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1 Introduction

Consider the following best polynomial approximation problem: Given a continuous
function f defined on an interval I = [a, b], find a function p∗ in the space Pn of poly-
nomials of degree less or equal to n such that

(1.1) ‖f − p∗‖ ≤ ‖f − p‖ for all p ∈ Pn,

where ‖ · ‖ is the supremum norm ‖φ‖ = maxx∈I |φ(x)|. The approximation p∗ exists
and is unique, and is known as the best, uniform, Chebyshev or minimax approximation
to f . Discussions of this problem can be found in almost every book on approximation
theory [8, 10, 17, 20, 21, 25, 30].

Starting with Chebyshev himself, the best approximation problem was studied from
the second half of the 19th century to the early 20th century, and by 1915 the main
results had been established [34]. A second wave of interest came in the 1950s and
1960s when computational aspects were investigated. The focus of much of this work
was the algorithm introduced by Evgeny Yakovlevich Remez in a series of three papers
published in 1934 [27, 28, 29], and in this period were developed a deep understanding of
its theoretical properties as well as numerous variations for its practical implementation.
In the 1970s the Remez algorithm also became a fundamental tool of digital signal
processing, where it was introduced by Parks and McClellan in the context of filter
design [24].

In the present work we consider the use of the barycentric interpolation formula in
the Remez algorithm. Specifically, we represent p∗ as an interpolant through n+1 points
instead of expressing it, for example, as an expansion in the monomial basis. The main
benefits obtained are a considerable simplification, both practically and conceptually,
and numerical robustness.

We have two aims in this paper. The first is to present the barycentric-Remez
algorithm for best polynomial approximation. We study the changes in the classical
Remez algorithm, the theoretical implications of this variation and the main features
of its implementation. In particular, we use the new algorithm to compute p∗ for the
example f(x) = |x| with n in the thousands.

Parks and McClellan [24] seem to have been the first to have implemented the Remez
algorithm with the barycentric interpolation formula. Looking for an efficient filter de-
sign procedure, they found that they required a robust interpolation method to evaluate
the error of trial polynomials, as they recall in [18]:

“Once the program started to be employed for extremely long filters, it was
somewhat surprising that the method continued to work. Much of that success
can be attributed to the Barycentric interpolation formula.”

A similar barycentric strategy has been proposed more recently for the computation of
orthonormal wavelets with the Remez algorithm [31]. Nevertheless, in this paper we
examine aspects of the barycentric-Remez algorithm that, to our knowledge, have not
been mentioned before, including a computation of barycentric weights stable enough



BARYCENTRIC-REMEZ FOR BEST APPROXIMATION 3

to work for very large degrees and the use of barycentric formulas in the polynomial as
opposed to trigonometric polynomial case.

Our second aim is to present implementations of barycentric-Remez algorithms in
the chebfun system. Chebfun is a software system developed in Matlab that allows the
user to manipulate continuous functions numerically in a manner analogous to what is
done for discrete vectors. The algorithms presented here take the chebfun of a continuous
function as input and return the chebfun of its best approximation. Chebfun greatly
simplifies the implementation of these algorithms and proves to be a most convenient
tool for the Remez algorithm due to its powerful capabilities for locating global and local
extrema. The reader can find expositions of the chebfun system in [3] and [23] and at
www.comlab.ox.ac.uk/chebfun.

We give a comprehensive presentation of the classical Remez algorithm in Section
2, emphasizing its two main steps: the computation of a trial reference (Section 2.1)
and a trial polynomial (Section 2.2). Section 2.3 presents a compact implementation
of the classical Remez algorithm in chebfun and some numerical examples. Section 3
introduces the barycentric-Remez algorithm, together with its chebfun implementation.
The codes presented in this paper make it easy to explore properties of best approxi-
mations. In Section 4 we show some of these possibilities. We compare the convergence
of best approximants computed with chebfuns to Jackson-type bounds for continuous
and Lipschitz continuous functions. Our short and efficient implementation allows us to
replicate with little effort some of the computations associated with the disproof given
by Varga and Carpenter in 1985 [39] of a conjecture formulated by Bernstein in 1914
for polynomial approximation of |x|. We conclude in Section 5 with comments on the
problem of extending the barycentric-Remez algorithm to rational approximations.

2 Classical Remez algorithms in the chebfun system

Since the best approximation is unique, we can define the operator that assigns to each
continuous function its best polynomial approximation of fixed degree. It is well known
that this operator, although continuous, is nonlinear (for an example see [17, p. 33]),
and so we need iterative methods to compute p∗. The Remez algorithm is one such
method. Other important algorithms are the differential correction algorithms, which
rely on ideas of linear programming [26]. We will not mention these methods further in
this paper.

We begin our discussion of the Remez algorithm by recalling two theorems that are
essential to it. The first was first proved by Borel in 1905 [6] [8, p. 75] [25, p. 77].

Theorem 1 (Equioscillation Property) A polynomial p ∈ Pn is the best approxima-
tion to f (that is, p = p∗) if and only if there exists a set of n+2 distinct points {xi}n+1

i=0

such that

(2.1) f(xi)− p(xi) = λσi‖f − p∗‖, i = 0, . . . , n + 1,

where σi := (−1)i and λ = 1 or λ = −1 is fixed.
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Figure 1: Best polynomial approximations (thin lines) of degree 2, 5, 7 and 10 to f(x) =
sin(3πx) exp(x) (bold lines) on [−1, 1]. The dots show the polynomial at the reference and the
dotted vertical bars the corresponding errors, of equal lengths and alternating in orientation.

A set of points A∗ := {xi}n+1
i=0 that satisfies (2.1) is called a reference. Figure 1 shows

p∗ for f(x) = sin(3πx) exp(x), I = [−1, 1] and n = 2, 5, 7 and 10, and the references of
4, 7, 9 and 12 points respectively where f − p∗ equioscillates. Analogous properties hold
for other types of approximations such as best rational, CF and Padé [37].

Theorem 1 can be generalized for approximations that satisfy the “Haar condition”
[25, p. 77], of which polynomials are a special case. This allows us to look for best
approximations in other sets of functions, for example trigonometric polynomials, which
are the ones used for the Parks-McClellan algorithm. This paper works only with poly-
nomials, but we believe that our methods can be carried over to the trigonometric case.

The second theorem, proved by de la Vallée Poussin in 1910 [11], establishes an
inequality between the alternating error of a trial polynomial and the error of the best
approximation [8, p. 77][25, Thm. 7.7].

Theorem 2 (de la Vallée Poussin) Let p ∈ Pn and {yi}n+1
i=0 be a set of n+2 distinct

points in I such that sign
(
f(yi) − p(yi)

)
= λσi, i = 0, . . . , n + 1, with σi and λ defined

as in Theorem 2.1. Then, for every q ∈ Pn,

(2.2) min
i
|f(yi)− p(yi)| ≤ max

i
|f(yi)− q(yi)|,

and in particular,

(2.3) min
i
|f(yi)− p(yi)| ≤ ‖f − p∗‖ ≤ ‖f − p‖.



BARYCENTRIC-REMEZ FOR BEST APPROXIMATION 5

Theorem 2 asserts that a polynomial p ∈ Pn whose error oscillates n + 2 times is
“near-best” in the sense that

‖f − p‖ ≤ C‖f − p∗‖, C =
‖f − p‖

mini |f(yi)− p(yi)| ≥ 1.

The Remez algorithm constructs a sequence of trial references {Ak} and trial polynomials
{pk} that satisfy this alternation condition in such a way that C → 1 as k →∞. At the
kth step the algorithm starts with a trial reference Ak and then computes a polynomial
pk such that

(2.4) f(xi)− pk(xi) = σihk, xi ∈ Ak,

where hk is the levelled error (positive or negative), defined as hk := f(xi)− pk(xi) for
all xi ∈ Ak. Then, a new trial reference Ak+1 is computed from the extrema of f − pk

in such a way that |hk+1| ≥ |hk| is guaranteed. This monotonic increase of the levelled
error is the key observation in showing that the algorithm converges to p∗ [25, Thm 9.3].
In Section 2.1 we explain how to compute a trial polynomial and levelled error from a
given trial reference, and in Section 2.2 we show how to adjust the trial reference from
the error of the trial polynomial.

2.1 From a trial reference to a trial polynomial

We let {φj; j = 0, 1, . . . , n} be a basis of Pn and express the elements of the latter in the
form

p(x) =
n∑

j=0

cjφj(x).

A continuous function f and a set {xi}n+1
i=0 of n+2 points uniquely determine a polynomial

p and a levelled error h such that (2.4) is satisfied. The conditions (2.4) amount to a
linear system of n + 2 equations in n + 2 unknowns: n + 1 parameters to describe the
polynomial, plus the unknown h:

(2.5)




φ0(x0) φ1(x0) · · · φn(x0)
φ0(x1) φ1(x1) · · · φn(x1)

...
...

...
φ0(xn) φ1(xn) · · · φn(xn)
φ0(xn+1) φ1(xn+1) · · · φn(xn+1)







c0

c1
...
cn


 =




f(x0) + σ0h
f(x1) + σ1h

...
f(xn) + σnh

f(xn+1) + σn+1h




.

The chebfun implementation presented in Section 2.3 computes h and the coefficients
{cj} simultaneously by solving the (n+2)× (n+2) system (2.5), having h as one of the
unknowns.

The choice of basis {φj} is crucial in the numerical solution of (2.5) [12]. The mono-
mial basis, for example, is a terrible choice: the condition number of the resulting
Vandermonde matrix grows exponentially in general [14, p. 417]. The use of Chebyshev
polynomials will usually improve matters, but can still result in an ill-conditioned system
for arbitrary sets of points [1].
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2.2 From a trial polynomial to a new trial reference

Suppose that for a trial reference Ak there is a polynomial pk such that f(xi)− pk(xi) =
σihk but |hk| < ‖f − p∗‖. The goal is to obtain a new reference Ak+1 = {yi}n+1

i=0 where
the error of the polynomial pk+1 ∈ Pn equioscillates with levelled error |hk+1| > |hk|.
The key to finding the new reference is the de la Vallée Poussin theorem.

Since f(yi)− pk+1(yi) will equioscillate, the right side of (2.2) will be equal to hk+1.
Thus, to be sure of increasing the levelled error, the replacement of Ak by Ak+1 must
satisfy

(2.6) |hk| ≤ min
i
|f(yi)− pk(yi)|, yi ∈ Ak+1.

That is, the polynomial pk must oscillate on Ak+1 (but not necessarily equioscillate) with
amplitude greater than or equal to |hk|. If condition (2.6) is satisfied, it follows from
(2.2) that the levelled error increases from pk to pk+1.

Remez proposed two strategies to achieve this. One is to move one of the points of
Ak to the abscissa of the global extremum while keeping the sign alternation; the other
is to replace all the points of Ak by n + 2 oscillating local extrema satisfying (2.6) and
to include in Ak+1 the abscissa of the global extremum. These strategies are known as
the first and second Remez algorithms, respectively.

More specifically, the first Remez algorithm constructs Ak+1 by exchanging a point
xold ∈ Ak with the global extremum xnew of f − pk in such a way that the alternation of
signs of the error is maintained. If x0 < xnew < xn+1, then xold is the closest point in Ak

for which the error has the same sign as at xnew. If xnew < x0 and the signs of xnew and
x0 coincide then xold is x0; if xnew < x0 but the signs of xnew and x0 are different, then
xold is xn+1. Similar rules apply if xnew > xn+1.

The second Remez algorithm constructs the set Ãk+1 of points in Ak and local ex-
trema xr of f − pk such that |(f − pk)(xr)| > |hk|. Then, for each subset of Ãk+1 of
consecutive points with the same sign it keeps only one for which |f − pk| attains the
largest value. From the resulting set, Ak+1 is obtained by choosing n + 2 consecutive
points that include the global extremum of f − pk.

The speed of convergence of the Remez algorithm depends on the choice of the
change of reference. Assuming f is twice differentiable, Veidinger [40] showed that the
convergence is quadratic for the second algorithm, and Powell [25, Sec. 9.4] proved that
the first algorithm converges at an (n + 2)-step quadratic rate.

2.3 The Remez algorithm in the chebfun system

The problem of replacing the trial reference is one of optimization: on the error function
of the trial polynomial pk, find the global extremum or the alternating local extrema. In
the chebfun system this step is easy since one of the main features in chebfun is a very
efficient root finder [3] based on ideas of Boyd [7].

The following is our chebfun code that replaces the trial reference Ak using the
prescription of the second Remez algorithm. The input arguments are a column vector
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xk with the trial reference, the chebfun e of the error f−pk and the levelled error h = hk.

function [xk,norme] = exchange(xk,e,h)
rr = [-1; roots(diff(e)); 1]; % critical pts of the error
pos = find(abs(e(rr))>=abs(h)); % vals above leveled error
[r,m] = sort([rr(pos); xk]);
er = [e(rr(pos));(-1).^(0:length(xk)-1)’*h];
er = er(m);
s = r(1); es = er(1); % pts and vals to be kept
for i = 2:length(r)
if sign(er(i)) == sign(es(end)) &... % from adjacent pts w/ same sign

abs(er(i))>abs(es(end)) % keep the one w/ largest val
s(end) = r(i); es(end) = er(i);

elseif sign(er(i)) ~= sign(es(end)) % if sign changes, concatenate
s = [s; r(i)]; es = [es; er(i)]; % pts and vals

end
end
[norme,idx] = max(abs(es)); % choose n+2 consecutive pts
d = max(idx-length(xk)+1,1); % that include max of error
xk = s(d:d+length(xk)-1);

To implement the first Remez algorithm, we can change lines 2–3 of this code to
[tmp,pos] = max(abs(er)); pos = 1. Figure 2 shows the number of iterations for
both the first and second Remez algorithms when computing p∗ for the function in
Figure 1.
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Figure 2: Number of iterations required by the first and second Remez algorithms (upper
and lower lines, respectively) to obtain the best polynomial approximation of degree n to the
function f(x) = sin(3πx) exp(x).

The following function uses exchange to implement the Remez algorithm. Note that
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this entire code, including exchange, is less than 40 lines in Matlab/chebfun.

function p = remez(f,n); % compute deg n BA to chebfun f
xk = cos(pi*(n+1:-1:0)’/(n+1)); % initial reference
normf = norm(f);
delta = 1; % force to enter the loop
while delta/normf > 1e-11
A = zeros(n+2,n+1);
for j = 1:n+1 % assemble matrix of (2.5) using
t = chebfun((-1).^(j-1:-1:0)); % Chebyshev polynomials
A(:,j) = t(xk);

end
A = [A (-1).^(0:n+1)’];
c = A\f(xk); % solve (2.5)
h = c(end); c = c(end-1:-1:1); % leveled error
p = chebfun(chebpolyval(c)); % chebfun of trial polynomial
e = f - p; % chebfun of the error
[xk,norme] = exchange(xk,e,h); % replace reference
delta = norme - abs(h); % stopping value

end

The implementation just shown takes Chebyshev polynomials as the basis of Pn. The
command chebfun((-1).^(j-1:-1:0)) constructs Tj(x), and the command chebpolyval(c),
analogous to Matlab’s polyval, uses a vector c = [cn, cn−1 . . . , c0] to evaluate

∑n
j=0 cjTj(x).

As an illustration, these codes were applied to compute the best polynomial approxima-
tions of degree 10 of the functions in Table 1. The approximations are plotted in Figure
3.

This combination of Chebyshev polynomials as the basis for Pn and Chebyshev points
as the initial reference provides a reasonably reliable setting for the Remez algorithm.
Other choices, for example the monomial basis or equidistant points, often fail for n
larger than 50.

3 A barycentric-Remez algorithm in the chebfun sys-

tem

Even better, however, is a Lagrange basis, which is used by the barycentric-Remez
algorithm: Given a set {x̃j}n

j=0 of n+1 prescribed interpolation points, we express p(x),
x ∈ I as

(3.1) p(x) =
n∑

j=0

p(x̃j)`j(x), `j =

∏n
ν=0,ν 6=j 2(x− x̃ν)∏n
ν=0,ν 6=j 2(x̃j − x̃ν)

.



BARYCENTRIC-REMEZ FOR BEST APPROXIMATION 9

i fi ‖fi − p∗‖
1 tanh(x + 0.5)− tanh(x− 0.5) 0.00000030009195

2 sin(exp(x)) 0.00000178623400

3
√

x + 1 0.01978007008380

4
√
|x− 0.1| 0.11467950933306

5 1− sin(5|x− 0.5|) 0.14320591976530

6 min{sech(3 sin(10x)), sin(9x)} 0.33561414233366

7 max{sin(20x), exp(x− 1)} 0.38723296760148

8 sech
(
10(0.5x+0.3)

)2
+ sech

(
100(0.5x+

0.1)
)4

+

0.49987078860779

sech
(
1000(0.5x− 0.1)

)6

9 log(1.0001+x) 1.40439492981221

Table 1: Best approximation errors for nine functions by polynomials of degree 10.

The factors of 2 are included to eliminate the risk of underflow (correcting for the fact
that the interval [−1, 1] has logarithmic capacity 1

2
, not 1). Notice that

(3.2) `j(x̃i) =

{
1, j = i

0, otherwise,
j, i = 0, . . . , n.

Notice also that we are now proposing the use of a basis that is not prescribed in advance
but depends on the data.

Lagrange interpolation is a fundamental tool in numerical analysis whose success
depends on two key choices: the interpolating nodes, and the formula used for imple-
mentation. It is well known that the sets of nodes for which Lagrange interpolation is
well conditioned are distributed with asymptotic density proportional to (1− s2)−1/2, if
s is a rescaling of x to [−1, 1] [38, Chap. 5], such as the set of Chebyshev points

(3.3) x̃j =
1

2
(a + b) +

1

2
(b− a) cos

(jπ

n

)
, j = 0, 1, . . . , n.

Besides being ill-conditioned for certain arrays of grid points, Lagrange interpolation
also suffers from numerical instability when implemented improperly. The barycentric
formula

(3.4) p(x) =

n∑
j=0

w̃j

x− xj

p(x̃j)

n∑
j=0

w̃j

x− xj

,
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Figure 3: Best polynomial approximations of degree 10 (thin line) to the functions in Table 1
(bold line) computed with the classical Remez algorithm.

where

(3.5) w̃j =
1∏

ν 6=i

2(x̃i − x̃ν)
, j = 0, . . . , n,

are the barycentric weights, is a reformulation of (3.1), and it is stable and fully effective
for the evaluation of high-degree polynomials. In particular, Higham has shown that
(3.4) is forward stable for point sets with small Lebesgue constant, such as Chebyshev
points [15].

Because of the factors of 2 in (3.1) and (3.5), these products are roughly of size O(1)
and representable in floating point arithmetic. However, the partial products formed
along the way when such a product is evaluated, say, from left to right, may underflow
if n is very large (e.g. in the thousands). One solution to this problem would be to order
the partial products to compensate, e.g. by a discrete Leja ordering [36]. However in
this application we are able to use a simpler solution: rather than multiplying factors,
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we sum their logarithms:

w̃j =

∏

ν 6=j

sign(x̃j − x̃ν)

exp
(
n log 2 +

∑

ν 6=j

log
∣∣x̃j − x̃ν

∣∣
) , j = 0, . . . , n.

For a review of barycentric interpolation formulas, see [5].
The set of Lagrangian nodes that we use at a fixed step in the barycentric-Remez

algorithm is a subset of n + 1 points from the (n + 2)-point trial reference A = {xi}n+1
i=0

omitting, say, the point xj. From (3.2) it follows that the matrix of (2.5) is the (n +
1) × (n + 1) identity except with an additional jth row inserted whose entries are the
values of the various Lagrange functions at the particular point xj. Discarding this row,
we end up with the system

(3.6) p(xi) = f(xi) + σih, i = 0, . . . , n + 1, i 6= j.

Since the values f(xi) are known, the only value left to compute is h. With it, the values
p(xi) can be obtained, and with them, the trial polynomial p can be obtained from the
barycentric formula (3.4).

For any basis {φj} of Pn it can be shown that h can be found independently of the
coefficients {cj} [25, Thm. 9.1]. For the Lagrange basis we can compute explicitly a
closed expression without the values p(xi). Consider the discarded row of the system
(3.6), p(xj)+σjh = f(xj), and use Lagrange interpolation on the remaining set of n+1
points to compute p(xj),

(3.7)
n+1∑
i=0
i6=j

p(xi)`
j
i (xj) + σjh = f(xj), xj ∈ A, j = 0, . . . , n + 1, j 6= i,

where `j
i is the ith element of the Lagrange basis that uses A as the Lagrange nodes,

except for xj,

`j
i (x) :=

n+1∏
ν=0
ν 6=i,j

2(x− xν)

2(xi − xν)
, xi, xν ∈ A.

Notice that

(3.8) `j
i (xj) =

n+1∏
ν=0
ν 6=i,j

2(xj − xν)

2(xi − xν)
=

∏
ν 6=j

2(xj − xν)

∏
ν 6=i

2(xi − xν)
· xi − xj

xj − xi

= −wi

wj

,

where {wi} are the barycentric weights we would get if we considered all the points A
as the Lagrange nodes, i.e.,

wj =
n+1∏
ν=0
ν 6=j

1

2
(xj − xν)

−1, xj, xν ∈ A
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Inserting (3.8) in (3.7), we obtain

−
n+1∑
i=0
i6=j

p(xi)wi + σjwjh = f(xj)wj.

Summing over j, and noting that
∑n+1

j=0 p(xj)wj = 0, we obtain the compact formula

(3.9) h =

n+1∑
j=0

wjf(xj)

n+1∑
j=0

σjwj

.

With the values p(xj) and h we construct the chebfun of the polynomial p given by (3.4),
resulting in the chebfun of the trial polynomial. Since we know that the degree of the
polynomial is n, we can pass this argument to the constructor and avoid the use of the
procedure that automatically computes the degree of the corresponding chebfun:

>> chebfun(@(x) bary(x,w,xk,pk), n+1),

where xk is the trial reference, pk are the values (3.6), w is a vector with the barycentric
weights and bary is the barycentric formula, implemented in Matlab, for example, in
[5, p. 510]. The polynomial of degree n+1 that interpolates the n+2 points of Ak coin-
cides with the trial polynomial p of degree n, and thus the weights wj used to compute
h in (3.9) can be used in the barycentric interpolation to construct p.

The initial guess of the barycentric-Remez algorithm, in principle, can be any set
of points. However, to ensure that the first step of the process executes correctly, we
begin with a trial reference of n + 2 Chebyshev points (3.3). If h0 is below machine
precision the error will not equioscillate on this initial reference and all the values p(xi)
will be close to zero. However the next reference can still be computed by following the
exchange rules of the second Remez algorithm explained in Section 2.2.

The following code implements the barycentric-Remez algorithm. As an example,
we compute with it the best approximation of the function f8 with n = 200. Figure 4
shows p∗ for this difficult function.

function p = bary_remez(f,n); % compute deg n BA to chebfun f
xk = cos(pi*(n+1:-1:0)’/(n+1)); % initial reference
sigma = (-1).^(0:n+1)’; % alternating signs
normf = norm(f);
delta = 1; % force to enter the loop
while delta/normf > 1e-11

fk = f(xk); % function vals
w = ones(n+2,1);
for i = 1:n+2 % compute barycentric weights
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Figure 4: Best polynomial approximation of degree 200 to the function f8. The large error is
consistent with its slow convergence as n →∞ (see Figure 5).

v = 2*(xk(i)-xk);
vv = exp(sum(log(abs(v(find(v))))));
w(i) = 1./(prod(sign(v(find(v))))*vv);

end
h = (w’*fk)/(w’*sigma); % levelled reference error
pk = fk - h*sigma;
p = chebfun(@(x) bary(x,xk,pk,w),n+1); % chebfun of trial polynomial
e = f - p; % chebfun of the error
[xk,norme] = exchange(xk,e,h); % replace reference
delta = norme - abs(h); % stopping value

end

From our experiments we have seen that for certain functions and values of n, one of
the steps in the barycentric-Remez algorithm constructs a trial polynomial with a very
large extremum, located usually near the endpoints, when changing all the points of the
reference with the strategy of the second algorithm. The large norm of the polynomial
introduces a very large error in h, breaking the computation. A simple way to deal with
this problem is to reverse the last step and recompute the trial reference but using the
one-point exchange strategy of the first Remez algorithm. This implementation is the
one that we used for the experiments in the next section.

4 Numerical experiments

How large can we make n when computing p∗ ∈ Pn for a given continuous function? The
answer has varied with the years. In one of the papers that introduced his algorithm in
1934, Remez gave the polynomial coefficients of p∗ for f(x) = |x| for n = 5, 7, 9, 11 [28].
Twenty-five years later, Stiefel [35], Curtis and Frank [9] and Murnaghan and Wrench
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[22] applied different techniques to compute best approximations of sin−1 x, tan−1, log x,
2x and |x5| by polynomials of degrees varying between 2 and 18.

The first computer programs for uniform approximation appeared in the 1960s, and
included a Algol code by Golub and Smith [13] and Fortran codes by Barrodale and
Phillips [2], and by Simpson [33] based on Schmitt’s algorithm [32]. They have been
used, for example, for Chebyshev curve fitting with n > 20. More recently, Le Bailly
and Thiran [16] reported the computation of best approximants of degrees up to 64 as
a step to obtaining best approximants on the unit circle in the complex plane. And
higher degree approximations have been computed for particular kinds of functions. For
example, McClellan and Parks [18] comment on experiments they did thirty years ago
in their work with Rabiner [19] involving polynomials of degree about 500 in the context
of filter design. Rabiner, at Bell Labs, had some powerful computers to work with:

“From our perspective at Rice, it seemed that Larry wanted to set records
for the longest optimal filter ever designed. One day we received a printout
of the coefficients of a length-1401 filter; this probably would have consumed
several days of CPU time on our batch machine at Rice.”

In this section we report computations of best polynomial approximations with n in
the hundreds and thousands using the methods presented above in seconds or at most
minutes.

A collection of results known as the Jackson theorems establish bounds for the error
of best polynomial approximation as n increases in terms of the smoothness of f . For
example, if f satisfies the Lipschitz condition |f(x1)−f(x2)| ≤ C|x1−x2|, x1, x2 ∈ [−1, 1],
then the approximation error is bounded by [25, Thm 16.5]

(4.1) ‖f − p∗‖ ≤ Cπ

2n + 1
.

The functions f5, f6, f7 and f8 are Lipschitz continuous. Using the chebfun command
norm(diff(f),inf) we calculated the Lipschitz coefficients, and Figure 5 shows the best
approximation errors for n from 1 and 700 and the bound (4.1) for f5, f6 and f8. The
large error of the best approximation in Figure 4 is consistent with the large Lipschitz
constant C8 ≈ 7× 102.

For functions that do not satisfy a Lipschitz condition, one can establish the bound
[25, Thm 16.5]

(4.2) ‖f − p∗‖ ≤ 3

2
ωf

( π

n + 1

)
,

where ωf is the modulus of continuity of f , i.e.,

ωf (δ) = sup
|x1−x2|<δ

|f(x1)− f(x2)|, x1, x2 ∈ [−1, 1].

For both the functions f3 and f4, this bound becomes 3
2

√
π/(n + 1), and in Figure 6 we

compare this quantity with the best approximation errors.
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Figure 5: Error of best polynomial approximations for functions f5, f7 and f8 compared with
the Jackson bounds (4.1) for Lipschitz continuous functions. The error for f6, not shown,
follows very closely the error for f7.

The computations of best approximations of
√

x in [0, 1] and |x| in [−1, 1] are equiv-
alent. Remez himself used his algorithm and this equivalence to compute the best
approximations to |x| by polynomials of odd degrees up to 11 with an accuracy of 10−5.
Using the overloaded command poly(p), where p is the chebfun of the best polynomial
approximation, we can check the coefficients that Remez published in [28]. For example,
with n = 11, it takes about 0.1 seconds to find that the coefficients ck in the monomial
basis {xk} are:

k ck (Remez [28]) ck (chebfun)

0 0.027837 0.02784511855

2 4.753770 4.75365049278

4 −20.646839 −20.64625015816

6 47.776685 47.77533460523

8 −49.593272 −49.59209097049

10 18.709656 18.70935603064

Evidently Remez’s coefficients were accurate to about 4 places.
For this problem of the best approximation of |x|, much sharper estimates are avail-

able than the general bound (4.1). Bernstein [4] proved that there exists a positive
constant β such that

lim
n→∞

2n‖|x| − p∗‖ = β,
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Figure 6: Error of best polynomial approximations for functions f3 and f4 compared with
Jackson bound (4.2) for continuous functions. For f4 the bound is asymptotically sharp,
but for f3 it is too pessimistic, since (4.2) does not take into account the difference between
singularities of f at the endpoints and in the interior.

and from numerical experiments he conjectured that

β =
1

2
√

π
= 0.2820947917 . . . .

For seventy years this conjecture was open, until Varga and Carpenter [39] proved that
it was false and confirmed this with extensive numerical computations. Among their
experiments and results, which included sharper lower and upper bounds for β, they
computed 2n‖|x| − p∗‖ for n up to 104, accurate to nearly 95 decimal places (since
|x| is an even continuous function, the errors for the best polynomial approximation
of degree n and n + 1 are the same so only even degrees are computed). Using the
barycentric-Remez algorithm, we computed the same approximations in 30 seconds on a
workstation, obtaining the same 52 errors as Varga and Carpenter to machine precision.
We also computed the errors for degrees up to 10,000, and in Figure 7 we compare them
with Bernstein’s conjectured number, illustrating further that the conjecture was false.

5 Rational approximations

There are also Remez algorithms for best approximation by rational functions of type
(m,n), that is, functions of the form r = p/q where p and q are polynomials of degrees
less than or equal to m and n respectively. The error equioscillates on a reference with
m+n+2−δ points, where δ is the defect of f , and a de la Vallée Poussin inequality also
holds. A Remez algorithm involves the computation of trial references and trial rational
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Figure 7: Computed values of 2n‖|x| − p∗‖ (solid) and Bernstein’s conjectured number, β =
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π
(dashed) for values of n up to 10,000. As shown by Varga and Carpenter, Bernstein’s

conjecture was false.

functions much as for the polynomial case. The step of obtaining a trial reference of
m+n+2 points (for the non-degenerate case) from the trial rational function is unaffected
and requires one to find the global extremum or the alternating local extrema of the error
function. Chebfun, again, makes this step straightforward. However, the computation
of the trial rational function from the trial reference is more complex. A barycentric
algorithm for this computation will be presented in a forthcoming paper.
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