,

iii. the variants of the above two cases that involves the useof inverse roles.
For instance,D implies some fixed value ofs if ∃r.(∀r−.(∃s′. =t)) is a
sub-class ofD.

Note that in some datatypes= t can have some variants too. For instance, in
the integer datatype,=int

[24] is equivalent to>int
[23] ∧ <int

[25].
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Some Data-valued Variables are Non-distinguished

Now we consider the case when all individual-valued variables are distinguished, but
some of the data-valued variables are non-distinguished. In this query answering can be
achieved by rolling up the non-distinguished data-valued variables first. The function
removeDV (G) can be used to eliminate all the non-distinguished data-valued variables.
After this has been done, the procedure described above can be used to answer the query.

As an example, consider a slightly modified query from the example used in the pre-
vious section.

〈?v1, ?v2, ?u1〉: q4 ← 〈?v1, ?v2〉: brother ∧ 〈?v1, ?u1〉: age ∧ 〈?v2, !u2〉: age.

Here the data-valued variable!u2 is non-distinguished and can be eliminated by apply-
ing the functionremoveDV (G(q4)) once. As a result the concept expression of∃age.⊤D

is conjoined with the label of the vertex?v2. Now procedure described in the previous
section is applicable.

Some Individual-valued Variables are Non-distinguished

Here, a query may contain individual-valued variables thatare existentially quantified,
but the knowledge base used to answer the query must not necessarily include a named
individual as a binding for the variable. Consider for example the knowledge base in
Example 5 and the query

〈?x, ?u〉: q5 ← 〈?x, !y〉: brother ∧ 〈!y, ?u〉: age.

Example 5
KB = {T , A}
T = {Male⊑ ¬ Female

⊤ ⊑ ∀ brother.Male
⊤ ⊑ ∀ sister.Female
brother⊑ sibling
sister⊑ sibling}

A = {john:(=1 brother ⊓ =1 sister ⊓ =2 sibling)
〈john, francis〉: sibling
〈john, andrea〉: sibling
〈francis〉:(= age 20)
〈andrea〉:(= age 20)}

From the knowledge base we know that the individual named john has exactly one
sister and exactly one brother. In addition we know that andrea and francis are the names
of john’s siblings, but we do not know who is the brother and who is the sister. Neverthe-
less, we know that both are of the age 20 and therefore, the query has an answer in which
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john is a valid binding for the individual-valued variable?x and 20 is a valid binding for
the data-valued variable?u. However, if the specified age would have been different, the
query would have no answer, since there is no binding for?u.

In this case there is no straight forward algorithm to retrieve the query answers. The
rolling up can be used to retrieve candidates. For this querythe verification of valid com-
binations is unnecessary, since there is only one distinguished individual-valued property.
Queries with multiple distinguished variables will still need the verification of valid com-
binations. The third step, however, can only be applied, if the data-valued variables are
connected to distinguished variables. In this case, step three of the case where all variables
were distinguished can be used to derive the valid bindings for the data-valued variables.
If the data-valued variables are connected to undistinguished individual-valued variables,
some answers may be found by treating the individual-valuedvariables as distinguished
ones, without delivering the found bindings in the query answer. However, the answer for
the given example would not be returned. To retrieve also these answers, further reasoning
is necessary that we will investigate in future work.

4.4.3 Normally Acyclic Queries

All Variables are Distinguished

In addition to the already described case where all variables are distinguished, here we
cover scenarios where the query includes datatype expressions. The beginning of the
query answering process is the same as for the case where all variables are distinguished,
but there are no datatype expressions in the query. Firstly the candidates for the individual-
valued variables are retrieved and the valid candidate combinations are determined. In the
third step the values for the data-valued variables are retrieved. In addition to these steps,
a forth step is necessary to verify the valid combinations for the data-valued variables.

In the example query graph given in Figure 4.3, we could imagine to retrieve more
than one value?u2. In this case the retrieved value for?u1 has to be tested with all
retrieved values for?u2 to see which are valid for the given datatype expression. In general
all combinations of candidates for the data-valued variables have to be tested, as it is
necessary for the individual-valued variables.

{} {}
• • •
?x ?y ?u1

◦ >
?u2

hasParent

birthY ear

marriedY ear 2
1

Figure 4.3: A Query Graph
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Some Data-valued Variables are Non-distinguished

In this scenario we can retrieve and validate the candidatesfor the individual-valued vari-
ables as before. A different procedure is necessary, if not all data-valued variables are
distinguished. If all are non-distinguished, we can roll upall data-valued variables as
described in Section 4.3. In case some data-valued variables are distinguished and others
are not for a datatype expression, there are more steps necessary:

1. Validate that a solution is possible in the given knowledge base. To determine this,
one can treat all involved data-valued variables as non-distinguished and do the
rolling up as described.

2. Retrieve candidates for the distinguished data-valued variable. If there are no can-
didates the query has no answer.

3. The retrieved candidates have to be tested, to determine which are valid in com-
bination with the non-distinguished variables and candidates for other data-valued
variables. In this step the distinguished variables are replaced with a candidate.
Therefore, the resulting query is free of distinguished data-valued variables and the
can be handled as described in Section 4.3.

Some Individual-valued Variables are Non-distinguished

The process of determining valid bindings for a mixture of distinguished and non-distinguished
individual-valued variables has already been described inSection 3.2.3 of Chapter 3. Af-
ter determining the valid candidate combinations for the individual-valued variables, one
can imagine two situations.

• All data-valued variables are connected to a distinguishedvariable. In this case,
the bindings for the data-valued variables have to be retrieved and tested for each
candidate. The process is the same as described in the case ofonly distinguished
variables, since for the retrieval of valid bindings for thedata-valued variables only
the candidates of the distinguished master individual-valued vertex are taken into
account.

• There are data-valued variables connected to non-distinguished variables. In this
case it is difficult to determine all valid query answers. Thereasons for this have
already been described for the case where some individual-valued variables are
non-distinguished but the query did not contain datatype expression.
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4.5 Summary

In this chapter, we discuss the query answering in OWL-E-QL. We show how the existing
rolling up techniques can be extended to support datatype expression-enabled queries.
We also provide a short survey on the datatype predicates used in Web-related query
languages.

54 Dec 16, 2004 KWEB/2004/D2.5.2/v1.0



Chapter 5

A Fuzzy Extension

5.1 Introduction

The representation of uncertainty and imprecision has received a considerable attention
in database and query services. The currents efforts are focused to extend the existed
knowledge formalisms to deal with the imperfect nature of real word information (which
is likely the rule and not the exception). The use of DLs in thecontext of the semantic
web points out the necessity of extending DLs with capabilities, which allow the treat-
ment of the uncertain and imperfect knowledge. In fact classical DLs are insufficient for
describing real retrieval situations, as the retrieval is usually not only a yes or no question:
(i) the representation of the knowledge which the system have access to is inherently im-
perfect; and (ii) the relevance of the content to a query can thus be established only up
to a limited degree. Because of this, we need a logic in which, rather than taking crisp
decisions whether a KB entails a query or not, we are able to enrich andrank the retrieved
objects according to how strongly the systems believes in their relevance to a query.

The choice of fuzzy set theory to extend DLs plays a twofold role: (i)it directly models
semantic-based retrieval, and (ii) it offers an ideal framework for more sophisticated query
processes. From a syntactical point of view fuzzy DLs provides fuzzyassertions, that is,
expressions of type〈a, n〉, wherea is a crisp assertion andn ∈ [0, 1]. We use the term
fuzzy simple assertion, fuzzy axiom, and a fuzzy Knowledge Base (KB) with the obvious
meaning. Then,〈∃hasHeight.Height(i), .7) is a fuzzy simple assertion with intended
meaning “the membership degree of constanti to concept∃hasHeight.Height is .7”.
From a semantics point of view, fuzzy logic captures the notion of imprecise concept, i.e.
a concept for which a clear and precise definition is not possible. Fuzzy concepts play a
key role in information retrieval. For instance, in the previous example the semantics are
that the person(i) is medium tall.

In D2.5.1 is presented the framework for extending DLs with fuzzy logic. It is pre-
sented a way to extend OWL with the notion of fuzzy assertions.The extension in the
current syntax of OWL that we propose is to add an assertion degree representing the
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degree that an OWL individual belongs to an OWL class or two OWL individuals in an
OWL relation. In addition to the fuzzy assertion extension, we propose a way to extend
the SWRL syntax with degrees of importance. The degree of importance is assigned in
the atoms of a SWRL rule representing the degree of importance of the atoms for the
activation of the rule. In this way, the atoms in the head of a rule can be activated with an
assertion degree depending the assertion degrees of the involved variables and the degrees
of importance of the atoms in the body of the rule. There are two main differences be-
tween the assertion degree and the degree of importance: i)they have different semantics
ii)they have different way of calculation. Basically, thesedegrees are used to manage two
different kinds of uncertainty as explained in the following section.

In this chapter is presented the way to extend the query languages based in DLs and
more specifically the OWL-Q Language, with fuzzy logic. We provide the syntactic
as well as the semantic extensions necessary for constructing fuzzy queries in OWL-
QL. OWL-QL is indented to be a candidate standard language andprotocol for query-
answering dialogues among Semantic Web computational agents during which answering
agents may derive answers to questions posed by query agents.

The structure of this chapter is as follows: the first sectionpresents a survey on past
and current work involved with fuzzy queries and extensionsof query languages with
fuzzy logic. In the second section we analyse the two kinds ofuncertainty that exist in
real life applications. Also, we sumurise the work done in the D2.5.1 for the extension of
OWL and SWRL with fuzzy operators. Finally, we present the notion of fuzzy entailment
for implementing fuzzy queries. In section 3, we describe the extensions in OWL-QL
necessary to realise fuzzy queries. Also we present the way to construct fuzzy assump-
tions. In the last section, we present a use case for better understanding the need of fuzzy
logic in query languages.

5.2 Queries and Uncertainty - State of the Art

As hardware becomes more powerful and as software becomes more sophisticated, it is in-
creasingly possible to make use of multimedia data such as images and video. If we wish
to access multimedia data through a database system a numberof new issues arise. For
example a multimedia database might deal with pictures thathave a complicated color-
ing pattern and also contains a number of shapes. These differences between multimedia
databases and traditional databases bread the need of extending the applicability of tradi-
tional databases; hence some new techniques have been proposed to deal with uncertain
or incomplete information [Zad65]. Fuzzy sets and fuzzy logics have been introduced
into database systems for this purpose [MK85].

Since then fuzzy databases were widely used and a lot of research was made in this
area. A fuzzy database library has been build by Omron Corporation [Cor92] and the
standard relational SQL has been extended to Fuzzy (relational) SQL [QWC+93]. Yang
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and others [QCJ+95] stated that despite the fact that nested queries allowedusers to
express their queries in a convenient way their evaluationswere very inefficient if they
were implemented in a naive way as nested loops. They have extended and modified those
unnesting techniques for fuzzy databases and they also provided some new unnesting
techniques for fuzzy databases.

In many fuzzy databases [BF82, PH88, JZ86, DD90, SA90, MCG+93] in which the
meaning of a linguistic fuzzy set such as ”young”, is represented by a fuzzy set and thus its
membership function. So one membership function is used to interpret a fuzzy term under
all circumstances. Zhang et. al. [WCBN95] stated that similarly to real word a fuzzy term
must have several meanings among which one must be chosen dynamically according to a
given context, proposing that fuzzy databases systems mustsupport multiple and dynamic
interpretation of fuzzy terms. They achieved that by a scaling process that was used to
transform a pre-defined meaning of a fuzzy term into an appropriate meaning in the given
context. Sufficient conditions were given for a nested fuzzyquery with relative quantifiers
to be unnested for an efficient evaluation. They also proposed an attribute dependent
interpretation in order to model the applications in which the meaning of the fuzzy term
in an attribute must be interpreted with respect to values inother related attributes. For
this purpose two necessary and sufficient conditions for a tuple to have a unique attribute-
dependent interpretation were provided. They described aninterpretation system that
allows queries to be processed based on the attribute-dependent interpretation of the data
and also two techniques grouping and shifting to improve theimplementation.

Papadias et.al. [DND99]worked on the configuration similarity in the context of
Digital Libraries, Spatial Databases and Geographical Information systems. The queries
in these systems retrieved all databases configurations that matched an input descrip-
tion. Their approach introduced a framework for configuration similarity that takes into
account all major types of spatial constraints. They also defined appropriate fuzzy simi-
larity measures for each type of constraint to provide flexibility and allow the system to
capture real-life needs. Ending they also applied pre-processing techniques to explicate
constraints in the query.

Ending Morris and Jankowski [AP00] combined fuzzy sets and databases in multiple
criteria spatial decision making. Spatial decision makingis a fundamental function of
contemporary Geographic Information Systems (GIS). One ofthe most fertile GIS devel-
opment areas is integrating multiple criteria decision models into GIS querying mecha-
nisms. The classic approach for this integration was to use Boolean techniques of MCDM
with crisp representations of spatial objects (features) to produce static maps as query an-
swers. They visually represented query results more precisely by implementing fuzzy
sets membership as a method for representing the performance of decision alternatives on
evaluation criteria, fuzzy methods for both criteria weighting and capturing geographic
preferences and fuzzy object oriented spatial databases for feature storage.
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5.3 Representing Queries Using Fuzzy Logic

As previously described, fuzzy logic and queries have been combined in many ways to
manage uncertain and imprecise knowledge. Before we describe how to represent and im-
plement queries using fuzzy logic, we will define the two kinds of uncertainty that exist
in real-life applications. We will analyse the two kinds of uncertainty by demonstrating
an example of the use case presented in the last section. Let us consider that an advertise-
ment company requires a female model who is tall and thin. Since queries need artificial
precision, this query is formed as:

Query(“List all the female models, which are
over 175 cm and under 60 kilos”)

The query pattern is as follows:

Query Pattern{(hasSex ?p ?a)(type ?a female)∧(hasHeight ?p ?c)
(type ?c Height≥ 175)∧(hasWeight ?p ?d)(type ?d Weight≤ 60)}
Must-Bind Variables List: (?p)
Answer pattern{(hasSex ?p “Female”∧ hasHeight ?p “over 175 cm”
∧ hasWeight ?p “under 60 kilos”)}
Answer1: (“Mary is a female model who is over 175 cm and is under 60 kilos”)
Answer2: (“Susan is a female model who is over 175 cm and is under 60 kilos”)

The above situation happens having a crisp query in a crisp KB.In a 700 models
database the answers that make the query true (entails the KB)are “Mary and Susan”.
However, after a closer look in the database, we can find out that there are more than 50
models that could satisfyto some degreethis query if we didn’t have the crisp thresholds.
In a such conjunctive query, if one of the atoms of the query does not entails the KB
we get an empty answer. If, for example, the model “Adriana”,which satisfies the thin
sentence, but is under 1cm only in the height sentence, is rejected. The second type of
uncertainty is introduced when the query sentences are implemented with an equal degree
of importance. It could happen, for example, that the advertisement company is more
interested, for the model, to be tall than to be thin. This means, apart from limited query
answers, that we cannot rank the answers of the query according to the user needs. If, for
example, “Mary” is 185cm tall and 65 kilos and “Susan” is 185cm tall and 55 kilos and the
degrees of importance of the atoms is 1 and 0.5 for the weight and the height respectively,
then “Susan” should be ranked before “Mary”. To conclude, inthe above example, is
clearly presented, the two kinds of uncertainty that exist real-life applications. Of course,
this is not always the case. There are as many queries that do not incorporate uncertainty.
The advantage of using fuzzy logic for managing these two kinds of uncertainty, is that
the crisp case is implemented as a subcase of the fuzzy case, which means that we fuzzy
logic does not replace the existed logic but extends it. In D2.5.1 we have proposed a way
to manage imprecise and uncertain knowledge by extending DLbased Semantic Web
Languages (OWL) with fuzzy logic. In the next paragraph we sumurise this work.
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The fuzzy DL is based on the definition of thefuzzy interpretation. A fuzzy interpre-
tationI consists of a non empty set∆I and the mapping functions:

CI : ∆I −→ [0, 1]

RI : ∆I × ∆I −→ [0, 1]

assigning fuzzy sets to concepts and roles, respectively. For example ifα ∈ ∆I then
AI(a) gives the degree that the objecta belongs to the fuzzy conceptA, i.eAI(a) = 0.8.

Table 5.1 summarises the syntax and the semantics of some constructors and termino-
logical and assertional axioms. The first column provides the name of the constructor, the
second its syntax and the third its semantics.

Table 5.1: Some Concept Constructors, Assertional and Terminological Axioms

Name Syntax Semantics(a ∈ ∆I)

Top ⊤ ⊤I(a) = 1
Bottom ⊥ ⊥I(a) = 0
Fuzzy Intersection C ⊓ D (C ⊓ D)I(a) = t(CI(a), DI(a))
Fuzzy Union C ⊔ D (C ⊔ D)I(a) = u(CI(a), DI(a))
Fuzzy negation ¬C (¬C)I(a) = c(CI(a))
Fuzzy Value Restriction ∀R.C (∀R.C)I(a) = infb∈∆I wt(R

I(a, b), CI(b))
Fuzzy existential quantifier∃R.C (∃R.C)I(a) = supb∈∆I t(RI(a, b), CI(b))
Concept Inclusion C ⊑ D CI ⊆ DI(∀a ∈ ∆I | CI(a) ≤ DI(a))
Role Inclusion R ⊑ S RI ⊆ SI

(∀(a, b) ∈ ∆I × ∆I | RI(a, b) ≤ SI(a, b))
Concept Equality C ≡ D CI = DI

(∀a ∈ ∆I | CI(a) = DI(a))
Role Equality R ≡ S RI = SI(∀(a, b) ∈ ∆I × ∆I

| RI(a, b) = SI(a, b))
Concept Assertion C(a) (C(a))I(a) = CI(a) > 0
Role Assertion R(a, b) (R(a, b))I(a, b) = RI(a, b) > 0

The concepts and the roles in classical OWL are interpreted ascrisp sets, i.e an in-
dividual either belongs to the set or not. However, many real-life concepts are vague in
the sense that they do not have precisely defined membership criteria. In fuzzy OWL an
individual belongs to a degree of confidence to the set (membership). This means that,
for example, the individual ”Peter” might belong to the degree of confidence of“0.8” to
the concept set“TallPerson”.

In fuzzy SWRL, a weight representing the degree of importance of the atoms of the
body of the rule, is added. A rule now means that if the antecedent atomsA1, A2, An
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are activated to the assertion degreesa1, a2, an ∈ [0, 1], and have degrees of importance
b1, b2, bn ∈ [0, 1] then the consequent hold to an assertion degreec ∈ [0, 1] that can be
computed froma1, a2, an andb1, b2, bn with the aid of fuzzy operators. For example:

If(hasSmallHeight ?p ?w, “0.4”)∧(hasLargeWeight ?p ?r, “0.8”)→(fatPerson ?p)

If the assertion degrees ofp, w to the relationhasSmallHeight isa1 = 0.5(seefigure5.1)
and the assertion degrees ofp, r to the relationhasLargeWeight is a2 = 0.9 then thep
must have assertion degree to the conceptfatPerson, c = 0.8. The difference between
the assertion degrees and the degrees of importance is that the assertion degrees show
the membership valuesa1, a2, an of the variables included in the atomsA1, A2, An to the
concepts or relations they belong to, and the degrees of importance show how important
is each antecedent atom in order to detect the head atom.

The fuzzy extensions in DLs proposed in D2.5.1 and sumurisedin the previous para-
graphs, present a way to manage the two kinds of uncertainty.These extensions were
based on the notion fuzzy assertion, and and not he notion of the degree of importance
in the atoms of a rule-axiom that shows the wight of each atom for the activation of the
head of the rule. A rule is distinguished from a query from thefact that a query uses more
variable bindings and has only head atoms. A query may have zero or more answers, each
of which provides bindings of URI references or literals to some of the variables in the
query pattern such that the conjunction of the answer sentences, produced by applying the
bindings to the query pattern and considering the remainingvariables in the query pattern
to be existentially quantified, is entailed by a KB called theanswerKB. A fuzzy query is
similar to the crisp query apart from the fact that the query answers may have a degrees
of importance, and the conjunction of the query answers are fuzzy entailed by a fuzzy KB
(a KB with fuzzy assertions). A crisp KB entails a query answer ψ

KB |= ψ,

iff every model of the KB alsosatisfies(is a model of)ψ. A fuzzy KB fuzzy entails a
query answerψ

KBf |=f ψ,

iff every model of the fuzzy KB satisfies to some degreee ∈ (0, 1] ψ. Fuzzy entailment
occurs when

C ⊓ ¬C 6= ⊥,

which is the case for fuzzy concepts, or when

C ≡ D,

to some degree. In the D2.5.1 was defined only the notion of fuzzy assertion and not the
notions of fuzzy equality and fuzzy entailment, since it wasdifficult to understand where
these extensions are useful for.
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5.4 Fuzzy OWL-QL

As previously described, in classical OWL-QL each binding ina query answer is a URI
references or a literal that either explicitly occurs as a term in the answer KB or is a
term in OWL. That is, OWL-QL is designed for answering queries of the form “What
URIs references and literals from the answer KB and OWL denote objects that make
the query pattern true?”. A variable that has a binding in a query answer is identified
in the query answer. OWL-QL supports existentially quantified answers by enabling the
client to designate some of the query variables for which answers will be accepted with
or without variables. That is, each variable that occurs in aOWL-QL query is considered
to be amust-bind, a may-bind variable or a don’t bind variable. Answers are required
to provide bindings for all the must-bind variables, may provide bindings for any of the
may-bind variables, and are not to provide bindings for any of the don’t-bind variables.

In fuzzy OWL-QL each binding in a query answer is, as in the classical OWL-QL, a
URI reference or a literal. The difference of fuzzy OWL-QL fromthe classical one, is
that is used a fuzzy KB (fuzzy Abox) to retrieve the answers, and therefore we can use
fuzzy concepts and fuzzy relations in the queries, such as “tallPerson, fatPerson, hasMedi-
umHeight” together with assertion degrees representing the membership value of the ob-
ject to the corresponding concepts and relations. In addition to the fuzzy assertion, the
user may assign degrees of importance to the query sentencesdenoting the influence that
a specific sentence must have in the query answer. For example, in the query“List all the
models that hasLargeHeight and hasMidleAge”the user might be more interested in the
height sentence than in the age sentence. In this case, the user can assign degree of impor-
tance 1 to the height sentence and 0.5 to the age sentence. In this way the query engine is
enabled to produce ranked answers according to the user needs. Finally, as described in
the previous section, a KB must entail all the query sentences, since they are conjunctive.
In the fuzzy case, the decision whether a KB entails a query sentence is not crisp (yes or
no). A fuzzy KB fuzzy entails a query sentence to a degreee ∈ (0, 1].

As in classical OWL-QL, in the a fuzzy OWL-QL query-answering dialogue is initi-
ated by a client sending a query to an OWL-QL server. A fuzzy OWL-QL query is an
object necessarily containing a query pattern that specifies a collection of fuzzy OWL
sentences in which some URI references are considered to be variables. The example
presented in the previous section has the form in fuzzy OWL-QL:

Query(“List all the female models, which are
tall and thin”)

The query pattern is as follows:
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Query Pattern{(hasSex ?p ?a)(type ?a female)∧(hasLargeHeight ?p ?c<0.8>)
(type ?c LargeHeight)∧(hasMediumWeight ?p ?d<0.5>)(type ?d MediumWeight)}
Must-Bind Variables List: (?p)
Answer pattern{(hasSex ?p “Female”∧ hasLargeHeight ?p largeHeight
∧ hasMediumWeight ?p mediumWeight)}
Answer1: (“Mary is a female model who is 185cm tall (largeHeight=0.8)
and is 65 kilos (mediumWeight=0.4)
Answer2: (“Susan is a female model who is 175cm (LargeHeight=0.6)
and is 50 kilos (mediumWeight=0.9)
Answer3: (“Helen is a female model who is 170cm (LargeHeight=0.5)
and is 50 kilos (mediumWeight=0.9)

In this example we used the fuzzy relations “hasLargeHeight, hasMediumWeight”
and the fuzzy concepts “LargeHeight, MediumWeight” to manage the uncertainty intro-
duced by the concepts “Thin, Tall”. In this way, a person who is 183cm tall hasLarge-
Height=0.65 and hasMediumHeight=0.3, as depicted in figure5.1. Also we have assigned
degrees of importance, 0.8 for the height sentence and 0.5 for the weight sentence. That
is, that the user is more interested for the model to be tall that thin. The answers are, in
the fuzzy case, ranked. The ranking valueR ∈ [0, 1] is the calculated as:

R = Infωt[K, A ],

whereA correspond to the fuzzy relation that has the assertion degrees of a query sen-
tences, andK correspond to the fuzzy relation that has the degrees of importance andωt

is a fuzzy implication (see D2.5.1). In the above example, the rankR for Answer1 can be
computed as:

K = [1.0 0.8 0.5], Amary =





1.0
0.8
0.4





Rmary = 0.8,

whereωt is the implication of the Product t-norm. Accordingly are computedRsusan =
0.6 andRhelen = 0.5. In this way, we do not restrict the query answer with crisp thresholds
and thus i)we get more answers and ii)the answers are ranked.

Classical OWL-QL facilitates the representation of “If Then”queries by enabling a
query to optionally include aquery premisethat is an OWL KB or a KB reference. When
a premise is included in a query, it is considered to be included in the answer KB. Fuzzy
OWL-QL can have afuzzy query premise, which means that we can assign degrees of
importance to the query premise, and influence the ranking ofthe answers

Query(‘If C1 is LongHair and C1 is the typeOfHair of W1,
Then what is height of W1”)
Premise{(type C1 LongHair)(hasTypeOfHair C1 W1<0.8>)}
Query Pattern:{(hasLargeHeight W1 ?x<0.6>)}
Must-Bind Variables List: (?x)
...
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5.5 Use case

In order to understand the need of the proposed fuzzy logic extensions, we will demon-
strate a use case. Let us consider a casting company that has alarge multimedia database
consisting of visual and textual information about person-models. This company has
a user interface for inserting the textual and visual characteristics of the models as in-
stances of a predefined ontology. It also provides a query engine to search for models
with special characteristics depending the context and thesubject of the advertisement.
The visual characteristics of a model consist of the images of the models together with
some low-level information. Low-level information consist of the visual descriptors of an
image(MPEG-7 visual descriptors), which are used for visual queries. Visual queries are
included in the sense that a user can provide an image of a model and query for models
with similar low-level characteristics (colour, shape, etc.). In the textual case a user can
query the database providing high-level information aboutthe models (such as the name,
the height, the type of the hair etc.). The textual characteristics are inserted by a domain-
expert manually in the database (KB), However, the visual characteristics are inserted
automatically using a visual descriptor extraction algorithm, which automatically analy-
ses the inserted image and stores as instances the values of the detected visual descriptors
in a visual descriptor ontology. The same algorithm analysethe visual query image. The
extracted visual descriptors are then form a query pattern,which is true if it is entailed by
the KB, as in the textual case.

In the following paragraphs we provide a sample of the Tbox, the Abox, a couple
of rules and a diagram showing how the assertion degrees are calculated, of the textual
information of the models.

Tbox
Woman ≡ Person ⊓ Female
Man ≡ Person ⊓ Male
CastingPerson ≡ Person ⊓ ∀HasPersonalInformation.PersonalInformation
⊓∀HasMeasurements.Measurements ⊓ ∀HasTypeOfHair.Hair
PersonalInformation ≡ ∀hasName.Name ⊓ ∀hasLastName.Name⊓
∀hasAge.Age
⊓∀hasDOB.DOB ⊓ ∀hasAddress.Adress ⊓ ∀hasMobilenumber.Number
Measurements ≡ ∀hasHeight ⊓ ∀hasWeight.Weight
⊓∀hasShoeSize.Size
Hair ≡ ∃hasHairQuality.HairQuality⊓
∃hasHairLength.HairLength ⊓ ∃hasHairColour.HairColour
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Small Medium Large
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Figure 5.1: The fuzzy partition of Height

Entry: no1
Personal Information

Name:Vassilis LastName:Tzouvaras Age: 29
Address:Hatzi 7 Mobile: 6937295722 D.O.B.: 07.08.75

Measurements
Height: 183cm Weight:90 ShoeSize:44

Hair
Quality: good Length:short Style: frizy

Abox:
{〈no1 : CastingPerson = 1〉, 〈(no1, V assilis) : hasName = 1〉, 〈(no1, T zouvaras) :
hasLastName = 1〉, 〈(no1, 29) : hasAge = 1〉, 〈(no1, Hatzi7) : hasAddress =
1〉, 〈(no1, 6937295722) : hasMobilenumber = 1〉, 〈(no1, 183cm) : hasMediumHeight =
.3〉, 〈(no1, 183) : haslargeHeight = .65〉, 〈(no1, 34) : mediumWaste = 0.7〉, 〈(no1, 34) :
hasLargeWaste = 0.3〉, 〈(no1, 44) : hasMediumShoeSize = .9〉, 〈(no1, 44 : hasLargeShoeSize =
0.1〉, 〈(no1, Long) : hasLongHair = 0.3〉, 〈(no1, good) : hasQualityHair = 0.8〉, 〈(no1, frizy) :
hasTypeOfHair = 1}

Rule 1: IF hasMediumWeight AND hasLargeHeight(a, b) THEN ThinPerson(a)
Rule 2: If HasSmallHeight(a, c) AND HasLargeWeight(a, b) THEN FatPerson(a)
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Chapter 6

The Instance Store

6.1 Introduction

One of the main features of the W3C’s OWL ontology language [DCv+02] is that there
is a direct correspondence between (two of the three “species” of) OWL andDescription
Logics(DLs) [HPS03]. This means that DL reasoners can be used to reasonabout OWL
ontologies, and in particular to answer both class based queries (e.g., asking if the class
“Semantic Web researcher” is a subclass of the class “Computer Scientist”) and instance
retrieval queries (e.g., a query that asks for all the individuals in the ontology that are
instances of the class “person who works at a university whose research interests include
Semantic Web and Description Logics”).

Unfortunately, while existing techniques forTBoxreasoning (i.e., reasoning about the
concepts in an ontology) seem able to cope with real world ontologies [Hor98, HM01a], it
is not clear if existing techniques forABoxreasoning (i.e., reasoning about the individuals
in an ontology) will be able to cope with realistic sets of instance data. This difficulty
arises not so much from the computational complexity of ABox reasoning, but from the
fact that the number of individuals (e.g., annotations) might be extremely large.

The so calledInstance Storeis a system that addresses this problem by using a hybrid
DL/Database architecture to answer queries against ontologies containing large numbers
of individuals. The idea behind the Instance Store is to provide efficient (but still sound
and complete) query answering by maximising the use of the Database and minimising
calls to the DL reasoner.

A prototype of the Instance Store has been implemented by researchers in the Infor-
mation Management Group at the University of Manchester. Currently the prototype can
only deal with arole-freeontology, i.e., an ontology that does not contain any axiomsas-
serting role relationships (properties) between pairs of individuals, but work is underway
to extend the Instance Store to deal with arbitrary ontologies. In this chapter we will de-
scribe the functioning of the existing Instance Store, illustrate its performance with some
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experimental results, and outline how the Instance Store design will be extended to deal
with arbitrary ontologies.

The remainder of the chapter is structured as follows: in Section 6.2 we motivate the
design of the Instance Store; in Section 6.3 we give some details of Description Logics
that will be needed in the later sections; in Section 6.4 we describe the architecture and
implementation of the role-free instance store; in Section6.5 we present the results of
an empirical evaluation that we have carried out using the role-free instance store; in
Section 6.6 we describe how the Instance Store approach willbe extended to deal with
arbitrary ontologies; and in Section 6.8 we conclude with a discussion.

6.2 Background and Motivation

Although the restrictions of the existing Instance Store may seem a rather severe, the
functionality provided turns out to be precisely what is required by many applications, and
in particular by applications where ontology based terms are used to describe/annotate and
retrieve large numbers of objects. Examples include the useof ontology based vocabulary
to describe documents in “publish and subscribe” applications [UCD+03], to annotate
data in bioinformatics applications [GO] and to annotate web resources such as web pages
[DEG+03] or web service descriptions [LH03] in Semantic Web applications. Indeed, we
have successfully applied the Instance Store to perform webservice discovery [CDT04],
to search over the gene ontology [GO] and its associated instances (see below), and in an
application to guide gene annotation [BTMS04].

Using a database in order to support (a restricted form of) ABox reasoning is certainly
not new (see Section 6.7 for a discussion of related work), but to the best of our knowledge
the Instance Store is the first such system that is general purpose (i.e., can deal with
any ontology without customising the database schema), provides sound and complete
reasoning, and places no a-priori restriction on the size ofthe ontology.

In order to evaluate the Instance Store design, and in particular its ability to provide
scalable performance for instance retrieval queries, we have performed a number of ex-
periments using the Instance Store to search over a large (50,000 concept) gene ontology
and its associated very large number (up to 650,000) of individuals – instances of concept
descriptions formed using terms from the ontology. In the absence of other specialised
reasoners we have compared the performance of the Instance Store with that of RACER

[HM01b] (the only publicly available DL system that supports full ABox reasoning for an
expressive DL) and of FaCT [Hor98] (using TBox reasoning to simulate reasoning with a
role-free ABox).
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6.3 Description Logics

Description Logics [BCM+03] are a family of knowledge representation formalisms evolved
from earlyframe systems[Min75] andsemantic networks[Qui68]. DLs use an object ori-
ented modelling paradigm, describing the world in terms of individuals, concepts (classes)
and roles (relationships); they are distinguished from their ancestors by having a precise
semanticswhich enables the description and justification of automated deduction pro-
cesses.

The semanticsof a DL is given in terms of interpretations. An interpretation I =
(∆I , ·I) consists of a non-empty set∆I (the domain of the interpretation) and an inter-
pretation function·I which maps every individual to an element of∆I , every concept
to a subset of∆I , and every role to a subset of∆I × ∆I . Concepts may be either
atomic (i.e., a concept name) or concept expressions formedusing the operators provided
by the DL. The interpretations of concept expressions must obey appropriate semantic
conditions, e.g., the interpretation of the conjunctionC ⊓ D of two conceptsC andD
must be equal to the intersection of the interpretations of the individual concepts, i.e.,
(C ⊓ D)I = CI ∩ DI . (See, e.g., [BCM+03] for full details.)

A DL knowledge base (KB) is a pair〈T ,A〉, whereT is a TBox andA is an ABox.
A TBox is a set of axioms of the formC ⊑ D, whereC andD are concepts; an ABox is
a set of axioms of the formx : C or 〈x, y〉 : R, wherex, y are individuals,C is a concept
andR is a role. An interpretationI satisfies a TBox axiomC ⊑ D whenCI ⊆ DI ,
and it satisfies ABox axiomsx : C and〈x, y〉 : R whenxI ∈ CI and〈xI , yI〉 ∈ RI

respectively. An interpretationI satisfies a TBoxT (ABox A) when it satisfies all of the
axioms inT (A); such an interpretation is called a model ofT (A). An interpretation is a
model of a KBK = 〈T ,A〉 when it is a model of bothT andA.

Given a KBK = 〈T ,A〉, basic reasoning tasks include:

Satisfiability: a conceptC is satisfiable w.r.t.T (K) iff there exists some modelI of T
(K) s.t.CI 6= ∅.

Subsumption: a conceptC is subsumed by a conceptD w.r.t.T (K) iff CI ⊆ DI in every
modelI of T (K); we will write this asT |= C ⊑ D (K |= C ⊑ D).

Instantiation: an individualx is an instance of a conceptC w.r.t.K iff xI ∈ CI in every
model ofK; we will write this asK |= x : C.

Other reasoning tasks such asClassification(computing the subsumption partial ordering,
or hierarchy, of the atomic concepts inT ) andRetrieval(computing the individuals inA
that instantiate a given concept) can be reduced to subsumption and instantiation respec-
tively. Realisation, the task of computing the most specific (w.r.t. subsumption) atomic
concepts inT that are instantiated by a given individual, can be reduced to a combination
of retrieval and classification, i.e., for an individualx and an atomic conceptC in T , C
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Description Syntax Semantics

atomic concept name A AI ⊆ ∆I

top ⊤ ∆I

bottom ⊥ ∅
conjunction C ⊓ D CI ∩ DI

disjunction C ⊔ D CI ∪ DI

arbitrary negation ¬C ∆I\CI

existential restriction ∃R.C {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}
universal restriction ∀R.C {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}

Table 6.1: Syntax and Semantics ofSHF concept expressions

realisesx iff x is an instance ofC and there is no atomic conceptD 6= C in T such that
x is an instance ofD andC subsumesD. Finally, two conceptsC andD areequivalent,
writtenC ≡ D, iff C ⊑ D andD ⊑ C.

6.3.1 The Description LogicSHF

We will be particularly interested in theSHF Description Logic as this is the logic imple-
mented in the Instance Store.SHF is an extension of the basic DLAL [SSS91] to include
negationof arbitrary concepts,transitive roles, role hierarchyandfunctional roles. Given
a set of concept names (CN ) and a set of role names (RN ), concept expressionsin SHF
are formed according to the following syntax rules:

C,D → ⊤ |⊥| A | ¬C | C ⊓ D | C ⊔ D | ∀R.C | ∃R.C

whereA is a concept name,C andD are concept expressions, andR is a role name.

In addition we assume that the setF ⊆ RN of functionalroles and the setR+ ⊆ RN
of transitiveroles are disjoint, i.e.,F ∩ R+ = ∅. Moreover, we impose the limitation that
there is no roleP,Q such thatP ∈ R+, Q ∈ F andP ⊑ Q. The semantics ofSHF
concepts is shown in Table 6.1

In the most general case,SHF TBox axioms have the form:

C ⊑ D, R ⊑ S | C ≡ D, R ≡ S

whereC,D are concept expressions andR,S are role names. Axioms of the first kind
are calledinclusions, while axioms of the second kind are calledequalities; an equality
can be seen as an abreviation for a symetrical pair of inclusion axioms, i.e.,C ≡ D is an
abreviation forC ⊑ D andD ⊑ C.

Since role inclusion axioms and equality axioms contain role names only, a taxonomy
of role names can be built based on the inclusion and equalityrelations among the set of
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role axioms, and a relation¹ can be defined as apartial order on the transitive closure of
{R ⊑ S | R,S ∈ RN} ∪ {R ≡ S | R,S ∈ RN} ⊆ T to represent the role taxonomy.

6.3.2 The Instance Store Notation

We now introduce some new notation used, for convenience, inthis paper. For a TBoxT ,
an ABoxA, and a conceptC:

• C ↓T for the set of atomic concepts inT subsumed byC; these are the equivalents
and descendants ofC in T .

• ⌈C⌉T for the set of most specific atomic concepts inT subsumingC; if C is itself
an atomic concept inT then clearly⌈C⌉T = {C}.

6.4 The Role-Free Instance Store

An ABox A is role-free if it contains only axioms of the formx : C. We can assume,
without loss of generality, that there is exactly one such axiom for each individual as
x : C ⊔¬C holds in all interpretations, and two axiomsx : C andx : D are equivalent to
a single axiomx : (C ⊓ D). It is well known that, for a role-free ABox, instantiation can
be reduced to TBox subsumption [Hol96, Tes97]; i.e., ifK = 〈T ,A〉, andA is role-free,
thenK |= x : D iff x : C ∈ A andT |= C ⊑ D. Similarly, if K = 〈T ,A〉 andA is
a role-free ABox, then the instances of a conceptD could be retrieved simply by testing
for each individualx in A if K |= x : D. However, this would clearly be very inefficient
if A contained a large number of individuals.

An alternative approach is to add a new axiomCx ⊑ D to T for each axiomx : D
in A, whereCx is a new atomic concept; we will call such conceptspseudo-individuals.
Classifying the resulting TBox is equivalent to performing a complete realisation of the
ABox: the most specific atomic concepts that an individualx is an instance of are the most
specific atomic concepts that subsumeCx and that are not themselves pseudo-individuals.
Moreover, the instances of a conceptD can be retrieved by computing the set of pseudo-
individuals that are subsumed byD.

The problem with this latter approach is that the number of pseudo-individuals added
to the TBox is equal to the number of individuals in the ABox, andif this number is very
large, then TBox reasoning may become inefficient or even break down completely (e.g.,
due to resource limits).

The basic idea behind the Instance Store is to overcome this problem by using a DL
reasoner to classify the TBox and a database to store the ABox, with the database also
being used to store a complete realisation of the ABox, i.e., for each individualx, the
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concepts thatx realises (the most specific atomic concepts thatx instantiates). The real-
isation of each individual is computed using the DL (TBox) reasoner when an axiom of
the formx : C is added to the Instance Store ABox.

A retrieval queryQ to the Instance Store (i.e., computing the set of individuals that
instantiate a conceptQ) can be answered using a combination of database queries and
TBox reasoning. Given an Instance Store containing a KB〈T ,A〉 and a query concept
Q, retrieval involves the computation of the following sets of individuals for which we
introduce a special notation:

• I1 denotes the set of individuals inA that realisesomeconcept inQ↓T ;

• I2 denotes the set of individuals inA that realiseeveryconcept in⌈Q⌉T .

The Instance Store algorithm to retrieve the instances ofQ can be then described as fol-
lows:

1. use the DL reasoner to computeQ↓T ;

2. use the database to find the set of individualsI1;

3. use the reasoner to check whetherQ is equivalent to any atomic concept inT ; if
that is the case then simply returnI1 andterminate;

4. otherwise, use the reasoner to compute⌈Q⌉T ;

5. use the database to computeI2;

6. use the reasoner and the database to computeI3, the set of individualsx ∈ I2 such
thatx : C is an axiom inA andC is subsumed byQ;

7. returnI1 ∪ I3 andterminate.

Proposition 1 The above procedure is sound and complete for retrieval, i.e., given a
conceptQ, it returns all and only individuals inA that are instances ofQ.

The above is easily proved using the fact that we assume, without loss of generality, that
for each individual there is only one axiom associated to it.

6.4.1 An Optimised Instance Store

In practice, several refinements to the above procedure are used to improve the perfor-
mance of the Instance Store. In the first place, as it is potentially costly, we should try
to minimise the DL reasoning required in order to compute realisations (when instance
axioms are added to the ABox) and to check if individuals inI1 are instances of the query
concept (when answering a query).
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One way to (possibly) reduce the need for DL reasoning is to avoid repeating com-
putations for “equivalent” individuals, e.g., individuals x1, x2 wherex1 : C1 andx2 : C2

are ABox axioms, andC1 is equivalent toC2. Since checking for semantic equivalence
between two concepts would require DL reasoning (which we are trying to avoid), the
optimised Instance Store only checks for syntactic equality using a database lookup. (The
chances of detecting equivalence via syntactic checks could be increased by transforming
concepts into a syntactic normal form, as is done by optimised DL reasoners [Hor03], but
this additional refinement has not yet been implemented in the Instance Store.) Individ-
uals are grouped into equivalence sets, where each individual in the set is asserted to be
an instance of a syntactically identical concept, and only one representative of the set is
added to the Instance Store ABox as an instance of the relevantconcept. When answering
queries, each individual in the answer is replaced by its equivalence set.

Similarly, we can avoid repeated computations of sub and super-concepts for the same
concept (e.g., when repeating a query) by caching the results of such computations in the
database.

DL reasoning can also be avoided when the query conceptQ is not equivalent to any
atomic concept inT , but whenQ is equivalent to the intersection of the concepts in⌈Q⌉T ,
i.e., where

Q ≡ ⊓
C∈⌈Q⌉T

C.

In this case it is not necessary to computeI3, as the answer to the query is clearlyI2, i.e.,
the set of individuals inA that realiseeveryconcept in⌈Q⌉T .

Finally, the number and complexity of database queries alsohas a significant impact
on the performance of the Instance Store. In particular, thecomputation ofI1 can be costly
asQ↓T may be very large. One way to reduce this complexity is to store not only the most
specific concepts instantiated by each individual, but to storeeveryconcept instantiated by
each individual. As most concept hierarchies are relatively shallow, this does not increase
the storage requirement too much, and it greatly simplifies the computation ofI1: it is
only necessary to compute the (normally) much smaller set ofmost general concepts
subsumed byQ and to query the database for individuals that instantiate some member
of such set. On the other hand, the computation ofI2 is slightly more complicated as
I1 must be subtracted from the set of individuals that instantiate every concept in⌈Q⌉T .
Empirically, however, the savings when computingI1 seems to far outweigh the extra cost
of computingI2.

6.4.2 Implementation

We have implemented the Instance Store using a component based architecture that is
able to exploit existing DL reasoners and databases. The core component is a Java ap-
plication [isw] talking to a DL reasoner via the DIG interface [Bec03b] and to a rela-
tional database via JDBC. We have tested it with FaCT [Hor98] andRACER reasoners
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and MySQL, Hypersonic, and Oracle databases.

initialise(Reasoner reasoner,
Database db, TBox t)

addAssertion(Individual i, Concept C)
retract(Individual i)
retrieve(Concept Q) : Set 〈Individual 〉

Figure 6.1: Instance Store basic functionality

The basic functionality of the Instance Store is illustrated by Figure 6.1. The four
basic operations areinitialise , which loads a TBox into the DL reasoner, classifies
the TBox and establishes a connection to the database;addAssertion , which adds
an axiomi : D to the Instance Store;retract , which removes any axiom of the form
i : C (for some conceptC) from the Instance Store; andretrieve , which returns the
set of individuals that instantiate a query conceptQ. As the Instance Store ABox can only
contain one axiom for each individual, assertingi : D wheni : C is already in the ABox
is equivalent to first removingi and then assertingi : (C ⊓ D).

In the current implementation, we make the simplifying assumption that the TBox
itself does not change. Extending the implementation to deal with monotonic extensions
of the TBox would be relatively straightforward, but deleting information from the TBox
might require (in the worst case) all realisations to be recomputed.

6.5 Empirical Evaluation

To illustrate the scalability and performance of the Instance Store we describe the tests
we have performed using the gene ontology and its associatedinstance data. We also
illustrate how this compares with existing non-specialised ABox reasoning techniques by
describing the same tests performed using RACER and FaCT (the latter using the pseudo-
individual approach discussed in Section 6.4).

The gene ontology (GO) itself, an ontology describing terms used in gene products
and developed by the Gene Ontology Consortium [The00], is little more than three tax-
onomies of gene terms, with a single role being used to add “part-of” relationships. How-
ever, the ontology is large (47,012 atomic concepts) and theinstance data, obtained by
mining the GO database [Go 03] of gene products, consists of 653,762 individual axioms
involving 48,581 distinct complex DL expressions using three more roles.

The retrieval performance tests use two sets of queries. Thefirst set was formulated
with the help of domain experts and consists of five realisticqueries that might be posed
by a biologist. The second set consists of six artificial queries designed to test the effect on
query answering performance of factors such as the number ofindividuals in the answer,
whether the query concept is equivalent to an atomic concept(if so, then the answer can
be returned without computingI3), and the number of candidate individuals inI2 for
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which DL reasoning is required in order to determine if they form part of the answer. The
characteristics of the various queries with respect to these factors is shown in Tables 6.2
and 6.3.

Table 6.2: Query characteristics (realistic queries)

Query Equivalent to No. of Instances No. of “candidates”
Atomic Concept in Answer in I2

Q1 Yes 2,641 n/a
Q2 No 0 284
Q3 No 3 284
Q4 Yes 7,728 n/a
Q5 Yes 25 n/a

Table 6.3: Query characteristics (artificial queries)

Query Equivalent to No. of Instances No. of “candidates”
Atomic Concept in Answer in I2

Q6 No 13,449 551
Q7 No 11,820 116
Q8 No 12 603
Q9 No 19 19
Q10 Yes 4,543 n/a
Q11 Yes 1 n/a

The tests were performed using two machinesM1 (Linux, 850MHz Intel Pentium
III, 256Mb RAM) andM2 (Windows 2000, 2.5GHz Intel Pentium IV processor, 512Mb
RAM). For the Instance Store we run version 1.2 onM1 with a MySQL-4.0.12 database
on M1 and connecting to a FaCT-2.34.13 reasoner running remotely on M2. For the
tests on RACER we run RACER-1.7.7 and for the pseudo-individual tests we used FaCT-
2.34.13, both onM2.

6.5.1 Loading and Querying Tests

In these tests, we compared the performance of the Instance Store with that of RACER

using the GO TBox and differently sized and randomly selectedsubsets of the GO ABox.
The Instance Store was first initialised with the GO TBox (it took FaCT approximately
1,020 CPU seconds to classify the TBox), then, for each ABox, we measured the time
(in CPU seconds) taken to load the ABox into the Instance Store and the time taken to
answer each of the queries.

In the case of RACER, we carried out the same tests in two different ways. In both
cases we first initialised RACER with the GO TBox (it took RACER approximately 1,620
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CPU seconds to classify the TBox), then loaded the ABox. In the first form of the test, we
then used therealize-aboxfunction to force RACER to compute a complete realisation of
the ABox before answering any queries; this is roughly equivalent to the Instance Store,
which effectively computes a complete realisation while loading the ABox. We timed
how long RACER took to to realise the ABox and, if the realisation was successfully
completed, how long it took to answer each of the queries. In the second form of the
test, we simply timed how long it took RACER to answer each of the queries without first
forcing it to realise the ABox.

Table 6.4: The Instance Store and RACER load and realise times (CPU seconds)
Number of Distinct Load & Realise (s)
Individuals Descriptions The Instance StoreRACER

200 155 189 180
500 330 405 3,420

1,000 591 804 22,320
2,000 1,017 1,395 fault
5,000 2,024 2,906 fault

10,000 3,299 5,988 fault
20,000 5,364 11,057 fault
50,000 9,760 21,579 fault

100,000 15,147 33,456 fault
200,000 23,387 56,613 fault
400,000 35,800 96,503 fault
653,762 48,581 140,623 fault

The times taken by the Instance Store and by RACER to load and realise the various
ABoxes are shown in Table 6.4. The time take by the Instance Store to load the ABoxes
increases more slowly than their size: for ABox size 200, the Instance Store takes about
1s to add each individual axiom; by the time the ABox size has reached 400,000 this has
fallen to approximately 0.25s per axiom. In view of the equivalent individuals optimi-
sation employed by the Instance Store, however, it may be more relevant to consider the
time taken per distinct description: this increases from about 1s per description for the size
200 ABox (which contains 155 distinct descriptions) to approximately 3s per description
for the size 653,762 ABox (which contains 48,581 distinct descriptions).

The time taken by RACER to realise the smallest ABox is roughly the same as that
taken by the Instance Store. As the ABox size grows, however, the time taken by RACER

increases rapidly, and at ABox size 1,000 it is already takingapproximately 22s per ax-
iom. For larger ABoxes, RACER broke down due to a resource allocation error in the
underlying Lisp system.

While the times taken by the Instance Store to load (and, in effect, to realise) the larger
ABoxes are quite significant, it is able to deal with the 653,762 axiom ABox, whereas
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RACER failed to realise a 2,000 axiom ABox. Moreover, the load/realise operation only
needs to be performed once—an added advantage of the Instance Store is that the database
provides for persistence of the realised ABox. Depending on the nature of the application,
it may also be more normal for instance data to be added to the Instance Store over time
rather than all at once as in our experiment.

Tables 6.5 and 6.6 give the results for the Instance Store when answering each of the
five realistic queries and six artificial queries described in Tables 6.2 and 6.3. In addition
to the time taken (in CPU seconds) to answer the queries, the number of candidate indi-
viduals inI2 is also given as this is one of the major factors in determining the “hardness”
of the query: for each individual inI2, the Instance Store must use the DL reasoner to
determine if the individual instantiates the query concept. The time taken to answer these
queries is also plotted against the size of the ABox in Figure 6.2; note the logarithmic
scales on both axes.

Table 6.5: The Instance Store realistic query times (CPU seconds) and cardinality ofI2

Number of Q1 Q2 Q3 Q4 Q5
Individuals IS |I2| IS |I2| IS |I2| IS |I2| IS |I2|

200 8.6 n/a 1.4 1 1.9 2 4.2 n/a 1.0 n/a
500 8.6 n/a 1.9 2 2.0 2 4.2 n/a 1.1 n/a

1,000 8.8 n/a 2.1 3 2.1 3 4.5 n/a 1.1 n/a
2,000 8.8 n/a 3.7 3 2.1 3 4.7 n/a 1.1 n/a
5,000 8.8 n/a 4.0 5 2.2 5 4.8 n/a 1.2 n/a

10,000 9.2 n/a 4.3 6 3.1 6 4.9 n/a 1.2 n/a
20,000 9.7 n/a 4.8 13 4.5 13 5.5 n/a 1.1 n/a
50,000 10.1 n/a 7.1 20 6.9 20 6.6 n/a 1.2 n/a

100,000 11.4 n/a 9.6 34 9.5 34 8.2 n/a 1.2 n/a
200,000 11.5 n/a 20.2 85 19.2 85 10.9 n/a 1.2 n/a
400,000 15.0 n/a 33.8 151 33.9 151 17.4 n/a 1.2 n/a
653,762 23.0 n/a 55.4 241 55.1 241 35.3 n/a 1.3 n/a

As can be seen, the time taken to answer queries becomes quitelarge when the num-
ber of individuals inI2 is large. In these cases, the time taken to check if these individuals
instantiate the query concept (roughly 0.2s per individual) dominates other factors. The
number of “distinct” individuals in the answer also has a significant impact on query an-
swering performance: when there are many such individuals,the database query required
in order to compute the complete answer set (i.e., retrieving the union of the equivalence
sets of these individuals) can be quite time consuming. In the case of Q9 with the largest
ABox, for example, the relevant database query takes 19.5s (out of a total of 25.7s).

When the query concept is determined to be semantically equivalent to an atomic
concept in the TBox, as is the case with Q1, Q4, Q5, Q10 and Q11, then no further DL
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Table 6.6: The Instance Store artificial query times (CPU seconds) and cardinality ofI2

Number of Q6 Q7 Q8 Q9 Q10 Q11
Individuals IS |I2| IS |I2| IS |I2| IS |I2| IS |I2| IS |I2|

200 2.4 2 2.1 3 1.6 1 2.0 1 1.7 n/a 1.8 n/a
500 2.6 4 2.1 3 2.0 3 2.1 1 1.7 n/a 1.8 n/a

1,000 3.0 8 2.3 3 2.0 3 2.1 1 2.2 n/a 1.9 n/a
2,000 3.4 9 2.4 4 2.2 4 2.3 1 1.8 n/a 1.7 n/a
5,000 4.5 15 3.0 7 2.9 9 2.5 1 1.9 n/a 1.9 n/a

10,000 7.1 32 4.2 13 6.0 21 2.5 1 1.8 n/a 1.8 n/a
20,000 10.9 58 5.4 19 11.5 38 2.9 1 2.1 n/a 1.7 n/a
50,000 17.4 101 7.3 31 23.8 81 3.3 1 1.9 n/a 1.8 n/a

100,000 27.3 164 8.9 45 31.9 147 5.2 2 1.7 n/a 1.8 n/a
200,000 44.4 273 13.1 64 40.1 268 7.9 7 1.9 n/a 1.8 n/a
400,000 70.9 416 16.4 85 68.1 430 15.8 11 1.9 n/a 1.9 n/a
653,762 111.8 551 22.1 116 104.0 603 25.7 19 1.9 n/a 1.9 n/a

Figure 6.2: The Instance Store realistic (above) and artificial (below) query times -v-
ABox size

reasoning is required. In these cases, the time taken to answer the query changes much
more slowly with ABox size, and is mainly determined by the answer size. With Q4, for
example, the time taken to answer the query rises to over 35s with the largest ABox, when
the answer contains 7,728 individuals.

Tables 6.7 and 6.8 give the results for RACER when answering the same sets of five
realistic and six artificial queries used to test the Instance Store, both in the case where the
ABox has been realised (R) and where it has not (N). Timings are only approximate, as
precise measurements were not possible when using the RACER server under Windows.
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Table 6.7: RACER realistic query times (CPU seconds), realised (R) and not (N)

Number of Q1 Q2 Q3 Q4 Q5
Individuals R N R N R N R N R N

200 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0
500 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

1,000 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0
2,000 n/a ≈60 n/a ≈240 n/a ≈60 n/a ≈150 n/a ≈210
5,000 n/a ≈240 n/a ≈420 n/a ≈240 n/a ≈360 n/a ≈300

10,000 n/a ≈1,080 n/a ≈1,080 n/a ≈660 n/a ≈720 n/a ≈930
20,000 n/a fault n/a fault n/a fault n/a fault n/a fault

Table 6.8: RACER artificial query times (CPU seconds), realised (R) and not (N)

Number of Q6 Q7 Q8 Q9 Q10 Q11
Individuals R N R N R N R N R N R N

200 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0
500 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

1,000 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0
2,000 n/a ≈120 n/a ≈120 n/a ≈60 n/a ≈60 n/a ≈210 n/a ≈180
5,000 n/a ≈420 n/a ≈270 n/a ≈420 n/a ≈480 n/a ≈330 n/a ≈390

10,000 n/a ≈1500 n/a ≈1120 n/a ≈1020 n/a fault n/a ≈810 n/a ≈780
20,000 n/a fault n/a fault n/a fault n/a fault n/a fault n/a fault

In the cases where the ABox had been realised, queries were answered almost in-
stantly, but results are only available for the relatively small ABoxes that RACER was
able to realise (up to 1,000 individuals). In the cases wherethe ABox was not realised,
answers were again returned almost instantly for smaller ABoxes, but when the ABox
size exceeded 1,000 individuals the answer times increaseddramatically, and for ABoxes
larger than 10,000 individuals (larger than 5,000 in the case of Q9) RACER again broke
down due to a resource allocation error in the underlying Lisp system.

It should be mentioned that the results for the Instance Store include significant com-
munication overheads (both with the database and DL reasoner), which was not the case
for RACER since queries were posed directly via the RACER command line interface.

6.5.2 Pseudo-individual Tests

As discussed in Section 6.4, one way to deal with role-free ABoxes is to treat individuals
as atomic concepts in the TBox (pseudo-individuals). To testthe feasibility of this ap-
proach, and to compare it with the Instance Store, we again used the GO TBox and ABox,
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and the realistic and artificial queries described above. Inthe pseudo-individual approach,
ABox axioms of the formx : C are treated as TBox axioms of the formCx ⊑ C, and
retrieving the instances of a query conceptQ means retrieving the pseudo-individuals
that are subsumed byQ. In order to make the comparison as fair as possible, we did
not use all of the individuals in the GO ABox, but only 48,581 individuals correspond-
ing to the distinct concept expressions used to describe individuals in the GO ABox—the
equivalence set optimisation described in Section 6.4.1 can obviously be used with the
pseudo-individual approach as well. The FaCT system was usedin these tests as RACER

broke down when trying to classify the GO TBox augmented with the pseudo-individuals,
again due to a resource allocation error in the underlying Lisp system.

In order to get some idea as to how the pseudo-individual approach would scale with
increasing ABox (and hence TBox) size, we tried computing the concepts subsumed by
each query with the GO TBox alone (which contains 47,012 concept names) and with
the TBox augmented with the pseudo-individuals derived fromthe GO ABox (a total
of 95,593 concept names). The answers to these DL queries include normal TBox con-
cepts that are subsumed by the query concepts as well as any relevant pseudo-individuals,
but the answer could easily be filtered so as to leave only the pseudo-individuals. (An
alternative approach would be to add a conceptPI to the TBox, representing pseudo-
individuals, and conjoinPI to both pseudo-individual axioms and subsumption queries
used to retrieve pseudo-individuals.) The results of thesetests are given in Table 6.9. It is
important to note that they do not include the time required to expand answers to include
sets of equivalent individuals—as discussed above, this can be quite time consuming for
some queries (e.g., 19.5s in the case of Q9 with the largest ABox).

Table 6.9: Pseudo-individual query time (CPU seconds) and answer size

Query GO TBox GO TBox + ABox
Time Answer Size Time Answer Size

Q1 8.1 220 233.3 2,861
Q2 1.3 1 1.2 1
Q3 0.2 1 1.4 4
Q4 26.0 881 631.8 8,609
Q5 0.5 2 5.2 27
Q6 4.3 86 176.6 2,450
Q7 1.4 1 10.0 147
Q8 1.3 1 1.5 7
Q9 1.4 1 3.5 22
Q10 4.2 109 114.4 1,407
Q11 0.5 1 2.0 2

As can be seen from the results, the time taken to compute the answers to the queries
is heavily dependent on the size of the answers, and, in the case of Q4 with the pseudo-
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individual augmented TBox, the time was over 600s. This is in contrast to the Instance
Store, where the size of answer had comparatively little effect on the time taken to an-
swer queries. For queries with relatively small answers, however, the pseudo-individual
approach was highly effective, even for queries that were time consuming to answer using
the Instance Store.

6.6 Query Answering with an Extended Instance Store

In this section we introduce an algorithm for instance retrieval in anSHF knowledge
base. The algorithm can be divided into two steps. The first step transforms a gen-
eral ABox into multiple new ABoxes, the second step is to use these newly constructed
ABoxes answer instance retrieval properly.

6.6.1 Preliminaries

As the Instance Store does not respect the Unique Name Assumption (UNA), two sepa-
rate individual names could be inferred to be identical. In the following, we present the
definitions which are used to detect syntactically whether two individual names represent
the very same element in a given ABox.

Definition 7 (SourceA(o,R), groupRoleA(o,RG)) Given an ABoxA, an individual name
o, and a role nameR in A, the relationSourceA(o,R) holds iff there is a role name
R′ ¹ R such that eithero : ∃R′.C ∈ A or, for some individual nameo′, 〈o, o′〉 : R′ ∈ A.

Given a set of role namesRG={Ri | 1 ≤ i ≤ n}, and an individual nameo in a KB
〈T ,A〉, the relationgroupRoleA(o,RG) holds iff, for any two role namesRℓ andRm in
RG, the following two conditions are satisfied:

• SourceA(o,Rℓ) andSourceA(o,Rm); and

• there exist a set of role names{L1, · · · , Ln−1} and a set of functional roles{F1, · · · , Fn}
in T , such thatRℓ ¹ F1, L1 ¹ F1, L1 ¹ F2, L2 ¹ F2, · · · , Li ¹ Fi, Li ¹
Fi+1, · · · , Ln−1 ¹ Fn, Rm ¹ Fn andSourceA(o, Li) for i = 1, · · · , n − 1.

Remarks : ThegroupRoleA(o,RG) implies all role names inRG are functional ones. It
also takes into account the possible interaction between the role hierarchyH and the func-
tional restrictionsF . Basically, a set of role namesRG aregroupRoleA(o,RG) related
if they are either functional or have some functional super role, and there are assertions in
the ABox as shown in Definition 7 that force everyRi-successoroi of the individual name
o to be interpreted as the same element. This can be better understood by considering the

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 79



6. THE INSTANCE STORE

following role hierarchy situation in which the relationgroupRoleA(o, {Rℓ, Rm}) holds:

For each of the role namesRℓ, L1, · · · , Ln−1, Rm, for all modelsI of 〈T ,A〉, oI has
successorsoℓ, o1, · · · , on−1, om ∈ ∆I . By Definition 7, every role name has a functional
super role, the functional restriction therefore forces every two successors to be the same
element:oℓ ando1, o1 ando2, · · · , on−1 andom, which in turn forces all the successors to
be the same element. In particular, ifgroupRoleA(o, {Rℓ, Rm}), theRℓ-successoroℓ of
oI is then forced to be the very same element as theRm-successorom of oI .

Definition 8 (sameAsA(o1, o2)) Given an ABoxA, two individual nameso1 ando2, the
relation
sameAsA(o1, o2) in A holds if there exists some individual nameo with 〈o, o1〉 : R,
〈o, o2〉 : S, andgroupRoleA(o, Γ) with R,S ∈ Γ.

Definition 9 (label) Given an ABoxA, the labelL(x) of an individual namex in A is
defined as the conjunction of all concepts in the concept assertions about the individual
namex:

L(x) :=

{

⊓
{C|x:C∈A}

C if the set{C | x : C ∈ A} is not empty

⊤ otherwise

CLAIM : [1] Given a TBoxT , an ABoxA and an individual nameo in A, for every
modelI of 〈T ,A〉, oI ∈ L(o)I holds. Proof: Let o be an individual name inA with a
non-empty set{C1, · · · , Cn} = {C | o : C ∈ A}, and letI be a model of〈T ,A〉. By
Definition 9,L(o) = C1 ⊓ · · · ⊓ Cn. SinceI is a model ofA, oI ∈ CI

i for all 1 ≤ i ≤ n.
HenceoI ∈ CI

1 ∩ · · · ∩ CI
n and, by the semantics,oI ∈ (C1 ⊓ · · · ⊓ Cn)I = L(o)I .

If {C | o : C ∈ A} is empty, by Definition 9,L(o) = ⊤. HenceoI ∈ ∆I = ⊤I =
L(o)I .

Given two individual nameso1 ando2 in the ABoxA, the relationreachable(o2, o1)
holds iff
〈o1, o2〉 : R inA. Letreachable+ be the transitive closure ofreachable, i.e.,reachable+(o2, o1)
means a directed “role assertion chain” fromo1 to o2 can be found in the ABox.

Definition 10 ((a)cyclic ABox) An ABoxA is cyclic iff there exists some individual name
o in A such thatreachable+(o, o). An ABox that is not cyclic is calledacyclic.
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6.6.2 Precompleting anSHF ABox

The step of precompleting anSHF ABox is based upon a DL technique calledprecom-
pletion [Hol96, Tes97]. It extends the original ABox using a set of syntactic rules. When
no further rules can be applied, all information implicit inthe role assertions has been
made explicit through adding more concept assertions and making equalities between in-
dividuals explicit. Note that, for the DLSHF , because of the non-determinism of its
precompletion rules, many different precompletions can bederived from a single ABox.

In the following we present a set of nondeterministic syntactic rules which extend the
original ABox. It will be shown that an interpretationI is a model of an ABoxA iff it is
also a model of a precompletion ofA derived using these rules.

To simplify the description of the algorithm, we assume thatall concepts in the labels
of individual names are innegation normal form(NNF), where negation can appear only
in front of atomic concepts. ArbitrarySHF concepts can be transformed into equivalent
ones in negation normal form using De Morgan’s laws and rulesincluding¬¬C 7→ C,
¬∃R.C 7→ ∀R.¬C and¬∀R.C 7→ ∃R.¬C [Hor97]. Moreover, we assume that all con-
cept axioms in the TBox are in the form⊤ ⊑ C whereC is an arbitrary concept ex-
pression. For DLs with negation, it is easy to show that any concept axioms of the form
C1 ⊑ C2 is equivalent to⊤ ⊑ (¬C1 ⊔ C2) [Tes97].

Definition 11 (RepA) Given an ABoxA, RepA is a set containing pairs of individual
names fromA.

Definition 12 (precompletion rules) Given a knowledge base〈T ,A〉 and a setRepA,
theprecompletion rulesfor SHF are defined as follows:

1. →⊑ rule:

if o is in A, ⊤ ⊑ C ∈ T , ando : C 6∈ A, then addo : C toA.

2. →⊓ rule:

if o : C1 ⊓ C2 ∈ A, and eithero : C1 6∈ A or o : C2 6∈ A, then addo : C1 ando : C2

to A.

3. →⊔ rule:

if o : C1 ⊔ C2 ∈ A, o : C1 6∈ A, ando : C2 6∈ A, then chooseD=C1 or D=C2, and
addo : D toA.

4. →∃1 rule:

if o : ∃R.C ∈ A, 〈o, o′〉 : S ∈ A, groupRoleA(o, {R,S, · · · }), ando′ : C 6∈ A, then
addo′ : C to A.
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5. →∀1 rule:

if o : ∀R.C ∈ A, 〈o, o′〉 : S ∈ A, there exists a role nameR′ ¹ R such that
groupRoleA(o, {R′, S, · · · }), ando′ : C 6∈ A, then addo′ : C toA.

6. →∀ rule:

if o : ∀R.C ∈ A, 〈o, o′〉 : S ∈ A, S ¹ R, ando′ : C 6∈ A, then addo′ : C to A.

7. →∀+ rule:

if o : ∀T.C ∈ A, 〈o, o′〉 : S ∈ A, there is a transitive role nameR such thatS ¹
R ¹ T , ando′ : ∀R.C 6∈ A, then addo′ : ∀R.C to A.

8. →sameAs rule:

if sameAsA(o, o′), then add(o, o′) to RepA and replace all occurrences ofo in A
with o′.

Remarks : Since the→∀1 rule only works on functional roles, the→∀ rule can not be
merged with→∀1 rule. Since a transitive role can not be a sub-role of a functional role,
there is no need for a functional role version for→∀+ rule. The→sameAs rule does not
make→∀1 rule redundant—considering the following counterexample, o : ∃R′, o : ∀R.C,
〈o, o′〉 : S andgroupRoleA(o, {R′, S}).

Definition 13 (T -precompleted ABox) Given a knowledge base〈T ,A〉 and a setRepA,
the ABoxA is calledT -precompletediff none of the precompletion rules can be applied.

Starting with the original ABoxA and the empty setRepA, the precompletion rules
will non-deterministically generateoneT -precompleted ABox. If a searching strategy is
applied upon these rules, however, multipleT -precompleted ABoxes can then be found.
Note that there may exist exponentially many
T -precompleted ABoxesA′,A′′, · · · generated due to the non-deterministic→⊔ rules.
Each of theT -precompleted ABoxes, however, can be generated using polynomial space
in the size of originalA.

Definition 14 (leaf node) Given aT -precompleted acyclic ABoxA, we call an individ-
ual nameo a leaf nodeif, for any individual namex and role nameR, 〈o, x〉 : R 6∈ A.
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Definition 15 (extended label)Given an acyclic ABoxA, theextended labelL′(x) of an
individual namex in A is inductively defined as follows:

L′(x) :=

{

L(x) if x is a leaf node
L(x) ⊓ ⊓

〈x,x′〉 : R
∃R.L′(x′) otherwise

Remarks : The acyclicity condition in the above definition is to guarantee the termination—
due to the presence of cycles among role assertions, the extended label generation process
will not terminate.

Definition 16 (subconcept)Thesubconceptsub(D) of anSHF-conceptD is the clo-
sure of the subexpression ofD and is inductively defined as follows:

1. if D is of the form¬C, ∀R.C or ∃R.C, thensub(D) = {D} ∪ sub(C);

2. if D is of the formC1 ⊓ C2 or C1 ⊔ C2, thensub(D) = {D} ∪ sub(C1) ∪ sub(C2);

3. otherwisesub(D) = {D}.

Definition 17 (consistent) An ABoxA is consistentwith respect to a TBoxT , if there is
an interpretation that is a model of〈T ,A〉.

Definition 18 (T -derivable) Given a TBoxT and an ABoxA, A′ is calledT -derivable
from 〈T ,A〉 if A′ is T -precompleted, consistent, and obtained from〈T ,A〉 and an empty
setRepA by application of the precompletion rules.

Lemma 19 Given a consistentT -precompleted ABoxA, an individual nameo in A, and
a role nameR in A, the relationSourceA(o,R) holds iff, for every modelI of 〈T ,A〉,
there exists some elementy in ∆I such that(oI , y) ∈ RI .

Proof: “⇒” Let o be an individual name, letR be a role name in aT -precompleted ABox
A with
SourceA(o,R), and letI be a model of〈T ,A〉. By Definition 7, there exists a role name
R′ ¹ R, such that eithero : ∃R′.C or for some individual nameo′, 〈o, o′〉 : R′ ∈ A.
SinceI is a model of〈T ,A〉, this impliesoI ∈ (∃R′.⊤)I or (oI , o′I) ∈ R′I . Since
(∃R′.⊤)I ⊆ (∃R.⊤)I andR′I ⊆ RI , this implies thatoI ∈ (∃R.⊤)I or (oI , o′I) ∈ RI .
SinceoI ∈ (∃R.⊤)I implies thatoI ∈ {a ∈ ∆I | ∃b.(a, b) ∈ RI}, we can see that, in
either case, there exists some elementy such that(oI , y) ∈ RI .

“⇐” We prove this direction by proving its counterpositive, i.e., “Given a consistent
T -precompleted ABoxA, an individual nameo in A, and a role nameR in A, if the
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relation
SourceA(o,R) does not hold, then there exists a modelI of 〈T ,A〉 such that, for any
elementy ∈ ∆I , (oI , y) 6∈ RI .” Let o be an individual name, letR be a role name in a
T -precompleted ABoxA, and letI be a model of〈T ,A〉. We now show a witness model
I ′ of 〈T ,A〉 can be constructed based onI. We remove all(oI , y) tuples fromRI and
R′I in A with R′ ¹ R (y is an arbitrary element in∆I). Since the relationSourceA(o,R)
does not hold, we know that eithero : ∃R′.C or for some individual nameo′, 〈o, o′〉 : R′

with R′ ¹ R can not be found inA. Therefore, the resulting modelI ′ is still a model of
〈T ,A〉. Since all(oI , y) tuples are removed during the construction ofI ′, we have, for
any elementy ∈ ∆I′

, (oI
′

, y) 6∈ RI′

.

Lemma 20 Given a consistent ABoxA, an individual nameo in A, and a role name set
Γ.

1. if the relationgroupRoleA(o, Γ) holds, then every role name inΓ is functional, and
for every modelI of 〈T ,A〉, Ri, Rj ∈ Γ, (oI , x) ∈ RI

i , (oI , y) ∈ RI
j , thenx = y.

2. if A is T -precompleted, every role nameRi in Γ is functional, and for every model
I of 〈T ,A〉, for anyRi, Rj ∈ Γ, (oI , x) ∈ RI

i , (oI , y) ∈ RI
j , such thatx = y, then

the relationgroupRoleA(o, Γ) holds.

Proof: We shall prove the first claim first. Leto be an individual name, letΓ = {R1, · · · , Rn}
be a role name set in a consistent ABoxA with groupRoleA(o, Γ), and letI be a model
of 〈T ,A〉. By Definition 7, all the role namesRi in Γ are thus functional because they
are either functional or have some functional super role (F1, · · · , Fn). Hence, for each of
these role namesRi, oI has at most one successor, sayxi.

In the following, we are going to show that allxi, for 1 ≤ i ≤ n, are equal. Let
us arbitrarily choose two role namesRℓ andRm from Γ. By Definition 7, there exist a
set of role names{L1, · · · , Ln−1} and a set of functional roles{F ′

1, · · · , F ′
n}, such that

Rℓ ¹ F ′
1, L1 ¹ F ′

1, L1 ¹ F ′
2, L2 ¹ F ′

2, · · · , Li ¹ F ′
i , Li ¹ F ′

i+1, · · · , Ln−1 ¹ F ′
n, Rm ¹

F ′
n. Moreover, for eachLi, the relationSourceA(o, Li) holds by definition, which implies

that, for eachLi, there exists an elementyi in ∆I such that(oI , yi) ∈ LI
i (Lemma 19).

Since relationsSourceA(o,Rℓ) andSourceA(o,Rm) also hold by definition, there exist
two elementℓ andm in ∆I such that(oI , ℓ) ∈ RI

ℓ and(oI ,m) ∈ RI
m.

Since(oI , ℓ) ∈ RI
ℓ , (oI , y1) ∈ LI

1 , RI
ℓ ⊆ F

′I
1 andLI

1 ⊆ F
′I
1 , we know{(oI , ℓ), (oI , y1)} ⊆

F
′I
1 . Due to the functionality ofF

′I
1 , we can conclude thatℓ = y1. Similarly, we can apply

the same deduction to role name pairsL1 andL2, L2 andL3, · · · , Ln−1 andRm, such that
y1 = y2, y2 = y3, · · · , yn−1 = m which obviously inducesℓ = m.

Analogously, the same arguments can be applied to any pair ofrole namesRi, Ri+1
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in Γ. Therefore, for every modelI of 〈T ,A〉, there exists only one elementx in ∆I , such
that, for each role nameRi in Γ, (oI , x) ∈ RI

i .

We prove the second claim by proving its counterpositive, i.e., “Given a consistent
T -precompleted ABoxA, an individual nameo in A, and a functional role name setΓ, if
the relationgroupRoleA(o, Γ) does not hold, then there exists a modelI of 〈T ,A〉, and
there exists two role namesRi, Rj ∈ Γ with (oI , x) ∈ RI

i and(oI , y) ∈ RI
j , such that

x 6= y.”

Let A be a consistentT -precompleted ABox, leto be an individual name inA, let Γ
be a functional role name set, and letI be a model of〈T ,A〉. We now show a witness
modelI ′ of 〈T ,A〉 can be constructed based onI.

By precondition, there exists two role namesRi, Rj ∈ Γ with (oI , x) ∈ RI
i and

(oI , y) ∈ RI
j . If the elementx 6= y, then the modelI is the witness model and we

are done. If the elementx = y, we first remove all(oI , x) tuples fromRI
i and R′I

in A with R′ ¹ Ri. For each tuple we removed, we add(oI , z) to RI
i andR′I with

z ∈ ∆I andz 6= y, thus we constructed a new modelI ′ of 〈T ,A〉. Since the relation
groupRoleA(o, Γ) does not hold, by Definition 7, we know that there exist at least a
pair of role namesRi, Rj ∈ Γ do not share their successors ofoI as the same element.
Without loss of generality we assumeRi, Rj are such a pair of role names, therefore the
functionalities ofRi, Rj are not violated and the modelI ′ is the witness model.

Lemma 21 Given a TBoxT , an acyclic ABoxA, and an individual nameo in A, for
every modelI of 〈T ,A〉, oI ∈ L′(o)I holds.

Proof: Let o be an individual name in an acyclic ABoxA, and letI be a model of〈T ,A〉.
We prove this lemma by structural induction on the extended label definition.

• BASIS: The individual nameo is a leaf node. By Definition 15,L(o) = L′(o),
thereforeL′(o)I = L(o)I . SinceoI ∈ L(o)I holds by Claim 1, this implies that
oI ∈ L′(o)I .

• INDUCTION: Let L′(o) be an extended label built by the inductive definition as
follows:

L′(o) := L(o) ⊓ ⊓
〈o,xi〉 : Ri∈A

∃Ri.L
′(xi)

By the induction hypothesis, for every individual namexi with 〈o, xi〉 : Ri ∈ A, we
havexI

i ∈ L′(xi)
I . To show thatoI ∈ L′(o)I , we have to show thatoI ∈ L(o)I

and, for each〈o, xi〉 : Ri ∈ A, oI ∈ (∃Ri.L
′(xi))

I . The first point follows from
Claim 1. For the second claim, let〈o, xi〉 : Ri ∈ A. Then we have

oI ∈ {a ∈ ∆I | (a, xI
i ) ∈ RI

i }
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SincexI
i ∈ L′(xi)

I holds by induction assumption, it implies that

oI ∈ {a ∈ ∆I | (a, xI
i ) ∈ RI

i } ⊆ {a ∈ ∆I | ∃b.(a, b) ∈ RI
i ∧ b ∈ L′(xi)

I} = (∃Ri.L
′(xi))

I

Therefore

oI ∈ L(o)I ∩
⋂

〈o,xi〉 : Ri∈A

(∃Ri.L
′(xi))

I

and thusoI ∈ L′(o)I .

Lemma 22 Given a consistent ABoxA, and two individual nameso1, o2 in A.

1. if the relationsameAsA(o1, o2) holds, then for every modelI of 〈T ,A〉, oI1 = oI2 .

2. if A is T -precompleted, for every modelI of 〈T ,A〉, andoI1 = oI2 , then(o1, o2) is
in RepA.

Proof: We shall prove the first claim first. Leto1, o2 be individual names in a consistent
ABox A with sameAsA(o1, o2), and letI be a model of〈T ,A〉. By Definition 8, there
exists some individual nameo with 〈o, o1〉 : R, 〈o, o2〉 : S, andgroupRoleA(o, Γ) with
R,S ∈ Γ. Hence, by Lemma 20,oI1 = oI2 .

We prove the second claim by proving its counterpositive, i.e., “Given a consistent
T -precompleted ABoxA, two individual nameso1, o2 in A, if (o1, o2) is not in RepA,
then there exists a modelI of 〈T ,A〉, such thatoI1 6= oI2 .”

Let o1, o2 be individual names in a consistentT -precompleted ABoxA, and letI be
a model of〈T ,A〉. We now show a witness modelI ′ of 〈T ,A〉 can be constructed based
on I. We assume thatoI1 = oI2 , otherwiseI is the witness model and we are done. We
take an elementx ∈ ∆I with x 6= oI2 , and makeoI1 = x. Since(o1, o2) is not inRepA, by
Definition 12, we know that the relationsameAsA(o1, o2) does not hold. By Definition 8,
we know that there does not exist some individual nameo with 〈o, o1〉 : R, 〈o, o2〉 : S, and
groupRoleA(o, Γ) with R,S ∈ Γ. Since the functionalities of functional roles are not
violated, the resulting modelI ′ is still a model of〈T ,A〉 and it is the witness model.

6.6.3 Soundness and Completeness for Precompletion

This section presents the proof for soundness and completeness of the precompletion rules
we proposed in last section.
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Proposition 2 The process of using the set of precompletion rules to extendthe original
ABox always terminates, and eachT -derivable ABox has a size which is polynomial with
respect to the size of the original knowledge base.

Proof: (Sketched). Termination of this process is an immediate consequence of the fol-
lowing observations. Let|Ind(A)| be the number of individual names in the ABoxA and
|C(T )| be the number of concept axioms in the TBoxT . The applicability of the→⊑ rule
is bounded by the number of|Ind(A)|* |C(T )|. The→⊓, →⊔, →∃1 , →∀1 and→∀ rules
always introduce concepts into labels which aresubconcepts of the original ones. Be-
cause the number of subconcepts is polynomial w.r.t. the size of a given knowledge base,
only finitely many concept assertions can be added. The applicability of the→sameAs rule
is bounded by the number ofsameAsrelated individual name pairs which is always less
than|Ind(A)| ∗ (|Ind(A)| − 1)/2. Therefore the process of applying the precompletion
rules will terminate after finitely many steps.

To obtain an upper bound on the size of eachT -derivable ABox, we can use the
results from the termination analysis. The number of different concept assertions that can
be generated through→⊑, →⊓, →⊔, →∃1 , →∀1 , →∀ and→sameAs rules cannot exceed the
number of|Ind(A)|* |C(T )|, and this number is polynomial w.r.t. the size of the original
KB. The number of different concept assertions that can be generated using→∀+ rule
is bound by the number of transitive role names and role assertions in the original KB.
Therefore the size of eachT -derivable ABox is polynomial with respect to the size of the
original KB.

Proposition 3 All the precompletion rules preserve consistency of the ABox, i.e., given a
TBoxT , an ABoxA, and a modelI of 〈T ,A〉, if a precompletion rule is applicable, then
there exists an ABoxA′ obtained after this rule application, such thatI is also a model
of 〈T ,A′〉.

Proof: Suppose thatI is a model of knowledge base〈T ,A〉:

1. Leto be inA, let⊤ ⊑ C ∈ T and leto : C 6∈ A. Then applying the→⊑ rule toA
yieldsA′=A ∪ {o : C}.

Since⊤ ⊑ C ∈ T , we have∆I ⊆ CI , and thenoI ∈ CI . Thereforeo : C is
satisfied byI, and thusI is also a model of〈T ,A′〉.

2. Leto : C1 ⊓C2 ∈ A and let eithero : C1 6∈ A or o : C2 6∈ A. Then applying the→⊓

rule toA yieldsA′=A ∪ {o : C1, o : C2}.

Sinceo : C1 ⊓ C2 ∈ A, we haveoI ∈ (C1 ⊓ C2)
I . By the semantics(C1 ⊓ C2)

I =
CI

1 ∩ CI
2 , henceoI ∈ CI

1 ∩ CI
2 . Thereforeo : C1 ando : C2 are satisfied byI, and

thusI is also a model of〈T ,A′〉.
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3. Leto : C1 ⊔C2 ∈ A and leto : C1 6∈ A ando : C2 6∈ A. Then applying the→⊔ rule
to A yieldsA′=A ∪ {o : C1} orA′=A ∪ {o : C2}.

Sinceo : C1 ⊔ C2 ∈ A, we haveoI ∈ (C1 ⊔ C2)
I . By the semantics(C1 ⊔ C2)

I =
CI

1 ∪ CI
2 , henceoI ∈ CI

1 ∪ CI
2 . If oI ∈ CI

1 holds, we addo : C1 to A; otherwise if
oI ∈ CI

2 holds, we addo : C2 toA. Hence we can apply the→⊔ rule such thatI is
a model of〈T ,A′〉 for A′ the resulting ABox.

4. Let o : ∃R.C ∈ A, let 〈o, o′〉 : S ∈ A, let groupRoleA(o, {R,S, · · · }), and let
o′ : C 6∈ A. Then applying the→∃1 rule toA yieldsA′=A ∪ {o′ : C}.

Sinceo : ∃R.C ∈ A, there exists an elementx ∈ CI such that(oI , x) ∈ RI . Since
〈o, o′〉 : S ∈ A, we have(oI , o′I) ∈ SI . SincegroupRoleA(o, {R,S, · · · }), we
haveo′I = x by Lemma 20. Then we can see thato′I ∈ CI . Thereforeo′ : C is
satisfied byI, and thusI is also a model of〈T ,A′〉.

5. Let o : ∀R.C ∈ A, let 〈o, o′〉 : S ∈ A, let groupRoleA(o, {R′, S, · · · }) for some
role nameR′ ¹ R, and leto′ : C 6∈ A. Then applying the→∀1 rule toA yields
A′=A ∪ {o′ : C}.

Sinceo : ∀R.C ∈ A, every elementx with (oI , x) ∈ RI must be inCI . Since
groupRoleA(o, {R′, S, · · · }), there exists an elementy in ∆I such that(oI , y) ∈
R′I (Definition 7 and Lemma 19). SinceR′I ⊆ RI , we have(oI , y) ∈ RI andy ∈
CI . Since〈o, o′〉 : S ∈ A, we have(oI , o′I) ∈ SI . SincegroupRoleA(o, {R′, S, · · · }),
we haveo′I = y by Lemma 20. Then we can see thato′I ∈ CI . Thereforeo′ : C is
satisfied byI, and thusI is also a model of〈T ,A′〉.

6. Let o : ∀R.C ∈ A, let 〈o, o′〉 : S ∈ A, let S ¹ R ∈ T , and leto′ : C 6∈ A. Then
applying the→∀ rule toA yieldsA′=A ∪ {o′ : C}.

Sinceo : ∀R.C ∈ A, every elementx with (oI , x) ∈ RI must be inCI . Since
〈o, o′〉 : S ∈ A, we have(oI , o′I) ∈ SI . SinceSI ⊆ RI ∈ T , we have(oI , o′I) ∈
RI ando′I ∈ CI . Thereforeo′ : C is satisfied byI, and thusI is also a model of
〈T ,A′〉.

7. Let o : ∀T.C ∈ A, let 〈o, o′〉 : S ∈ A with a transitive role nameR such that
S ¹ R ¹ T ∈ T , and leto′ : ∀R.C 6∈ A. Then applying the→∀+ rule toA yields
A′=A ∪ {o′ : ∀R.C}.

Sinceo : ∀T.C ∈ A, every elementx with (oI , x) ∈ T I must be inCI . Since
〈o, o′〉 : S ∈ A, we have(oI , o′I) ∈ SI . SinceS ¹ R ¹ T ∈ T , we have
SI ⊆ RI ⊆ T I which means(oI , o′I) ∈ RI . If there exists an elementy in ∆I

such that(o′I , y) ∈ RI , then(oI , y) ∈ RI due to the transitivity ofRI . Since
R ¹ T , the elementy must be inCI . Thereforeo′I ∈ (∀R.C)I and theno′ : ∀R.C
is satisfied byI, and thusI is also a model of〈T ,A′〉.

8. LetsameAsA(o, o′) ando be inA. Then applying the→sameAs rule toA yieldsA′

which is obtained through replacing all occurrences ofo in A with o′.
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SinceoI = o′I by Lemma 22, all newly generated concept assertions and role as-
sertions ofo′ through replacements are satisfied byI, and thusI is also a model of
〈T ,A′〉.

Therefore, for every modelI of 〈T ,A〉, if a precompletion rule is applicable, then there
exists an ABoxA′ obtained after the rule application, such thatI is still a model of
〈T ,A′〉.

Proposition 4 Given a TBoxT , an ABoxA and all ABoxesApc
1 ,Apc

2 , · · · ,Apc
n T -derivable

from 〈T ,A〉.

1. If I is a model of〈T ,A〉, thenI is a model of〈T ,Apc
i 〉 for somei;

2. If I is a model of〈T ,Apc
i 〉 for somei, then there exists an extensionI ′ of I that is

a model of〈T ,A〉.

Proof: LetT be a TBox, letA be an ABox, letApc
i be an ABoxT -derivable from〈T ,A〉,

and letI be a model of〈T ,A〉. The first claim (soundness) can be proved by induction
on the process of applying precompletion rules:

• BASIS: For the basis, letA1 be a consistent ABox extended from the original ABox
A after one step application using some precompletion rule. SinceI is a model of
〈T ,A〉 by assumption, we can apply the rule in a way such thatI is still a model
of some〈T ,A1〉 by Proposition 3;

• INDUCTION: Now assume n≥ 1, letAn+1 be a consistent ABox extended from a
consistent ABoxAn after one step application using some precompletion rule. By
induction,I is a model of〈T ,An〉. By Proposition 3, we can apply the rule in a
way such thatI is still a model of some〈T ,An+1〉.

By Proposition 2, the process of using the set of precompletion rules to extend the original
ABox always terminate. Hence, after finitely many steps of precompletion rule applica-
tions, the precompletion rules can be applied in a way such thatI is still a model of some
〈T ,Apc

i 〉.

We now prove the second claim (completeness). LetT be a TBox, letA be an ABox,
let Apc

i be an ABoxT -derivable from〈T ,A〉, and letI be a model of〈T ,Apc
i 〉. We can

construct a new ABoxApc′

i as follows: for each individual name pair inRepA, recover
all the replacements of individuals names and add them toApc′

i . We now construct a new
modelI ′ for 〈T ,Apc′

i 〉 based onI, for each individual nameo′i replaced byoi, if oIi = x
with x ∈ ∆I , makeo

′I
i = x. By Lemma 22, the resulting modelI ′ is still a model

of 〈T ,Apc′

i 〉. SinceA is a subset of any constructedApc′

i , if there exists a modelI ′ of
〈T ,Apc′

i 〉, then it is also a model of〈T ,A〉. Therefore, ifI is a model of〈T ,Apc
i 〉, then

there exists an extensionI ′ of I that is a model of〈T ,A〉.

KWEB/2004/D2.5.2/v1.0 Dec 16, 2004 89



6. THE INSTANCE STORE

Now we can concentrate on the derived ABoxes and show how instance retrieval inA
can be realised using derived ABoxes.

6.6.4 Answering instance retrieval

An ABox is consistent if and only if it has a consistent derivedABox (Proposition 4).
When it comes to instance retrieval, computing instances of agiven concept using only
one obtained consistent derived ABox is notsound—an individual is an instance of a
given concept in the original ABox if and only if it is instanceof the given concept in
every consistent derived ABox. Taking this matter into account, the step of answering
instance retrieval, is therefore defined as follows:

Definition 23 (acyclic answering procedure)Theacyclic answering procedurereturns
x to queryQ w.r.t. a TBoxT and an acyclic ABoxA if for each ABoxA′ T -derivable
fromA, the extended labelL′(x) ⊑T Q in A′.

Proposition 5 LetT be a TBox,A be a consistentT -precompleted acyclic ABox,Q be a
concept. For every modelI of 〈T ,A〉, oI ∈ QI iff L′(o) ⊑T Q.

Proof: “⇐” Let o be an individual name in a consistentT -precompleted acyclic ABoxA,
let Q be a concept, and letI be a model of〈T ,A〉. SinceoI ∈ L′(o)I holds (Lemma 21),
andL′(o)I ⊆ QI holds, we can see thatoI ∈ QI .

“⇒” Let o be an individual name in a consistentT -precompleted acyclic ABoxA,
let Q be a query concept, and letI be a model of〈T ,A〉. We prove this direction by
structural induction on the extended label definition:

• BASIS: The basis case is when the individual nameo is a leaf node. By Defini-
tion 15,L(o) = L′(o). SinceoI ∈ QI , we haveL(o)⊓¬Q ⊑⊥. SinceL(o) = L′(o),
we haveL′(o) ⊓ ¬Q ⊑⊥. ThereforeL(o) ⊑ Q.

• INDUCTION: We prove this step by proving its counterpositive, i.e., “If there exists
a modelI of 〈T ,A〉, such thatL′(o)I 6⊆ QI holds, thenoI 6∈ QI holds.”

LetL′(o) be the extended label ofo built by the inductive definition as follows:

L′(o) := L(o) ⊓ ⊓
〈o,xi〉 : Ri∈A

∃Ri.L
′(xi)

By assumption there exists a modelI of 〈T ,A〉, such thatL′(o)I 6⊆ QI holds. Then
we may assume there exist a modelÎ and an elementa in ∆Î , with a ∈ L′(o)Î and
a 6∈ QÎ . In the following we show that it is possible to define the model Î in such
a way thata = oÎ .
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Sincea ∈ L′(o)Î , thereforea ∈ L(o)Î anda ∈ (∃Ri.L
′(xi))

Î ; that is,a ∈ {x ∈

L(o)Î | (x, b) ∈ RÎ
i ∧ b ∈ L′(xi)

Î}. The individual nameo must suffice its concept
assertions and role assertions for every model includingÎ, thereforeoÎ ∈ L(o)Î

and(oÎ , xÎ
i ) ∈ RÎ

i ; that is,oÎ ∈ {x ∈ L(o)Î | (x, xÎ
i ) ∈ RÎ

i }.

Following the result from the⇐ direction, for some conceptC, if for every model
I of 〈T ,A〉, L′(xi)

I ⊆ CI holds, thenxI
i ∈ CI . Following our induction as-

sumption, if for every modelI of 〈T ,A〉, xI
i ∈ CI holds, thenL′(xi)

I ⊆ CI

holds. BecausêI is also a model of〈T ,A〉, we can conclude thatL′(xi)
Î ⊆ C Î

iff xÎ
i ∈ C Î . Hence the element set{x ∈ L(o)Î | (x, b) ∈ RÎ

i ∧ b ∈ L′(xi)
Î} is

the same as{x ∈ L(o)Î | (x, xÎ
i ) ∈ RÎ

i }. Therefore, the elementa satisfies the
condition of beingoÎ . Since we know thata 6∈ QÎ , oÎ 6∈ QÎ .

Lemma 24 Given a TBoxT , an acyclic ABoxA, ABoxesA1,A2, · · · ,An T -derivable
fromA, and a conceptQ, for every modelI of 〈T ,A〉, oI ∈ QI iff oIi ∈ QIi holds for
every modelIi of every〈T ,Ai〉.

Proof: “⇒” We prove this direction by contradiction. Thus assume thatfor every model
I of 〈T ,A〉, we haveoI ∈ QI , and there exists one modelIi of some〈T ,Ai〉 such that
oIi 6∈ QIi . Since there exists one modelIi for some〈T ,Ai〉, we can see that there exists
a extensionI ′

i of Ii that is a model of〈T ,A〉 (Proposition 4). SinceoIi 6∈ QIi w.r.t.
〈T ,Ai〉, we haveoI

′

i 6∈ QI′

i w.r.t. 〈T ,A〉. Since for every modelI of 〈T ,A〉 oI ∈ QI

must hold, we derived a contradiction.

“⇐” Analogously, this direction can be proved by contradiction as well. Thus assume
that for every modelIi of every〈T ,Ai〉, we haveoIi ∈ QI

i , and there exists one modelI
of 〈T ,A〉 such thatoI 6∈ QI . Since there exists one modelI of 〈T ,A〉, we can see that
I is also a model of some〈T ,Ai〉 (proposition 4). SinceoI 6∈ QI w.r.t. 〈T ,A〉, we have
oI 6∈ QI w.r.t. some〈T ,Ai〉. Since for every modelIi of every〈T ,Ai〉 oIi ∈ QIi must
hold, we derived a contradiction.

Theorem 25 The acyclic answering procedure returns individualx to conceptQ with
respect to a knowledge base〈T ,A〉 (whereA is acyclic) iff, for every modelI of 〈T ,A〉,
oI ∈ QI .

Proof: Let o be an individual name in an acyclic ABoxA, let Q be a concept, letL′(o)
be the extended label ofo, let Ai be ABoxesT -derivable fromA, and letI be a model
of 〈T ,A〉. We know thatoI ∈ QI w.r.t. 〈T ,A〉 iff, for every modelIi of every〈T ,Ai〉,
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oIi ∈ QIi (Lemma 24). We also know thatoIi ∈ QIi w.r.t. 〈T ,Ai〉 iff, L′(o)Ii ⊆ QIi

(Proposition 5). Therefore,oI ∈ QI w.r.t. 〈T ,A〉 iff, for every 〈T ,Ai〉, L′(o) ⊑ Q.

This means that we now have an instance retrieval algorithm:the acyclic answering
procedure of Definition 23 provides an algorithmic way to compute the instance retrieval
answers in a knowledge base.

6.6.5 Answering instance retrieval without acyclic restriction

When the ABox is cyclic, the idea of doing instance retrieval using extended label is not
working anymore—the extended label generation process would not terminate because of
the presence of cycles among role assertions. In the following we introduce an algorithm
for retrieving instances in anSHF knowledge base without acyclicity restriction.

Definition 26 (locally-consistent) Given aT -precompleted ABoxA and an individual
namex, A is locally-consistentw.r.t. x if the following two conditions are satisfied:

• L(x) is satisfiable w.r.t.T ; and

• if 〈x, y〉 : R ∈ A, thenA is locally-consistentw.r.t. y.

Lemma 27 Given aT -precompleted ABoxA, A is inconsistent iff there exists some in-
dividual nameo in A andA is not locally-consistent w.r.t.o.

Definition 28 (boolean answering)Given T a TBox,A a consistentT -precompleted
ABox,x an individual name inA andQ a concept, theboolean answeringreturnsTrue
for (x,Q, 〈T ,A〉) if there is no ABoxT -derivable fromA ∪ {x : ¬Q} that is locally-
consistent w.r.t.x.

Proposition 6 Let T be a TBox,A be a consistentT -precompleted ABox,Q be a con-
cept. For every modelI of 〈T ,A〉, oI ∈ QI iff the boolean answering returnsTrue for
(x,Q, 〈T ,A〉).

Given the above boolean query answering definition, the procedure for answering
instance retrieval queries without acyclic restriction isdefined as follows:

Definition 29 (answering procedure) The answering procedurereturns an individual
answer set
{x1, x2, · · · , xn} to queryQ w.r.t. a TBoxT and an ABoxA if, for each ABoxA′ T -
derivable fromA, the boolean query answering returnsTruefor (xi, Q, 〈T ,A′〉).
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Theorem 30 The answering procedure returns individualx to conceptQ with respect to
a knowledge base〈T ,A〉 iff, for every modelI of 〈T ,A〉, oI ∈ QI .

Remarks : Although the above answering procedure can be used to retrieve instances
in anSHF knowledge base without acyclicity restriction, it is not efficient—the boolean
query answering procedure only tests one individual name ata time. For implementation
purpose, in the next section, we propose the query-orientedanswering procedure.

6.6.6 Query-oriented answering

Definition 31 (literal, quantifier form, Disjunctive Normal Form) AnSHF concept is
considered to be aliteral iff it is either a concept name or the negation of a concept name.

Given a role nameR and a concept expressionC, anSHF concept is considered to
be inquantifier formiff it is either in the form of∀R.C or in the form of∃R.C.

AnSHF concept is considered to be inDisjunctive Normal Formiff it is a disjunction
of one or more conjunctions of one or more literals or one or more concept expressions
in quantifier form.

Given anSHF conceptQ in Disjunctive Normal Form, without loss of generality we
assume that each disjunct is in the following form:

( ⊓
1≤j≤mi

∃Sj.Vj) ⊓ ( ⊓
1≤k≤ni

Ck) ⊓ ( ⊓
1≤ℓ≤oi

∀Rℓ.Uℓ)

We now introduce some new notation used, for convenience, inthe following query-
oriented answering procedure. For every disjunctDi of Q:

• {∃(Di)} for the set{∃Sj.Vj | 1 ≤ j ≤ mi}

• 6 ∃(Di) for the concept( ⊓
1≤k≤ni

Ck) ⊓ ( ⊓
1≤ℓ≤oi

∀Rℓ.Uℓ);

Definition 32 (associatedA(o1, o2, R)) Given a role nameR, two individual nameso1

ando2 in the ABoxA, IN the individual name set andRN the role name set inA, the
relationassociated ⊆ IN×IN×RN is defined inductively as follows:

• BASIS: if there exists a role nameS such that〈o1, o2〉 : S in A andS ¹ R, then
associatedA(o1, o2, R);

• INDUCTION: if there exists a transitive role nameS, an individual nameo′ in A
andS ¹ R, associatedA(o1, o

′, S) andassociatedA(o′, o2, S), thenassociatedA(o1, o2, R).
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CLAIM : [2] Given a clash-freeT -precompleted ABoxA, two individual nameso1,o2

and two role namesS,R in A, if the relationassociatedA(o1, o2, S) holds andS ¹ R,
thenassociatedA(o1, o2, R).

Proof: Let A be a clash-freeT -precompleted ABox, leto1,o2 be individual names inA,
and letS,R be role names inA. This claim can be proved using the following basis and
induction steps:

• BASIS: The basis case is there exists a role nameS ′ such that〈o1, o2〉 : S ′ in A and
S ′ ¹ S. SinceS ′ ¹ S ¹ R, we haveassociatedA(o1, o2, R).

• INDUCTION: Let associatedA(o1, o2, S) be the relation built by the inductive step
of the definition, fromassociatedA(o1, o

′, S ′) andassociatedA(o′, o2, S
′) with S ′

a transitive role,o′ an individual name andS ′ ¹ S. SinceS ′ ¹ S ¹ R, we have
associatedA(o1, o2, R).

CLAIM : [3] Given a clash-freeT -precompleted ABoxA, three individual names
o1,o2,o3 and a role nameS inA, if the relationsassociatedA(o1, o2, S) andassociatedA(o2, o3, S)
hold andS is a transitive role name, thenassociatedA(o1, o3, S).

Proof: Let A be a clash-freeT -precompleted ABox, leto1,o2,o3 be individual names in
A, and letS be a role names inA. This claim follows directly from the inductive step
in the definition: if there exist a transitive role nameS, three individual nameo1,o2,o3 in
A andS ¹ S, associatedA(o1, o2, S) andassociatedA(o2, o3, S) hold, then the relation
associatedA(o1, o3, S) holds.

Given aT -precompleted ABoxA, a conceptQ in disjunctive normal form, the in-
stance ofQ is computed as shown in Algorithm 1. Theretrieve(C) function1 in the
algorithm is taken from the Instance Store API [?] and it returns a set of individual names
to a given conceptC. The
getSuccessors(x,R) function in the algorithm returns a set of individual names{y1, y2, · · · , yn},
for eachyi, the relationassociatedA(x,R, yi) holds in the ABox.

6.7 Related Work

As already mentioned, the idea of supporting DL style reasoning using databases is not
new. One example is [BB93], where an architecture and algorithms are presented which
can handle DL inference problems by converting them into a collection of SQL queries.

1Note that it only takes into account the individuals’ concept assertions and ignores their role assertions.
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Algorithm 1 queryOrientedRetrieve(Concept Q) : Set

1: results ← ∅
2: results ← retrieve(Q)
3: for eachDi ∈ Q do
4: candidateIndividualSet ← retrieve(6 ∃(Di)) \ results
5: for eachx ∈ candidateIndividualSet do
6: for each∃S.V ∈ {∃(Di)} do
7: successorSet = getSuccessors(x, S)
8: if isEmptySet(successorSet ∩ queryOrientedRetrieve(V )) then
9: candidateIndividualSet ← candidateIndividualSet \ x

10: Break
11: end if
12: end for
13: end for
14: results ← results ∪ candidateIndividualSet
15: end for
16: returnresults

This approach is not limited to role-free ABoxes, but the DL language supported is much
less expressive, and the database schema must be customisedaccording to the structure
of the given TBox.

Another example is the Parka system [ASH95]. Parka is not limited to role-free
ABoxes and can deal with very large ABoxes. However, Parka alsosupports a much
less expressive description language, and is not based on standard DL semantics, so it is
not really comparable to the Instance Store.

Finally, [Sch94] describes a “semantic indexing” technique that is very similar to the
approach used in the Instance Store except that files and hashtables are used instead of
database tables, and optimisations such as the use of equivalence sets were not considered.

6.8 Discussion

Our experiments show that the Instance Store provides stable and effective reasoning for
role-free ABoxes, even those containing very large numbers of individuals. In contrast,
full ABox reasoning using the RACER system exhibited accelerating performance degra-
dation with increasing ABox size, and was not able to deal withthe larger ABoxes used
in this test. (It may be possible to fix this problem by changing system parameters, but
we had no way to investigate this.) The pseudo-individual approach to role-free ABox
reasoning was more promising, and may be worth further investigation. It does not, how-
ever, have the Instance Store’s advantage of ABox persistence, and it appears to be less
likely to scale to even larger ABoxes: it does not cope well with large answer sets, and is
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inherently limited by the fact that DL reasoners (at least incurrent implementations) keep
the entire TBox in memory. Moreover, it is not clear how the pseudo-individual approach
could be extended to deal with ABoxes that are not role-free.

The acceptability of the Instance Store’s performance would obviously depend on the
nature of the application and the characteristics of the KB and of typical queries. It is
likely that the performance of the Instance Store can be substantially improved simply
by dealing with constant factors such as communication overheads—in the current im-
plementation, communication overheads between the Instance Store and the DL reasoner
account for nearly half the time taken to answer queries thatrequire significant amounts
of DL reasoning to compute the answer (i.e., whenI2 is large). It may also be possible
to improve the performance of the database, e.g., using techniques such as indexing and
clustering, or by reformulating queries.

As well as dealing with the above mentioned performance bottlenecks, future work
will include the investigation of additional optimisations and enhancements. Possible op-
timisations includesemantic indexing feedback—adding new indexing concepts to the on-
tology for the purpose of query optimisation;description canonicalisation—canonicalising
the descriptions passed to the Instance Store, so that equivalent descriptions can be more
effectively identified;cardinality estimation—estimating the cardinality of the result (and
in particular ofI2) before executing a query, and giving users the chance to refine queries
if the cost of answering them is likely to be very high; andresult caching—caching the
results of queries and of DL subsumption tests in order to avoid DL reasoning when
answering subsequent queries. Possible enhancements include providing a more sophis-
ticated query interface with support for, e.g., conjunctive queries [Tes97].

As discussed in Section 6.6, we are currently engaged in extending the Instance Store
to deal with ABoxes that are not role-free. The impact that this will have on perfor-
mance is likely to be heavily dependent on the structure of the given ABox. In partic-
ular, the Instance Store is not likely to perform well with ABoxes that result in highly
non-deterministic precompletions. ABoxes that are highly interconnected and/or contain
many cyclical connections are also likely to have an adverseaffect on performance. An
evaluation of the effectiveness of the extended Instance Store will therefore have to wait
for the completion of the prototype, and on the development of application ontologies
containing large numbers of individuals—currently these are in rather short supply, but
we hope that development of such ontologies will be encouraged by the existence of the
extended Instance Store.
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Chapter 7

Optimising Instance Realisation — an
Idea

In order to speed up the instance retrieval InstanceStore described in the previous chapter
restricts the expressiveness of the A-Box to instances without any relationship to other
instances in so-called role-free A-Box. The aim of this restriction is to be able to use
database technologies for answering description logic queries.

However, InstanceStore can use database functionality notfor every query. If a query
is classified to the top element, for example, the proposed algorithm from InstanceStore
must fall back into the traditional query answering procedure where every instance is
checked deductively. This inference is known as theinstance realisation. Instance real-
isation seems to be needed especially in the case where the query contains disjunctions
— an separating feature of description logics. It is obviousthat in such cases instance
realisation is very inefficient even for very large sets of instances because every instance
must be checked.

In this chapter we discuss the opportunity to optimise instance realisation. In cases
where database technology can not be used the idea of our approach is different from
traditional methods, where a specific goal — the implicationbetween instance and query
— is proven. Instead we propose a data-driven approach whereall instances are assigned
to the most specific concepts based on the available knowledge in the A-Box before the
first query is sent to the system. The process of assigning instances to most specific
concepts continues during the query answering. In this way the system is continuously
optimised for instance realisation leading to a dynamic behaviour of the system.

In the following we explain this process using an example before we give details about
the underlying theory.
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7.1 A motivating example

For the example the domain of family relationship is used. Weassume that the reader is
familiar with the notion of description logics. Suppose thefollowing small and simplified
ontology together with the instances is given:

Woman ≡ Human ⊓ Female
Man ≡ Human ⊓ Male

Mother ≡ Woman ⊓ ∃Child :Human
MotherOfOnlySons ≡ Woman ⊓ ∀Child :Man

Father ≡ Man ⊓ ∃Child :Human
Parent ≡ Mother ⊔ Father

Grandmother ≡ Mother ⊓ ∃Child :Parent
Granduncle ≡ Man ⊓ ∃ sibling :Grandmother

Ai = {Woman(anja), Child(anja, nils),Man(nils),
Father(fried), sibling(fried, anja)}

Given the A-BoxAi above we can directly conclude thatanja must be aMother
because she has a child,nils, andnils is aHuman because everyMan is aHuman. Of
course, a normal description logic reasoner (DLR) will not deduce it at the moment. Only
if a query is sent to the system asking ifanja belongs toMother then the system will
answer with yes (and perhaps store this result in its internal database). But normally such
a query is a part of a sequence where the application tries to find out to which concepts
anja belongs. Apart from the question ifanja belongs toMother there must be further
queries ifanja belongs toMan, Father, Grandmother, MotherOfOnlySons, etc.
This leads to a uniformed search where the application triesto find out the most specific
concept to which an instance belongs with the help of a sequence of queries. Furthermore
if the application wants to retrieve all instances ofMother, all (relevant) instances must
be checked if the could be assigned toMother before a DLR can answer the instance
retrieval query. The uninformed search and instance retrieval in general makes instance
realisation inefficient.

Instead of testing we can reformulate the concept expressions into classification rules.
The rule forMother would be:

Mother(X) ←− Woman(X) ∧ child(X,Y ) ∧ Human(Y )

With such a rule we can directly conclude thatanja is aMother. All conditions are
satisfied, i.e.anja is aWoman, has as childnils (i.e. child(anja, nils)) andnils is at
least aHuman. If similar rules exist for every concept and can be applied to the A-Box
knowledge, the application must not guess which the possible concepts ofanja are.

The rules seem to be a direct translation of the concept definition into logical rules.
However, for the instance realisation it is not possible — and not needed — to translate
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every (part of) concept definition into its corresponding logical rule. For example we
can never infer inAi thatanja is aMotherOfOnlySons. nils is her only son and the
conditions for aMotherOfOnlySons might be satisfied at the moment. But in future
anja can get further children perhaps including a daughter. Or inother words the open
world assumption (OWA) prevents the inference from the knowledge in the A-Box that
anja has only sons as children. The only way for instance realisation is to wait thatanja
is assigned to concept term∀Child : Man — implicitly or explicitly.1 Therefore the
concept definitionMotherOfOnlySons cannot be translated into the obviouslogical
rule which can be used for instance realisation but into a simplified one where the concept
term∀Child :Man is replaced by the concept instantiationFCM(X) and a new concept
definitionFCM ≡ ∀Child :Man is added to the T-Box:

MotherOfOnlySons(X) ←− Woman(X) ∧ FCM(X)

The negation and the disjunction must be handled in the same way.

All the information that can be derived from A-BoxAi is now derived. But now the
dynamic behaviour of the proposed idea is considered. For this purpose the A-Box will
be extended toAi+1:

Ai+1 = Ai ∪ {Father(nils)}

With new information aboutnils we can trigger that rules which are affected by this
new information:

Grandmother(X) ←− Woman(X) ∧ child(X,Y ) ∧ Parent(Y )

Becausenils becomes aParent (to be precise,nils become aFather which is a
specialisation ofParent) we now know thatanja must become aGrandmother. This
derived information can be added to the A-Box and again trigger some rules. We can now
conclude with the help of following rule

Granduncle(X) ←− Man(X) ∧ sibling(X,Y ) ∧ Grandmother(Y )

thatfried become aGranduncle becauseanja, his sibling, becomes aGrandmother.
This “chain reaction” imagines the great benefit of the data-driven, dynamic approach:
Every time when new information is arrived in the A-Box all consequences are tried to be
directly computed and as much as possible inferences from the data is derived.

1This is not completely true. The problem can also be solved ifan operator is available which says that
no further instantiation of a role/property will exists in future.
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The rule-oriented approach can further be optimised. In order to safe tests we can
partly instantiate the rules even if not all knowledge for satisfying the conditions is present.
That parts which are already satisfied can be omitted indicating that these tests are al-
ready passed and must not checked again. For example with theA-Box Ai the rules for
Grandmother and forGranduncle can already be instantiated to

Grandmother(anja) ←− Woman(anja) ∧ child(anja, nils) ∧ Parent(nils)
=⇒ Grandmother(anja) ←− Parent(nils)

Granduncle(fried) ←− Man(fried) ∧ sibling(fried, anja) ∧ Grandmother(anja)
=⇒ Granduncle(fried) ←− Grandmother(anja)

Now anja seems to “wait” fornils to become itself aParent in order to become a
Grandmother. fried is waiting foranja to become aGrandmother. However the rule
instantiation may imply that a lot of rules must be instantiated for one instance. With
large sets of instances a still larger set of instantiated rules must be stored and maintained
which may have a detrimental effect to the optimisation withrule instantiation.

This small example demonstrates two main characteristics of the proposed idea. First it
shows the data-driven behaviour. Instead of waiting for some queries the system directly
computes the most specific concepts to which an instance can belong and prevents some
uninformed search for the application which uses this system. Second it shows the dy-
namic behaviour. New information can (monotonically) be added when they appear and
the consequences are tried to be derived directly.

7.2 The Representation Formalism

After this motivating example the representation formalism for the data-driven instance
realisation will now be introduced. As already mentioned ithas a strong relationship to
rule formalism. However, the dynamic nature should also be reflected by the formalism.
One adequate method to model dynamic behaviour is an event-driven approach. For the
instance realisation such an event indicates the arrival ofnew information either by the
application or by the instance realisation process itself.The new information thatanja
becomes aGrandmother andfried a Granduncle are two examples for such system-
generated events.

System-generated events may also be interesting for the application which uses the
DLR. In order to keep informed about the new derived information the events can also be
sent to the application.2 Then the application will be informed by the DLR if an instance
was assigned to a more specific concept.

2Of course this functionality extends the current availableinterfaces like DIG.
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In order to become a little bit more technical events are generated and consumed. For
both the following notation is introduced:

⌊.⌋ checks if the event has appeared.⌊X : C⌋ looks for an instanceX
which is associated to conceptC. ⌊R(X,Y )⌋ is the corresponding event
check that the instancesX andY is related throughR.

⌈.⌉ generates an event if not already generated in the past.⌈X : C⌉ says
that instanceX now belongs toC. ⌈R(X,Y )⌉ is the corresponding
event generator for the relationR.

Both notations can be combined to more complex event terms by the usual logical
connectives∧ and∨. Furthermore the logical implicationÃ3 can be used to connect
events in order to formulate conditions for event checking or generating. For example,
⌊R(X,Y )⌋ Ã ⌈Y : C⌉ says, that the event⌈Y : C⌉ is only be generated if the instances
X andY are related troughR, i.e. the event⌊R(X,Y )⌋ was observed. Both complex
event terms constitute both sides of an event rule. To be moreprecise:

ψ ←− φ is anevent rulewhich generates the events inψ = ... ⊛ ⌈δ⌉ ⊛ ... when
the events inφ = ... ⊛ ⌊δ⌋ ⊛ ... are observed.⊛ represents one of the
following connectives:∧, ∨, or Ã.

The most interesting question now is how an ontology can be translated into this event-
based rule formalism. The translation will be explained in the next section.

7.3 Translating the Ontology into the Formalism

The event rules are generated from the terminological axioms in the ontology where every
axiom of the formC ≡ D or C ⊑ D will be translated into a set of rules. Before
the translation can begin the concept term must be transformed into disjunctive normal
form. Furthermore like for the negation normal form it is assumed that the negation is
propagated to the innermost terms, i.e. the negation only appears together with a concept
name.4, i.e.C ≡ D1 ⊔ ... ⊔ Dn resp.C ⊑ D1 ⊔ ... ⊔ Dn with Di = Di1 ⊓ ...Dimi

. For
the case ofC ≡ D1 ⊔ ...⊔Dn the translation functionτ forms for each combination ofC
andDi an event ruleτ⌈⌉(X : C) ← τ⌊⌋(X : Di) as shown in table 7.1.

C ⊑/≡ D τ(.) =

C ≡ D1 ⊔ ... ⊔ Dn τ⌈⌉(X : C) ← τ⌊⌋(X : D1), ..., τ⌈⌉(X : C) ← τ⌊⌋(X : Dn)
C ⊑ D1 ⊔ ... ⊔ Dn —

Table 7.1: Translationτ for axioms

If the events in the conditionsτ⌊⌋(X : Di) of the event rule are observed then the events

3We use a different notion for implication in order to distinguish it from the rules
4The normal form preserves the satisfiability property and must not be visible for the application or an

user.
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τ⌈⌉(X : C) are generated for the common variableX. Which events must be observed
resp. generated is determined by the translation functionτ⌈⌉(.) resp.τ⌊⌋(.) depending on
the variableX which is associated toDi resp.C.

For the case ofC ⊑ D1 ⊔ ... ⊔ Dn no translation exists because the axioms only
defines necessary but not sufficient conditionsD1 ⊔ ... ⊔ Dn that an instanceX must
satisfy. Obviously only sufficient conditions can be translated into event rules (if you
conclude fromD1 ⊔ ... ⊔ Dn to C).

Data-driven instance realisation has one great advantage in opposite to inferences like
satisfiability checking: it must not discuss all (hypothetical) cases during a proof by cases
but can derive on explicitly known facts. Because of the inherent open world semantics
a realisation of an instance to a more specific concept can only be done if all required
information is available in the A-Box. For example a constraint ∀R : C can never be
guaranteed by a data-driven instance realisation itself because a relation can be added
every time in the future which violates that concept term (see also section 7.1). To satisfy
this concept term the only way is to tell the A-Box explicitly that the concept term is
fulfilled. Because of the restricted A-Box formalism this can only be done for an instance
X if X belongs to a conceptFRCnew (i.e.X : FRCnew) which is defined asFRCnew ≡
∀R :C.

FRCnew is a artificial concept definition added to the T-Box which normally is not
seen by an user or application. It is not expected that the user explicitly associate an
instanceX to that conceptFRCnew but to some subsumers ofFRCnew. For example if
anja is told belonging toMotherOfOnlySons (i.e.anja : MotherOfOnlySons) and
MotherOfOnlySons is a specialisation ofFRCnew ≡ ∀child :Man then we also know
that the concept term∀child :Man is satisfied byanja.

Such artificial concept definitions will appear in several situations during the transla-
tion with τ⌊⌋(.) resp.τ⌈⌉(.). Table 7.2 shows the translation of concept terms byτ⌊⌋(.) and
defines the events which must be observed in order to satisfy an A-Box expression.C
andD are concept terms,CN is a concept name,R a role andF a attribute. Note that
currently the translation is restricted toALC, an expressive but restricted subset of OWL
DL. The extension of the translation to OWL DL needs further investigation.

X : CN andX : C ⊓ D is translated in obvious way to⌊X : CN⌋ andτ⌊⌋(X :
C) ∧ τ⌊⌋(X : D). Because the concept terms are not unfold (cf. [BMNPS02]) we must
ensure that an event⌈X : EN⌉ which is generated for a specialisationEN of CN can
also be caught by⌊X : CN⌋. Therefore the following event rules are virtually added to
the system:

⌈X : CN⌉ ← ⌊X : EN⌋ whereEN,CN are concept names withEN ⊑ CN

ForX : C ⊔ D andX : ¬C there is no possibility to check these conditions directly and
an artificial concept definition must be generated. WhenX is associated to a subsumer of
C ⊔ D resp.¬C then the events can be caught.∃R : C resp.∃F : C are also translated
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τ⌊⌋(.) = Remarks

X : CN ⌊X : CN⌋
X : C ⊓ D τ⌊⌋(X : C) ∧ τ⌊⌋(X : D)
X : C ⊔ D ⌊X : CODnew⌋ CODnew ≡ C ⊔ D
X : ¬CN ⌊X : DNnew⌋ DNnew ≡ ¬CN
X : ∃R :C ⌊R(X,Y )⌋ ∧ τ⌊⌋(Y : C)
X : ∃F :C ⌊F (X) = Y ⌋ ∧ τ⌊⌋(Y : C)
X : ∀R :C ⌊X : FRCnew⌋ FRCnew ≡ ∀R :C
X : ∀F :C ⌊X : FFCnew⌋ ∨ (⌊F (X) = Y ⌋ ∧ τ⌊⌋(Y : C)) FFCnew ≡ ∀F :C

Table 7.2: Event checking translation byτ⌊⌋(.)

obviously: two events must be observed telling thatX is related toY , i.e. ⌊R(X,Y )⌋
resp.⌊F (X) = Y ⌋, and instanceY belongs toC, i.e.τ⌊⌋(Y : C). X : ∀R :C is translated
with help of an artificial concept definition butX : ∀F : C for the attribute/functionF
can also be checked directly. In difference to the roleR there is a number restriction for
attributes: they can only be instantiated for one value. So if there is such a valueY for
that attributeF and if this valueY belongs to the concept termC then∀F :C is satisfied.

τ⌈⌉(.) = Remarks

X : CN ⌈X : CN⌉
X : C ⊓ D τ⌈⌉(X : C) ∧ τ⌈⌉(X : D)
X : C ⊔ D ⌈X : CODnew⌉ CODnew ≡ C ⊔ D
X : ¬CN ⌈X : DNnew⌉ DNnew ≡ ¬CN
X : ∃R :C —
X : ∃F :C ⌊F (X) = Y ⌋ Ã τ⌈⌉(Y : C)
X : ∀R :C ⌈X : FRCnew⌉ ∧ (⌊R(X,Y )⌋ Ã τ⌈⌉(Y : C)) FRCnew ≡ ∀R :C
X : ∀F :C ⌈X : FFCnew⌉ ∧ (⌊F (X) = Y ⌋ Ã τ⌈⌉(Y : C)) FFCnew ≡ ∀F :C

Table 7.3: Event generation translation byτ⌈⌉(.)

Table 7.3 defines how events are generated from complex termsby the translation
functionτ⌈⌉(.). The first four conditions,X : CN , X : C ⊓D, X : C ⊔D, andX : ¬CN
now generate these events that may be observed by the event checking translation. But
it may surprise that the translation ofX : ∃R : C will be empty. Because the roleR has
no number restriction it is always possible to generate an instance which belongs toC.
The new generated instance can be absolutely independent from the instancesY which
are currently related withX troughR. Therefore no event must be generated for existing
instances. However, the attribute/functionF has an implicit number restriction. Therefore
the translation ofX : ∃F :C looks for the valueY of the functionF and ifY exists then
an event is generated thatY now belongs toC; if the valueY does not exists then the event
will not be generated. A mixture is the translation for the∀ constructor inX : ∀R :C and
X : ∀F :C. First they generate an event for the artificial concept definition in order to be
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able to catch them. Second they generate events for all valuesY of R andF if they exist.

The rules in table 7.1 are generated from the concept axiom and formulate conditions
D when an instanceX can be classified toC. However these rules do not express all
possibilities for an instance realisation. Suppose that the A-Box Ai+1 in the example
of section 7.1 is further extended toAi+2 by the information thatanja has an further
child jens, i.e. Ai+2 = Ai+1 ∪ {Child(anja, jens)}. When we further add thatanja
becomes aMotherOfOnlySons, i.e.Ai+3 = Ai+2 ∪ {anja : MotherOfOnlySons},
then we can conclude thatjens must be aMan. However, we can extend the A-Box
in the opposite order, i.e.A′

i+2 = Ai+1 ∪ {anja : MotherOfOnlySons} andA′
i+3 =

A′
i+2 ∪ {Child(anja, jens)}, which also has as consequence thatjens must be aMan.

Both ways of extensions demonstrate two further possibilities for instance realisation
based on events in the A-Box and are not covered by the rules in table 7.1. For the
extension ofAi+2 andAi+3 the realisation ofjens is triggered by the new information
aboutanja becausejens is related toanja. In more general terms the new classification
of X to C lead to the realisation to some part ofD. Now the events are propagated in the
opposite order fromC to D. Such event rules are illustrated in table 7.4. For both kindof
axioms the same event rule is generated.

C ⊑/≡ D τ(.) =

C ≡ D1 ⊓ ... ⊓ Dn

C ⊑ D1 ⊓ ... ⊓ Dn

τ⌈⌉(X : D1) ∧ ... ∧ τ⌈⌉(X : Dn) ←− τ⌊⌋(X : C)

Table 7.4: Further translationτ for axioms

Please note that for this translation the concept termD must be transformed into a differ-
ent normal for, the conjunctive normal form.

The second way of extensions the realisation ofjens is invoked by introducing a new
relationshipChild to anja. Because of this new relationship in generalanja andjens
may be subject of an instance realisation. The check thatanja needs further refinement
is covered by the event rules in table 7.1. But the possibilityof realisation forjens is not
checked by any rule. Therefore further rules are needed which are shown in table 7.5.

C ⊑/≡ D τ(.) =

C ⊑ D1 ⊔ ... ⊔ Dn τ⌈⌉(Y : E) ←− τ⌊⌋(X : C) ∧ ⌊f(X)=Y ⌋ with
C ≡ D1 ⊔ ... ⊔ Dn Di = ... ⊓ ∃f :E ⊓ ... andf is a property or

τ⌊⌋(X : C) ∧ ⌊R(X,Y )⌋ → τ⌈⌉(Y : E) with
Di = ... ⊓ ∀R :E ⊓ ... for roles and properties

Table 7.5: Further translationτ for axioms

The first two translations of an axiom are not surprising. They have their correspon-
dence in the logical translation. From a logical point of view the third translation is not
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needed and redundant. But together with the event mechanism such rules are desirable.
The logical reason is that free variables in the heads of the rules are all-quantified. Instead
realising it with the help of the inference mechanism the third kind of rules is introduced
in order to simplify the implementation of the reasoning service.

With the artificial concept definitions some helper constructions are introduced which put
some additional knowledge into the subsumption hierarchy.The use that knowledge from
the subsumption hierarchy is characteristics for the proposed idea of optimising instance
realisation. The subsumption hierarchy must be computed bythe normal description logic
reasoner — perhaps before any instance realisation can be performed. The a priori com-
putation can be interpreted as a pre-compilation of the knowledge base in order to perform
specialised reasoning, e.g. in this case instance realisation. Furthermore the need for a
complete DLR indicates that the proposed data-driven instance realisation is not suitable
to replace any normal DLR reasoning. Instead it can only optimise
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Chapter 8

Conclusion

In this report, we have investigated the problems of query answering for Semantic Web
query languages (such as RDF, OWL DL and OWL-E) in the OWL-QL specification. Key
features of the OWL-QL specification are summarised in Section 3.1.

Theoretical results are mainly on query answering with RDF graphs and OWL-E on-
tologies. In Chapter 2, we recast the RDF model theory in a more classical logic frame-
work. Given an RDF graphS and a queryQ, the answer set ofQ to S (as defined
by [Hay04b]) is the same as the certain answer ofQ to S given the empty KB. In other
words, an RDF graph can be transformed to a DL ABox; therefore, OWL-QL servers
(such as the one described in Chapter 3) can be used to support query answering w.r.t.
RDF graphs. In Chapter 4, we extend OWL-QL to OWL-E-QL, so as to support conjunc-
tive queries with datatype expression atoms. We have shown that, under certain restric-
tions, query answering w.r.t. OWL-E ontologies can be reduced to ABox reasoning (such
as knowledge base satisfiability, instance checking or instance retrieval).

In addition to the above theoretical results, we also present some implementation re-
sults. Chapter 3 escribes how to implement query answering for theSHIQ DL in an
OWL-QL server. As query answering can be reduced to ABox reasoning and instance
retrieval is the expensive problem (among the three ABox reasoning problems mentioned
above), we have further investigated optimisation techniques for instance retrieval based
on a hybrid DL/Database architecture (Chapter 6).

As for future work, we will further look at how to apply our result to support the
SPARQL language. In addition, we would like to investigate further implementation and
optimisation issues on query answering for Semantic Web query languages (such as RDF,
OWL DL and OWL-E) in the OWL-QL specification.
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