
Analysing TLS Using the Strand Spaces Model

Allaa I. Kamil and Gavin Lowe∗

April 8, 2008

Abstract

In this paper, we analyse the Transport Layer Security (TLS) pro-
tocol within the strand spaces setting. In [BL03] Broadfoot and Lowe
suggested an abstraction of TLS. The abstraction models the security
services that appear to be provided by the protocol to the high-level
security layers. The outcome of our analysis provides a formalisation
of the security services provided by TLS and proves that, under rea-
sonable assumptions, the abstract model suggested by Broadfoot and
Lowe is correct. To that end, we reduce the complexity of the pro-
tocol using safe simplifying transformations. We extend the strand
spaces model in order to include the cryptographic operations used in
TLS and facilitate its analysis. Finally, we use the extended strand
spaces model to fully analyse TLS with its two main components: the
Handshake and Record Layer Protocols.

∗Authors’ address: Oxford University Computing Laboratory, Wolfson Building, Parks
Road, Oxford, OX1 3QD, UK; {allaa.kamil, gavin.lowe}@comlab.ox.ac.uk.

1

Contents

1 Introduction 4

2 The Transport Layer Security (TLS) Protocol 7
2.1 History of TLS . 7
2.2 TLS: Description . 8

2.2.1 The Authentication Handshake 9
2.2.2 The Record Layer . 14

2.3 Simplifying TLS . 17

3 The Strand Spaces Model, and its use in Modelling TLS 23
3.1 Basics of Strand Spaces . 23

3.1.1 The Term Algebra . 23
3.1.2 Strands, Nodes, and Bundles 25
3.1.3 The Penetrator . 29

3.2 Paths and well behaved bundles 31
3.3 The Normal Form Lemma . 31
3.4 Efficient bundles . 35
3.5 Specifying Authentication and Secrecy Goals 36
3.6 Proving Secrecy and Authentication 38

3.6.1 Safe and Penetrable Keys 38
3.6.2 Authentication Tests 41

3.7 Protocol Independence via Disjoint Encryption 43

4 Security Analysis of TLS 46
4.1 Broadfoot-Lowe Abstract Model for TLS 47
4.2 Assumptions . 48

4.2.1 Origination Assumptions 48
4.2.2 Disjoint Encryption Assumptions 49

4.3 Security Analysis of the Handshake Protocol 50
4.3.1 Public Key Infrastructure 50
4.3.2 The Client’s Guarantees 52
4.3.3 The Server’s Guarantees 54

4.4 Security Analysis of the Record Layer 55
4.4.1 Prefix Authentication 55
4.4.2 Secrecy . 57
4.4.3 Session Independence 58

2

5 Conclusions and Related Work 59

Bibliography 61

A The public key infrastructure (PKI) 64

B TLS Message Flow 64
B.1 Hanshake Protocol Messages 65
B.2 Record Layer Protocol Messages 67

3

1 Introduction

For the last two decades, the area of formal verification of security protocols
has been extensively researched. Many verification and analysis methods
have been developed (e.g. [BAN89, Low01, THG98]) and used successfully
to analyse a number of standard security protocols. Despite these advances,
many of the practical security systems today cannot be verified using these
techniques. Such systems are usually built as large security architectures and
comprise many interacting components. The existing verification techniques
do not scale well to handle such large architectures. In addition, the inter-
action between different security components has not been addressed by the
majority of formalisms [Cre04].

A security protocol is a sequence of messages exchanged between two
or more agents to satisfy a pre-defined security goal. The goal should be
reached even in the presence of an intruder whose capabilities depend on the
surrounding environment in which the security protocol is executed.

The Dolev-Yao intruder [DY83] is the de facto standard threat model for
analysing security protocols. In this model, the intruder is assumed to be
in complete control of the network and may overhear, inject, and intercept
any message sent on the network in addition to the ability to participate
in protocol runs using his own identity. However, the Dolev-Yao intruder
cannot perform cryptanalysis on the cipher texts used since we assume per-
fect cryptography. In other words, the Dolev-Yao model abstracts away
from the details of cryptographic primitives such as hashing, encryption, and
signature. This layer of abstraction has facilitated the security analysis of
cryptographic protocols and improved the scalability of automated analysis
techniques.

Many practical security systems are built from layered security protocols,
with a high-level security layer running on top of one or more lower-level
secure channels. In principle, such a system can be analysed by direct mod-
elling the whole layered architecture. However, this direct approach has
clear disadvantages in terms of model complexity and analysis inefficiency.
To analyse layered security architectures, we can adopt a layered approach
that uses the same concept used in the Dolev-Yao model: adding a new layer
of abstraction [BL03, Cre04]. This approach comprises the following steps:

• Analyse the low-level secure channel within the Dolev-Yao model and
formalise the security services it provides for the high-level security

4

layers;

• Abstract away from the details of the implementation of the secure
channel and just model the services it provides;

• Analyse the high-level layers using the new layer of abstraction devel-
oped and hence verify the whole security architecture.

In addition to its benefits in terms of modelling simplicity and automated
analysis efficiency [BL03], this layered approach has huge advantages in terms
of reusability. Once an abstract model of a secure channel is developed, it can
be reused in the verification of different security architectures with different
high-level protocols. Similarly, if we prove the correctness of a high-level
protocol on a certain secure channel, the same proof applies, under certain
conditions, if the protocol is run on a secure channel that provides the same,
or stronger, security services but has a different implementation.

In [BL03], Broadfoot and Lowe adopted the above approach to analyse
layered security architectures and suggested an abstraction of the Transport
Layer Security (TLS) Protocol as an example of a low-level secure channel.
The abstraction models the security services that appear to be provided by
TLS for the high-level security layers, sometimes referred to as the Trans-
action Layers. In this paper we analyse the TLS Protocol, formalise the
security services it provides, and prove that the abstract model suggested
by Broadfoot and Lowe was indeed correct. The TLS protocol has been our
choice for analysis since it is an industry standard used in almost every online
financial transaction as a low-level secure channel. The verification method
used is the strand spaces model [THG98].

Since its development in 1999, TLS has been analysed many times, e.g.
[Pau99, DCVP04]. However, to our knowledge, no previous analysis has been
able to completely verify the protocol or formally describe the security ser-
vices it provides for the Transaction Layer. By examining the TLS protocol,
the challenges that face its formal analysis become clear:

Size The TLS protocol is considerably larger than most of the protocols
in the academic literature in terms of number and length of messages
exchanged. According to Yasinsac and Childs [YC01], any form of the
TLS protocol is ten to fifteen times larger than the majority of the
protocols listed in the canonical security protocol collection by Clark
and Jacob [CJ97].

5

Cryptographic complexity Many security verification techniques lack the
functionality to deal appropriately with some of the cryptographic oper-
ations used in TLS, e.g. using session keys generated by pseudo-random
functions. Such operations complicate the protocol model and, conse-
quently, the analysis of the protocol.

Multi-layer interaction The TLS protocol is primarily designed to pro-
vide security services for the messages exchanged in the Transaction
Layer. The syntactic structure of the transaction protocol is not speci-
fied by the protocol. Indeed, the Transaction Layer messages could leak
keys used by the Handshake and Record Layer protocols, and therefore
cause their failure to achieve their security goals; more subtly, multi-
layer attacks may happen, where a message from one layer is replayed
and interpreted as being a message from the other layer, leading to
an attack. Until now, no one has verified the combination of the two
layers, and the possibility of interactions between them.

In our analysis of TLS, we tackle each of these difficulties. We deal with
the problem of protocol size by using safe simplifying transformations [HL99]
to reduce the number and length of messages. We tackle the problem of cryp-
tographic complexity by extending the strand spaces model to incorporate
the cryptographic operations used in TLS in order to be able to reason for-
mally about them. Finally, we consider multi-layer interaction by carefully
stating some general assumptions about the syntactic structure of the Trans-
action Layer messages.

TLS involves authenticating the peers’ identities using public key cryp-
tography. This authentication can be unilateral, i.e. only the server is authen-
ticated, or bilateral, i.e. the client and the server are mutually authenticated.
In this paper we only consider the TLS protocol in the bilateral authenti-
cation mode. We also do not consider the case where the shared secret is
negotiated using Diffie-Hellman exchange [DA99].

This paper is organised in five sections. In Section 2 we give an overview
of the TLS protocol and its security goals. We also simplify the protocol by
removing its redundancy and put it in a suitable form for analysis. In Section
3 we explain the strand spaces model. We also describe the extensions and
modifications we made to the model to facilitate the analysis of TLS. In
Section 4 we analyse the TLS protocol using the strand spaces model and
formalise the security services it provides. Finally, in Section 5, we discuss

6

how our work compares to previous work on the analysis of TLS, and we sum
up our results.

2 The Transport Layer Security (TLS) Pro-

tocol

In this section we provide a detailed description of the Transport Layer Se-
curity (TLS) protocol and its security goals. We start by giving a brief
history of TLS. We then proceed to describe TLS and its two stages: the
initial Handshake Protocol and the Record Layer Protocol. This is followed
by a discussion of the difficulties that arise when analysing TLS. Finally, we
attempt to reduce the complexity of the protocol by using safe simplifying
transformations [HL99].

2.1 History of TLS

The original motivation for developing secure transport protocols was the In-
ternet. The Secure Sockets Layer Protocol (SSL) version 1.0 was developed
by Netscape Communications in June 1994 as a response to the growing
security concerns on the Internet. Due to some major drawbacks, mainly
missing support for credit card transactions over the Internet, the first ver-
sion of SSL was never released. A few months later, Netscape shipped its
first product with support for SSL version 2.0: Netscape Navigator. SSL
version 2.0 offered confidential credit card transactions and server authenti-
cation with the use of digital certificates and encryption. Unfortunately, SSL
version 2.0 turned out to be insecure [GW96]. In October 1995, Microsoft
published Private Communication Technology (PCT) version 1.0 [BLS+95]
to address some of the problems of SSL version 2.0. Many of the ideas of
PCT were incorporated in SSL version 3.0 which was released by Netscape
Communications in late 1995. In 1996 Microsoft released the Secure Trans-
port Layer Protocol (STLP) [Str96], which was a modification to SSL version
3.0, providing additional features which Microsoft considered to be critical
like support for datagrams (e.g. UDP) and client authentication using shared
secrets.

In May 1996, the standardisation of SSL became the responsibility of
the Internet Engineering Task Force (IETF). The IETF renamed SSL to
Transport Layer Security (TLS) to avoid the appearance of bias toward any

7

particular company. The first version of TLS was released in January 1999
[DA99]. Despite the change of names, TLS is nothing more than a new
version of SSL. In fact, there are far fewer differences between TLS version
1.0 and SSL version 3.0 than those between SSL version 3.0 and SSL version
2.0 [Tho00]. TLS version 1.0 is the focus of the rest of this paper.

2.2 TLS: Description

In this section we describe the basic concepts of TLS, its components, and
its operation. All the cryptographic details are explained in Appendix A.

According to the TLS specification document [DA99], the primary goal
of the TLS Protocol is to provide privacy and data integrity between two
communicating applications. The protocol defines two different roles for the
communicating parties: a client role and a server role. The client is the
principal that initiates the secure communication while the server responds
to the client’s request.

Figure 1: The composition of TLS

TLS operates on top of some reliable transport protocol (e.g. Transmission
Control Protocol (TCP)) and below some higher-level transaction protocols

8

(e.g. Hyper Text Transport Protocol (HTTP)). In other words, TLS uses
transport protocols on behalf of higher-level transaction protocols to establish
a secure channel. TLS itself is not a single protocol, but consists of four sub-
protocols (See Figure 1):

• The Handshake protocol: The Handshake Protocol is used by the
communicating parties to agree on the cryptographic parameters that
will be used in the initiated session.

• The ChangeCipherSpec protocol: The ChangeCipherSpec protocol is
used by the sending party to notify the receiving party that the sub-
sequent messages should be protected by the negotiated cryptographic
parameters. The protocol uses a single byte with value 1 to indicate
the transition.

• The Alert protocol: The Alert protocol provides exception handling
for SSL secured connections. Alert messages indicate the severity of an
alert (i.e. warning or fatal) and a description of the alert.

• The Record Layer protocol: The Record Layer Protocol encapsulates
messages from the higher layer protocols including messages from the
Handshake, ChangeCipherSpec, Alert, and Transaction protocols. The
data stream is fragmented into a series of records. These records
are protected by the cryptographic parameters agreed upon using the
Handshake Protocol. The records are then passed to a transport layer
protocol (such as TCP) for transmission.

It is clear from the previous description that, from a security point of
view, the TLS protocol is composed of two main components. At the lowest
level, layered on top of some reliable transport protocol, is the TLS Record
Layer Protocol. The Record Layer Protocol is responsible for data transfer.
The other component is the TLS Handshake Protocol which is responsible
for establishing TLS session states between communicating peers. In the fol-
lowing subsections we give a detailed description of the Handshake Protocol
and the Record Layer Protocol.

2.2.1 The Authentication Handshake

According to the TLS version 1.0 specification document [DA99], the Hand-
shake Protocol provides connection security that has three basic properties:

9

1. The negotiation of a shared secret is secure: the negotiated secret is
unavailable to eavesdroppers, and for any authenticated connection the
secret cannot be obtained, even by an attacker who can place himself
in the middle of the connection.

2. The negotiation is reliable: no attacker can modify the negotiation
communication without being detected by the communicating parties.

3. The peer’s identity can be authenticated using public key cryptography
(see Appendix A for more details). This authentication can be unilat-
eral, i.e. only the server is authenticated, or mutual, i.e. the client and
the server are mutually authenticated.

As stated previously, in this paper we analyse the TLS protocol in the
mutual authentication mode. Below we describe a TLS Handshake exchange
between a client and a server in the mutual authentication mode.

Each handshake message contains three fields:

1. message type: Indicates the type of the message, e.g. ClientHello,
ServerHello, CertificateRequest, etc.

2. message length: Indicates the length of the message.

3. Content Parameters : Refers to the content associated with each hand-
shake message. If a content parameter is a list it is always preceded by
its length.

Each TLS handshake message is presented below in the following form:

Message no. Message type A −→ B : Content Parameters

Message no refers to the order in which the message is sent in the handshake
protocol. Message type indicates the type of the message. A and B denote
the sending and the receiving agents respectively. In the following message
descriptions, c and s are used instead of A and B to refer to the client and the
server respectively. Content Pararmeters refers to the content parameters
of the handshake message. Note that the message type and message length
are omitted from the message body. The complete handshake exchange is
included in Appendix B.

10

ClientHello:

1. ClientHello c −→ s : client version, client nonce, sessionID length,
sessionID, cipher suite length, cipher suites,
compression length, compression methods

This is the first message sent by a client in the TLS Handshake Protocol.
Its main purpose is to communicate the clients connection preferences to the
server. These preferences include:

• client version: The highest TLS version supported by the client.

• cipher suites: The list of cryptographic algorithms supported by the
client (e.g. RSA, Diffie-Hellman) in decreasing order of preference.

• compression methods: The list of compression algorithms supported
by the client in decreasing order of preference.

The message also includes a fresh random number referred to as
client nonce, and an optional session identification number sessionID that
is used for session resumption purposes.

ServerHello:

2. ServerHello s −→ c : server version, server nonce, sessionID length,
sessionID, cipher suites, compression methods

With this message, the server makes its choice out of the preferences of-
fered by the client. These include the TLS version, cipher suite and compres-
sion algorithms that will be used for this connection. There is no obligation
for a server to choose the client’s preferred ciphers, even if supported on the
server side.

The message also includes a fresh random number denoted by
server nonce, and returns the non-zero session identification number
sessionID received from the client if a previous session is to be resumed.

ServerCertificate:

3. ServerCertificate s −→ c : certificate chain length, certificate list

11

This message simply consists of a chain of X.509 certificates (See Ap-
pendix A), certificate list, presented in order, with the first one being the
certificate that belongs to the server itself. This step is mandatory for the
server during the handshake phase; it has to send its certificate in order to
authenticate itself to the client.

ServerKeyExchange

4. ServerKeyExchange s −→ c : parameters, signed parameters

This message includes the server’s key exchange parameters parameters.
These parameters contain enough data to allow the client to send a pre-
master secret. If the public key included in the ServerCertificate mes-
sage is suitable for encryption as well as verifying signatures, the field
parameters is empty. parameters is concatenated to the client nonce
and the server nonce. The concatenated terms are hashed and signed
by the signature key that corresponds to the public key provided
in the ServerCertificate message. The signed term is denoted by
signed parameters and has the following form:
{Hash(client nonce, server nonce, parameters)}SK(s)

CertificateRequest

5. CertificateRequest s −→ c : certificate type length, certificate types,
certificate authorities length, certificate authorities

This message is optional and is sent by the server to ask the client to send
its certificate. The message includes the list of certificate types acceptable
by the server, certificate types, and the certificate authorities recognised by
the server, certificate authorities.

ServerHelloDone

6. ServerHelloDone s −→ c :

This message is sent by the server simply to indicate the conclusion of
a handshake negotiation. The content parameters field of this message is
empty.

12

ClientCertificate

7. ClientCertificate c −→ s : certificate chain length, certificate list

This message is sent by the client after receiving a ServerHelloDone
message and iff the server has previously sent a CertificateRequest message.
The message includes the certificate chain of the client.

ClientKeyExchange

8. ClientKeyExchange c −→ s : {client version, premaster secret}PK(s)

Just as the ServerkeyExchange provides the key information for the
server, the ClientKeyExchange tells the server the client’s key information.
The message contains the premaster secret which is used later to generate
the session keys. The premaster secret is encrypted, together with the latest
TLS version the client supports client version, under the public key of the
server.

CertificateVerify

9. CertificateVerify c −→ s : {V erifying Hash(handshake messages[1− 8])}SK(c)

By sending CertificateV erify, the client proves that it possesses the se-
cret key that corresponds to the public key included in the ClientCertificate
message. The message contains a signed hash of handshake messages[1−8]
which refers to all the handshake messages exchanged up to but not including
this message. The signature is then verified by the server.

ClientFinished

10. ClientFinished c −→ s : PRF (master secret, “clientfinished”,
MD5(handshake messages[1− 10]),
SHA(handshake messages[1− 10]))

The ClientF inished message is sent by the client to prove that the hand-
shake negotiation has been successful and that the negotiated cipher suite
is in effect. The message includes a digest of the negotiated master secret

13

along with the label “clientfinished” and handshake messages[1−9] hashed
using the functions SHA and MD5. master secret is generated from the
premaster secret using the pseudo random function PRF (See Appendix A)
as follows:

master secret = PRF (premaster secret, “mastersecret”, {client nonce, server nonce})

handshake messages[1− 9] refers to the concatenation of all of the data
from all handshake messages up to but not including this message.

ServerFinished

11. ServerFinished s −→ c : PRF (master secret, “serverfinished”,
MD5(handshake messages[1− 10],
SHA(handshake messages[1− 10])))

ServerF inished is the last message of the handshake exchange. It is sent
by the server to prove that the handshake negotiation has been successful
and that the negotiated cipher suite is in effect. The message is very similar
to the ClientF inished message except for two things:

• ServerF inished includes the label “serverfinished” while
ClientF inished includes the label “clientfinished”

• The handshake messages[1 − 10] parameter for the ServerF inished
message is different from that for the ClientF inished message, because
the one which is sent second includes the prior one.

Since the ClientF inished and ServerF inished messages are sent after
exchanging the ChangeCipherSpec messages (See Figure 1), they are passed
to the record layer to be protected using the negotiated cipher suite. Recip-
ients of finished messages must verify that the contents are correct. Once a
side has sent its Finished message and received and validated the Finished
message from its peer, it may begin to send and receive transaction data over
the established connection.

2.2.2 The Record Layer

As stated in [DA99], the Record Layer Protocol aims to establish a peer to
peer connection that provides the followings:

14

• Confidentiality. Symmetric cryptography is used for data encryption
(See Appendix A for more details about symmetric encryption). The
keys for this symmetric encryption are generated uniquely for each
connection and are based on the premaster secret negotiated by the
TLS Handshake Protocol.

• Message Integrity. Message transport includes a message integrity
check using a keyed MAC. Secure hash functions (e.g. SHA, MD5, etc.)
are used for MAC computations.

As mentioned before, the Record Layer Protocol encapsulates all mes-
sages of the higher-layer messages. These messages go through the following
operations before being transmitted via a transport layer protocol (such as
TCP):

Fragmentation Fragmentation is the first operation that is performed on
the higher-layer massages. Upper-layer messages are fragmented into a block
of 214 bytes or less of TLS plaintext. Multiple client messages of the same
component type may be coalesced into a single TLS plaintext record, or
a single message may be fragmented across several records. Some headers
are added to the fragmented message. The format of the fragmented data
become as follows:

fragmented record := content type, protocol version,message length,
fragmented data

Compression Compression is optionally applied on the fragmented trans-
action data. Messages are compressed using the compression method defined
on the current session. Compression must be lossless and may not increase
the content length by more than 1024 bytes. The format of the compressed
message is:

compressed record := content type, protocol version, compressed length,
compressed fragment

15

Message Authentication Code Message authentication code (MAC) is
computed over the compressed data. TLS uses the standard message authen-
tication code HMAC. HMAC requires two parameters: a secret parameter
and a data parameter. The secret parameter is computed from the parame-
ters negotiated by the Handshake Protocol. Firstly, aKey Block is generated
from the master secret, the client nonce, and the server nonce as follows:

Key Block := PRF (master secret, “key expansion”, {server nonce, client nonce})

Then the Key Block is partitioned into four partitions. The first and
second partitions are used for the Client MAC and the Server MAC re-
spectively as follows:

Client MAC := Quarter(Key Block, 0)
Server MAC := Quarter(Key Block, 1)

The third and the fourth partitions are used to generate the encryption
keys as we will discuss later. The data parameter includes the compressed
record after applying HMAC, the format of the message becomes:

client MAC record := HMAC(Client MAC, {seq number, compressed record})
server MAC record := HMAC(Server MAC, {seq number, compressed record})

Encryption Encryption is applied using the symmetric encryption key
generated from the third and fourth partitions of Key Block.

Client Key := PRF (Quarter(Key Block, 2), “client encryption”,
{server nonce, client nonce})

Server Key := PRF (Quarter(Key Block, 3), “server encryption”,
{server nonce, client nonce})

The encrypted message takes the following form:

16

encrypted client record := {compressed record, Client MACrecord,
padding, padding length}Client Key

encrypted server record := {compressed record, Server MACrecord,
padding, padding length}Server Key

Adding a header At this final stage, a header is concatenated to each
message. This header consists of:

• content type: Indicates which higher-layer protocol’s message is being
transmitted.

• protocol version: Indicates the version of TLS being used.

• message length: The length in bytes of the plaintext/compresses frag-
ment.

After performing these operations the final form of a record layer message
sent by the client is:

ClientRecord c −→ s : content type, protocol version,message length
encrypted client record

ClientRecord s −→ c : content type, protocol version,message length
encrypted server record

2.3 Simplifying TLS

The idea of simplifying transformations is to remove redundant information
present in the protocol whilst not losing any possible attacks [HL99]. The end
result should be a fault-preserved version of the original protocol, whereby
any attack on the original is also an attack upon the simplified version. When
the simplified version is then checked for attacks, if any are found they can
be tested against the full protocol to see if they are indeed an actual attack.
If the simplified protocol can be proved secure, then the original protocol is
also secure.

Like most commercial protocols, the TLS protocol contains a number of
fields that are included for functionality rather than security. Some mes-
sages also include more hashings than are necessary. This added complexity

17

makes analysis more difficult. fault preserving simplifying transformations
have been used before to simplify the TLS protocol [Kar01, Aut04]. Our
simplied version of TLS is similar to the one presented in [Aut04] with minor
modifications. Below are the simplifying transformations which are used to
reduce the complexity of the TLS protocol.

Removing atomic fields The Removing atomic fields transformation
completely removes some fields from the protocol. We will use this transfor-
mation on all the atomic values that are in the protocol for reasons of func-
tionality rather than security such as message length, cipher suite length,
cipher suite, content type, etc. We will also remove the session-related fields
sessionID and sessionID length since we do not consider session resump-
tion in our analysis. In addition, we assume that the public key certificates
include public keys suitable for encryption. Therefore, the fields Parameters
and signed parameters are not needed. Applying this transformation, some
of the messages become empty and are completely removed. The Handshake
Protocol becomes as follows:

1. ClientHello c −→ s : client nonce
2. ServerHello s −→ c : server nonce
3. ServerCertificate s −→ c : Certificate List
4. ClientCertificate c −→ s : Certificate List
5. ClientKeyExchange c −→ s : premaster secretPK(s)

6. CertificateVerify c −→ s : {V erifying Hash(handshake messages[1− 5])}SK(c)

7. ClientFinished c −→ s : PRF (master secret, “clientfinished”,
MD5(handshake messages[1− 6],
SHA(handshake messages[1− 6])))

8. ServerFinished s −→ c : PRF (master secret, “serverfinished”,
MD5(handshake messages[1− 7],
SHA(handshake messages[1− 7])))

Please note that the handshake messages field now refers to the sim-
plified handshake messages exchanged up to but not including the current
message.

Record layer messages become as follows:

18

ServerRecord s −→ c : {transaction message,
HMAC(Server MAC, seq number, transaction message)}Server Key

ClientRecord c −→ s : {transaction message,
HMAC(Client MAC, seq number, transaction message)}Client Key

Renaming For clarity, all the fields in the protocol are now given shorter
names. The certificate lists are expressed as a function CERT of the certifi-
cate and the certificate issuer. Applying an injective renaming function and
putting the Handshake and the Record Layer protocols together:

1. ClientHello c −→ s : rc
2. ServerHello s −→ c : rs
3. ServerCertificate s −→ c : CERT (s, vs)
4. ClientCertificate c −→ s : CERT (c, vc)
5. ClientKeyExchange c −→ s : {pm}PK(s)

6. CertificateVerify c −→ s : {V H(Prev5)}SK(c)

7. ClientFinished c −→ s : [PRF (mk, “cf”,MD5(Prev6), SHA(Prev6)), 0]cm,ce
8. ServerFinished s −→ c : [PRF (mk, “sf”,MD5(Prev7), SHA(Prev7)), 0]sm,se

where [M,n]mac,enc is a record layer message that has the form:

[M,n]mac,enc = {M,HMAC(mac, {n,M})}enc

and

mk := PRF (pm, “ms”, {rc, rs})
ke := PRF (mk, “ke”, {rc, rs})
cm := Quarter(ke, 0)
sm := Quarter(ke, 1)
ce := PRF (Quarter(ke, 2), “ce”, {rc, rs})
se := PRF (Quarter(ke, 3), “se”, {rc, rs})

Note that we write free variables in small letters and functions in capital
letters. We use Prevn to denote all previous n messages.

19

Removing hash functions The Removing hash function transformation
replaces hash functions with their hashed content. We firstly replace each
hash functions of the form PRF (a, “string”, “b”) with a hash function of the
form PRFstring(a, b) and each function of the form Quarter(a, n) with Qn(a).
Consequently, the ClientF inished and ServerF inished messages become as
follows:

7. ClientFinished c −→ s : [PRFcf (mk,MD5(Prev6), SHA(Prev6)), 0]cm,ce
8. ServerFinished s −→ c : [PRFsf (mk,MD5(Prev7), SHA(Prev7)), 0]sm,se

The keying material become as follows:

mk := PRFms(pm, rc, rs)
ke := PRFke(mk, rc, rs)
cm := Q0(ke)
sm := Q1(ke)
ce := PRFce(Q2(ke), rc, rs)
se := PRFse(Q3(ke), rc, rs)

Now we use the transformation to remove hashes that are included in the
contents of other hashes in the TLS protocol. As a result, the hash functions
MD5 and SHA are removed since they are included inside the pseudo random
function PRF. Similarly, the keying material MK and KE are replaced with
their contents since they are included in other hashes as well. The protocol
becomes as follows:

1. ClientHello c −→ s : rc
2. ServerHello s −→ c : rs
3. ServerCertificate s −→ c : CERT (s, vs)
4. ClientCertificate c −→ s : CERT (c, vc)
5. ClientKeyExchange c −→ s : {pm}PK(s)

6. CertificateVerify c −→ s : {V H(Prev6)}SK(c)

7. ClientFinished c −→ s : [PRFcf (pm, rc, rs, P rev6, P rev6), 0]cm,ce
8. ServerFinished s −→ c : [PRFsf (pm,RC , RS, P rev7, P rev7), 0]sm,se

where [M,n]mac,enc is a record layer message that has the form:

20

[M,n]mac,enc = {M,HMAC(mac, {n,M})}enc
mk := pm, rc, rs
ke := mk, rc, rs

CM := Q0(ke)
SM := Q1(ke)
CE := PRFce(Q2(ke), rc, rs)
SE := PRFse(Q3(ke), rc, rs)

Coalescing fields The Coalescingatoms transformation coalesces pairs of
fields replacing them by the first mainly to remove redundancy in the proto-
col. We use this transformation to remove duplicate values in the protocol.
In the ClientF inished and ServerF inished messages, Prev7 and Prev8 are
duplicated as a result of the Removing hashes transformation. Similarly, rc
and rs are duplicated since they occur at the beginning of prev8 and prev9.
Also, when substituting for mk in ke, rc and rs are repeated. Removing all
these duplicate values, the protocol becomes as follows:

1. ClientHello c −→ s : rc
2. ServerHello s −→ c : rs
3. ServerCertificate s −→ c : CERT (s, vs)
4. ClientCertificate c −→ s : CERT (c, vc)
5. ClientKeyExchange c −→ s : {pm}PK(s)

6. CertificateVerify c −→ s : {V H(Prev5)}SK(c)

7. ClientFinished c −→ s : [PRFcf (pm, Prev6), 0]cm,ce
8. ServerFinished s −→ c : [PRFsf (pm, Prev7), 0]sm,se

where [M,n]mac,enc is a record layer message that has the form:

[M,n]mac,enc = {M,HMAC(mac, {n,M})}enc
ke := pm, rc, rs
cm := Q0(ke)
sm := Q1(ke)
ce := PRFce(Q2(ke), rc, rs)
se := PRFse(Q3(ke), rc, rs)

21

Mapping functions We use the Mappingfunctions transformation to re-
move some of the comlexity in the assignment of the keying material. We
substitute for KE and use the following functional mapping:

Q0(pm, rc, rs) = G0(pm, rc, rs)
Q1(pm, rc, rs) = G1(pm, rc, rs)

PRFce(Q2(pm, rc, rs), rc, rs) = G2(pm, rc, rs)
PRFse(Q3(pm, rc, rs), rc, rs) = G3(pm, rc, rs)

In our analysis, we assume that the functions G0, G1, G2, and G3 are
hash functions, proving this formally is left to the cryptographers. We also
use functional mapping to define certificates. For simplicity, a certificate
Cert(A,B) is defined as follows:

CERT (a, b) = {a, PK(a)}SK(b)

�
After applying the above transformations, the final simplified version of

the TLS protocol is as follows:

Message 1 c −→ s : rc
Message 2 s −→ c : rs
Message 3 s −→ c : {s, PK(s)}SK(vs)

Message 4 c −→ s : {c, PK(c)}SK(vc)

Message 5 c −→ s : {pm}PK(s)

Message 6 c −→ s : {V H(Prev6)}SK(c)

Message 7 c −→ s : [PRFcf (pm, Prev7), 0]cm,ce
Message 8 s −→ c : [PRFsf (pm, Prev8), 0]sm,se

where [M,n]mac,enc is a record layer message that has the form:

[M,n]mac,enc = {M,HMAC(mac, {n,M})}enc
cm := G0(pm, rc, rs)
sm := G1(pm, rc, rs)
ce := G2(pm, rc, rs)
se := G3(pm, rc, rs)

This simplified version will be used for analysis in the subsequent sections.

22

3 The Strand Spaces Model, and its use in

Modelling TLS

In this section, we describe the strand spaces model [THG98] and the ex-
tensions we made to the original model to facilitate the analysis of TLS.
In addition, we explain how TLS can be specified in the extended model.
We also describe some of the techniques and results of the original model,
and state their correctness in the extended model; in particular, we describe
authentication tests [GT01, DGT07b], which are used extensively in our anal-
ysis of TLS in the next section. Finally, we discuss multi-protocol interaction
within the strand spaces setting [GT00b]. Such discussion is needed to ex-
plain some of the assumptions we make in the next section to solve the
problem of multi-layer interaction.

3.1 Basics of Strand Spaces

The Strand Spaces Model was developed by Thayer et al. [THG98] to reason
about the correctness of security protocols. In this section we describe the
basics of the model and the extensions we made in order to represent the
cryptographic operations used in TLS. Most of the definitions of this section
are taken from [THG98] and [GT01].

3.1.1 The Term Algebra

Let A be the set of possible messages that can be exchanged between prin-
cipals in a protocol. The elements of A are usually referred to as terms.
In the original Strand Spaces model [THG98], A is freely generated from
two disjoint sets, T (representing tags, texts, nonces, and principals) and K
(representing keys) by means of concatenation and encryption.

Keys can be generated using a key generation functions from some set kgf.
Each G ∈ kgf generates keys from atoms: G : T ×T . . .×T → K. We assume
each key generation function is injective (i.e. collision-free), and distinct key
generation functions have disjoint ranges. If a key k ∈

⋃
{ran(G) | G ∈ kgf},

we say that k is complex ; otherwise, k is simple. If k = G(t1, . . . , tn) then we
say that t1, . . . , tn are ingredients of k.

To provide a mathematical model of TLS, we specialize the term alge-
bra A. The set K of keys used in TLS is partitioned into four sets: the
set of public keys, KPub; the set of secret keys, KSec; the set of MAC keys,

23

KMAC ⊂
⋃
{ran(G) | G ∈ kgf}; and the set of symmetric encryption keys,

KSym ⊂
⋃
{ran(G) | G ∈ kgf}.

The set K of keys is equipped with a unary injective symmetric operator
inv : K → K; inv(k) is usually denoted k−1. We assume k ∈ KPub iff k−1 ∈
KSec, and if k ∈ KSym then k−1 = k.

Let Tname ⊆ T be the set of agent names. The functions PK :
Tname → KPub and SK : Tname → KSec are injective mappings to asso-
ciate each principal with a public key and a secret key respectively such that
∀a : Tname • (PK(a))−1 = SK(a).

We adopt the following conventions on variables. Variables c, s, vs, vc,
and ca range over Tname; k (or the same letter decorated with subscripts)
ranges over KPub; ce and se range over KSym while cm and sm range over
KMAC ; h ranges over the set Hash of hash functions, and G ranges over the
set kgf of key generating functions; r, pm (or the same variables decorated
with subscripts) range over T and are used as fresh values; prevn refers to
the sequence of the n previous messages. Note that terms like rc, kc are just
variables and have no trusted relation to the agent c. On the other hand, a
term like PK(c) is the result of applying the function PK to the argument
c and therefore, it reliably refers to the public key of c.

The TLS protocol uses one-way hash functions to achieve two distinct
purposes: to digest messages and to generate keys. We discussed the latter
above. We model digesting as a constructor over the term algebra, in addition
to the standard constructors of encryption and concatenation:

Definition 3.1 Compound terms are built by three constructors:

• encr : K ×A → A representing encryption.

• join : A×A → A representing concatenation.

• hash : Hash × A → A representing hashing to digest messages, where
Hash is a set of hash functions, and such that ran (hash) ⊆ (A \ K).

Conventionally, {t}k is used to indicate that a term t is encrypted with a
key K and t0 t̂1 to denote the concatenation of t0 and t1.

Note that, while we define the hash operation as a constructor, we assume
that key generation functions G ∈ kgf are functions that generate atoms
(keys). This assumption seems to be justified since complex keys are used
as atoms rather than as hashed terms after being constructed. The need to

24

distinguish between hashing and key generation will become clearer when we
explain the Normal Form Lemma in Section 3.3.

To model TLS, we define: the hash functions VH ,PRFcf ,PRFsf ,
HMAC ∈ Hash; the key generation functions G0, G1 ∈ kgf such that their
ranges are subsets of KMAC ; and the key generation functions G2, G3 ∈ kgf
such that their ranges are subsets of KSym.

We now define some basic concepts closely related to the term algebra.

Definition 3.2 The subterm relation v is defined inductively, as the least
reflexive transitive relation such that:

• r v r;

• r v {t}k if r v t;

• r v t0 t̂1 if r v t0 or r v t1;

• r v hash(h, t) if r v t.

Definition 3.3 [GT01]

1. If < ⊂ K, then t′ v< t if t is in the smallest set containing t′ and closed
under encryption with K ∈ < and concatenation with arbitrary terms.

2. A term t′ is a component of t if t′ is not of the form t0 t̂1 (so is an
atomic value, a hash value, or an encryption), and t′ v{} t, i.e. t is
constructed by concatenating t′ with arbitrary terms.

3.1.2 Strands, Nodes, and Bundles

A participant in a protocol can either send or receive terms. In the Strand
Spaces model, a positive term is used to represent a transmission while a
negative term is used to denote reception. A strand is a sequence of message
transmissions and receptions. A strand space is a set of strands.

Definition 3.4 [THG98]
A signed term is a pair 〈σ, a〉 with σ ∈ {+,−} and a ∈ A. A signed

term is written as +t or −t. (±A)∗ is the set of finite sequences of signed
terms. A typical element of (±A)∗ is denoted by 〈〈σ1, a1〉, ..., 〈σn, an〉〉. A
strand space over A is a set Σ with a trace mapping tr : Σ→ (±A)∗. Fix a
strand space Σ.

25

1. A node is a pair 〈st, i〉, with st ∈ Σ and i an integer satisfying 1 ≤ i ≤
length(tr(st)). The set of nodes is denoted by N . We will say the node
〈st, i〉 belongs to the strand st.

2. There is an edge n1 → n2 if and only if msg(n1) = +a and msg(n2) =
−a for some a ∈ A. The edge means that node n1 sends the message a,
which is received by n2, recording a potential causal link between those
strands.

3. When n1 = 〈st, i〉, and n2 = 〈st, i + 1〉 are members of N , there is
an edge n1 ⇒ n2. The edge expresses that n1 is an immediate causal
predecessor of n2 on the strand s. n′ ⇒+ n is used to denote that n′

precedes n (not necessarily immediately) on the same strand.

4. An unsigned term t occurs in n ∈ N iff t v msg(n).

5. Suppose I is a set of unsigned terms. The node n ∈ N is an entry
point for I iff msg(n) = +t for some t ∈ I, and whenever n′ ⇒+ n,
msg(n′) /∈ I.

6. An unsigned term t originates on n ∈ N iff n is an entry point for the
set I = {t′ | t v t′}.

7. An unsigned term t is uniquely originating in a set of nodes S ⊂ N iff
there is a unique n ∈ S such that t originates on n. (A term originating
uniquely in a set of nodes can play the role of a nonce or a session key
in that structure.)

8. An unsigned term t is non-originating in a set of nodes S ⊂ N iff there
is no n ∈ S such that t originates on n. (Long term keys are normally
non-originating.)

9. A term t is new at a node n if t is a component of msg(n) and for
every n0 ⇒+ n, t is not a component of msg(n0).

In order to define strands for the roles of the TLS Protocol, we define
a function RECMS that models the changes the Record Layer applies to
Transaction Layer messages such as sequence numbering, MAC application,
and encryption. The function takes as its inputs the MAC key of the sending
agent, the encryption key of the sending agent, the MAC key of the receiving

26

agent, the encryption key of the receiving agent, and the sequence Sms of
messages sent and received in the Transaction Layer payload. A sequence
number is assigned to each message in Sms such that sent and received
messages are ordered in two separate streams.

Definition 3.5 RECMS : (KMAC × KSym × KMAC × KSym) → (±A)∗ →
(±A)∗ is defined as follows:

RECMS (ks1, ks2, kr1, kr2) Sms = RECMS ′ (ks1, ks2, kr1, kr2) (1, 1) Sms,

RECMS ′ (ks1, ks2, kr1, kr2) (i, j) 〈〉 = 〈〉,
RECMS ′ (ks1, ks2, kr1, kr2) (i, j) (〈(+m, i)〉 _ Sms) =

〈+[m, i]ks1,ks2〉 _ RECMS ′ (ks1, ks2, kr1, kr2) (i+ 1, j) Sms,

RECMS ′ (ks1, ks2, kr1, kr2) (i, j) (〈(−m, i)〉 _ Sms) =
〈−[m, i]kr1,kr2〉 _ RECMS ′ (ks1, ks2, kr1, kr2) (i, j + 1) Sms,

[M,n]mac,enc = {M,HMAC (mac, {n,M})}enc.

As explained in Section 2.2, the TLS protocol has two primary roles, the
client c and the server s, and two secondary roles of certificate authorities vs
and vc. The certificate authorities’ strands are necessary for the origination
of public key certificates. We define a strand for each of these roles.

Definition 3.6 Let Client[c, s, rc, rs, ks, vs, vc, pm, Sms] be the set of client
strands whose trace is:

〈 + rc,
− rs,
− {ks ŝ}SK(vs) ,

+ {PK(c)̂ c}SK(vc) ,

+ {pm}ks
,

+ {VH (prev5)}SK(c) ,

+ [PRF cf (pmˆprev6), 0]cm,ce,
− [PRF sf (pmˆprev7), 0]sm,se 〉

_RECMS (cm, ce, sm, se) Sms.

Definition 3.7 Let Server[s, c, rc, rs, vs, vc, kc, pm, Sms] be the set of server

27

strands whose trace is:

〈 − rc,
+ rs,
+ {PK(s)̂ s}SK(vs) ,

− {kc ĉ}SK(vc) ,

− {pm}PK(s) ,

− {VH (prev5)}k−1
c
,

− [PRF cf (pmˆprev6), 0]cm,ce,
+ [PRF sf (pmˆprev7), 0]sm,se 〉

_RECMS (sm, se, cm, ce) Sms.

Definition 3.8 Let CA[ca, a] be the set of certificate authority strands whose
trace is:

〈 + {PK(a)̂ a}SK(ca) 〉.

For simplicity, we assume that the public key certificates originate in
certificate authority strands and are obtained by the client and server strands
before the Handshake exchange.

When talking about collections of strands, we will sometimes use an as-
terisk (∗) as a wild-card; for example, Client[c, s, rc, rs, ks, vs, vc, ∗, ∗] is short-
hand for

⋃
pm,SmsClient[c, s, rc, rs, ks, vs, vc, pm, Sms]. We shall refer to reg-

ular primary nodes according to their position in a client or a server strand;
for example writing Client1 for the second node in a client strand (where the
strand is clear from the context).

The set N of nodes together with both sets of edges n1 → n2 and n1 ⇒ n2

forms a directed graph 〈N , (→ ∪ ⇒)〉. A bundle is a finite subgraph of
〈N , (→ ∪ ⇒)〉 for which we can regard the edges as expressing the causal
dependencies of the nodes.

Definition 3.9 [THG98] Suppose →B ⊂ →, ⇒B ⊂ ⇒, and B = 〈NB, (→B
∪ ⇒B)〉 is a subgraph of 〈N , (→ ∪ ⇒)〉. B is a bundle if (1) NB and (→B
∪ ⇒B) are finite; (2) If n2 ∈ NB and msg(n2) is negative, then there is a
unique n1 such that n1 →B n2; (3) If n2 ∈ NB and n1 ⇒ n2 then n1 ⇒B n2;
and (4) B is acyclic.

Figure 2 illustrates a bundle representing a single run of the Handshake
Protocol.

28

C S

Client1 • rc //

��

•
��
Server1

Client2 • oo rs

��

•
��
Server2

Client3 • oo
{sˆPK(s)}SK(vs)

��

•
��
Server3

Client4 •
{cˆPK(c)}SK(vc) //

��

•
��
Server4

Client5 •
{pm}PK(s) //

��

•
��
Server5

Client6 •
{VH (prev5)}SK(c) //

��

•
��
Server6

Client7 •
[PRF cf (pmˆprev6),0]cm,ce //

��

•
��
Server7

Client8 • oo
[PRFsf (pmˆprev7),0]sm,se • Server8

Figure 2: A bundle representing a single execution of the Handshake Proto-
col.

Definition 3.10 [THG98] A node n is in a bundle B = 〈NB,→B ∪ ⇒B〉,
written n ∈ B, if n ∈ NB; a strand st is in B if all of its nodes are in NB.
The B-height of a strand st is the largest i such that 〈st, i〉 ∈ B.

For example, the bundle height of each strand in Figure 2 is 8.

Proposition 3.11 [THG98] Let B be a bundle. Then �B is a partial order,
i.e. a reflexive, antisymmetric, transitive relation. Every non-empty subset
of the nodes in B has a �B-minimal member.

�B can be considered as a causal precedence relationship, because n ≺B n′
holds iff it is possible to get from n to n′ by following zero or more →B or
⇒B steps, and therefore n’s occurrence causally contributes to the occurrence
of n′ [THG98].

3.1.3 The Penetrator

We now define the powers of the penetrator in the extended algebra.
The powers of the penetrator (commonly referred to as the intruder) are

characterised by two ingredients [THG98]:

29

• The set KP of keys known initially to the penetrator.

• The set of strands that allow the penetrator to generate new messages
from the atomic messages TP he knows initially, and the messages he
intercepts. This provides the penetrator with the powers specified by
the Dolev-Yao model [DY83].

The set of penetrator strands is extended to reflect the extensions we made
to the term algebra as follows:

Definition 3.12 A penetrator trace is one of the following:

M. Text message: 〈+r〉 where r ∈ TP .

K. Key: 〈+k〉 where k ∈ KP .

C. Concatenation: 〈−t0,−t1,+t0 t̂1〉.

S. Separation into components: 〈−t0 t̂1,+t0,+t1〉.

E. Encryption: 〈−k,−t,+ {t}k〉 where k ∈ K.

D. Decryption: 〈−k−1,−{t}k ,+t〉 where k ∈ K.

H. Hashing: 〈−t,+hash(h, t)〉 where h ∈ Hash.

KG. Key generation: 〈−r1, . . . ,−rn,+G(r1, . . . , rn)〉, where r1, . . . , rn ∈ T
and G ∈ kgf.

A node is referred to as a penetrator node if it lies on a penetrator strand;
otherwise it is called a regular node. An infiltrated TLS strand space contains
the regular strands defined previously in addition to the above penetrator
strands.

Since the behaviour of the penetrator is only specified by the above traces,
it may vary arbitrarily between bundles that have the same regular strands.
Such bundles are still considered equivalent. Bundle equivalence is defined
formally as follows [GT01]:

Definition 3.13 Bundles B, B′ on a strand space Σ are equivalent iff they
have the same regular nodes.

30

3.2 Paths and well behaved bundles

In previous section, we specify that the penetrator can perform several op-
erations represented by strands. In addition, these operations can be carried
out in any order. Furthermore, this is complicated by the unbounded number
of protocol sessions. Consequently, the presence of the penetrator can make
the problem of security protocols analysis undecidable.

In [GT01, GT00a], Thayer et al. restrict the order of the penetrator
strands in order to assist the analysis of security protocols. There are two
elements in this restriction: a normal form lemma and an efficiency condi-
tion [GT01]. In this section we restrict the order in which the penetrator
performs his/her actions using the extended penetrator model developed in
the previous section. We follow closely the reasoning of Thayer et al. in
[GT01] and therefore complete proofs are only provided when necessary.

3.3 The Normal Form Lemma

Firstly, we remove some of the redundancies in the penetrator’s behaviour
without weakening his/her powers. With respect to the penetrator’s model,
there are two types of redundancies [GT01]:

1. E-D redundancies: Here the penetrator encrypts a value h with a key
K, and then decrypts with the corresponding key K−1. This type of
redundancy can be eliminated as shown in Figure 3.

2. C-S redundancies: Here the penetrator concatenates two values h and g
to form gˆh and then separates the concatenated term into its subterms.
This type of redundancy can be eliminated as shown in Figure 4.

By eliminating the above redundancies we end up with an equivalent
bundle (Definition 3.13) since we only remove penetrator nodes. We may
infer:

Proposition 3.14 Every bundle is equivalent to a bundle with no redundan-
cies of type C− S and E− D. (As Proposition 2 in [GT01].)

The penetrator’s activity is formalised in strand spaces by the notion of a
path [GT01]. A path p through the bundle B is any finite sequence of nodes
and edges where the notation m 7−→ n means either m ⇒+ n with msg(m)
negative and msg(n) positive, or else m → n. The ith node of a path p is

31

E

◦ k // •
��

D

◦ t // •
��

• oo k−1

��

◦

• {t}k // •
��
• t // ◦

◦ k // •
��

◦ t //

++XXXXXXXXXXXXXXXXXXXX •
��

• oo k−1♣ ◦

• {t}k♣ //

◦

♣ Discarded messages

Figure 3: E-D redundancies and how to eliminate them [GT01].

32

C

◦ t0 // •
��

◦ t1 // •
��

S

• t0ˆt1 // •
��
• t0 //

��

◦

• t1 // ◦

◦ t0 //

**TTTTTTTTTTTTTTTTTTTT •
��

◦ t1 //

**TTTTTTTTTTTTTTTTTTTT •
��
• t0ˆt1♣ //

◦

◦

♣ Discarded messages

Figure 4: C-S redundancies and how to eliminate them [GT01].

33

referred to as pi while | p | refers to the length of p and `(p) is used to denote
p|p|, i.e. the last node in p. A penetrator path is one in which all nodes other
than possibly the first or the last node are penetrator nodes.

A penetrator’s activity is assumed to follow a specific pattern to achieve
one of two purposes [Gut01]: making a key available for a D or E strand, or
constructing some message to deliver to a regular node.

In order to formalise this pattern, we use the notion of constructive and
destructive edges. Our definition of constructive and destructive edges is
slightly different from the one provided in [GT01] since we refer to the ex-
tended penetrator model in definition 3.12.

Definition 3.15 A ⇒+ −edge is constructive if it is a part of a E, C, or H
strand. It is destructive if it is part of a D, S, or KG strand. A penetrator
node is initial if it is a K or M node.

Although the strands H and KG are quite similar since they both use
hash functions, we define H to be constructive and the hash-to-generate key
strands, i.e. KG, to be destructive. The reason for this will become clear
when we discuss the Normal Form Lemma.

Proposition 3.16 In a bundle, a constructive edge immediately followed by
a destructive edge has one of the following three forms:

1. Part of a Eh,k immediately followed by part of a Dh,k strand for some
h, k

2. Part of a Ch,k immediately followed by part of a Sh,k strand for some
h, k

Proof. This result requires the freeness of the message algebra. It also
follows from the fact that hash functions are uninvertible. Note that this
result will not be true if we define edges that are part of KG strands to be
constructive since these strands can generate keys that can be used as key
edges for D strands (See Figure 5) in which case a constructive edge should
be followed by a destructive edge and the following Normal Form Lemma
will not hold.

Before discussing the Normal Form Lemma, we provide the definition of
normal bundles [GT01].

34

KG

◦ x1 // •
��

◦ x2 // •
��

D

◦ x3 // •
��

• oo {h}K

��

◦

• K−1
// •

��
• h // ◦

Figure 5: Considering KG strands as constructive, the Normal Form Lemma
would not hold for the above bundle.

Definition 3.17 A bundle B is normal if for any penetrator path of B, every
destructive edge precedes every constructive edge.
(As Definition 5 in [GT01].)

Proposition 3.18 (Penetrator Normal Form Lemma) For every bun-
dle B there exists an equivalent normal bundle B′.

Proof. The proof is the same as the one provided in [GT01] and we just
include it here to show that it still holds in the extended model. By Propo-
sition 3.14 every bundle has an equivalent bundle that has no redundancies
of type C − S and E − D. Let us assume for a contradiction that such an
equivalent bundle is not normal i.e. contains a constructive edge that pre-
cedes a destructive edge. By Proposition 3.16, this should be either a C− S
or an E − D edge. However, this is not possible since the bundle has no
redundancies. Therefore, every bundle has an equivalent normal bundle that
has no redundancies of type C− S or E− D.

The Normal Form Lemma is the first element in restricting the penetra-
tor’s order of actions. In the following section we discuss the second element
of this restriction, which is the concept of efficient bundles.

3.4 Efficient bundles

As explained before in section 3.1.2, a component of t is a subterm t0 which is
either an atomic value, an encryption, or a hash value, and such that t0 can be

35

obtained from t by repeatedly separating concatenations. Components can
only be changed through cryptographic work. An efficient bundle restricts
the penetrator to make the most with the available components rather than
using additional regular nodes.

Definition 3.19 A bundle is efficient iff for every node m and negative pen-
etrator node n, if every component of n is a component of m, then there is
no regular node m′ such that m ≺ m′ ≺ n. (As Definition 10 in [GT01].)

The following proposition states that every bundle B has an equivalent
efficient bundle B′ without interfering with the Normal Form Lemma. For a
detailed proof of the proposition, the reader is referred to [GT01].

Proposition 3.20 For every bundle B, there is an equivalent efficient bun-
dle B′. If a bundle is efficient, then it has an equivalent normal bundle which
is also efficient. (As Proposition 14 in [GT01].)

3.5 Specifying Authentication and Secrecy Goals

A regular strand represents a principal’s local view of a protocol execution,
i.e. the messages sent and received by that principal. Security protocol goals
are inferences that principal can make about the strands of other principals
and the behaviour of the penetrator [Gut01].

An authentication goal is an inference about what another regular prin-
cipal must have done. This inference has four elements [Gut01]:

• The principal’s strand: The messages sent and received by a principal
are the principal’s source of knowledge about what has happened so
far in the protocol.

• The specification of the protocol: These describe the behaviour of the
regular strands.

• The penetrator powers: These define what the penetrator can or cannot
do.

• Origination assumptions: The unique origination of nonces and session
keys and the non-origination of long-term secrets are vital to prove
authentication goals.

36

From these elements, the causal laws included in the definition of bundles
(Definition 3.9) are used to infer the traces of other strands. The results of
authentication inferences take the form [Gut01]: for all bundles B and all
strands st, there exists a strand st′ such that

if st ∈ R has B-height i,
and some origination assumptions hold,
then st′ ∈ R′ and st′ has B-height j,

where R and R′ are sets of roles. Such an authentication property is invariant
under bundle equivalence, since it asserts that certain regular nodes must be
present in bundles regardless of the presence of penetrator nodes [GT01].

To illustrate an authentication goal, consider a bundle B in a TLS
strand space. Then the Handshake goal of authenticating the client
to the server can be captured as follows: if stc is a client strand in
Client[c, s, rc, rs, ks, vs, vc, pm, ∗] of B-height at least 8, pm is uniquely orig-
inating on 〈stc, 5〉, and ks is non-originating in B, then there exists a server
strand sts ∈ Server[s, c, rc, rs, PK(c), vs, vc, pm, ∗] of B-height at least 8.

On the other hand, a secrecy goal is an inference about what the pen-
etrator cannot have done. Secrecy goals are verified by proving, following
some origination assumptions, that terms that are intended to remain secret
are not said in public in any bundle. It follows that the penetrator could
not have derived them because if he did, then there would exist a bundle in
which he also utters them. Secrecy inferences take the form [Gut01]: for all
bundles B and all regular strands st

if st ∈ R has B-height i,
and some origination assumptions hold,
then there is no node n ∈ B such that msg(n) = t.

The term t is either a parameter of R, or a term whose ingredients are
parameters of R. If the above secrecy property holds in all bundles equivalent
to B, then the value remains secret because the penetrator is unable to derive
it without further cooperation from regular strands [GT01]. For example the
secrecy of the premaster secret can be specified in the following form: for all
bundles B, if stc is a client strand in Client[c, s, rc, rs, ks, vs, vc, pm, ∗] with
B-height at least 8, pm is uniquely originating on 〈stc, 5〉, and SK(c), SK(s)
are non-originating in B, then for all nodes n ∈ B, msg(n) 6= pm.

37

3.6 Proving Secrecy and Authentication

In this section, we discuss tests to prove secrecy and authentication within
the strand spaces setting. We start by defining the set of safe keys that are
not available to the penetrator. We then present authentication tests.

3.6.1 Safe and Penetrable Keys

We can distinguish between two sets of keys: the set of penetrable keys that
may become known to the penetrator, and the set of safe keys whose secrecy
is preserved.

We begin by defining some concepts that we will use. We say that a term
t0 occurs only within a set of terms R in t if in the abstract syntax tree of t,
every path from the root to an occurrence of t0 traverses some t1 ∈ R before
reaching t0 [DGT07a]; note that this includes the possibility that t0 does not
occur at all in t. More formally:

Definition 3.21 We say that t0 occurs only within R in t, where R is a set
of terms, if:

1. t0 6v t; or

2. t ∈ R; or

3. t 6= t0 and either (a) t = {t1}k and t0 occurs only within R in t1; or
(b) t = hash(h, t1) and t0 occurs only within R in t1; or (c) t = t1 t̂2
and t0 occurs only within R in t1 and t2.

We say that t0 occurs only within R in B, if for every positive regular node
n ∈ B, and for every new component t of n, t0 occurs only within R in t.

On the other hand, t0 occurs outside R in t if t0 does not occur only within
R in t. This means that t0 v t and there is a path from the root to an
occurrence of t0 as a subterm of t that traverses no t1 ∈ R [DGT07a].

We now inductively define the set P(B) of penetrable keys, as in [Gut01].
We expand the original definition to include the complex keys that can be
generated from messages known initially to the penetrator (X0(B), below).
Further, it includes the keys that can be derived from encrypted terms using
penetrable decryption keys (Yi+1(B), below); it also includes the complex
keys whose ingredients are derivable from encrypted terms using penetrable
decryption keys, and consequently can be derived by the penetrator using
KG-strands (Xi+1(B), below).

38

Definition 3.22 Let B be a bundle, and let P−1
i (B) = {k−1 | k ∈ Pi(B)}.

Let P0(B) = Kp ∪X0(B) where k ∈ X0(B) iff k is complex and for every
ingredient r of k, r ∈ Tp.

Let Pi+1(B) = Pi(B) ∪Xi+1(B) ∪ Yi+1(B), where:

• k ∈ Xi+1(B) iff k is complex and for every ingredient r of k, there
exists a positive regular node n ∈ B and a term t such that t is a new
component of n, r vP−1

i (B) t;

• k ∈ Yi+1(B) iff there exists a positive regular node n ∈ B and a term t
such that t is a new component of n, and k vP−1

i (B) t.

We define P(B) =
⋃
iPi(B). When k ∈ P(B), we say that k is penetrable.

As in [Gut01], Definition 3.22 is justified by proving that any penetrable key
that becomes available to the penetrator in any bundle B is in fact a member
of P(B):

Proposition 3.23 Let B be a bundle with n ∈ B and msg(n) = K. Then
K ∈ P(B).

Proof. By Propositions 3.18 and 3.20, we assume that B is normal and
efficient. Our induction hypothesis is that, for all n′ �B n, msg(n′) ∈ K ⇒
msg(n′) ∈ P(B).

Suppose K is a simple key; Let p be a path such that `(p) = n, K is
simple, K originates at p1, and K @ msg(pj) for 1 ≤ j ≤| p | and therefore
p does not traverse any key edges. We can distinguish between the following
cases:

1. p1 is a penetrator node. Hence, by definition, n is a K node and | p |= 1,
in which case K ∈ Kp and by Definition 3.22, K ∈ P0(B).

2. p1 is a regular node. Therefore, there can be other regular nodes on p.
Let pλ be the last regular node on p and p′ be the penetrator path from
pλ to `(p). Since msg(`(p)) is an simple key and B is normal, p′ can
only traverse destructive edges. Since K @ msg(p′j) for 1 ≤ j ≤| p′ |, p′
can only traverse D-strands and S-strands. Moreover, since we assume
that p traverses no key edges, msg(pj + 1) v msg(pj). Therefore,
K vℵ msg(p′1) where ℵ contains K1 whenever K−1

1 was used in a D-
strand along p′. In other words ℵ is a collection of keys previously
penetrable, in which case K ∈ Pi+1(B) for some i.

39

For complex keys define p to be a path such that `(p) = n, K is complex
and p does not traverse any key edges. We can distinguish between the
following cases:

1. K originates at `(p). Consequently, `(p) can only be the last node of a
KG-strand. By the definition of a KG-strand, every node n′ immediately
preceding `(p) has an atomic term r such that r is an ingredient of K.
Define a path p′ for each such n′ such that `(p′) = n′, r originates at
p′1, and r @ msg(p′m) for 1 ≤ m ≤| p′ | and therefore each p′ does
not traverse any key edges. Applying the same argument for simple
keys above, we conclude that each r is either known initially to the
penetrator or else if p′1 is a regular node r vℵ msg(n′′) where n′′ is the
last regular node on p′ and ℵ contains K1 whenever K−1

1 was used in a
D-strand along p′, in which case K ∈ Pi+1(B) for some i.

2. K originates at p1. Consequently, we can define a path p similar to the
path p we defined for simple keys and the same proof applies except
that p1 cannot be a penetrator node since K is complex.

�
We can now define the set S of safe keys, i.e., keys that the penetrator

cannot obtain; note that safe keys and penetrable keys are disjoint. Again
our definition differs from that provided in [Gut01] since it identifies when
a complex key is safe. We first define the set of safe atoms (which includes
complex keys), i.e., those atoms that the penetrator cannot obtain; we then
restrict this to keys to find the safe keys. A safe atom: (1) is not initially
known by the penetrator; (2) occurs only hashed or encrypted with the in-
verse of a safe key; and (3) if it is complex, every ingredient is safe.

Definition 3.24 Let M(B) be the set of safe atoms, defined by M(B) =⋃
iMi(B), where Mi(B) is defined inductively as follows:

• a ∈ M0(B) iff: (1) a /∈ Kp ∪ Tp; (2) a occurs only within the set of
terms {hash(h, t) | t ∈ A} in B (recall that this could mean that a does
not occur at all); and (3) a is not complex.

• Mi+1(B) =Mi(B) ∪Xi+1(B), where a ∈ Xi+1(B) iff: (1) a /∈ Kp ∪ Tp;
(2) a occurs only within the set of terms {{t}k | k−1 ∈ Mi(B)} in B;
and (3) if a is complex, at least one ingredient of a is in Mi(B).

40

Define the set S(B) of safe keys by S(B) =M(B) ∩ K.

We say that atom a occurs safely if it is a member of M(B). To prove
that a occurs safely, we show that it is not initially known by the penetrator,
and that its occurrence in every new component is protected by a hash or an
encryption with some key k such that k−1 ∈ Mi(B); i is typically 0 or 1 in
most security protocols.

Definition 3.25 A term t is said to occur safely in a bundle B, iff for every
positive regular node n ∈ B and a new component t1 of n, t occurs only within
the set of terms R in t1 such that R ⊆ {hash(h), {h}K : K−1 ∈ S(B)}.

Proposition 3.26 Let B be a bundle and r an atom such that r /∈ Kp ∪ Tp,
and r occurs safely in B; then for every equivalent bundle B′ there is no node
n ∈ B′ such that msg(n) = r.

Proof. Let’s assume for a contradiction that there is such a bundle B′ with
a node n such that msg(n) = r. By the definition of bundle equivalence, n
is not a regular node since r occurs safely in B. In adidtion, r cannot be
originating in n since n is a penetrator node and r /∈ Kp ∪ Tp. Therefore,
n must be traversed by a penetrator path p starting at a regular node n′

such that r @ msg(n′). By Definition 3.25, there are two possibilities: (1) r
occurs within a hashed term in msg(n′): In this case p cannot exist by the
definition of hash functions. (2) r occurs within an encrypted term {h}k in
msg(n′): p must traverse a decryption edge in a D strand. It follows from
the structure of a D strand that there must exist a key edge with a node
n′′ such that msg(n′′) = k−1. However, such node cannot exist since k−1 is
a safe key By Definition 3.25. Therefore, there is no node n ∈ B′ such that
msg(n) = r.

3.6.2 Authentication Tests

In [GT00a], Thayer and Guttman introduced the concept of Authentication
Tests to prove the authentication goals of security protocols. In Section 4.3
we will apply these tests to the Handshake Protocol. The Authentication
Tests are based on the fact that security protocols follow specific challenge-
response patterns to achieve authentication. Informally, a principal creates
and sends a message t1 containing a uniquely originating value r and then
receives r back in a transformed form t2. If a safe key is necessary to transform

41

t1 to t2, then we can conclude that some regular participant possessing the
relevant key has transformed t1. Authentication tests can be used in two
different ways:

• An outgoing test: r is sent in an encrypted form and the challenge is
to decrypt it;

• An incoming test: The challenge is to create an encrypted value con-
taining r using a safe key to prove that the encrypted term has not
originated on a penetrator node.

The Authentication Tests theorems [GT00a, DGT07b, DGT07a] specify
the conditions under which we can infer that certain regular nodes exist in
the bundle. They proved to be one of the most powerful tools of the strand
space model because of their simplicity. We extend these tests to include
hashed values and prove their soundness in the extended model.

Authentication Test 1 The Outgoing Authentication Test [DGT07a] Let
B be a bundle. Suppose that n0, n1 ∈ B, and

R ⊂ {hash(h, t), {t}K | t ∈ A, K−1 ∈ S(B)}.

Suppose that r originates uniquely in B on node n0 and occurs only within
R in msg(n0), but r occurs outside R in msg(n1). Then there is an integer
i and a regular strand s such that m1 = 〈s, i〉 ∈ B is positive, and i is the
least integer k such that r occurs outside R in msg(〈s, k〉). Moreover, there
is a node m0 such that r @ msg(m0), and n0 �B m0 ⇒+ m1 �B n1.

Proof. Consider the set Φ = {m ∈ B : r occurs outside (R) in msg(m)}.
We know that Φ is non empty because n1 ∈ Φ and . By bundle induc-
tion (Proposition 3.11), Φ has a �-minimal positive member denoted as m1.
Therefore, m1 �B n1.

Since r uniquely originates at n0, there must exist an edge n0 �B m0 ⇒+

m1 in B such that r v msg(m0).
Since, m1 is defined as a minimal member of Φ and therefore m0 /∈ Φ.

Consequently, we can deduce that r occurs only within R in msg(m0) and
occurs outside R in msg(m1). Now we want to prove that m0 ⇒+ m1 lies
on a regular strand. Let us assume for a contradiction that m0 ⇒+ m1 lies
on a penetrator strand. Such strand extracts r from R. However, this is not

42

possible since r occurs safely within R and therefore, cannot be extracted by
the penetrator. Consequently, m0 ⇒+ m1 lies on a regular strand. �

In outgoing authentication tests, the edge m0 ⇒+ m1 is called an outgo-
ing transforming edge [DGT07b]. The nodes n0 and n1 are called an outgoing
authentication test, and the edge m0 ⇒+ m1 is called an outgoing transform-
ing edge [DGT07b]. In Lemma 4.11, we show that the TLS nodes Client5
and Client8 form an outgoing authentication test, and use this to establish
authentication guarantees for the client.

Authentication Test 2 The Incoming Authentication Test [DGT07a] Sup-
pose that n1 ∈ B is negative, t = {t0}K v msg(n1), and K ∈ S(B). Then
there exists a regular m1 ≺B n1 such that t originates on m1.

Proof. Consider the set Φ = {m ∈ B : t1 v msg(m)}. We know that
Φ is non empty because n1 ∈ Φ. By bundle induction (Proposition 3.11),
Φ has at least one �-minimal member denoted by m1. Let us assume for
a contradiction that m1 is a penetrator node. Since t v msg(m1), we can
deduce than m1 can only be a positive node on an E-strand with a key edge
K. But this contradicts the assumption that K ∈ S(B). Therefore, m1 must
be on a regular node. �

In incoming authentication tests, the node m1 is called an incoming trans-
forming node and n1 as an incoming test node [DGT07b].

The node m1 is called an incoming transforming node and n1 as an in-
coming test node [DGT07b]. In Lemma 4.12 we show that Server6 is an
incoming test node, and use this to establish authentication guarantees for
the server.

3.7 Protocol Independence via Disjoint Encryption

Most formal verifications methods can only model and analyse cryptographic
protocols the assumption that the participants in the protocol under analysis
can only behave according to what is specified in the protocol. This assump-
tion is clearly unrealistic since agents can usually engage in concurrent runs
of several protocols. When multiple protocols are combined, the penetrator
can use messages of a protocol to compose messages that (s)he could have
not, otherwise, created. This problem is often referred to as the problem of
compositionality of security protocols.

43

If parallel protocols are designed such that they share no common keys,
the security of each protocol is independent of the others. However, in prac-
tice, it is not conceivable that, if an agent engaged in many protocols that
use PKI, (s)he would have a different public key certificate for each protocol.
Therefore, less restrictive conditions are required for concurrent protocols.

In [THG99, GT00b], Thayer et al. addressed the problem of protocol
composition within the Strand Spaces framework by introducing the Mixed
Strand Spaces model [THG99]. In this section, we outline some of the impor-
tant concepts of the mixed strand spaces model. For a detailed discussion,
the reader is referred to [GT00b].

To represent multiple protocols, some regular strands are selected as be-
ing runs of the protocol under analysis, which is referred to as the primary
protocol. The regular strands of other protocols are referred to as secondary.

Definition 3.27 A multiprotocol strand space is a strand space (Σ, tr) to-
gether with a distinguished subset of the regular strands Σ1 ⊂ Σ\PΣ called
the set of primary strands.
(As Definition 3.1 in [GT00b].)

The concept of bundle equivalence is redefined within the mixed strand
spaces as follows.

Definition 3.28 Bundles B, B′ in the multiprotocol strand space (Σ, tr,Σ1)
are equivalent iff

1. they have the same primary nodes, meaning B ∩ Σ1 = B′ ∩ Σ1,

2. for all r, r originates uniquely on a primary node in B iff r originates
uniquely and on a primary node in B′,

3. for all r, r is non-originating in B iff r is non-originating in B′.

(As Definition 16 in [Gut01].)

This is a wider notion of equivalence since it requires fewer nodes and
unique origination facts to be unchanged. Therefore, any existence assertion
about equivalent bundles remains true [Gut01].

As mentioned before, the simplest way to prevent parallel protocol harm-
ful interactions would be to require that the two protocols not use the same
ciphertext as a part of any message, i.e. if n1 ∈ Σ1 and n2 ∈ Σ2, and if

44

{h}K v msg(n1), then {h}K 6v msg(n2). However, such a condition would
prevent using public key certificates between parallel protocols. Such shared
encryptions are harmless because they contain public values. As long as
the secondary protocol does not extract private values from within shared
encryptions, or repackage their private contents, potentially insecurely, they
should be allowed. The concept of a shared encryption is defined as follows.

Definition 3.29 {h}K is a shared encryption if there exist n1 ∈ Σ1 and
n2 ∈ Σ2 such that {h}K v msg(n1) and {h}K v msg(n2). It is an outbound
shared encryption if this holds with n1 positive and n2 negative. It is an
inbound shared encryption if this holds with n1 negative and n2 positive.
(As Definition 22 in [Gut01].)

The mixed strand spaces model restricts but does not prevent shared en-
cryptions. Outbound and inbound shared encryptions are treated differently.

Definition 3.30 (Disjoint Outbound Encryption) Σ has disjoint out-
bound encryption iff for every outbound shared encryption {h}K, for every
atom r @ {h}K, and for every n2 ⇒+ n′2 ∈ Σ2,
if n2 is negative and {h}K v msg(n2),
and n′2 is positive and t0 is a new component of n′2,
then r 6v t0.
(As Definition 23 in [Gut01].)

The definition states that no secondary strand manipulates r into a new
component. This definition has the important property that values originat-
ing uniquely on primary nodes cannot ‘zigzag’ to a secondary node, before
being disclosed to the penetrator [Gut01].

The condition on inbound shared encryptions is that they should never
occur in new components created on secondary nodes.

Definition 3.31 (Disjoint Encryption) Σ has disjoint inbound encryp-
tion if for every inbound shared encryption {h}K, and n2 ⇒+ n′2 ∈ Σ2 if
t0 v msg(n′2) is a new component, then {h}K 6v t0).

Σ has disjoint encryption if it has both disjoint inbound encryption and
disjoint outbound encryption.
(As Definition 6.3 in [GT00b].)

45

Definition 3.32 Σ1 is independent of Σ2 if for every bundle B in Σ, there
is an equivalent bundle B′ in Σ such that B′ is disjoint from Σ2.
(As Definition 7.1 in [GT00b].)

The proposition of disjoint encryption is stated in terms of independent
strand spaces (disjoint inbound and outbound encryption) as shown below.
Proof of the proposition is provided in [GT00b].

Proposition 3.33 (Protocol Independence) If Σ has disjoint encryp-
tion, then Σ1 is independent of Σ2. (As Proposition 27 in [Gut01].)

� In the next section, we will use some of the notions outlined above and
use them to address the problem of multi-layer interaction in TLS.

4 Security Analysis of TLS

In this section we analyse TLS, formalise the security services it provides, and
prove that the abstract model suggested by Broadfoot and Lowe [BL03] for
TLS is correct. We use the simplified version of TLS provided in Section 2.3
and the extended strand spaces framework developed in Section 3 to analyse
TLS.

In Section 4.1 we review Broadfoot and Lowe’s abstraction of the security
services provided by TLS. In Section 4.2 we state the assumptions we use in
the analysis: these assumptions concern origination of terms, and the inde-
pendence of the Handshake and Transaction Layer protocols. In Section 4.3
we analyse the Handshake protocol, obtaining guarantees for both the client
and the server. Finally, in Section 4.4 we analyse the Record Layer, verifying
authentication, secrecy and session independence properties.

Our proof is modular in the following sense:

• The analysis of the Handshake protocol is independent of the Record
Layer protocol, other than as captured by the assumptions stated in
Section 4.2; this analysis could, therefore, be re-used if the Handshake
protocol were combined with an alternative Record Layer protocol.

• The analysis of the Record Layer protocol is independent of the Hand-
shake protocol, other than the assumptions stated in Section 4.2, and
that it assumes the secrecy and authentication properties we prove of

46

the Handshake protocol; this analysis could, therefore, be re-used if the
Record Layer protocol were combined with an alternative Handshake
protocol that achieves the same secrecy and authentication properties.

4.1 Broadfoot-Lowe Abstract Model for TLS

In [BL03], Broadfoot and Lowe describe the security services they believe
TLS provides, as a trace-based specification, i.e. a specification in terms of a
property that all traces of TLS should satisfy.

Let Agent be the set of all agents, partitioned into two sets: Honest of
honest agents, and Dishonest of dishonest agents. The communications are
assumed to be grouped in sessions, of type Session. Communications are
described in terms of two channels: send.A.B.s.m represents the Transaction
Layer at A passing the message m to TLS to be sent to B as part of session s;
and receive.B.A.s.m represents TLS passing the message m, (apparently)
received from A, to the Transaction Layer at B as part of session s.

Authentication and integrity requirements are expressed as follows:

∀A,B : Honest; s : Session • tr ↓ receive.B.A.s ≤ send.A.B.s.

Within each session between A and B, the messages accepted by the Record
Layer of B as being from A are guaranteed to be sent by A, intended for B,
and sent in that particular order. This property is called stream or prefix
authentication.

The confidentiality requirement is expressed as follows:

∀A : Honest;P : Dishonest; s : Session;m : Message; tr : Trace•
tr_〈receive.A.P.s.m〉 ≤ tr ⇒ PIK ∪ sentToPenetrator(tr′) ` m.

Ms `M represents the ability of the penetrator to deduce message M from
the set of messagesMs; PIK represents the set of messages initially known to
the penetrator; and sentToPenetrator(tr) is the set of messages deliberately
sent to the penetrator (when he engages in TLS using one of his identities).

The predicate states that an agent A can receive message m from the
penetrator only if that message can be produced from the penetrator’s initial
knowledge and those messages that have previously been deliberately sent to
him. This predicate implies two properties:

• Secrecy : The intruder cannot deduce anything from the transaction
layer messages observed in TLS sessions between honest agents.

47

• Session independence (Non-hijackability): If a TLS session is initiated
with the penetrator using one of his identities, he cannot utilize (hi-
jack) any Transaction Layer messages observed in another TLS session
between honest agents in his own session; i.e., the two sessions are
independent.

In the following sections, we use the strand spaces model to prove that
TLS provides stream authentication, secrecy, and session independence for
Transaction Layer messages.

4.2 Assumptions

In Section 1 we explained that one of the main problems that complicates
the analysis of TLS is multi-layer interaction. We also stated that, since
the syntactic structure of Transaction Layer is not specified by TLS, the
Transaction Layer messages could, in principle, leak keys used by the Hand-
shake and Record Layer Protocols. Furthermore, multi-layer attacks may
happen, where a message from one layer is replayed and interpreted as being
a message of the other layer, leading to an attack.

It is clear from the previous discussion that we should place sufficient
conditions upon the syntactic structure of the Transaction Layer messages
such that the correctness of TLS is independent of the Transaction Layer
payload. Some of these conditions are merely origination assumptions which
are necessary for proving authentication and secrecy, and others are mostly
adapted from the concept of disjoint encryption [THG99, GT00b], which
addresses the problem of protocol composition.

4.2.1 Origination Assumptions

Firstly, we lift the concepts of nodes, terms, origination, and new component
to the Transaction Layer level.

Definition 4.1 Let Σ be a TLS space and N be the regular nodes in Σ.

• a node n is a Record Layer node iff n ∈ N and there is an integer i > 0
and a term t ∈ A such that msg(n) = ±[t, i]mac,enc where mac ∈ KMAC

and enc ∈ KSym. The Transaction Layer term of n is then given by:
transmsg(n) = t.

48

• An unsigned term t originates in the Transaction Layer iff there exists
a positive Record Layer node n such that t v transmsg(n), and for
every Record Layer node n′ such that n′ ⇒+ n, t 6v transmsg(n′).

• A component t1 of transmsg(n1) is new in the Transaction Layer at
Record Layer node n1 iff, for every Record Layer node n0 such that
n0 ⇒+ n1, t1 is not a component of transmsg(n0).

We now state our assumptions using the concepts defined above. First,
secret keys and the premaster secret are not originated on regular Record
Layer nodes:

Assumption 4.2 None of the following originates in the Transaction Layer:

• secret keys from KSec;

• terms of the form G0(∗, ∗, ∗), G1(∗, ∗, ∗), G2(∗, ∗, ∗) or G3(∗, ∗, ∗);

• the premaster secret pm.

The fresh values used in TLS are uniquely originating.

Assumption 4.3 For every regular client strand stc ∈ Client[c, ∗, rc, ∗, ∗, ∗,
∗, pm, ∗] such that SK(c) /∈ Kp, rc originates uniquely on 〈stc, 1〉, and pm
originates uniquely on 〈stc, 5〉.

For every server strand sts ∈ Server[s, ∗, ∗, rs, ∗, ∗, ∗, ∗, ∗] such that
SK(s) /∈ Kp, rs originates uniquely on node 〈sts, 2〉.

4.2.2 Disjoint Encryption Assumptions

We now adapt disjoint encryption assumptions from [GT00b, GT01], to pre-
vent interactions between the two layers of TLS. To see why such assump-
tions are necessary, suppose the Transaction Layer protocol contains a simple
nonce challenge of the following form:

Message 1. a −→ b : {x}PK(b)

Message 2. b −→ a : x

The penetrator can simply intercept message 5 of the Handshake protocol and
send it to the server as message 1 of the Transaction protocol; the variable x
gets bound to the value of the premaster secret, and so the premaster secret
is revealed in message 2.

In what follows, we write ΣH for the Handshake protocol nodes, and ΣRL

for the Record Layer nodes.

49

Definition 4.4 {t}K is a shared encryption in a TLS space if there exist
a Handshake node n1 ∈ ΣH and a Record Layer node n2 ∈ ΣRL such that
{t}K v msg(n1) and {t}K v transmsg(n2).

In [GT00b], Guttman and Thayer state that the simplest way to prevent
multi-protocol harmful interactions would be to require that the parallel pro-
tocols do not use the same ciphertext as a part of any message. However, they
argue that such a condition would prevent using public key certificates, for
example, between different protocols. Such shared encryptions are harmless
because they contain public values. This also applies to multi-layer interac-
tion. On the other hand, layering protocols that extract private values from
within shared encryptions, or repackage their private contents are potentially
insecure. The following assumption captures the limitations we place upon
shared encryptions.

Assumption 4.5 Let Σ be a TLS space. We assume the following:

1. The Transaction Layer protocol does not remove pm from the protection
of the encryption with the server’s key: for every n⇒+ n′ ∈ ΣRL, if n
is negative, n′ is positive, transmsg(n) contains a subterm of the form
{pm}ks, and t0 is a new component of transmsg(n′), then pm 6v t0.

2. For every node n ∈ ΣRL, no subterm of transmsg(n) is of the form
{VH (prev5)}kc.

3. For every node n ∈ ΣRL, no subterm of transmsg(n) is of the form
[M,n]mac,enc.

4.3 Security Analysis of the Handshake Protocol

We fix a TLS strand space Σ satisfying the above assumptions.

4.3.1 Public Key Infrastructure

We start by establishing the correctness of the public key infrastructure used
to bootstrap the communication, i.e. each public key is reliably associated
with its owner, and hence the corresponding secret key is not compromised.

In the following lemma, we prove that if a long term secret key is not
initially known by the penetrator, then it is permanently safe.

50

Lemma 4.6 Let B be a bundle in Σ. Then for all n ∈ B, if msg(n) ∈ Ksec
then msg(n) ∈ KP .

Proof: Let k be a secret key. Examining the Handshake protocol, k does
not originate on a regular Handshake node. Using Assumption 4.2, there is
no regular node n2 such that k originates in the Transaction Layer on n2.
Therefore, k originates on no regular node. It follows that, if k v msg(n),
then k originates on a penetrator node, and consequently, k ∈ KP . �

We now present a couple of lemmas to prove that the certificates used
by the participants in the protocol are valid and therefore each public key is
correctly associated with its owner.

Lemma 4.7 Let B be a bundle in Σ. For every public key certificate
{pkˆa}sk v msg(n) where n ∈ B, either pk = PK(a) or sk ∈ KP .

Proof: A certificate {pk â}sk can originate in one of the following strands:

1. A regular CA strand st ∈ CA[ca, a]. In this case the certificate reliably
associates each principal with its correct public key, i.e. pk = PK(a).

2. A penetrator E strand. By Lemma 4.6, a penetrator can only use an
initially known secret key to sign the certificate and therefore sk ∈ KP .

�

Lemma 4.8 Let B be a bundle in Σ.

1. For every client strand stc ∈ Client[c, s, ∗, ∗, vs, ks, ∗, ∗, ∗] in B, if
SK(c) /∈ KP , and SK(vs) /∈ KP , then ks = PK(s).

2. For every server strand sts ∈ Server[s, c, ∗, ∗, ∗, kc, vc, ∗] in B, if
SK(s) /∈ KP , and SK(vc) /∈ KP , then kc = PK(c).

Proof: Each regular strand specified above can only accept a public key
certificate signed by a secret key SK(vs) or SK(vc) that is not in KP . By
Lemma 4.7, if the certificate is signed by an uncompromised key then the
public key included in the certificate is reliably associated with its owner.

�

51

4.3.2 The Client’s Guarantees

Firstly, we prove the secrecy of the premaster secret.

Lemma 4.9 Let B be a bundle in Σ, and let stc ∈ Client[c, s, rc, rs, ks, vs, vc,
pm, Sms] be a regular client strand in B such that SK(vs), SK(s) /∈ KP .
Then for all nodes n ∈ B, msg(n) 6= pm.

Proof: If we prove that premaster secret only occurs safely in Σ then we
have proved its secrecy by Proposition 3.26.

Let R be the set of terms R = {hash(h), {h}K | K−1 is safe}. Let S be
the set of regular nodes such that S = {n | pm occurs outside R in msg(n)}.
Suppose, for a contradiction, that S is non-empty. Then by bundle induction
(Proposition 3.11), it has a �-minimal element m, which is positive. By
Assumption 4.3, pm originates uniquely on Client5. Therefore, Client5 � m.
We perform a case analysis over m.

• Case m = Client5. Then msg(m) = {pm}ks . By Lemma 4.8, ks =
PK(s). Given that SK(s) /∈ KP , m /∈ S.

• Case m is some other regular Handshake node. By inspection of the
Handshake protocol, no such node transforms a message to send pm
outside of R, so m /∈ S.

• Case m is a positive Record Layer node. pm does not originate in the
Transaction Layer, by Assumption 4.2. Further, by clause 1 of Assump-
tion 4.5, no Transaction Layer edge transforms a shared encryption so
that pm occurs outside R. Consequently, m /∈ S.

Hence S is empty and pm occurs safely in Σ. �
We now show that the session keys remain secret.

Lemma 4.10 Let B be a bundle in Σ, and let st ∈ Client[c, s, rc, rs, ks, vs, vc,
pm, Sms] be a regular client strand such that SK(vs), SK(s) /∈ Kp. Then
for all nodes n ∈ B, msg(n) /∈ {G0(pm, rc, rs), G1(pm, rc, rs), G2(pm, rc, rs),
G3(pm, rc, rs)}.

Proof: Examining the protocol, terms of the form G∗(∗, ∗, ∗) are only uttered
as subterms of the hash function HMAC in the initial Handshake. Also, by
Assumption 4.2 no such term originates in the Transaction Layer. It follows
from the secrecy of the premaster secret (Lemma 4.9) and the definition of
safe keys (Definition 3.24) that the session keys G0(pm, rc, rs), G1(pm, rc, rs),
G2(pm, rc, rs), and G3(pm, rc, rs) are safe. �

52

We now prove that the server is authenticated to the client, and they
agree on their identities, the nonces and the premaster secret.

Lemma 4.11 Let B be a bundle in Σ, and stc ∈ Client[c, s, rc, rs, ks, vs, vc,
pm, ∗] be a client strand of B-height at least 8, such that SK(vs), SK(s) /∈ Kp.
Then there exists a unique server strand sts ∈ Server[s, c, rc, rs, PK(c), vs, vc,
pm, ∗] of B-height at least 8.

Proof: We show that the fifth and the eighth nodes on stc form an
outgoing authentication test for pm. Define the set of terms R =
{{pm}ks , {VH (prev5)}SK(c), [PRF cf (pm p̂rev6), 0]cm,ce}. By Assumption 4.3,
pm uniquely originates on Client5. By Lemma 4.8, ks = PK(s) and therefore
pm occurs only within R in msg(Client5). In addition, pm occurs outside R
at node Client8. It follows that Client5 ⇒+ Client8 is an outgoing test
for pm.

Using the Outgoing Authentication Test, there exists an outgoing trans-
forming edge m0 ⇒+ m1 that lies on some regular strand. By clause 1
of Assumption 4.5, this edge does not involve Record Layer nodes. Hence,
by inspection of the Handshake protocol, the transforming edge can only be
Server5 ⇒+ Server8 in some server strand sts = Server[s′, c′, r′c, r

′
s, k
′
c, v
′
c, v
′
s,

pm′, ∗]. Consequently, the B-height of sts is at least 8. We can also deduce
that pm′ = pm. Since the server strand is using the corresponding secret key
and PK is injective, it must be the case that s′ = s.

Using the Incoming Authentication Test, we can prove that
msg(Client8) = [PRF sf (pm p̂rev7), 0]sm,se is an incoming authentica-
tion test. By Lemma 4.10, sm, se /∈ P(B). Therefore, the term
[PRF sf (pm p̂rev7), 0]sm,se must have originated in some regular node n. By
clause 3 of Assumption 4.5, n is not a Record Layer node. Hence, by inspec-
tion of the Handshake protocol, n can only be Server8 in some server strand
sts. We can deduce that: r′c = rc, since rc is the first message of prev7; r′s = rs,
since rs is the second message of prev7; v′s = vs, since {ŝ PK(s)}SK(vs) is the
third message of prev7; c′ = c, k′c = PK(c), and v′c = vc since {ĉ PK(c)}SK(vc)

is the fifth message of prev7. Therefore, sts ∈ Server[s, c, rc, rs, PK(c), vs, vc,
pm, ∗]. Now we want to prove that such sts is unique. By Assumption 4.3,
rs originates uniquely in Σ in a server strand. Hence, there can be at most
one such sts. �

53

4.3.3 The Server’s Guarantees

Having established the client’s guarantees, we now prove the server’s guar-
antees: the authentication of the client to the server, and the secrecy of the
session keys used by the server.

Lemma 4.12 Let B be a bundle in Σ, and sts ∈ Server[s, c, rc, rs,
kc, vs, vc, pm, ∗] be a server strand of B-height at least 6, such that
SK(vc), SK(c) /∈ Kp. Then there exists a unique client strand stc ∈
Client[c, s, rc, rs, PK(s), vs, vc, pm, ∗] of B-height at least 6.

Proof: As in Lemma 4.11, we show that Server6 forms an incoming test
node. By Lemma 4.8, kc = PK(c), and so {VH (prev5)}k−1

c
is a test com-

ponent in Server6. Using the Incoming Authentication Test, there exists a
positive regular node m1 ∈ B such that {VH (prev5)}kc

originates on m1.
By clause 2 of Assumption 4.5, m1 cannot be a Record Layer node. Hence,

by inspection of the Handshake protocol, m1 = Client6 for some client strand
stc ∈ Client[c′, s′, r′c, r′s, k′s, v′s, v′c, pm′, ∗]. As in Lemma 4.11 it is easy to prove
that kc = PK(c), c′ = c, r′c = rc, r

′
s = rs, s

′ = s, k′s = PK(s), v′s = vs, v
′
c =

vc, and pm′ = pm. Therefore, stc ∈ Client[c, s, rc, rs, PK(s), vs, vc, pm, ∗].
Now we want to prove that such stc is unique. By Assumption 4.3, pm

originates uniquely in Σ in stc; hence, there can be at most one such stc.
(We could, alternatively, have used the unique origination of the client’s
nonce (Assumption 4.3) to establish the uniqueness of the client strand.)

�

Lemma 4.13 Let B be a bundle in Σ, and st ∈ Server[s, c, rc, rs,
kc, vs, vc, pm, Sms

′] a server strand such that SK(vs), SK(s), SK(vc),
SK(c) /∈ Kp. Then for all nodes n ∈ B, msg(n) /∈ {G0(pm, rc, rs),
G1(pm, rc, rs), G2(pm, rc, rs), G3(pm, rc, rs)}.

Proof: The proof here is very similar to the proof of Lemma 4.10. The
secrecy of the premaster secret pm, used to construct the keys, follows from
the fact that pm is secret from the client’s point of view by Lemma 4.9, and
that the server and the client agree on the value of pm by Lemma 4.12. �

Note the difference between the conditions required by the client’s guar-
antees (Lemmas 4.10 and 4.11) and the server’s guarantees (Lemmas 4.12
and 4.13). The client only requires the server’s secret key to be uncompro-
mised, while the server requires the client’s secret key and his own secret key
to be uncompromised.

54

4.4 Security Analysis of the Record Layer

In the previous section we proved that the initial Handshake results in four
secret authenticated session keys. In this section we formalise and prove the
security services provided by the Record Layer.

4.4.1 Prefix Authentication

We prove that the Record Layer provides an authenticated stream for each
participant, i.e. if the client receives a sequence of messages in the Transaction
Layer, then the server must have sent these messages earlier in the same order,
and vice versa.

We start by proving that any two sets of session keys used by two different
strands for sending messages in the Record Layer are completely disjoint.
Define keys(st) to be the set of session keys for out-going messages for the
regular strand st.

Definition 4.14 Let B be a bundle in Σ, and st be a primary regular strand
in B:

• If st ∈ Client[∗, ∗, rc, rs, ∗, ∗, ∗, pm, ∗], then keys(st) = {G0(pm, rc, rs),
G2(pm, rc, rs)},

• If st ∈ Server[∗, ∗, rc, rs, ∗, ∗, ∗, pm, ∗], then keys(st) = {G1(pm, rc, rs),
G3(pm, rc, rs)}.

Lemma 4.15 Let B be a bundle in Σ, and st1 and st2 be primary regular
strands of B-height at least 8. Then st1 6= st2 ⇒ keys(st1) ∩ keys(st2) = {}.
Proof: Let st1 ∈ Client[c1, s1, rc1, rs1, ∗, ∗, ∗, pm1, ∗] and st2 ∈ Client[c2, s2,
rc2, rs2, ∗, ∗, ∗, pm2, ∗] be distinct regular client strands. Then

keys(st1) = {G0(pm1, rc1, rs1), G2(pm1, rc1, rs1)},
keys(st2) = {G0(pm2, rc2, rs2), G2(pm2, rc2, rs2)}.

By Definition 3.1, the ranges of G0 and G2 are disjoint. Therefore, keys
constructed using G0 are distinct from keys constructed using G2. By As-
sumptions 4.3, pm1 6= pm2 since st1 6= st2. By Definition 3.1, key generator
functions are collision free, and hence G0(pm1, rc1, rs1) 6= G0(pm2, rc2, rs2)
and G2(pm1, rc1, rs1) 6= G2(pm2, rc2, rs2). Hence keys(st1) ∩ keys(st2) = {}.

The result can be proved in a similar way for other combinations of TLS
primary strands, i.e. a server strand and a client strand, and two server
strands. �

55

We now show that each message received by a principal in the Transaction
Layer is authenticated, i.e. has been sent earlier by the expected sender and
was intended for that principal.

Lemma 4.16 Let B be a bundle in Σ, and stc ∈ Client[c, s, rc, rs, ks, vs, vc,
pm, Sms] a client strand such that SK(vs), SK(s) /∈ KP . Let n be a node
in stc such that msg(n) = −[t, i]ce,cm for i > 0. Then there exists a
node n′ in the unique corresponding server strand sts ∈ Server[s, c, rc, rs,
ks, vs, vc, pm, Sms

′] such that msg(n′) = +[t, i]se,sm.

Proof: By Lemma 4.11, the server strand sts ∈ Server[s, c, rc, rs, ks, vs, vc,
pm, ∗] exists and is unique. Recall that a message received by a client in the
Record Layer is of the form:

−[t, i]se,sm = −{t,Hmac(sm, {i, t})}se .

By Lemma 4.10 the server session keys se and sm are safe, i.e. only known
to the client and the server. It follows from the Incoming Authentication
Test that a term in the form {t}se can only originate in a regular strand. In
particular, it can originate only in the strand sts by Lemma 4.15. �

Lemma 4.17 Let B be a bundle in Σ, and sts ∈ Server[s, c, rc, rs, ks, vs, vc,
pm, Sms] a server strand such that SK(vc), SK(c), SK(vs), SK(s) /∈ KP .
Let n be a node in sts such that msg(n) = −[t, i]se,sm for i > 0. Then there
exists a node n′ in the unique corresponding client strand stc ∈ Client[c, s,
rc, rs, ks, vs, vc, pm, Sms

′] such that msg(n′) = +[t, i]ce,cm.

Proof: The proof is similar to the previous lemma, and uses Lemmas 4.12,
4.13, and 4.15. �

We now prove that if a principal receives a stream of messages in the
Transaction Layer, then the corresponding principal must have sent the same
messages in the same order earlier. We write sent(Sms) and received(Sms)
for the sent and received messages of Sms:

sent(Sms) := 〈m | +m←− Sms〉,
received(Sms) := 〈m | −m←− Sms〉.

We write #Sms for the length of Sms.

Theorem 1 Let B be a bundle in Σ.

56

1. For each client strand stc ∈ Client[c, s, rc, rs, ks, vs, vc, pm, Sms] of B-
height 8 + #Sms, and such that SK(vs), SK(s) /∈ KP , there is a
unique server strand sts ∈ Server[s, c, rc, rs, kc, vs, vc, pm, Sms

′] such
that received(Sms) ≤ sent(Sms′) and received(Sms′) ≤ sent(Sms).

2. For each server strand sts ∈ Server[s, c, rc, rs, kc, vs, vc, pm, Sms]
of B-height 8 + #Sms, and such that SK(vc), SK(c), SK(vs),
SK(s) /∈ KP , there is a unique client strand stc ∈ Client[c, s, rc,
rs, ks, vs, vc, pm, Sms

′] such that received(Sms) ≤ sent(Sms′) and
received(Sms′) ≤ sent(Sms).

Proof: We prove the first part of the theorem; the second part can be proved
in a similar way.

We have chosen the B-height of the client strand such that the whole
strand is included in B. By Lemma 4.16, there is a unique server strand sts ∈
Server[s, c, rc, rs, ks, vs, vc, pm, Sms

′] such that for each message −[t, i]ce,cm
received by the client strand, the server sent +[t, i]se,sm. Further, the i deter-
mine the order in which the messages are sent and received. It follows that
the messages in received(Sms) must be in sent(Sms′), and t must have the
same index i in both sequences. It follows that received(Sms) ≤ sent(Sms′).

�

4.4.2 Secrecy

We now prove that the Record Layer provides secrecy for the Transaction
Layer. Since Transaction Layer messages may contain terms that are known
to the penetrator before starting the Transaction Layer exchange, such as
identities, certificates, etc., the Record Layer cannot guarantee that the pen-
etrator does not know any of the contents of the Transaction Layer messages.
The secrecy provided by the Record Layer guarantees that the penetrator
cannot learn anything “new” from messages exchanged in the Transaction
Layer between two regular strands.

Theorem 2 Let B be a normal bundle in Σ.

1. For each client strand stc ∈ Client[c, s, rc, rs, ks, vs, vc, pm, Sms] such
that SK(vs), SK(s) /∈ KP , there is no penetrator path that starts at a
Record Layer node n′ ∈ stc and includes a penetrator node n such that
msg(n) v transmsg(n′).

57

2. For each server strand sts ∈ Server[s, c, rc, rs, kc, vs, vc, pm, Sms] such
that SK(vc), SK(c), SK(vs), SK(s) /∈ KP , there is no penetrator path
that starts at a Record Layer node n′ ∈ sts and includes a penetrator
node n such that msg(n) v transmsg(n′).

Proof: We prove the first part; the second part is very similar.
Let us assume, for a contradiction, that there is such a penetrator path

from n′ to n. Let transmsg(n′) = t. From Definition 3.5,

msg(n′) = + {t,Hmac(cm, {i, t})}ce .

Since B is normal and msg(n) v t, the first ⇒ edge in the path from n′ to n
must be a decryption edge in a D strand. It follows that the key node of this
D strand has message ce. But this contradicts Lemma 4.10. �

4.4.3 Session Independence

In Theorem 1 we proved that the penetrator cannot replay messages from
one session between regular strands into another session between regular
strands. But can he replay messages from a session between regular strands
into a session where he is taking part using his own identities? In this section
we show that he cannot. More precisely, we show that a penetrator path that
starts at a Record Layer node in a session between regular strands can lead
to a regular node n′ only if n′ lies on the other strand in the same session.
Hence different sessions are independent.

Theorem 3 Let B be a normal bundle in Σ.

1. Suppose stc ∈ Client[c, s, rc, rs, ks, vs, vc, pm, Sms] is a regular client
strand such that SK(vs), SK(s) /∈ KP . Suppose there is a penetrator
path p that starts at a Record Layer node n ∈ stc and ends at another
regular node n′. Then n′ is on the corresponding server strand sts ∈
Server[s, c, rc, rs, PK(c), vs, vc, pm, ∗], as in Theorem 1.

2. Suppose sts ∈ Server[s, c, rc, rs, kc, vs, vc, pm, Sms] is a regular server
strand such that SK(vc), SK(c), SK(vs), SK(s) /∈ KP . Suppose there
is a penetrator path p that starts at a Record Layer node n ∈ sts and
ends at another regular node n′. Then n′ is on the corresponding client
strand stc ∈ Client[c, s, rc, rs, PK(s), vs, vc, pm, ∗], as in Theorem 1.

58

Proof: We prove the first part of the theorem; the second part is similar.
Consider the form of the penetrator path starting at n and ending at n′

(recalling that B is normal). The path cannot contains a node n′′ such
that msg(n′′) is a proper subterm of msg(n), since such paths cannot exist
by Theorem 2. Further, msg(n) cannot be a proper subterm of msg(n′):
examining the protocol, no Handshake node contains a Record Layer message
as a proper subterm; and by Assumption 3, no Record Layer node contains
a Record Layer message as a proper subterm. Hence msg(n) = msg(n′), and
so n′ is a Record Layer node.

Let sts ∈ Server[s, c, rc, rs, ks, vs, vc, pm, ∗] be the corresponding server
strand, as given in Theorem 1. Clearly n′ must be on a strand that uses the
same session keys as stc; and hence this strand must be sts, by the unique
origination of the premaster secret and the server’s nonce. �

5 Conclusions and Related Work

In this paper we employed the strand spaces model to analyse and verify
the TLS protocol. To enable this analysis, we simplified the TLS protocol
using safe simplifying transformations [HL99]. In addition, we extended the
term algebra and the penetrator’s model in the strand spaces framework to
include the operation of generating complex keys using hash functions. Fi-
nally, we analysed the TLS protocol using the adapted strand spaces model.
We started the analysis by placing some syntactic assumptions on the appli-
cation protocols. We then adopted a modular verification approach starting
with the initial Handshake protocol and then proceeding to the Record Layer
protocol. We concluded our verification by formalising the security services
provided by TLS: mutual authentication, stream authentication, confidential-
ity, and session independence. Consequently, we verified that the abstract
model suggested by Broadfoot and Lowe in [BL03] was correct under the
stated assumptions of the analysis. Adopting a modular analysis approach
has reduced the complexity of the analysis, provided a clearer and better
understanding of the TLS protocol, and potentially allows for proof re-use.

Our analysis of TLS has improved on previous formal verifications of the
protocol: we know of no previous security proof of TLS that examines the
Record Layer protocol. Consequently, the abstract security services provided
by TLS for the Transaction Layer have not been verified previously.

TLS has been analysed before using model checking techniques, for exam-

59

ple in [DCVP04]. However, these techniques are constrained by the intrinsic
limitations of model checking such as state explosion and incompleteness of
results.

Many direct proof techniques have been used to verify TLS. Examples in-
clude Protocol Composition Logic (PCL) [HSD+05] and equational reasoning
[OF05]. Perhaps the most known attempt is the verification carried out by
Paulson [Pau99] using the inductive approach [Bel00] to analyse a simpli-
fied version of TLS. The analysis took a moderate six man-weeks effort, to
model the protocol in HOL as inductive definitions, and just under three
minutes to generate the proofs in Isabelle. The abstract message exchange
was obtained by reverse engineering the TLS specification; unlike our use
of fault-preserving transformations, this does not guarantee that no attacks
are lost. Further, although the inductive proofs assume that “application
data does not contain secrets associated with TLS sessions, such as keys
and master-secrets”, they do not impose clear restrictions on the syntactic
structure of the Transaction protocol to ensure this.

Although the main focus of our analysis is the TLS protocol version 1.0,
the techniques used in this paper can be applied with minor modifications
to many variants of TLS that achieve different sets of security goals, for
example, unilateral TLS.

Our current research focuses on utilizing the rich framework of strand
spaces to model a wide variety of secure channels. The model abstracts away
from the implementation details of the secure channels, and just models the
security services they provide. The aim is to facilitate the layered analysis
approach described in the introduction, and to enable its application to a
wide variety of layered security architectures.

Acknowledgements

We would like to thank Chris Dilloway for his helpful comments on this work.
We would also like to thank Joshua Guttman for many useful discussions on
the strand space model, over several years. This work is partially funded
by a research studentship from the UK Engineering and Physical Sciences
Research Council (EPSRC).

60

References

[Aut04] Mike Auty. Simplifying TLS, March 2004.

[BAN89] M. Burrows, M. Abadi, and R. Needham. A logic of authentica-
tion. In Proceedings of the Royal Society of London, volume 426,
pages 233–271, 1989.

[Bel00] G. Bella. Inductive Verification of Cryptographic Protocols. PhD
thesis, University of Cambridge, March 2000.

[BL03] Philippa Broadfoot and Gavin Lowe. On distributed security
transactions that use secure transport protocols. Proceedings
of the 16th IEEE Computer Security Foundations Workshop
(CSFW), 00(2):141, 2003.

[BLS+95] J. Benaloh, B. Lampson, D. Simon, T. Spies, and B. Yee. The
private communication technology protocol, 1995.

[CJ97] John A. Clark and Jeremy L. Jacob. A survey of authentication
protocol literature. Technical Report 1.0, 1997.

[Cre04] C.J.F. Cremers. Compositionality of security protocols: A re-
search agenda. In F. Gadducci and M. ter Beek, editors, Pro-
ceedings of the 1st VODCA Workshop, volume 142 of Electronic
Notes in Theoretical Computer Science, pages 99–110. Elsevier
ScienceDirect, 2004.

[DA99] T. Dierks and C. Allen. The TLS protocol: Ver-
sion 1.0. request for comments: 2246, available at
http://www.ietf.org/rfc/rfc2246.txt, 1999.

[DCVP04] Gregorio Diáz, Fernando Cuartero, Valentiń Valero, and Fer-
nando Pelayo. Automatic verification of the TLS handshake pro-
tocol. In Proceedings of the 2004 ACM Symposium on Applied
Computing (SAC’04), pages 789–794, New York, NY, USA, 2004.
ACM Press.

[DGT07a] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer.
Completeness of the authentication tests. In Proceedings of the

61

12th European Symposium On Research In Computer Security
(ESORICS), pages 106–121, 2007.

[DGT07b] Shaddin F. Doghmi, Joshua D. Guttman, and F. Javier Thayer.
Searching for shapes in cryptographic protocols. In Proceedings of
the 13th International Conference, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pages 523–537,
2007.

[DY83] Danny Dolev and Andrew C. Yao. On the security of public
key protocols. IEEE Transactions on Information Theory, IT-
29(2):198–208, March 1983.

[GT00a] Joshua D. Guttman and F. Javier Thayer. Authentication tests.
In IEEE Symposium on Security and Privacy, pages 96–109, 2000.

[GT00b] Joshua D. Guttman and F. Javier Thayer. Protocol independence
through disjoint encryption. In Proceedings of the 13th IEEE
Computer Security Foundations Workshop (CSFW), Washington,
DC, USA, 2000. IEEE Computer Society.

[GT01] Joshua D. Guttman and F. Javier Thayer. Authentication tests
and the structure of bundles. Theoretical Computer Science, 2001.

[Gut01] Joshua D. Guttman. Security goals: Packet trajectories and
strand spaces. Lecture Notes in Computer Science, 2171:197–263,
2001.

[GW96] I. Goldberg and D. Wagner. Randomness and the netscape
browser. Dr. Dobbs Journal, January 1996.

[HL99] Mei Lin Hui and Gavin Lowe. Safe simplifying transformations for
security protocols. In Proceedings of The 12th Computer Security
Foundations Workshop (CSFW). IEEE Computer Society Press,
1999.

[HSD+05] Changhua He, Mukund Sundararajan, Anupam Datta, Ante
Derek, and John C. Mitchell. A modular correctness proof of
IEEE 802.11i and TLS. In Proceedings of the 12th ACM confer-
ence on Computer and Communications Security (CCS), pages
2–15, New York, NY, USA, 2005. ACM Press.

62

[Kar01] Kanita Karaduzovic. Analysis of the transport layer security pro-
tocol. Master’s thesis, University of Oxford, September 2001.

[Low01] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-
key protocol using FDR. Lecture Notes in Computer Science,
1055:147–166, 2001.

[OF05] Kazuhiro Ogata and Kokichi Futatsugi. Equational approach to
formal analysis of TLS. In ICDCS ’05: Proceedings of the 25th
IEEE International Conference on Distributed Computing Sys-
tems (ICDCS’05), pages 795–804, Washington, DC, USA, 2005.
IEEE Computer Society.

[Pau99] Lawrence C. Paulson. Inductive analysis of the internet protocol
TLS. ACM Transactions on Information and System Security,
2(3):332–351, 1999.

[Str96] Strawman. Secure transport layer protocol (stlp), discussion
draft, 1996.

[THG98] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman.
Strand spaces: Why is a security protocol correct?. In IEEE
Symposium on Research in Security and Privacy, pages 160–171.
IEEE Computer Society Press, 1998.

[THG99] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman.
Mixed strand spaces. In Proceedings of the 1999 IEEE Computer
Security Foundations Workshop (CSFW), Washington, DC, USA,
1999. IEEE Computer Society.

[Tho00] Stephen Thomas. SSL and TLS: Securing the Web. Wiley, 2000.

[YC01] A. Yasinsac and J. Childs. Analyzing internet security protocols.
In The 6th IEEE International Symposium on High-Assurance
Systems Engineering (HASE), page 0149, Washington, DC, USA,
2001. IEEE Computer Society.

63

A The public key infrastructure (PKI)

Public key certificates are used to bind an identity with a public key usually
under the signature of a trusted certificate authorities (CA)s to prevent the
fake use of public keys. X.509 is the international standard certificate that
is widely accepted as the appropriate format for public key certificates. The
format of a X.509 certificate can be represented as follows:

certificate = (V ersion, ID, 〈ID Related Info〉, V alidity, Algorithms, PKID, PKissuer)SKissuer

where:

• V ersion denotes the version of the certificate,

• ID denotes the identity of the holder of the certificate,

• 〈ID Related Info〉 holds information related to the identity holder:
e.g. a friendly name, a serial number, etc,

• V alidity is a pair of from-to dates expressed as UDT,

• Algorithms refers to the algorithms used to generate the key pair,

• PKID denotes the public key associated with ID,

• PKissuer denotes the public key of the issuer of the certificate, and

• SKissuer refers to the private key of the issuer of the certificate.

X.509 certificates can be chained. A certificate chain is a sequence of
certificates issued by the successive issuers. Each certificate is followed by
the certificate of its issuer. The signature can be verified with the pubic
key in the issuer’s certificate, which is the next certificate in the chain. The
certificate chain should lead to a certificate that is signed by a trusted party.

64

B TLS Message Flow

This section includes the complete description of the TLS protocol.

B.1 Hanshake Protocol Messages

The message flow of the Handshake protocol iis given below. Please note
that messages 10 and 12 are CipherSpecChange messages and are not part
of the Hanshake protocol.

1. ClientHello C −→ S : message type,message length, client version,
client nonce, sessionID length, sessionID,
cipher suite length, Cipher Suites,
compression length, Compression Methods

2. ServerHello S −→ C : message type,message length, server version,
server nonce, sessionID length, sessionID,
cipher suites, compression methods

3. ServerCertificate S −→ C : message type,message length, certificate chain length,
Certificate List

4. ServerKeyExchange S −→ C : message type,message length, Parameters,
SignedParameters

5. CertificateRequest S −→ C : message type,message length, certificate type length,
Certificate Types, certificate authorities length,
Certificate Authorities

6. ServerHelloDone S −→ C : message type,message length
7. ClientCertificate C −→ S : message type,message length, certificate chain length,

Certificate List
8. ClientKeyExchange C −→ S : message type,message length, Premaster secret
9. CertificateVerify C −→ S : message type,message length,

(Hash(handshake messages))SK(C)

10. ChangeCipherSpec C −→ S : 1

65

11. ClientFinished C −→ S : message type,message length, PRF (master secret,
”clientfinished”,MD5(handshake messages,
SHA(handshake messages)))

12. ChangeCipherSpec S −→ C : 1
13. ServerFinished S −→ C : message type,message length, PRF (master secret,

”serverfinished”,MD5(handshake messages,
SHA(handshake messages)))

where

RANDOM = 4 bye gmt unix time+ 28 byte random bytes
Cipher Suites = cipher suite1, cipher suit2, . . . , cipher suiten
where
cipher suitei = key exchange algorithm, cipher algorithm,

MAC algorithm, cipher type, is exportable, hash size,
key material info, IV size

Compression Methods = compression1, compression2, . . . , compressionn
Certificate List = certificate1 length, certificate1,

certificate2 length, certificate2, . . . ,
certificaten length, certificaten

Certificate Types = certificate1, certificate2, . . . , certificaten
Certificate Authorities = certificate authority1, certificate authority2,

. . . , certificate authorityn

where certificatei is defined in A
The fields Parameters, Signed Parameters, and premaster secret are

defined as follows:

if (key exchange algorithm = DH)
Parameters = DH length,DH value

else
Parameters = RSA length,RSA value

Signed Parameters = {Hash(Client random+ Server random+ Parameters}SK(B)

66

if (key exchange algorithm = RSA)
premaster secret = (client version, premaster secret)RSA/DH

else
if (key exchange algorithm = FixedDH)

premaster secret = null
else

premaster secret = DH length,DH value
where

premaster secret = client version+ random

B.2 Record Layer Protocol Messages

The message flow of the Record Layer protocol is given below.

ServerRecord S −→ C : {content type, version,message length,
Stream Cipher/Block Cipher}Server Key

ClientRecord C −→ S : {content type, version,message length,
Stream Cipher/Block Cipher}Client Key

where

Stream Cipher = Application Data+
HMAC(Server MAC Secret/Client MAC Secret,HMAC Data)

Block Cipher = Application Data+ padding length+
HMAC(Server MAC Secret/Client MAC Secret,HMAC Data)

HMAC Data = sequence number, TLS protocol message,
TLS version,message length,message content

67

