
Birte Glimm

A Query Language for Web Ontologies

Bachelorarbeit eingereicht im Rahmen der Bachelorprüfung
im Studiengang Informatik
am Fachbereich Elektrotechnik und Informatik
der Hochschule f̈ur Angewandte Wissenschaften Hamburg

Betreuender Prüfer : Prof. Dr. rer.nat Christoph Klauck
Zweitgutachter : Prof. Ian Horrocks, The University of Manchester

Abgegeben am 25. Juni 2004

Birte Glimm

Thema der Bachelorarbeit
A Query Language for Web Ontologies (Eine Anfragesprache für Web Ontologien)

Stichworte
Semantic Web Anfragen, DAML+OIL, DQL, Ontologien, Semantic Web Dienste

Kurzzusammenfassung
Im August 2002 ver̈offentlichte das Joint United States/European Union ad hoc
Agent Markup Language Committee die DAML Query Language (DQL) Abstract
Specification. Im April 2003 folgte eine Revision der Spezifikation. Diese Arbeit
analysiert die aktuelle Spezifikation und stellt eine (partielle) Implementierung im
Rahmen einer Machbarkeitsstudie zur Verfügung. Der implementierte Prototyp
nutzt Beschreibungslogik-Syteme, um Anfragen an DAML+OIL Wissensbasen
unter Zuhilfenahme von automatischen Schlussfolgerungen zu berechnen. Die
Anfragen sind beschränkt aufconjunctive queries, die eine baum̈ahnliche Struktur
aufweisen. Der Prototyp berechnet erfolgreich Anfragen an Wissensbasen im
Semantic Web und belegt, dass eine Umformung von Anfragen in Beschrei-
bungslogik Anfragen genutzt werden kann, um einen DQL Service zur Verfügung
zu stellen. F̈ur einen Einsatz in realen Anwendungen ist allerdings eine weitere
Optimierung der Anfrageverarbeitung notwendig.

Birte Glimm

Title of the paper
A Query Language for Web Ontologies

Keywords
Semantic Web querying, DAML+OIL, DQL, ontologies, Semantic Web services

Abstract
In August 2002 the Joint United States/European Union ad hoc Agent Markup
Language Committee announced the first release of the DAML Query Language
(DQL) Abstract Specification. A revision of the specification followed in April
2003. This work analyses the current DQL specification and provides a (partial)
implementation as a feasibility study. The prototype uses Description Logic rea-
soners for automated reasoning services over the DAML+OIL knowledge bases to
compute the query answers. The queries are restricted to conjunctive queries that
have a tree-like structure. The prototype successfully computes queries against
knowledge bases in the Semantic Web. It shows that a query transformation into
Description Logics queries is a feasible setting to provide a DQL service. However,
further performance improvements are necessary before the prototype is usable in
real world applications.

Acknowledgements

First of all I would like to thank my friend Frank and my parents for sup-
porting me during my studies. Without them, none of this would have been
possible.

I am deeply grateful for the support of my supervisors Prof. Ian Horrocks
and Prof. Dr. Christoph Klauck; especially Ian Horrocks for proofreading
and correcting my English mistakes.

Further more, I would like to thank the following people who have helped
me during my studies and this final year project: all members of the Infor-
mation Management Group, especially Daniele Turi for explaining many of
the external software components that the DQL server uses and Phillip Lord
for LATEX support; Conny Hedeler, Antoon Goderis and Sven Stegelmeier
for proofreading; Christian Morgenstern and several of my fellow students
from Hamburg (the list would be too long) and Ubbo Visser and Sebastian
Hübner from the Center for Computing Technologies (TZI) in Bremen.

Finally I would like to thank the Stiftung der Deutschen Wirtschaft (Foun-
dation of German Business) for supporting me with a scholarship.

Contents

1 Introduction 1
1.1 Semantic Web Concepts. 1

1.1.1 Ontologies . 1
1.1.2 Web Ontology Languages. 2
1.1.3 Reasoners and Inference Engines. 2

1.2 The Conceptual Formulation. 3

2 Querying a DAML+OIL Knowledge Base 5
2.1 Introduction. 5

2.1.1 DAML+OIL . 5
2.1.2 Description Logics. 6

2.2 Querying . 7
2.2.1 Extended Retrieval Support. 8
2.2.2 Conjunctive Queries. 9
2.2.3 Graphs as Query Representation. 10

2.3 Query Transformation. .11
2.3.1 Boolean Queries with one Leaf. 11
2.3.2 Boolean Queries with Multiple Leaves. 12
2.3.3 Rolling-Up in the Role Direction. 13
2.3.4 Rolling-Up with Individual Names. 13
2.3.5 Rolling-Up for non Boolean Queries. 14

3 The DQL Abstract Specification 16
3.1 Query and Answer Parts. 16
3.2 A Query-Answering Dialogue. 18
3.3 Query Classes. .19
3.4 OWL-QL .19

4 Realisation of a DQL Server Prototype 20
4.1 The Architecture .20
4.2 Used Tools, Products and Languages. 22
4.3 The Components. .23

4.3.1 The Web Service Interface. 23
4.3.2 The DQL Server Component. 24
4.3.3 The Query Parser. 24

4.3.4 Knowledge Base Loading. 25
4.3.5 Interaction with the Reasoner. 26
4.3.6 The Query Graph Component. 27
4.3.7 Query Types .29
4.3.8 Query Answers. .30
4.3.9 The Answer Set Cache. 32

4.4 A Query Processing Sequence. 32
4.5 Error Handling .33
4.6 Testing. .34
4.7 The DQL Client Interface. 34

5 Conclusion 37
5.1 Improvements for Future Versions. 37

5.1.1 Extended Query Support. 37
5.1.2 Multi-Thread Safe Reasoner Connections. 38
5.1.3 Proper Use of the Termination Token. 38
5.1.4 Interaction with the Reasoner. 38
5.1.5 Improved Candidate Checks. 39

5.2 Identified Improvements for the DQL Specification. 39
5.2.1 Security. .40
5.2.2 External Query Language Definition. 40
5.2.3 Forced Different or Equal Bindings. 41
5.2.4 Knowledge Base Loading. 41
5.2.5 Answer Bundle Size Bound. 41

5.3 Comparison with Other Systems. 42
5.3.1 The Stanford OWL-QL Server. 42
5.3.2 Racer Query Language. 43

References 44

A Appendix A1
A.1 Notation .A1
A.2 Abbreviations .A1
A.3 The Enclosed CD. .A2

A.3.1 Application Files .A2
A.3.2 Dependent Applications. .A3
A.3.3 The Report and the References.A3
A.3.4 The Project Source Files. .A3
A.3.5 Documentation. .A3

A.4 Model Theoretic Semantics of DAML+OIL. A4

Chapter 1

Introduction

The foundations of the work presented here were first laid by Tim Berners-Lee [5], who
introduced in 1998 his vision for the future architecture of the world wide web. His vision
is about a Semantic Web, where resources are not only usable for humans, who are able
to interpret the implicit semantics of a web page, but also for machines. Essential to make
this idea work, is the explicit annotation of data in a structured way using a well defined
terminology. Software processes or so called agents can then interpret the meaning or
semantics of a web resource and use this information to complete their automated tasks.
A variety of technologies will be required to fulfil this vision.

The implemented query server presented here is just a small part of this, but it will allow
agents to query ontologies that are used to store knowledge in the Semantic Web.

1.1 Semantic Web Concepts

Before the conceptual formulation for this report is defined more precisely, the following
section introduces the most important underlying concepts of the Semantic Web.

1.1.1 Ontologies

The first concept to mention in a Semantic Web context are ontologies. The term ontol-
ogy was first introduced by the ancient Greek philosopher Aristoteles (384–322 B.C.) in
his “The metaphysical study of the nature of being and existence”. Nowadays the term
has been adopted by the Artificial Intelligence community. Willem N. Borst [7] gave a
popular definition for an ontology as it is understood by computer scientists: “An ontol-
ogy is a formal specification of a shared conceptualization”.Conceptualisationrefers to
an abstract model of phenomena in the world that identifies that phenomenon’s relevant
concepts.Formal means that the ontology has a well defined semantics.Sharedreflects
the notion that an ontology captures consensual knowledge — that is, it is not restricted

1

to some individual but is accepted by a group. A similar explanation of these terms was
given by Fensel et al. [12].

As defined above, an ontology defines classes, also called concepts, that describe the
common properties of a collection of individuals, similar to classes and objects in object
oriented design and programming. The classes are ordered in a hierarchy using the is-
a relation. It is also possible to define roles, which are interpreted as binary relations
between objects. The semantics of the terms concept and class are equivalent, but class
is mainly used in ontologies and concept in Description Logics. Ontologies are often
developed for a particular domain to provide a controlled vocabulary of terms with an
explicitly defined and machine processable semantics. An example for a large ontology
is GALEN.1 GALEN provides a formal model of clinical terminology and the GALEN
system offers various services to support the management of clinical information.

1.1.2 Web Ontology Languages

During the last five years the foundations were laid to properly define ontologies and
today the World Wide Web Consortium (W3C)2 hosts the common standards for web
ontology languages. The basic language to build an ontology is the Resource Description
Framework (RDF) [24], which is built on top of XML [8], together with its schema lan-
guage RDFS [9]. A further extension on top of RDF and RDFS is the Ontology Inference
Layer (OIL) [18], an ontology language developed by a group of (largely) European re-
searchers. OIL later was merged with the US approach called DAML-ONT [25], which
stands for DARPA Agent Markup Language Ontology language, to give the DAML+OIL
standard [21]. The latest W3C recommendation regarding ontology languages is the Web
Ontology Language OWL [2], which is largely based on DAML+OIL.

The query language regarded here is used to query knowledge bases in DAML+OIL, but
the prototypical implementation already allows to query OWL knowledge bases as well,
since OWL will sooner or later replace its predecessor DAML+OIL.

1.1.3 Reasoners and Inference Engines

Beneath the ontologies that represent information, there is another important task to sup-
port the Semantic Web vision: reasoners and inference engines will allow agents to make
logical inferences over ontologies (also termed to reason) and they make the difference
between just “machine readable” and “machine understandable”.

This is possible since ontology languages are closely related to Description Logics (DL),
which are decidable3 subsets of first order logic (FOL). Description Logics are derived

1http://www.opengalen.org
2http://www.w3.org
3Decidable means that it is in principle possible to specify an algorithm that terminates in all cases.

2

http://www.opengalen.org
http://www.w3.org

from the well known frame-based systems, semantic networks and KL-ONE-like knowl-
edge representation systems [31].

The basic building blocks used to define an ontology (classes, properties and individuals)
can directly be mapped into Description Logics (concepts, roles and individuals). Con-
cepts are interpreted as sets of individuals and roles are interpreted as binary relations
between individuals. Every ontology that is defined in an appropriate ontology language
can be translated into DL formulas and a DL reasoner is then able to draw conclusions
based on the knowledge given in the ontology. To give an idea of a possible conclusion,
consider an ontology that defines a concepthumanand states thathumans are mortal.
If the ontology includes the assertion thatSokrates is a human, it can be inferred that
Sokrates is mortal, even if this is never stated explicitly.

The main reasoning tasks, performed by a DL reasoner, are subsumption, classification,
instance checking and satisfiability. Subsumption represents the is-a relation and a sub-
sumption check tests if one concept is more general than (subsumes) another. Classifi-
cation is the computation of the concept hierarchy based on subsumption, and instance
checking means to test if an individual belongs to a given concept. A satisfiability test
determines if a concept is contradictory and could never have an instance, e.g., a concept
defined ashuman and not humancan never have an instance.

For all these tasks the reasoners offer a query interface, but users or agents have many
more kinds of queries than e.g., asking for sub-concepts of a given concept, hence some
reasoners were equipped with additional query support, but until now querying is one of
the weakest supported features of current DL reasoners.

1.2 The Conceptual Formulation

To overcome the limited query support in the Semantic Web the DAML Joint Committee4

announced in August 2002 the DAML Query Language (DQL) Abstract Specification
and replaced it in April 2003 with a new release [13]. The DQL specification describes
a protocol and features for a query language in the Semantic Web, and its development
was based on user requirements for a query language in the Semantic Web.

Until now there is only one implementation for this standard provided by the Knowledge
Systems Laboratory of the Stanford University,5 which we were unfortunately unable
to test since the specified DQL server is unavailable, but they also offer an OWL-QL
implementation that supports DAML+OIL and can therefore also be regarded as a DQL
server.6 The approach taken in Stanford was to use a first order logic theorem prover to
answer the queries, but as two examples in chapter5 show, the implementation is in some
cases incomplete and in others also incorrect.

4http://www.daml.org
5http://ksl.stanford.edu/projects/dql
6http://ksl.stanford.edu/projects/owl-ql

3

http://www.daml.org
http://ksl.stanford.edu/projects/dql
http://ksl.stanford.edu/projects/owl-ql

This fact led to the work presented in this report, which aims to provide a correct imple-
mentation that relies on Description Logic reasoners instead of first order logic theorem
provers to answer the queries. Incompleteness can not completely be eliminated since
for the ontology language DAML+OIL no sound and complete inference algorithm is
known so far. A complete and correct solution can so far only be achieved by reducing
the knowledge representation language itself.

The DQL specification, described in detail in chapter3, provides the general framework
for this report and can be regarded as a user specification for the prototypical implemen-
tation developed as part of this project. A constraint defined for this work is to limit the
query support to acyclic conjunctive queries, since until now no algorithm is known to
translate arbitrary queries into DL reasoner queries.

To implement a DQL server that relies on DL reasoners, it is necessary to translate the
incoming queries into statements that a DL reasoner can process, and to translate the
received results from the reasoner back into a form that corresponds to the submitted
query. This translation process constitutes the main part of this work and the next chapter
gives a detailed description of how queries are translated into one or many DL reasoner
queries.

4

Chapter 2

Querying a DAML+OIL Knowledge
Base

2.1 Introduction

Before explaining the query translation process, the general environment is introduced.
This includes DAML+OIL knowledge bases, which provide the knowledge used to an-
swer the queries, and Description Logics, which are the underlying logic formalism.

2.1.1 DAML+OIL

As mentioned in the introduction, Description Logics build the formal foundation of the
Semantic Web and enable the automated reasoning services. However knowledge bases
on the Semantic Web are not directly written in Description Logics, but in languages like
DAML+OIL or OWL. These ontology languages were designed in a way that makes it
possible to translate them into DL and use the full power of already existing reasoning
services. Horrocks [17] illustrated how DAML+OIL and Description Logics fit together.
Example2.1 shows a very simple DAML+OIL knowledge base, to give an impression
of what DAML+OIL looks like. A complete and annotated example is available on the
DAML website.1

The XML syntax of DAML+OIL is quite verbose, although already abbreviations for
longer syntactical statements were used in example2.1. One of the W3C recommen-
dations gives a good overview of the syntax and allowed abbreviations for RDF [23]
and since RDF is the underlying layer of DAML+OIL these abbreviations are valid for
DAML+OIL too. To avoid such long statements for the remainder of this report, the
much shorter Description Logic syntax is introduced in the next section.

1http://www.daml.org/2000/12/daml+oil-walkthru.html

5

http://www.daml.org/2000/12/daml+oil-walkthru.html

Example 2.1
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:daml="http://www.daml.org/2000/12/daml+oil#"
xmlns ="http://myPlace/example#">

<daml:Ontology rdf:about="">
<daml:versionInfo>0.1</daml:versionInfo>
<daml:imports
rdf:resource="http://www.daml.org/2001/03/daml+oil"/>

</daml:Ontology>

<daml:Class rdf:ID="MORTAL"/>
<daml:Class rdf:ID="HUMAN">
<rdfs:subClassOf rdf:resource="#MORTAL"/>

</daml:Class>
<daml:Class rdf:ID="PHILOSOPHER">
<rdfs:subClassOf rdf:resource="#HUMAN"/>

</daml:Class>
<daml:Class rdf:ID="COUNTRY"/>
<daml:ObjectProperty rdf:ID="hasresident">
<rdfs:domain rdf:resource="#COUNTRY"/>
<rdfs:range rdf:resource="#HUMAN"/>

</daml:ObjectProperty>

<PHILOSOPHER rdf:ID="sokrates"/>
<COUNTRY rdf:ID="greece">
<hasresident rdf:resource="#sokrates"/>

</COUNTRY>

</rdf:RDF>

2.1.2 Description Logics

The use of Description Logics to express DAML+OIL statements is possible since from
a formal point of view all DAML+OIL is equivalent to the Description LogicSH I Q
enriched with the oneOf constructor, i.e., defining a concept by enumerating its instances,
and by XML datatypes, i.e., integers or strings. (This was shown by Horrocks [19]). The
basic statements are written asa:C to denote that the individuala is an instance of the
conceptC and(a,b):r to denote that the individualsa andb are related by the roler. C
v D is used for implications, which can also be read as a subconcept relationship. The
semantics is that all instances of the conceptC are always also instances of the concept
D, so aC membership also implies aD membership. The same knowledge base as in
example2.1can then be written as follows:

6

Example 2.2
HUMAN v MORTAL
PHILOSOPHER v HUMAN
greece:COUNTRY
sokrates:PHILOSOPHER
(greece, sokrates):hasresident

In addition to these statements the existential quantification∃ is worth to be introduced
here as well, since existential quantifiers are heavily used in the query translation process.
A statement likeHUMAN v ∃ hasfather.HUMAN means that each instance of the concept
HUMAN is related by thehasfather role to another instance of the conceptHUMAN, so
HUMAN implies the existence of a relationship with another human. The related human
need not be known by name, but a query asking for humans that have a father should
return all humans. A query asking for pairs of child and father (premised thathasfather
has the semantics of relating a child to its father) would however only return humans
whose father is known and return these as a pair.

The constructoru is used to conjunct terms, i.e., the example2.3states that there is also
a relation to a human over thehasmother role.

Example 2.3 HUMAN v ∃ hasfather.HUMAN u ∃ hasmother.HUMAN

These are not all the constructors of DL or DAML+OIL, but sufficient to explain the
general query translation process. A complete overview of the DL constructors and
axioms together with their DAML+OIL equivalent is given by van Harmelen [28] and
appendixA.4 lists all DAML+OIL statements together with their model theoretic seman-
tics.

2.2 Querying

The previous examples have shown how information about a domain can be stored in a
knowledge base. If a knowledge base is stored as part of the Internet, it is available for
other software agents or humans, but to access the knowledge comfortably, a good query
support is essential.

Most of the currently available OWL reasoners support a query interface and they offer
some basic query support to access structural information or information about individu-
als stored in the knowledge base. Most current reasoners support the following types of
queries:

• methods to retrieve all concept, role or individual names

• boolean queries for concept satisfiability, i.e., is the concept inconsistent

• boolean queries for subsumption check, i.e., is one concept more general than an-
other

7

• boolean queries for disjointness of two concepts

• retrieval: queries for individuals that are instances of a given concept

• realisation: retrieves the most specific concepts that an individual is an instance of

• instantiation: boolean queries for an individual (pair of individuals) being an in-
stance of a given concept (role)

These query facilities allow implicit knowledge to be made available. For example the
boolean query forsokrates:MORTAL against the knowledge base of example2.2 will
return true. The reason for this is that Sokrates is specified as a philosopher, philosopher
is a subconcept of human, and human is a subcncept of mortal; and due to the underlying
set theoretic semantics Sokrates is also an instance of the concept mortal.

2.2.1 Extended Retrieval Support

The queries described above are already useful, but users also demand more advanced
features such as the use of variables in a query. A query such as?x:MORTAL, where?x is a
variable, can be transformed into a retrieval query, but slightly more complicated queries
like example2.4 that asks for Greek philosophers are not solvable with the normally
offered query support.

Example 2.4 ?x:PHILOSOPHER u (greece, ?x):hasresident

In the following, names prefixed with ? are used to represent variables. An answer for
such a query consists of bindings for the used variables, and if the variables are replaced
with their corresponding bindings, the resulting statement must be true in the knowledge
base used to answer the query.

Besides these variables a second type of variables is used here for which no binding is
expected in the answer. Instead, it is only required that the existence of such an individual
is inferred by the used knowledge base. To differentiate these variables from the ones for
which a binding is required a ! prefix is used. Both kinds of variables occur in the DQL
specification. Common terms for these two kind of variables aredistinguishedor must-
bind variables for the former andundistinguishedor don’t-bindvariables for the latter.

The meaning of don’t-bind variables can be illustrated by the example in section2.1.2,
where it was stated that every human is related to another human via thehasfather role,
so the existence of a related human via thehasfather role can be inferred for every
human. The answer for the query in example2.5 would return all individuals that are
humans as a binding for?x and no binding for!y, since this is not required. But it is true
in the knowledge base that every human has such a related individual.

This is contrary to a database setting, where no such inferences are possible. In a database
an unspecified value is represented bynull andnull can mean that the father is not
known or that the person has no father. In this setting an unspecified father definitely

8

means that the father is not known, but he exists. This is called the Open World Assump-
tion, whereas databases use the Closed World Assumption and classify everything that is
not explicitly specified in the database as false.

Example 2.5 ?x:HUMAN u (?x, !y):hasfather

The next example gives a first idea of the query translation process. The query in exam-
ple 2.6 is a transformation of the query in example2.5, but the transformation does not
change the semantics of the query. The bindings for?x must be instances of the concept
HUMAN and they must be related via the rolehasfather to another (maybe unnamed)
individual. The symbol> is an abbreviation forC t¬C, whereC is an arbitrary concept
name. This is a tautology and therefore every individual is an instance of the concept>.
Since no specific concept was provided for!y, the concept> is used here.

Example 2.6 ?x:HUMAN u ∃hasfather.>

A simple approach to find an appropriate binding for must-bind variables of a query
could be to replace the variables with individual names from the knowledge base and use
a boolean query to check whether the statement (with the replaced variables) is entailed
by the knowledge base. If that is the case, the individual names are a valid binding for
the used variables. This check has to be done for all individual names in the knowledge
base and for more than one variable one must test all possible combinations of variable
replacements. This would obviously determine the query answer, but with extremely
high costs.

2.2.2 Conjunctive Queries

For some queries Horrocks and Tessaris [20] and Tessaris [26] proposed a solution that is
more efficient than the simple testing strategy described above. Their technique is appli-
cable forconjunctive queriesand transforms queries such as the one given in example2.5
into equivalent ones as the one in example2.6. The query in example2.6can for example
be answered by querying for concept instances of the conceptHUMANu∃ hasfather.>,
which is already supported by most of the current DL reasoners.

Tessaris [26] or Wang, Maher, and Topor [29] provide a formal definition of conjunctive
queries. For short, a conjunctive query consists of a conjunction of concept and/or role
terms that may contain variables. An answer for a conjunctive query replaces some of
the variables with individual names from the knowledge base used to answer the query.
These individual names are called the bindings for their variables. If a variable is not
replaced, the existence of a possible binding must be inferred by the knowledge base.
This is illustrated by the example in section2.1.2, where it was stated that every human
is related to another human via the hasfather role, i.e., the existence of a related human
via the hasfather role can be inferred for every human. Valid answers then consist solely
of terms that are true in the used knowledge base.

9

Before the query translation process is explained in detail, the next section shows how
a graph can be used to represent a query. On the one hand, a graphical representation
facilitates the explanation of the query transformation process and on the other hand,
the implemented algorithm also uses a graph to transform a query into valid Description
Logic reasoner queries.

2.2.3 Graphs as Query Representation

This section shows, how a directed graph can represent a query. In a query graph each
variable is represented as a node. For the readers convenience must-bind variables are
represented by a filled node (•), whereas don’t-bind variables and individuals are rep-
resented by an unfilled node (◦). Nodes for an individual are labelled with the indi-
vidual’s name. A role assertion corresponds to a directed edge, labelled with the role
name. Concept assertions are also labels for the node and appended after a colon, e.g.,
?p:PERSON states that the binding for?p must be an instance of the conceptPERSON and
bill:PERSON states that Bill is a person. Figure2.1 shows the graph representation of
the query in example2.7.

Example 2.7
?p:PERSON u (?p, !t):owns u (!t, red):hasColour

Figure 2.1: Graph representation of the query in example2.7.

The graph representation in figure2.1is a directed acyclic graph and even the underlying
undirected graph is acyclic, but there are also queries that produce a cycle. Since the
query transformation technique introduced in the next section is not directly applicable
to cyclic graphs, the prototype developed as part of this project is limited to tree-like
queries that do not have a cycle in their (underlying undirected) graph representation.

Consider for example query2.8, which is represented by the graph in figure2.2. The
directed graph is acyclic, but the underlying undirected graph has a cycle, so the query is
not permitted. It is also possible to construct queries that have a cycle in their directed
graph representation and these are also not permitted.

Example 2.8
?p:PERSON u (?p, !t):owns u (?p, !c):favouritecolour u
(!t, !c):hascolour

10

Figure 2.2: Graph representation of the query in example2.8.

2.3 Query Transformation

Tessaris and Horrocks [20] recently proposed a rolling-up technique to eliminate vari-
ables from a query. A simple example was already given by the transformation of the
query in example2.5 into the equivalent query in example2.6.

2.3.1 Boolean Queries with one Leaf

The rolling-up is first explained by means of example2.9and its graph representation in
figure2.3, which contains only don’t-bind variables and since no binding for a variable
is required, the query can be treated as aboolean querywith eitheryesas query answer,
in case the knowledge base entails the query, ornootherwise.

Example 2.9
!w:PERSON u (!w, !x):haschild u !x:PERSON u (!x, !y):owns u
(!y, !z):hascolour u !z:COLOUR

Figure 2.3: A boolean query containing only don’t-bind variables.

The rolling-up starts at the leaves of a graph, here at the node for the variable!z. This
node and its incoming edge state that the node’s predecessor has ahascolour successor
that is an instance of the conceptCOLOUR. The same thing can be expressed by the concept
∃ hascolour.COLOUR. If this concept is conjuncted with the concepts of the predecessor
it replaces the leaf node and its incoming edge. The graph in figure2.4 therefore has the
same semantics as the one in figure2.3.

Figure 2.4: After the first rolling-up step.

11

The rolling-up can now be applied again, this time for!y, which is now a leaf. Figure2.5
shows the query graph after the next rolling-up step. The variable!x is still a person
and is related via theowns role to something that is related via thehascolour role to a
colour, so the semantics are still the same.

Figure 2.5: After the second rolling-up step.

The last edge can be removed with an additional rolling-up step and the result is a graph
with only one node.

Figure 2.6: After the third rolling-up step.

In this example the last variable is also a don’t-bind variable, therefore the query can
be answered with true if the knowledge base entails the existence of an instance of the
remaining concept. If?y had been a must-bind variable, then the conjunctive query
could be answered by a standard retrieval query, i.e., by retrieving all the instances of the
concept resulting from the rolling-up procedure.

2.3.2 Boolean Queries with Multiple Leaves

If a query graph has more than one leaf, the conditions generated during the rolling-up
process are all appended to the concept description of the predecessor. Example2.10
shows such a query and the left part of figure2.7 illustrates the corresponding query
concept. The query asks for persons that have a child and own a car. The rolling-up leads
to the graph in the right part of figure2.7 where both conditions are conjoined in the
preceding node.

Example 2.10
?x:PERSON u (?x, !y):owns u !y:CAR u (?x, !z):haschild

Figure 2.7: The query graph of example2.10and its rolled-up equivalent.

12

2.3.3 Rolling-Up in the Role Direction

Until now, the rolling-up process started at a leaf node, following the incoming edge back
to the node’s predecessor. If a query causes a graph containing only leaves with outgoing
edges, the query is no longer in tree form, but since the underlying undirected graph
contains no cycles, the query is still manageable.

Example2.11 and its appertaining graph in figure2.8 illustrates such a query. The
owns relation can be treated as usual, but then both end nodes contain only outgoing
edges. To continue, one can use an inverse role and reduce one of the nodes and its
outgoing edge, e.g., the node for!f with its haschild relation by adding the assertion
∃ haschild−.FEMALE to the person node in the middle. Now the rolling-up can continue
as usual, since the remaining graph is a proper tree.

Example 2.11
!f:FEMALE u !p:PERSON u !m:MALE u !c:CAR u (!f, !p):haschild u
(!m, !p):haschild u (!m, !c):owns

Figure 2.8: The query graph of example2.11and the rolling-up steps.

2.3.4 Rolling-Up with Individual Names

Until now a query contained only variables, but a user can also mix in individual names.
This section shows how to deal with that in the rolling-up process. Consider the query
in example2.12, which asks for persons that own a red thing andred is an individual
name. In a DL that supports the one-of constructor, which allows the definition of a
concept by enumerating its individuals, the rolling-up step can use the one-of constructor
to replace the node for the individualred and itshascolour edge by adding the assertion
∃ hascolour.{red} to its predecessor node. The one-of constructor is denoted as a set
of individuals:{individual1, individual2, ...}. Unfortunately most reasoners do
not support this operator, but an indirect way can help to deal with such queries anyway.
As described by Tessaris [26], a so called representative concept, with a so far unused
concept name, can be used instead of the individual. Of course the ABox2 has to be

2The ABox is the part of the knowledge base that contains assertional knowledge about individuals.

13

extended with an assertion stating that the individual is an instance of its representative
concept. A representative concept is denoted here asPa, wherea is the individual name.
So in this example the assertionred:Pred is added to the knowledge base and then the
query is transformed into the concept descriptionPERSON u ∃ hascolour.Pred.

Example 2.12
?x:PERSON u (?x, !y):owns u (?y, red):hascolour

2.3.5 Rolling-Up for non Boolean Queries

The last section already mentioned how to deal with queries containing at most one must-
bind variable. The rolling-up process simply ends at this variable, and a query asking
for concept instances will return the bindings for the variable. Queries with more than
one must-bind variable need a different approach, since the rolling-up for don’t-bind
variables eliminates the variables and replaces them with sufficient conditions attached
to their predecessor nodes. As a result the reasoner does not return any bindings for them.
The simplest possible approach to solve a query with multiple must-bind variables is to
submit a boolean query for every possible combination of individuals substituted for the
must-bind variables. Unfortunately this approach is very costly. To avoid the test of every
possible combination, the rolling-up process can be used to compute possible candidates
first. Boolean queries are then only necessary for the computed candidates.

Example2.13 shows such a query and figure2.9 shows a graph representation of the
knowledge base that is used to answer the query. The knowledge base consists only of
an ABox. The relations between the individuals that are expected to be in the answer set
are already highlighted.

Example 2.13
?x:PERSON u ?y:CAR u ?z:COLOUR u (?x, ?y):owns u (?y, ?z):hascolour

Figure 2.9: The knowledge base used for the query in example2.13.

14

For the rolling-up, every must-bind variable is treated separately. In the first step,?x is
treated as the only must-bind variable and all other variables are treated as don’t-bind
variables.

The rolling-up for?x then yields a retrieval query for the concept expression:

PERSON u ∃ owns.(CAR u ∃ hascolour.COLOUR)

Instances of this concept, and therefore candidates for the binding of the variable?x, are
bill andjoe. The same is now done for?y, i.e., ?y is treated as the only must-bind
variable and the rolling-up yields to the concept:

CAR u ∃ owns−.PERSON u ∃ hascolour.COLOUR

Instances of this concept arecar1 andcar5. For?z the rolling-up results in:

COLOUR u ∃ hascolour−.(CAR u ∃ owns−.PERSON)

Instances of this concept, and therefore candidates for the binding of?z areblue, red
andgreen.

Boolean queries can now be used to find out which bindings for?x, ?y and?z belong
together. Compared to the testing of all possible combinations the preceding rolling-up
process and candidate retrieval reduces the number of boolean queries significantly.

A server implementing these rolling-up technique can answer conjunctive queries with
don’t and must-bind variables. This allows the implementation of a query answering
server that complies with the proposed DQL Abstract Specification introduced in the
next chapter.

15

Chapter 3

The DQL Abstract Specification

In August 2002 the Joint United States/European Union ad hoc Agent Markup Language
Committee1 released the first version of the DAML Query Language Abstract Specifi-
cation, which was replaced in April 2003 by the current release [13]. The specification
goes beyond the aims of other current web query languages such as XML Query [6], an
XML query language, or RQL [22], an RDF query language, in that it supports the use
of inference and reasoning services for query answering.

The specification is given on a structural level with no exact definition of the external syn-
tax. This was done with the intention to leave the specification easily adoptable for other
knowledge representation formats, such as the Web Ontology Language OWL, which
is a W3C standard recommendation since February 2004. The specification focuses on
defining the semantics of queries and the interaction between a querying agent and a
query answering server.

3.1 Query and Answer Parts

To initiate a query-answering dialogue, a client sends a query to a DQL server. The query
necessarily includes aquery patternthat is a collection of knowledge base statements
where some URI references [4] or literals are replaced by variables. Therefore, if the
knowledge base contains the assertion that Bill is a child of Mary, Bill should be in the
answers of a query asking for Mary’s children. Table3.1 illustrates this. On the left
hand side is a part of a DAML+OIL knowledge base, with individuals and concepts in a
knowledge base provided as URI references. The right hand side shows a query that is
equivalent to the conjunctive query term(mary,?x):haschild u mary:PERSON.

The client also specifies for which variables the server has to provide a binding (must-
bind variables), for which the server may provide a binding (may-bind variables) and
for which variables no binding (don’t-bind variables) should be returned. May-bind
variables are a combination of must-bind and don’t-bind variables, and the rolling-up

1Seehttp://www.daml.org/committee

16

http://www.daml.org/committee

<PERSON rdf:ID="mary"> <PERSON rdf:ID="mary">
<haschild rdf:resource="#bill"> <haschild rdf:resource=?x>

</PERSON> </PERSON>

Table 3.1: A query pattern example.

technique described in the previous chapter is sufficient to deal with may-bind variables
too. Similar to the introduced prefixes? and! for must-bind and don’t-bind variables
respectively, the prefix∼ is used to indicate a may-bind variable.

The knowledge base in example3.1 can be used to illustrate these different kinds of
variable. A query such as(?x, ?y):hasfather, where?x and?y are both must-bind
variables, would have one answer withbill as a binding for?x andjoe as a binding
for ?y. The query(?x, ∼y):hasfather, where∼y is now a may-bind variable would
have two answers. One with the bindingbill for ?x and the bindingjoe for ∼y and
one with the bindingjoe for ?x and no binding for∼y. The second answer is caused
by the assertion that every person is related to another person via thehasfather role,
so it is true that Joe also has a father, but the name of the father is unknown. Ify would
have been a don’t bind variable, the answer set would also contain all known persons as
a binding for?x, but no binding fory would have been returned, whether the father is
known or not.

Example 3.1
PERSON v ∃hasfather.PERSON
bill:PERSON
joe:PERSON
(bill, joe):hasfather

The client may also specify ananswer knowledge base patternwhich specifies the knowl-
edge base(s) the server should use to answer the query or use a variable to let the server
decide which knowledge base to use. The server is also free to delegate the query to
another server. The implemented prototype does not support the specification of multiple
knowledge bases and it does not use delegation, since there are no other servers avail-
able at the moment. Delegation only makes sense, if the server has means to find out
which knowledge base would be useful to answer the query or if the server has some well
known knowledge bases from which clients expect to receive the answer for their query
and neither is currently the case.

An optional query parameter allows the definition of a pattern that the server should use
to return the answers. If it is omitted, the server uses the query pattern instead. Ananswer
patternnecessarily includes all variables used in the query pattern. An example answer
pattern for the query(?x, ?y):hasfather is the natural language sentence “?y is the
father of ?x”. The DQL server uses this pattern in every answer and replaces the variable
names with the appropriate bindings.

The server bundles answers together in an answer set and since such ananswer bundle
can become very large and the computation can take a long time, the specification also

17

allows to specify ananswer bundle size boundthat is an upper bound for number of
answers in an answer bundle.

Another option for a query is to include aquery premiseto facilitate “if-then” queries,
which can’t be expressed otherwise since DAML+OIL does not support an implies log-
ical connective. To ask a question such as “If Bill is a person, then does Bill have a
father?”, the query premise part includes a DAML+OIL knowledge base or a knowledge
base reference stating that Joe is a person and the query part asks for the father of Bill.
A server must treat DAML+OIL statements in the query premise as a regular part of the
answer knowledge base and all answers must be entailed by this knowledge base. A
premise is not supported by the prototype, but since it does not affect the query algorithm
itself, a future version of this DQL server could add statements in the premise to the
knowledge base before the query algorithm starts.

3.2 A Query-Answering Dialogue

To answer a query, the server returns an answer set, which may be empty, together with
a termination token. Atermination tokenis eitherend to indicate that the server cannot
provide more answers for any reason ornoneto assert that no more answers are possi-
ble. If a server is unable to deal with a query, e.g., due to syntactical errors, arejected
termination token is sent in the answer.

If the client specifies an answer bundle size bound in the query, the server does not send
more answers then allowed by the answer bundle size bound. Together with the answer
the server sends either a termination token to end the dialogue or an arbitrarily chosen
process handleto allow the continuation of the query-answering-dialogue. However,
even if the server sends a process handle with the answer it does not guarantee that there
are more answers.

To continue a dialogue the client sends aserver continuationrequest including the pro-
cess handle and an answer bundle size bound for the next answer bundle. A server con-
tinuation may not necessarily be sent from the same client. The client can also pass the
process handle to another client that then continues the query answering dialogue. If
the server can’t deliver any more answers for a server continuation request, it sends a
termination token together with the probably empty answer set.

If the client does not want to continue the dialogue, the client can send aserver ter-
mination request including the process handle. The server can use a received server
termination request to possibly free up resources. Figure3.1illustrates the sequence of a
query-answering-dialogue.

The specification provides some attributes for a server to promote the delivered quality of
service or the so calledconformance level. A server can guarantee to benon-repeating,
i.e., no two answers with the same binding are delivered. The strictest level is called
a terseserver and only the most specific answers are delivered to the client. For ex-
ample an answer is more general (subsumes another) if it only provides fewer bindings

18

Figure 3.1: The query-answering dialogue.

for may-bind variables. Since this demand is very high for a server that produces the
answers incrementally, a less restrictive conformance level isserially terse, where all de-
livered answers are more specific than previously delivered answers. Finally servers that
guarantee to terminate with termination tokennoneare calledcomplete.

3.3 Query Classes

Since it is difficult to implement all of these requirements, the DQL specification ex-
plicitly allows a partial implementation. A DQL server can restrict itself to specialquery
classes, e.g., a server may only support queries that conform to a pattern such as?x rdf:
type C, where C is an DAML+OIL class expression, or?x daml:subClassOf ?y and
reject all other queries. The server is then said to apply to these query classes.

3.4 OWL-QL

For OWL, the successor of DAML+OIL, there is also a first proposal of a query language
called OWL-QL.2 The proposal is very similar to the released DQL specification, but it
is not yet official. Since OWL gains more and more popularity and is also accepted as
a W3C standard, the implemented prototype already supports OWL knowledge bases to
answer the queries and as soon as a formal OWL-QL specification is available the server
could be extended to fully support an OWL-QL specification.

One thing that is missing in the proposed OWL-QL specification are the query-classes
mentioned in the previous section. This would make it much more difficult to provide an
implementation of an OWL-QL specification than it is for the DQL specification and the
final OWL-QL specification is hopefully extended in this regard.

2http://ksl.stanford.edu/projects/owl-ql

19

http://ksl.stanford.edu/projects/owl-ql

Chapter 4

Realisation of a DQL Server Prototype

Now that the rolling-up technique to answer conjunctive queries and the DQL specifica-
tion itself have been introduced, this chapter explains how the prototypical implementa-
tion of a DQL server has been realised and explains why distinct design decisions have
been taken.

The software development process for this project follows an evolutionary prototyping
approach. Not all features for a deployable product are implemented yet, but the proto-
type is meant to be extended and provides a basis for more advanced versions. From a
software engineering point of view it is a vertical prototype model, because it implements
all layers from the client over the query rolling-up process to the reasoning component,
but it is not complete with regard to every functionality described in the DQL specifica-
tion. It covers the most difficult part of a DQL server implementation and leaves simpler
parts open for future versions. In addition to meeting the requirements of the specifica-
tion there are also a lot of nice to have features or methods to improve the performance
that were not implemented, but chapter5 lists some ideas for future versions of the sys-
tem. The experiences with this prototype also lead to suggestions for a future version of
a DQL or OWL-QL specification, which are also covered in chapter5.

4.1 The Architecture

DQL was designed as an agent-to-agent communication protocol and the knowledge
bases used to answer a query may be distributed over various sources in the Seman-
tic Web. Due to this requirement a web service architecture was chosen for the project
realisation. Web services allow communication with different clients, i.e., a .NET appli-
cation can interact with the service or a client written in Java or anything else that sup-
ports HTTP as a communication protocol. In addition, web services are self describing
and their interfaces can be explored by parsing their web services description language
(WSDL) [10] file.

Web services were favoured here over other middleware such as CORBA or Java RMI.

20

They are well standardised now and are able to use multiple high level protocols, such as
HTTP or SMTP, to communicate with a remote service and do not depend on a specific
programming language. Java RMI is in comparison only usable between Java applica-
tions, which is a clear limitation for an agent-to-agent communication protocol. CORBA
does not expose this restriction, but compared to web services it is not so easy to use.
Furthermore, much more efforts are currently made to extend web service standards and
frameworks or services such as registries to promote an available service. The rich set of
additional tools and services, like transaction services, concurrency control or authenti-
cation available for CORBA will surely also be available for web services in the future
and currently theses services are not needed for the realisation of a DQL server.

Part of this project is also an example web client that allows a user to send queries to the
server and then displays the answers as an HTML document.

Figure4.1shows the architecture of the implemented DQL server, together with the im-
plemented client application. The DQL Server part is the main component of this work
and is responsible for the rolling-up process as explained in chapter2. The web ser-
vice offers three methods: one to initiate a query dialogue, one to request more answers
for a process handle of a formerly asked query and one to terminate a query-answering
dialogue. This component then interacts with the main DQL Server and forwards the
received parameters to the relevant methods of the DQL Server component.

The reasoner could be any reasoner that supports the DIG [1] interface. This implemen-
tation has been tested with Racer,1 since Racer implements all ABox reasoning methods
defined in the DIG interface.

The grey box symbolises other client applications such as a rich Java Swing GUI, a .NET
application, another web service that uses the DQL server as part of its service or any
other application that can use a web service.

HTTP

��������� �
wser

	
��
��� �����
e

DQL
Server

�����

Services
Server

Reasoner

Other
Clients

Tomcat Application Server

HTTP HTTP

SOAP
over HTTP

DIG
over HTTP

Servlet

�����
 Services

Client
Axis Axis

JSP

Figure 4.1: The chosen software architecture.

The web service client and the server of the provided implementation are both located on
the same physical machine and therefore hosted by the same Tomcat instance. This is not
necessary and can be changed easily.

1http://www.sts.tu-harburg.de/∼r.f.moeller/racer

21

http://www.sts.tu-harburg.de/~r.f.moeller/racer

4.2 Used Tools, Products and Languages

The implementation was done in Java. The reason for this is that all other components
that are used in this project, e.g., the DAML+OIL to DIG converter or the DIG interface
classes, are also written in Java, and a rich number of frameworks for web services are
also available in Java. To realise such a project in the given amount of time also makes
it necessary to fall back on as much experience with tools and languages as possible,
otherwise too much time would be spent on familiarisation with new tools. Java was,
therefore, the best candidate for the implementation language, and the set up of other
tools was more or less easy.

As an application server Jakarta Tomcat2 with the Axis3 web service framework was cho-
sen. Axis is Apache’s most recent web service framework, and compared to its successor
Apache SOAP it supports the Web Service Description Language (WSDL). Application
developers can generate the Java classes for a web service client from a .wsdl file.

JUnit4 served as a testing framework for the project and an Ant5 script deploys both the
client and the server application to the Tomcat web server and can also run the JUnit
tests to assert that the deployed files work as expected. For CVS versioning the savan-
nah project server of the Hamburg University of Applied Sciences was used. Apache’s
log4J6 served as a logging framework. It is easy to use and provides several predefined
categories, such as info, warning and error. A configuration file defines the verbosity and
the output medium on an application or on a per class level. During the development
various outputs were logged, but due to performance losses this is reduced to only error
logging in the final version of the prototype.

To parse the queries, a small parser was generated using JavaCC (Java Compiler Com-
piler),7 which is similar to the well known Lex/Yacc programs or their successors Flex/
Bison.8 The differences to Lex/ Yacc are that JavaCC produces Java code instead of
C. Furthermore it is a LL(k) parser generator, i.e., it parses top-down, while Yacc is a
LALR(1) parser generator that parses bottom-up. Top-down parsing is completely suffi-
cient for parsing the queries, and the use of a Java parser allows smooth interaction with
the other components.

As Description Logic reasoner Racer9 was used.

2http://jakarta.apache.org/tomcat
3http://ws.apache.org/axis
4http://www.junit.org
5http://ant.apache.org
6http://logging.apache.org/log4j/docs
7https://javacc.dev.java.net
8http://dinosaur.compilertools.net
9http://www.sts.tu-harburg.de/∼r.f.moeller/racer

22

http://jakarta.apache.org/tomcat
http://ws.apache.org/axis
http://www.junit.org
http://ant.apache.org
http://logging.apache.org/log4j/docs
https://javacc.dev.java.net
http://dinosaur.compilertools.net
http://www.sts.tu-harburg.de/~r.f.moeller/racer

4.3 The Components

The following sections describe the components involved in and developed for the DQL
web service following the direction from the web service interface to the core query-
answering component. All Java classes are equipped with detailed JavaDoc comments
and to find out how a special method works, the reader is advised to look at the provided
API documentation.

4.3.1 The Web Service Interface

To start a query-answering-dialogue a client calls thequery() method of the DQL web
service with the necessary parameters to answer the query (the query, the URL of a
knowledge base and optionally an answer bundle size bound and an answer pattern). A
method parameter for the premise is already implemented, but the values are currently
ignored, since the allowed time for the project made it necessary to focus on the main
parts and the premise can easily be added later without major changes to the query-
answering algorithm. The premise should be transferred to the reasoner before the queries
are sent, since statements in the premise have to be treated as if they were a normal part
of the knowledge base.

The web service interface also offers the methodnextResults(), which allows the re-
quest of further answers for a given process handle. The methodterminate() ends a
query-answering-dialogue for a given process handle. Currently all answers are produced
for the first query call and if more answers are available than allowed by the answer bun-
dle size bound, the rest of the answers is stored on the server together with the process
handle.

Figure4.2shows a UML class diagram of the interface class that was used to create the
web service and figure4.3 shows the classes that are relevant for the web service. All
these classes are in the packagedql.server.webservice. DQLService is an imple-
mentation of theIDQLService interface and the classesAnswerSet andQueryAnswer
are types that are used to deliver query answers to a client. TheDQLService class is
not the real implementation; the class follows the facade design pattern and delegates the
parameters to the corresponding components and delivers query answers to the client.

Figure 4.2: The web service interface.

23

Figure 4.3: The web service package.

4.3.2 The DQL Server Component

The main component is the classDQLServer. It passes the query to a query parser com-
ponent, the knowledge base to a converter (a component that converts DAML+OIL or
OWL to DIG statements) and forwards the converted knowledge base to the reasoner. It
also initiates the rolling-up process on the produced query graph and finally returns the
computed answers back to theDQLService class. TheDQLServer class is not responsi-
ble for storing answers in a cache, since this is not part of the query answering process.
Instead theDQLService facade class uses the classAnswerSetCache that is responsible
for storing and returning cached answers.

All parts that belong to the main component are stored in the packagedql.server. The
UML deployment diagram in figure4.4 illustrates the components that are incorporated
in the realisation of the DQL service. The components labelled with library are not
developed as part of this project.

4.3.3 The Query Parser

The queries are currently not written in DAML+OIL or OWL, since only a subset of
these languages is supported (conjunctive queries) and the syntax of a query would be
very long in DAML+OIL or OWL. An extended version of the server could of course

24

Figure 4.4: An UML deployment diagram of the DQL service.

allow a DAML+OIL or OWL query syntax and use a parser such as the one provided
with the Jena framework10 to read the queries.

The different types of variables are indicated by a prefix, as introduced in chapter2: !
is the prefix to indicate a don’t bind variable and ? is the prefix for must-bind variables.
May-bind variables are currently not supported as already mentioned in section3.1. To
parse the query a small parser was implemented with JavaCC. JavaCC needs a .jj file as
input containing an EBNF grammar [14, 30] together with actions and token definitions
as regular expressions. Table4.1shows the used EBNF grammar. The non-terminals are
query, term, crName, objectName androleFiller and the terminals are characters,
like ’(’, or defined regular expression, denoted as<MB>, <DB> and<ID> for a must-bind
variable, a don’t-bind variable or an individual, concept or role name respectively. The
regular expression<STDCHAR> is used as shortcut. The parser also builds the query graph
as described in section2.2.3 while parsing a query. To realise this, a graph object is
instantiated before the parsing starts, and the actions for the non-terminals contain corre-
sponding Java method calls to add a node, a role or a concept assertion to a node.

The grammar file for JavaCC and all files that are generated by JavaCC are in the Java
packagedql.server.parser.

Table4.1shows the EBNF grammar used to parse the queries.

4.3.4 Knowledge Base Loading

The knowledge bases are passed to the classDQLServer as URIs, so they could reference
a file on the local file system or they could point to a knowledge base available over the

10http://jena.sourceforge.net

25

dql.server.parser
http://jena.sourceforge.net

query → term ("," term)*
term → crName "(" objectName roleFiller ")"
crName → <ID>
objectName → <MB> | <DB> | <ID>
roleFiller → ("," objectName)?

<MB : ["?","#","a"-"z","A"-"Z","0"-"9","_"]
(":","#","a"-"z","A"-"Z","0"-"9","_")* >

<DB : ["!","#","a"-"z","A"-"Z","0"-"9","_"]
(":","#","a"-"z","A"-"Z","0"-"9","_")* >

<ID : ["#","a"-"z","A"-"Z","0"-"9","_"]
(":","/",".","?","-","#","a"-"z","A"-"Z","0"-"9","_")* >

Table 4.1: The EBNF grammar for the query parser.

Hyper Text Transfer Protocol (HTTP) or the File Transfer Protocol (FTP). The URIs must
end with .daml for a DAML+OIL knowledge base or with .owl for an OWL knowledge
base. The OWL standard11 specifies three sublanguages, which are called OWL Lite,
OWL DL and OWL Full. Current Description Logic reasoners are not able to use all
features of OWL Full, which is the most expressive sublanguage of OWL. Knowledge
bases that contain such unsupported features are rejected by the DQL server.

Depending on the type of the ontology (DAML+OIL or OWL) they are passed to the
appropriate DIG converter. Both converters are libraries from the University of Manch-
ester and transform DAML+OIL or OWL into DIG statements. These statements are then
passed to the reasoner that is currently connected to the DQL Server.

4.3.5 Interaction with the Reasoner

The connection to a reasoner is established over the DIG Interface [1], which is a stan-
dardised XML interface for Description Logics systems developed by the DL Implemen-
tation Group (DIG).12

A part of the DIG project is the Java API to communicate with DIG compliant reasoners,
like Racer or FaCT++. All parts of the DIG project are available from the Sourceforge
home page.13

The DQL Server tries to read the URL for the reasoner from a properties file that is named
dqlserver.properties and is located in the packagedql.server. If this property file
is not accessible the DQL server tries to connect tohttp://localhost:8080/ to see if
a local reasoner is available there. If none of this works, all query() method calls will
cause an exception.

The classExtendedResponse in the packagedql.server implements methods that fa-
cilitate the analysis of the reasoner’s response, e.g., to see if the knowledge base loading

11http://www.w3.org/TR/2004/REC-owl-features-20040210
12http://dl.kr.org/dig
13http://dig.sourceforge.net

26

http://localhost:8080/
http://www.w3.org/TR/2004/REC-owl-features-20040210
http://dl.kr.org/dig
http://dig.sourceforge.net

was successful one has to call only one method with the reasoner response as a parameter.

Currently all interactions with the reasoner are done in a kind of batch mode, so all
requests (tell and ask) are collected for the first phase of the algorithm and if necessary
also for the second phase to check the candidates for must-bind variables and then sent
to the reasoner at once. This limits the network transportation overhead to a minimum,
since the reasoner may not necessarily run on the same physical machine as the DQL
server.

The DIG interface was chosen since it offers an implementation independent way for
the communication with a reasoner. The standard becomes more and more accepted and
has currently been updated to version 1.1. This additional indirection, compared to a
direct connection to a reasoner over its proprietary interface, may cause longer query
answering times, but it was preferred since it allows an easy switch between all reasoners
that support the interface.

While writing this report the Jena framework has been extended to support the connection
of DAML+OIL or OWL knowledge bases to a DL reasoner over the DIG standard, so
this framework could be an alternative to the converters used here. The DQLServer class
could build a Jena model for the knowledge bases and use it to interact with the reasoner.
Currently the implementation is not yet included in an official Jena release and very little
documentation14 is available along with a technical report about the experiences with the
DIG standard during the extension of Jena [11], so this is only an alternative for a future
version of the DQL server. It would also be necessary to test if a switch to Jena would
increase the performance, otherwise there is no need to change the components.

4.3.6 The Query Graph Component

All classes that belong to the graph representation of a query are bundled in the package
dql.server.querygraph. Figure4.5shows an UML class diagram of these classes.

The classGraph implements the rolling-up technique as described in section2.3. The
graph contains a list of its nodes and a node is represented by the Java classNode. The
nodes manage their relations to other nodes with an adjacent list. An adjacent list is
more applicable than a centrally managed matrix for the relations since the graph is build
incrementally while parsing the query. For each role assertion a directed edge is added
from the outgoing node to its successor and vice versa, but the inverse direction is kept
separately, since it is only needed to traverse the graph and is not part of the query. The
classNodeIterator allows a convenient iteration over all related nodes. Although the
query is represented as a directed graph the term leaf is used here. This is explained by
the fact that the underlying undirected graph is per definition in tree form and a node is
called leaf here, if it is a leaf in the underlying undirected graph.

The methodstartRollingUp() initialises the rolling-up process. First all individuals
are replaced by their representative concepts (see section2.3.4for an explanation), then

14http://jena.sourceforge.net/how-to/dig-reasoner.html

27

http://jena.sourceforge.net/how-to/dig-reasoner.html

Figure 4.5: The UML class diagram of the query graph classes.

all individual or don’t-bind leaves are rolled-up until only one node is left or this process
must stop since only must-bind variables are leaves. If only one node is left, the query can
be transformed to a boolean query or to a concept instance query. Otherwise the rolling-
up technique is used to compute candidates for the bindings of the must-bind variables
as described in section2.3.5.

After this first rolling-up phase the generated queries are sent to the reasoner. If the query
contains at most one must-bind variable the reasoner already returns the final query an-
swer, otherwise the reasoner returns candidates for the bindings of the must-bind vari-
ables.

If at least one of the must-bind variables has no candidates for its binding, the query has
an empty answer set and the query-answering algorithm terminates. Otherwise boolean
queries for each possible candidate combination are sent to the reasoner to test which
combinations are valid answers.

28

4.3.7 Query Types

In this implementation all interactions with the reasoner are regarded as queries. There
are mainly two types of them: ask queries that want to know something from the reasoner,
e.g., which individuals are instances of a concept, and tell queries that pass information
to the reasoner, e.g., that an individual is an instance of a concept. The terms tell and
ask are also used in the DIG specification. Since there are different types of queries for
tell as well as for ask queries, the packagedql.server.query contains different query
type classes arranged in an inheritance hierarchy, together with two interfaces that allow
users of the classes to interact with all (ask) queries in the same way. Tell queries are
only used for the representative concepts of individuals and to state that all representative
concepts are disjoint,15 i.e., the tell queries are derived directly from the abstract query
superclass, while ask queries are arranged in a deeper inheritance hierarchy under the
abstract classAskQuery. Figure4.6 shows the type hierarchy without the subclasses of
the abstract classAskQuery for a better overview. The classAskQuery with its subclasses
is illustrated in figure4.7.

Figure 4.6: The UML class diagram of the query classes.

15Current Description Logic reasoners impose the Unique Name Assumption (UNA) for individuals,
and the disjointness axiom keeps this for the representative concepts.

29

Figure 4.7: The UML class diagram of the AskQuery subclasses.

4.3.8 Query Answers

Query answers are returned in a set represented by the Java classAnswerSet. An answer
set contains at least one answer and at most as many answers as allowed by the answer
bundle size bound variable or all computed answers if the sizeBound variable is zero or
negative. Normally the Java class Integer with the value null would be more applicable,
but for a web service the class Integer and the primitive typeint are both mapped to the
XML schema typexsd:int for transportation over the SOAP protocol and both types are
then unmarshalled to an primitive Java type int. Therefore, theDQLServer class works
with Integer as preferred and theDQLService class, which is the web interface facade,
works withint and does the mapping to Integer.

In addition to the answers for a query an answer set also includes the termination token
or the process handle, whichever is appropriate.

On the server side the answers are stored in the classServerAnswerSet. This class
can be stored in the answer set cache and provides a method to receive an answer set
of a specified size for delivery to the client. In this way it is easy to prepare the next
answer set for the specified size of anextResults() request. In addition, the use of a
simpler answer set class as the return value of the web service avoided the implementa-
tion of special serializers and deserializers for the class. If the class complies with the
Java Bean Standard, which specifies that a class has to have an empty default constructor
andgetVariable() plussetVariable() methods for each used instance variable and

30

nothing else, the default Java Bean serializer class can be used for serialization and de-
serialization. This also saves time for the client implementers of the web service, since
they also need not implement a serializer.

A query can have two kinds of answer. If the query contained no must-bind variables the
returned answer set consists of only one answer with true as its value if all parts of the
query are entailed by the used knowledge base and false otherwise. The returned answer
contains no bindings in this case. If the query contained at least one must-bind variable
the answer set may contain more answers. Each answer contains one binding for each
must-bind variable. These bindings are stored in a map. If all must-bind variables in a
query are replaced by their binding, and all remaining don’t-bind variables are treated as
existentially quantified, the query must be entailed by the knowledge base used to answer
the query.

The classServerAnswerSet and the classAnswerSetCache both reside in the package
dql.server (see figure4.8), while the classesAnswerSet andQueryAnswer together
with their interfaces are located in thedql.server.webservice package, since they are
delivered to the client of the web service. A UML class diagram for this package was
already given in section4.3.1on page24.

Figure 4.8: The UML class diagram of the packagedql.server.

31

4.3.9 The Answer Set Cache

If a query has more answers than the server is allowed to return, the remaining answers
are stored in an answer set cache. The corresponding Java class isAnswerSetCache in
the packagedql.server. The class is implemented as a singleton, to ensure that only
one instance is available in the system. This is necessary for two reasons:

1. Web services can’t guarantee (without extra efforts) that two requests from the
same client are mapped to the same object on the server, i.e., if thequery()
method is executed by one object this object need not be the one that also han-
dles anextResults() request for the client. This makes it impossible to store the
answers in an instance variable. This behaviour is known as web sessions. In a
session the state of the application is saved on a per client basis. Web services can
be forced to support sessions, but a normal configuration does not support this.

2. The DQL specification allows any client that has a valid process handle to request
more answers for this handle, even if the originalquery() request was sent by
another client. For this reason a normal web session would also not be suitable.

With a singleton only one instance of a class is available and this instance stores the
answer sets and returns them on demand. When an answer set becomes empty it is
removed from the cache and if a client requests an answer set that is not in the cache an
empty answer set with an end termination token is returned.

4.4 A Query Processing Sequence

Figure4.9 is an UML sequence diagram illustrating the collaboration of the components
during a query answering process. The actorDQL web service is also a software com-
ponent, namely the web service answering the query request, but the DQL server itself is
a component with a clear boundary to the offered web service, i.e., the DQL web service
can be seen as a client of the component.

Several actions have been taken to improve performance. One optimisation is to execute
fast tasks that may cause an end of the query-answering process as early as possible,
e.g., parsing a query is normally fast, since queries are much shorter than for example a
knowledge base and if there is a syntax error in the query none of the other components
need to be involved.

In two cases the process is finished after the first query phase. One case is, if at most
one must-bind variable was in the query, then the first reasoner response already includes
the query answer. The other is, if the query is not entailed by the knowledge base. This
results in an empty candidate set for at least one must-bind variable or a returned false
value for a boolean query asking if a specified individual exists in the knowledge base or
is an instance of a given concept.

In all other cases a second interaction with the reasoner is necessary to verify all possible

32

Figure 4.9: The UML sequence diagram for query answering.

combinations of the received binding candidates. This is the most costly part of the
implementation besides the loading time for a knowledge base that is determined by the
size of the knowledge base itself.

4.5 Error Handling

The specification defines that if for any reasons a server can not deal with a query it has
to return the termination tokenrejectedin an empty answer set. In addition to this, the
provided implementation also defines agetErrorMessage() method that contains an
explanation of the caused error or failure.

Whenever an error occurs in the DQL server component, e.g., a syntax error in the
query or knowledge base or the reasoner may be unavailable for some reason, the er-
ror is caught, logged and re-thrown with an appropriate description of the exception. The
DQL web service (that is the facade class DQLService) catches all exceptions, creates
an empty answer set with rejected termination token and the message of the caught ex-
ception, i.e., whenever the service is available the client will receive an answer set for its
query and in case of an error this answer set also provides an explanation.

33

4.6 Testing

JUnit16 is a regression testing framework to support developers in the software devel-
opment process. A good introduction into test driven software development is given by
Kent Beck [3], one of the authors of JUnit. For each software unit the developer should
write a test that executes defined methods and asserts that defined conditions are met
before and/or after a method has been executed. A regression test runs the unit tests of
all components. This can help to find possibly occurring side effects, after a change in
one of the components. If a tests does not result in a defined condition, the test fails and
therefore also the whole test suite fails. For example the Eclipse IDE17 has a build in
graphical user interface for JUnit that signals green if all tests were executed as expected
and red otherwise and the used deployment tool Ant also supports the execution of JUnit
tests as part of a software build process.

For the DQL server, tests were implemented for all larger components, which test differ-
ent methods against predefined results. The tests can be executed on demand and they
are also part of the defined Ant deployment process for the DQL server components. The
tests help to assure that specified requirements for the software, e.g., defined by the DQL
specification, are met and they save time, since it is not necessary to test every class after
a change again by executing the class’s main method with different examples.

4.7 The DQL Client Interface

Another part of this implementation is a web service client. This was not specified as
part of the project, but is rather useful to demonstrate the system. In addition, it shows
one possibility of how the provided web service may be used.

The implementation is not described in much detail, since it is not of the realisation of
a DQL server, but the system architecture diagram on page21 shows the general layout
of the client. It is mainly composed of one servlet18 that collects the parameters that
a user enters into an HTML form and passes the parameters to the DQL web service.
All classes needed for the interaction with the web service were build by the wsdl2java
program that is a part of the Jakarta Axis framework, see also section4.2. After the servlet
has received a result from the DQL web service the request is forwarded to a JavaServer
Pages (JSP)19 page. JSP are much easier to use for HTML output than a servlet, since
a servlet can generate output only by using Java’sPrintWriter classes while JSP can
conveniently switch between Java and HTML parts.

The figures on the following pages illustrate the client interface. Figure4.10shows the
front-end for the user. It allows to specify a local knowledge base file or the URL of a

16http://www.junit.org
17http://www.eclipse.org
18http://java.sun.com/products/servlet/whitepaper.html
19http://java.sun.com/products/jsp/whitepaper.html

34

http://www.junit.org
http://www.eclipse.org
http://java.sun.com/products/servlet/whitepaper.html
http://java.sun.com/products/jsp/whitepaper.html

knowledge base, the answer bundle size bound, the query and an answer pattern. It is
necessary to use the fully qualified names for concept, role and individual names as in
the knowledge base itself. The user can also specify a process handle and request more
answers for this. If there are answers stored for the process handle on the server the server
will return them.

Figure4.11shows the answer page. If the answer included a process handle to indicate
that the client can make further calls, the client can choose one of three options: to request
more answers (then the size bound for the next answer set must be given), to terminate
this request and hereby allow the server to free resources or to start a new call. If the
server has no more answers in its cache a termination token is returned and the user has
only the option to ask a new query. This is displayed in figure4.12.

Figure 4.10: The DQL client start page.

35

Figure 4.11: A DQL client answer page with further answers available.

Figure 4.12: A DQL client answer page with termination token.

36

Chapter 5

Conclusion

The preceding chapters have given an overview of a query answering algorithm and its
implementation in a DQL server prototype that uses a Description Logic reasoner in
the background. Although limited in functionality the approach worked well for acyclic
conjunctive queries. A further extension of the implemented prototype is in some regards
easy, e.g., the support of further query types such as a query for sub-concepts of a given
concept, but there are still some open questions that are addressed in this chapter. The
chapter also lists some improvements for a future version of the prototype and compares
it with other query-answering systems.

5.1 Improvements for Future Versions

5.1.1 Extended Query Support

Future versions could implement other query classes such as queries asking for subcon-
cepts. These kind of queries and many other simple queries are already supported by most
of the current reasoners, thus an extended implementation has to translate such queries
into a form that the reasoner uses, but no application of complicated techniques like the
rolling-up technique described here are necessary.

In this prototype the conjuncted queries are not allowed to include cycles, since the used
rolling-up technique then fails to find a proper starting-point in the graph representation.
Tessaris [26] developed some approaches, but there is still no general solution for the
rolling-up technique to deal with cycles, so research in this field is necessary to overcome
this limitation.

37

5.1.2 Multi-Thread Safe Reasoner Connections

For this first prototype the connection to the reasoner is not multi-thread safe, i.e., client
requests have to be serialized for the interaction with the reasoner. The DIG protocol
provides features for the simultaneous use of multiple knowledge bases, so this could
be achieved with some extra effort. One main point here is a change regarding the used
DAML+OIL converter, since the converted knowledge bases always include a statement
to clear everything else in the reasoner. To identify a specific knowledge base it is also
necessary to include a unique identifier in the knowledge base loading statement, which
is not supported by the converter. A solution would be to change the generated DIG
statements before they are passed to the reasoner or switch to the Jena framework, as
proposed in section4.3.5.

5.1.3 Proper Use of the Termination Token

A useful feature for a future version would be the proper use of the termination token.
Currently, the termination tokenendis used to end every query-answering-dialogue, but
the use of the termination tokennone, to indicate that the returned answer set is com-
plete, would give the client a better information about the quality of the received results,
although the use of the termination token end is not contrary to the specification.

Since completeness is not achievable for DAML+OIL in general, either the server must
check which subset of the language has been used or the reasoner itself must communi-
cate whether the answer set is complete or not (but this kind of information is currently
not available over the DIG interface). As already mentioned in section4.3.5, the Jena
RDF framework was extended during the time of this report to support the connection
to a DL reasoner over the DIG interface [11]. Because of this extension it is worth in-
vestigating, if it is much more expensive to build up a model of the knowledge base in
Jena and communicate to the reasoner over this model instead of simply converting the
knowledge base. This would provide the advantage that one can use the Jena framework
to inspect the knowledge base and look for statements that may cause incompleteness
and use the end termination token only in these cases.

5.1.4 Interaction with the Reasoner

Currently, the implementation computes all answers at once and then stores answers in a
cache in the case of an answer bundle size bound that is smaller than the number of com-
puted answers. This approach minimises the number of interactions with the reasoner.
This was done because the reasoner may reside on a physically different machine and
no general assumptions can be made about the quality of the connection to the reasoner.
This approach also avoids saving the whole state of a request in the server, which would
be necessary to continue a started query later on. For a continuation, a reload of the
knowledge base is also necessary or the knowledge base must remain in the reasoner’s
memory until the query is finally terminated. A reloading of the knowledge base will

38

possibly decrease or even eliminate the time savings, while the holding of many large
knowledge bases in memory may slow down the reasoner or cause a permanent memory
lack.

For a small number of received candidates for a binding, the current method of batched
queries is definitely the best approach, but large candidate sets and the computation of
many more answers than requested by a client may cause time delays for the delivery of
a first answer set.

Another method to interact with the reasoner is to send a boolean query directly after an
answer candidate has been assembled to test if the used bindings are valid and do so until
an answer set of the desired size is ready or all candidates have been tested. This strategy
does not consider the connection speed to the reasoner and causes more communication
overhead, since a new request is sent for each possible answer. It would also be necessary
to store the complete state of a query with the resulting shortcomings described above.

Advanced connection handling could combine both of these strategies depending on dif-
ferent factors such as the quality of the connection to the reasoner (e.g., measured by
sending pings or a simple request to the reasoner and average the measured times), the
number of candidate answers with respect to the specified answer bundle size bound, the
available memory or other factors of the current system environment.

5.1.5 Improved Candidate Checks

The additional candidate checks for must-bind variables may be the cause of major de-
lays in query answer retrieval, but unfortunately there are only few optimisations that
eliminate this additional check. On improvement is to use structural knowledge (e.g.,
knowledge about transitive roles) to eliminate some of the candidates.

Two other possible methods take advantage of the knowledge about how many candidates
each node has. One method starts at a node with few candidates and checks the candidates
for direct successors first. If these are not suitable, more distant nodes with probably
many candidates can be skipped. The other method starts at the node with the most
candidates and asks which of these candidates fit to a tuple of candidates for the other
nodes. Both methods could reduce the number of necessary boolean checks significantly,
but which one is the best for a specific situation is future work.

5.2 Identified Improvements for the DQL Specification

During the development of the DQL server prototype some shortcomings of the existing
specification occurred and some improvements for a next release of the specification are
suggested here.

39

5.2.1 Security

One major point is that clients can request further answers for a query if they know a
valid process handle. The client need not be the same client that originally initialised the
query dialogue, so clients can guess a process handle and request answers for it. This
may not be problematic, but if a client has passed a knowledge base to the server that
is not available to the public the server may probably give away (some aspects of) this
protected knowledge. Technical solutions are available to prevent such hijacking of query
answers, the simplest one being the use of sessions. A more secure approach would be
the use of an access control policy language such as XACML [15].

5.2.2 External Query Language Definition

Another point is the undefined external query language for a DQL server. Although this
allows an easy adaptation of the standard to other knowledge representation languages,
as has been done for OWL with the OWL-QL specification proposal, interoperability
between different DQL server implementations is nearly impossible. It is desirable to
extend the specification with regards to an external language that covers at least the basic
operations.

A possible solution could also be the release of a DQL Concrete Specification that ex-
tends the DQL Abstract Specification. For new knowledge representation languages the
abstract specification could remain unchanged and just a new Concrete Specification has
to be released.

Error Handling

Closely related to this is also the definition of proper error handling. The specification
defines three termination tokens and the rejected token signals an error, but provides no
further explanations. The specification allows the definition of further termination to-
kens, but the invention of arbitrary termination tokens by each implementer is not helpful
and does not allow agents to find out the reason for an error without knowledge about
implementation details.

Conformance Level and Query Classes

It is also not clear how a server can report its conformance level (e.g., does the server only
return non-redundant answers) or its supported query classes (e.g., conjunctive queries).
Unless there is a means to communicate such a level an agent cannot use this information.
Humans may read this in documentation, but an agent-to-agent protocol should make this
information available in machine understandable form.

40

5.2.3 Forced Different or Equal Bindings

While testing the server with different queries the need arose to specify that two vari-
ables should have different bindings. An example would be a query asking for children
whose mother is married to a person that is not the father of the child. Without a kind
of differentFrom statement one can not exclude that the binding for the husband is not
the same as the binding for the father. OWL includes a differentFrom statement in its
language but DAML+OIL does not, i.e., a language extension with differentFrom and
sameAs statements for DQL should be considered. Example5.1 shows such a query:
if Mary is married to Joe and Bill is their child, a valid binding for the query would be
?m:mary, ?c:bill, ?h:joe and?f:joe and there are no means to specify that?f and
?h should have a different binding.

Example 5.1
(?m, ?c):haschild ∧ (?m, ?h):marriedto ∧ (?c, ?f):hasfather

5.2.4 Knowledge Base Loading

The DQL specification allows the client to use a variable instead of giving a reference
to a specific knowledge base. This can help to speed up the query-answering process,
since the server can use some permanently loaded knowledge bases (such as a default
knowledge base) or the server could reuse an already loaded knowledge base. In this
case it would be desirable to allow clients to query for available knowledge bases and
specify one of those, a feature that is not envisaged by the current DQL specification.
Whenever a client provides a knowledge base itself an additional parameter could be
added to tell the server if this knowledge base could be cached for further queries of this
client or if the knowledge base may be used for other clients also. If caching is allowed, a
client should be equipped with a method to force a reload, e.g., by providing a last change
date for the knowledge base, similar to the method used to force a reload of an HTML
page that is cached by a proxy.

5.2.5 Answer Bundle Size Bound

Currently the specification defines that a request for more answers for a process handle
needs an answer bundle size bound parameter. This does not consider that a client per-
haps wants to receive all remaining answers at once, which is allowed for the first query
request. Of course a client could specify a very large answer bundle size bound, but
a simple solution would be to omit the size bound parameter as is allowed for the first
request.

41

5.3 Comparison with Other Systems

Apart from this prototype there is one other implementation of the DQL specification
made available by the Knowledge Systems Laboratory of the Stanford University.1 Other
implementations are currently not available, but the reasoner Racer has recently been
extended to support a very rich query language called Racer Query Language (RQL) [16]
and is also compared to the DQL prototype presented here.

5.3.1 The Stanford OWL-QL Server

Unfortunately, the DQL server implementation provided by Stanford University is not
running and leaves the user with a Java connection exception, since the server that is
referenced in the application2 is not available. Stanford also provides an implementation
for the DQL successor OWL-QL3 that can use DAML+OIL knowledge bases and uses
the same technique (JTP4 as a first order logic theorem prover to answer the queries) in
the background. This implementation is regarded as comparable to the DQL server and
was used instead for this comparison.

While testing this server it produced some curious results for more complicated queries.
Example5.2 contains a query that was given to the server for the knowledge base il-
lustrated in example5.1 and also contains a statement that the conceptsA, B, C andD
are disjoint. This was added since DAML+OIL has no unique name assumption and for
this example the server should not assume that two of the individual names point to the
same individual. However, the results of the Stanford server are the same without the
disjointness axioms.

Example 5.2
(?x, !y):r ∧ (!y, ?z):r ∧ (!y):C

Figure 5.1: The knowledge base used for the query in example5.2.

1http://ksl.stanford.edu/projects/dql
2http://onto2.stanford.edu:8080/dql/servlet/DQLServer
3http://ksl.stanford.edu/projects/owl-ql
4http://www.ksl.stanford.edu/software/JTP

42

http://ksl.stanford.edu/projects/dql
http://onto2.stanford.edu:8080/dql/servlet/DQLServer
http://ksl.stanford.edu/projects/owl-ql
http://www.ksl.stanford.edu/software/JTP

The query is difficult, since there really exists no binding for!y, but it is clear that either
c1 or c2 must be aC. It is just not decidable which one is theC. If !y is a don’t-bind
variable, as in this case, the query has exactly one answer, namelya1 as a binding for?x
andb1 as a binding for?z.

The Stanford’s OWL-QL server does not find the correct answer tuple but ends the dia-
logue with termination token end and is compliant with the specification in this case.

However, if the query is changed slightly, and instead of?z the individualb1 is given (see
example5.3), the server produces incorrect answers. The returned answer set (actually
it is no longer a set since it contains duplicates so the term answer bag would be more
appropriate) is{a1, a1, c2, c2, c1} which is cannot be explained with respect to the
knowledge base since onlya1 is connected tob1 over an (not nameable) instance of the
conceptC.

Example 5.3 (?x, !y):r ∧ (!y, b1):r ∧ (!y):C

The prototype implemented as part of this project answers both of these queries correctly,
the first one in example5.2 with a1 as binding for?x andb1 as binding for?z and the
second one witha1 as binding for?x.

Altogether the Stanford implementation seems to offer richer query facilities, e.g., it
allows to query for subconcepts of a given concept, which is not yet included in this
prototype, but it terminates for many queries with the termination token end without
delivering answers or even produces incorrect answers.

5.3.2 Racer Query Language

The Racer Query Language (RQL) [16] offers extensive query support, but it uses a dif-
ferent approach to answer queries and does not support don’t-bind variables. This makes
query answering easier, since such ambiguities, as forc1 andc2 in the knowledge base of
the previous example, cannot occur in a query. Moreover, RQL does not comply with the
DQL specification and is therefore not really comparable to this implementation. To op-
timise the computation of the bindings, RQL uses heuristics from the field of Constraint
Programming such as instantiation of the most constrained variable first.

43

References

[1] Sean Bechhofer,The DIG Description Logic interface: DIG/1.1, Tech. report,
University of Manchester, Oxford Road, Manchester M13 9PL, February 2003,
http://dl-web.man.ac.uk/dig/2003/02/interface.pdf.

[2] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein,OWL web ontol-
ogy language reference, Tech. report, W3C, February 2004,http://www.w3.org/TR/

2004/REC-owl-ref-20040210.

[3] Kent Beck, Test driven development: By example, Addison-Wesley Pub Co,
November 2002.

[4] T. Berners-Lee, R. Fielding, and L. Masinter,RFC 2396: Uniform Resource Identi-
fiers (URI): Generic syntax, URL, August 1998.

[5] Tim Berners-Lee, Mark Fischetti, and Michael L. Dertouzos,Weaving the web: The
original design and ultimate destiny of the world wide web by its inventor, Harper
San Francisco, 1999.

[6] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan Ro-
bie, and J́erôme Siḿeon,XQuery 1.0: An XML query language, URL, November
2003,http://www.w3.org/TR/2003/WD-xquery-20031112.

[7] Willem N. Borst,Construction of engineering ontologies for knowledge sharing and
reuse, Ph.D. thesis, Universiteit Twente, Enschede, The Netherlands, September
1997.

[8] Tim Bray, Jean Paoli, Michael Sperberg-McQueen, Eve Maler, and François
Yergeau,Extensible markup language (XML) 1.0 (third edition), URL, February
2004,http://www.w3.org/TR/2004/REC-xml-20040204.

[9] Dan Brickley, RDF vocabulary description language 1.0, URL, February 2004,
http://www.w3.org/TR/2004/REC-rdf-schema-20040210.

[10] Roberto Chinnici, Martin Gudgin, Jean-Jacques Moreau, Jeffrey Schlimmer,
and Sanjiva Weerawarana,Web Services Description Language (WSDL) ver-
sion 2.0 part 1: Core language, URL, March 2004,http://www.w3.org/TR/2004/
WD-wsdl20-20040326.

44

http://dl-web.man.ac.uk/dig/2003/02/interface.pdf
http://www.w3.org/TR/2004/REC-owl-ref-20040210
http://www.w3.org/TR/2004/REC-owl-ref-20040210
http://www.w3.org/TR/2003/WD-xquery-20031112
http://www.w3.org/TR/2004/REC-xml-20040204
http://www.w3.org/TR/2004/REC-rdf-schema-20040210
http://www.w3.org/TR/2004/WD-wsdl20-20040326
http://www.w3.org/TR/2004/WD-wsdl20-20040326

[11] Ian Dickinson,Implementation experience with the DIG 1.1 specification, Technical
Report HPL-2004-85, Hewlett-Packard, Digital Media Systems Laboratory, Bristol,
May 2004,http://www.hpl.hp.com/techreports/2004/HPL-2004-85.pdf.

[12] Dieter Fensel, Frank van Harmelen, Ian Ian Horrocks, Deborah L. McGuinness,
and Peter F. Patel-Schneider,OIL: An ontology infrastructure for the semantic web,
IEEE Intelligent Systems16 (2001), no. 2, 38–45.

[13] Richard Fikes, Pat Hayes, and Ian Horrocks,DAML Query Language (DQL) ab-
stract specification, URL, April 2003,http://www.daml.org/2003/04/dql.

[14] International Organization for Standardization and International Electrotechni-
cal Commission (ISO/IEC),ISO/IEC 14977 : 1996(E), 1996,http://www.cl.cam.
ac.uk/∼mgk25/iso-14977.pdf.

[15] Simon Godik and Tim Moses,eXtensible Access Control Markup Lan-
guage (XACML) version 1.0, URL, February 2003,http://www.oasis-open.org/
committees/download.php/2406/oasis-xacml-1.0.pdf.

[16] Volker Haarslev, Ralf M̈oller, Ragnhild Van Der Straeten, and Michael Wessel,Ex-
tended query facilities for Racer and an application to software-engineering prob-
lems, To appear in: Proceedings of the International Workshop on Description Log-
ics (DL-2004), Whistler, BC, Canada, June 2004.

[17] Ian Horrocks,DAML+OIL: a reason-able web ontology language, Proceedings of
EDBT 2002, Lecture Notes in Computer Science, no. 2287, Springer, March 2002,
pp. 2–13.

[18] Ian Horrocks, Dieter Fensel, Jeen Broekstra, Stefan Decker, Michael Erdmann,
Carol A. Goble, Frank van Harmelen, Michael Klein, Steffen Staab, and Rudi
Studer,The Ontology Interchange Language OIL, Tech. report, Free University of
Amsterdam, 2000,http://www.ontoknowledge.org/oil/TR/oil.long.html.

[19] Ian Horrocks, Ulrike Sattler, and Stephan Tobies,Practical Reasoning for Ex-
pressive Description Logics, Proceedings of the 6th International Conference on
Logic for Programming and Automated Reasoning (LPAR’99) (H. Ganzinger,
D. McAllester, and A. Voronkov, eds.), Lecture Notes in Artificial Intelligence, no.
1705, Springer-Verlag, 1999, pp. 161–180.

[20] Ian Horrocks and Sergio Tessaris,Querying the semantic web: a formal approach,
Proceedings of the 13th International Semantic Web Conference, ISWC (Ian Hor-
rocks and J. Hendler, eds.), Lecture Notes in Computer Science, no. 2342, 2002,
pp. 177–191.

[21] Ian Horrocks, Frank van Harmelen, and Peter F. Patel-Schneider,DAML+OIL,
URL, March 2001,http://www.daml.org/2001/03/daml+oil-index.html.

[22] Gregory Karvounarakis, Sofia Alexaki, Vassilis Christophides, Dimitris Plex-
ousakis, and Michel Scholl,RQL: A declarative query language for RDF, Pro-
ceedings of the eleventh international conference on World Wide Web (Honolulu,
Hawaii, USA), ACM Press, New York, USA, May 2002, pp. 592–603.

45

http://www.hpl.hp.com/techreports/2004/HPL-2004-85.pdf
http://www.daml.org/2003/04/dql
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf
http://www.oasis-open.org/committees/download.php/2406/oasis-xacml-1.0.pdf
http://www.oasis-open.org/committees/download.php/2406/oasis-xacml-1.0.pdf
http://www.ontoknowledge.org/oil/TR/oil.long.html
http://www.daml.org/2001/03/daml+oil-index.html

[23] Graham Klyne, Jeremy J. Carroll, and Brian McBride,Resource Description
Framework (RDF) concepts and abstract syntax, URL, February 2004,http://www.
w3.org/TR/2004/REC-rdf-concepts-20040210.

[24] Ora Lassila and Ralph Swick,Resource Description Framework (RDF) model
and syntax specification, URL, February 1999, http://www.w3.org/TR/1999/
REC-rdf-syntax-19990222.

[25] DARPA Agent Markup Language (DAML) Program,DAML-ONT initial release,
URL, October 2000,http://www.daml.org/2000/10/daml-ont.html.

[26] Sergio Tessaris,Questions and answers: reasoning and querying in Description
Logic, Phd thesis, University of Manchester, 2001.

[27] Frank van Harmelen, Peter F. Patel-Schneider, and Ian Horrocks,A model-
theoretic semantics for DAML+OIL, URL, March 2001,http://www.daml.org/2001/
03/model-theoretic-semantics.html.

[28] Frank van Harmelen, Peter F. Patel-Schneider, and Ian Horrocks,Reference de-
scription of the DAML+OIL (march 2001) ontology markup language, URL, March
2001,http://www.daml.org/2001/03/reference.

[29] Junhu Wang, Michael Maher, and Rodney Topor,Rewriting general conjunc-
tive queries using views, Proceedings of the thirteenth Australian conference on
Database technologies (Australia Melbourne, Victoria, Australia), ACM Interna-
tional Conference Proceeding Series, vol. 5, Australian Computer Society, Inc.,
Darlinghurst, Australia, 2002, pp. 197–206.

[30] Niklaus Wirth, What can we do about the unnecessary diversity of notation for
syntactic definitions?, Communications of the ACM archive20 (1977), 822–823.

[31] William A. Woods and James G. Schmolze,The KL-ONE family, Computer and
Mathematics with Applications, special issue: Semantic Networks in Artificial In-
telligence23 (1992), no. 2-5, 133–177.

46

http://www.w3.org/TR/2004/REC-rdf-concepts-20040210
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222
http://www.daml.org/2000/10/daml-ont.html
http://www.daml.org/2001/03/model-theoretic-semantics.html
http://www.daml.org/2001/03/model-theoretic-semantics.html
http://www.daml.org/2001/03/reference

Appendix A

Appendix

A.1 Notation

Ontology and Description Logics
class/concept names uppercase
role/property names lowercase
individual/instance names lowercase
representative concept for the individual iPi

Variables
don’t-bind variables ! prefix
may-bind variables ∼prefix
must-bind variables ? prefix

Graphs
individuals unfilled node
don’t-bind variables unfilled node
must-bind variables filled node

A.2 Abbreviations

API Application Programming Interface
CORBA Common Object Request Broker Architecture
CVS Concurrent Versions System
DAML DARPA Agent Markup Language
DAML+OIL DARPA Agent Markup Language with Ontology Inference Layer
DARPA Defense Advanced Research Projects Agency
DIG DL Implementation Group

A1

DL Description Logic
DQL DAML Query Language
EBNF Extended Backus-Naur Form
FOL First Order Logic
FTP File Transfer Protocol
GUI Graphical User Interface
HTML Hyper Text Markup Language
HTTP Hyper Text Transfer Protocol
JSP Java Server Pages
KB Knowledge Base
LL(k) A parser parsingleft-right with leftmost derivation withk tokens of look-

ahead.
LALR A parser parsing with 1 token oflook-ahead fromleft-to-right withr ightmost-

derivation.
OIL Ontology Inference Layer
OWL Web Ontology Language
OWL-QL OWL Query Language
RDF Resource Description Framework
RDFS Resource Description Framework Schema
RMI Remote Method Invocation
RQL Racer Query Language
RQL RDF Query Language
SMTP Simple Mail Transfer Protocol
SOAP Simple Object Access Protocol
UML Unified Modelling Language
UNA Unique Name Assumption
URI Uniform Resource Identifier
W3C World Wide Web Consortium
WSDL Web Service Description Language
XACML eXtensible Access Control Markup Language
XML eXtensible Markup Language

A.3 The Enclosed CD

This Bachelor report contains an appendix of program listings, hardware descriptions
etc. on a CD (disk or supplementary booklet). This Appendix is deposited with Prof. Dr.
Klauck.

A.3.1 Application Files

The attached CD includes the developed prototype and the client application as web
archive. The server application is namedDQLServer.war and can be found in the direc-

A2

tory DQLServer and the client application is namedDQLClient.war and can be found in
the directoryDQLClient. Both applications include all necessary libraries. To install the
applications they need to be copied into the webapps directory of a Tomcat server.

The applications have been tested with Tomcat 4.1.29, J2SDK 1.4.202 and Racer 1.7.19
on a Windows 2000 workstation. Since Racer and Tomcat both work on port 8080 the
Tomcat port has been changed to the normal HTTP port 80. If instead the reasoner
should run on a different port thedqlserver.properties file in theDQLServer.war in
the directoryWEB-INF/classes has to be adopted.

If the web service client should run on a different physical machine the client files for the
web service have to be generated again with a .wsdl file from the running DQL server or
the IP address has to be changed manually in the web service client class.

A.3.2 Dependent Applications

All applications needed to run or to compile the DQL server and the client on a Windows
machine are included in the directorysoftware. This includes Tomcat 4.1.29, J2SDK
1.4.202, JavaCC 3.2, JUnit 3.8.1 and Racer 1.7.19. The use of the applications is limited
to the respective licence agreements.

A.3.3 The Report and the References

This report is included as Adobe Acrobat file namedreport.pdf. The Acrobat Reader
is available athttp://www.adobe.com/products/acrobat/readstep2.html.

The references include some web links, mainly W3C standards. The links for the W3C
standards point to exactly the version that is referred to in the report and the W3C does
not changes these links even if a newer version of a specification appears, but to make
sure that all references are available for the reader, the CD includes an offline version of
the links in the directoryreferences. All references that include a URL are listed in the
file index.html and the link of each reference points to the offline version of the URL.

A.3.4 The Project Source Files

All developed source code is included in the directorysrc inside theDQLServer and
DQLClient directory and an Ant build file is located at the top level folder of each project
folder.

A.3.5 Documentation

The JavaDoc API documentation for the DQL server and the client can be found in their
respective project directories in the subfolder javadoc. The documentation includes de-

A3

http://www.adobe.com/products/acrobat/readstep2.html

tailed comments for each method.

A.4 Model Theoretic Semantics of DAML+OIL

TableA.2 shows the model theoretic semantics of RDF triples relevant to DAML+OIL.
This table is an extract from the DAML+OIL webpage (see [27]), but the syntax was
adapted to the one used throughout this report.

C andD represent classes,P andS represent roles,A andB represent individuals,L a
literal andRa restriction. Note that in DAML+OIL there is no Unique Name Assumption
as used by DL reasoners, soA andB are interpreted as sets of names for an individual.
DAML+OIL distinguishes between a non-empty set of DAML+OIL objects, denoted by
AD, and a disjoint set of XML Schema data types, like integers, denoted byDD. The
domain, denoted byUD (in DL ∆), is the union ofAD andDD.

The interpretation function (·I) applied to a class maps into subsets of either AD or DD,
restrictions are mapped into subsets ofAD, roles into subsets ofAD×UD (object prop-
erties:AD×AD, datatype properties:AD×DD) and individuals resp. RDF literals into
subsets ofAD resp.DD.

The notationP(x) is the set of objects that form the image ofx underP, for P a set of
2-tuples.

Syntactic Structure Semantic Constraint

(rdf:type, C, rdfs:Class) CI ⊆UD

(rdf:type, C, Class) CI ⊆ AD

(rdf:type, C, Datatype) CI ⊆ DD

(rdf:type, C, Restriction) CI ⊆ AD

(rdf:type, P, Property) PI ⊆ AD×UD

(rdf:type, P, ObjectProperty) PI ⊆ AD×AD

(rdf:type, P, DatatypeProperty) PI ⊆ AD×DD

ThingI = AD

NothingI = /0
(rdfs:Literal)I = DD

L for L a literal,LI ⊆DD and ifx is in the interpre-
tation of an XML Schema datatype thenx ∈ LI

iff x hasL as its lexical representation for some
XML Schema datatype

(rdf:type, A, C) AI ⊆CI

(rdf:type, A, D)
(rdf:value, A, L)
(rdf:type, L, rdfs:Literal)

for D an XML Schema datatype,AI is the single-
ton set containing the element ofDI that has lex-
ical representationL, provided that there is one,
otherwiseAI = /0

A4

Syntactic Structure Semantic Constraint

(P, A, B) (x,y)∈PI , for somex⊆AI andy⊆BI , provided
thatAI ⊆ AD

(equivalentTo, C, D)
(equivalentTo, R, S)
(equivalentTo, A, B)

CI = DI

RI = SI

AI = BI

(rdfs:subClassOf, C, D) CI ⊆ DI

(rdfs:subPropertyOf, P, S) PI ⊆ SI

(sameClassAs, C, D) CI = DI

(samePropertyAs, P, S) PI = SI

(sameIndividualAs, A, B) AI = BI

(disjointWith, C, D) CI ∩DI = /0
(differentIndividualFrom, A, B) AI ∩BI = /0
(rdf:type,{C1, . . . ,Cn}, Disjoint) CI

i ∩CI
j = /0 for 1≤ i < j ≤ n

(unionOf, C,{C1, . . . ,Cn}) CI = (CI
1 ∪ . . .∪CI

n)∩AD

(disjointUnionOf, C,{C1, . . . ,Cn}) CI = (CI
1 ∪ . . .∪CI

n)∩AD
CI

i ∩CI
j = /0 for 1≤ i < j ≤ n

(intersectionOf, C,{C1, . . . ,Cn}) CI = CI
1 ∩ . . .∩CI

n ∩AD

(complementOf, C, D) CI ∩DI = /0
CI ∪DI = AD

(oneOf, C,{A1, . . . ,An}) CI = AI
1∪ . . .∪AI

n∩AD

(rdfs:domain, P, C) if (x,y) ∈ PI thenx∈CI

(rdfs:range, P, C) if (x,y) ∈ PI theny∈CI

(inverseOf, P, S) for y∈ AD, (x,y) ∈ PI iff (y,x) ∈ SI

(rdf:type, P, TransitiveProperty) for y ∈ AD, if (x,y) ∈ PI and (y,z) ∈ PI then
(x,z) ∈ PI

(rdf:type, P, UniqueProperty) if (x,y) ∈ PI and(x,z) ∈ PI theny = z

(rdf:type, P, UnambiguousProperty) for y∈AD, if (x,y)∈PI and(z,y)∈PI thenx= z

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, ObjectProperty)
(toClass, R, C)

x∈ RI iff PI ({x})⊆CI

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, ObjectProperty)
(hasValue, R, V)

x∈ RI iff |PI ({x})∩VI |> 0

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, ObjectProperty)
(hasClass, R, C)

x∈ RI iff |PI ({x})∩CI |> 0

A5

Syntactic Structure Semantic Constraint

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, ObjectProperty)
(minCardinality, R, n)

x∈ RI iff |PI ({x})| ≥ n

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, ObjectProperty)
(maxCardinality, R, n)

x∈ RI iff |PI ({x})| ≤ n

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, ObjectProperty)
(cardinality, R, n)

x∈ RI iff |PI ({x})|= n

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, ObjectProperty)
(minCardinalityQ, R, n)
(hasClassQ, R, C)

x∈ RI iff |PI ({x})∩CI | ≥ n

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, ObjectProperty)
(maxCardinalityQ, R, n)
(hasClassQ, R, C)

x∈ RI iff |PI ({x})∩CI | ≤ n

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, ObjectProperty)
(cardinalityQ, R, n)
(hasClassQ, R, C)

x∈ RI iff |PI ({x})∩CI |= n

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, DatatypeProperty)
(toClass, R, C)

x∈ RI iff PI ({x})⊆CI

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, DatatypeProperty)
(hasValue, R, V)

x∈ RI iff |PI ({x})∩VI |> 0

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, DatatypeProperty)
(hasClass, R, C)

x∈ RI iff |PI ({x})∩CI |> 0

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, DatatypeProperty)
(minCardinality, R, n)

x∈ RI iff |PI ({x})| ≥ n

A6

Syntactic Structure Semantic Constraint

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, DatatypeProperty)
(maxCardinality, R, n)

x∈ RI iff |PI ({x})| ≤ n

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, DatatypeProperty)
(cardinality, R, n)

x∈ RI iff |PI ({x})|= n

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, DatatypeProperty)
(minCardinalityQ, R, n)
(hasClassQ, R, C)

x∈ RI iff |PI ({x})∩CI | ≥ n

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, DatatypeProperty)
(maxCardinalityQ, R, n)
(hasClassQ, R, C)

x∈ RI iff |PI ({x})∩CI | ≤ n

(rdf:type, R, Restriction)
(onProperty, R, P)
(rdf:type, P, DatatypeProperty)
(cardinalityQ, R, n)
(hasClassQ, R, C)

x∈ RI iff |PI ({x})∩CI |= n

Table A.2: Model Theoretic Semantics of DAML+OIL

A7

Versicherung über die Selbstsẗandigkeit

Hiermit versichere ich, dass ich die vorliegende Arbeit im Sinne der Prüfungsordnung
Informatik PO 2001nach §22(4) ohne fremde Hilfe selbstständig verfasst und nur die
angegebenen Hilfsmittel benutzt habe.

Ort, Datum Unterschrift

A8

	Introduction
	Semantic Web Concepts
	Ontologies
	Web Ontology Languages
	Reasoners and Inference Engines

	The Conceptual Formulation

	Querying a DAML+OIL Knowledge Base
	Introduction
	DAML+OIL
	Description Logics

	Querying
	Extended Retrieval Support
	Conjunctive Queries
	Graphs as Query Representation

	Query Transformation
	Boolean Queries with one Leaf
	Boolean Queries with Multiple Leaves
	Rolling-Up in the Role Direction
	Rolling-Up with Individual Names
	Rolling-Up for non Boolean Queries

	The DQL Abstract Specification
	Query and Answer Parts
	A Query-Answering Dialogue
	Query Classes
	OWL-QL

	Realisation of a DQL Server Prototype
	The Architecture
	Used Tools, Products and Languages
	The Components
	The Web Service Interface
	The DQL Server Component
	The Query Parser
	Knowledge Base Loading
	Interaction with the Reasoner
	The Query Graph Component
	Query Types
	Query Answers
	The Answer Set Cache

	A Query Processing Sequence
	Error Handling
	Testing
	The DQL Client Interface

	Conclusion
	Improvements for Future Versions
	Extended Query Support
	Multi-Thread Safe Reasoner Connections
	Proper Use of the Termination Token
	Interaction with the Reasoner
	Improved Candidate Checks

	Identified Improvements for the DQL Specification
	Security
	External Query Language Definition
	Forced Different or Equal Bindings
	Knowledge Base Loading
	Answer Bundle Size Bound

	Comparison with Other Systems
	The Stanford OWL-QL Server
	Racer Query Language

	References
	Appendix
	Notation
	Abbreviations
	The Enclosed CD
	Application Files
	Dependent Applications
	The Report and the References
	The Project Source Files
	Documentation

	Model Theoretic Semantics of DAML+OIL

