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Abstract—When an emergency occurs within a building, it
is safer to send autonomous mobile agents instead of human
responders, to explore the area and identify hazards and victims.
Existing exploration algorithms [1], [2] allow mobile agents
to make distributed navigation decisions by communicating
with nearby fixed sensors embedded in the environment. These
algorithms are very efficient in terms of exploration time, but
they have only been evaluated in simulation environments,
where idealized assumptions were made regarding the ability
of agents to localize sensors and move accurately towards them.
The objective of this work is to investigate practical issues of
building a real testbed of mobile agents and fixed sensors, and
implementing exploration algorithms in such a testbed.

In particular, we describe our experiences from building a
real system consisting of a Surveyor SRV-1 robot and Tmote
Sky sensors running the Contiki OS [3]. We select two existing
exploration algorithms, Ants [1] and Brick&Mortar [2], and
discuss challenges in trying to implement them in our testbed. To
address these challenges, we propose practical solutions that allow
a mobile agent to: (i) identify and localize fixed sensors deployed
in its vicinity; and (ii) accurately move towards a carefully se-
lected fixed sensor. Using our real network deployment, we derive
realistic models of localization and odometry errors. We then
insert these error models into a realistic simulation environment,
in order to extensively compare Ants and Brick&Mortar, and
measure their performance degradation as a result of introducing
realistic errors.

I. INTRODUCTION

When an emergency occurs within a building, the area
is typically off-limits for anyone not wearing respiratory
equipment, garments or barrier materials to protect themselves
from exposure to biological, chemical, and radioactive hazards.
In such adverse conditions, it is safer to deploy a group of
autonomous robots, hereafter referred to as mobile agents to
explore the area as fast as possible in search for hazards
and victims. Mobile agents must overcome three important
limitations during the exploration process: 1) lack of location
information in indoor environments where GPS is inaccurate;
2) lack of direct connectivity with each other via long-
range wireless links1; and 3) lack of map information after
emergencies that often change the building plan.

In order to address these challenges, recent work has
proposed instrumenting the emergency area with tiny fixed
sensors [1], [2]. By carefully reading and updating the state
of the instrumented environment, mobile agents are able to

1Radio wave propagation inside buildings with smooth metal surfaces can
be so bad that radio “dead spot” can exist where the signal is virtually non-
existent.

explore the environment without map or location information.
More importantly, they are able to communicate with each
other indirectly by leaving useful information on local sensors
to be picked up by other agents that happen to roam through
the same part of the sensor network.

For simplicity, consider an area instrumented with fixed
sensors lying in a grid topology. Wall cells, i.e. cells that are
occupied by some obstacle, are the only ones without fixed
sensors. We assume that a mobile agent is able to communicate
with the fixed sensor on the current cell, as well as with at most
eight fixed sensors in the surrounding cells. We also assume
that the mobile agent has on-board sensing devices that allow
it to detect hazards and victims within the current cell2.

Exploration algorithms that use the above model [1], [2]
typically follow four steps: 1) Sensor localisation: the mobile
agent identifies the fixed sensors lying in the current and eight
surrounding cells, and measures their relative positions with
respect to itself; 2) Sensor querying: the mobile agent queries
the state of the fixed sensors that were detected and localized in
the previous step; 3) Sensor updating: the mobile agent updates
the state of the fixed sensor in the current cell, taking into
account the states of the fixed sensors in the eight surrounding
cells. 4) Navigation: the mobile agent carefully selects one of
the surrounding fixed sensors and navigates towards it.

Note that exploration decisions are made in a completely
distributed manner, by simply relying on the local state of
the instrumented environment. The weakness of existing ex-
ploration algorithms is that they have only focused on the
sensor tasking and sensor marking steps, and have largely
ignored the practical issues pertaining to sensor localization
and navigation. They make unrealistic assumptions about the
ability of an agent to accurately localize sensors in its vicinity,
and move towards a selected sensor without odometry errors.
Although these assumptions are convenient for simulation
purposes, they are inadequate when it comes to evaluating
exploration algorithms in real testbeds.

The objective of this paper is to investigate practical issues
arising from applying distributed exploration algorithms in a
real environment. Our contributions are as follows:

• We provide a detailed description of our testbed, includ-

2The size of a cell is thus determined by the sensing range and by
the communication range of the mobile agent. Assuming that sensors are
accurately positioned in the middle of cells, and the agent could be located
anywhere in its current cell, the agent’s sensing range must be at least the
size of the cell diagonal and its communication range at least 1.5 times the
size of the cell diagonal.



ing the hardware and software architecture of mobile
agents and fixed sensors.

• We propose practical mechanisms for the localization and
navigation steps, and test them in a real testbed to derive
realistic models of localization and navigation errors.

• We discuss pathological cases that illustrate how existing
exploration algorithms, namely Ants and Brick&Mortar,
are affected by localization and navigation errors.

• We insert our error models into a simulation environ-
ment, and assess how the performance of Ants and
Brick&Mortar degrades as a result of introducing realistic
errors.

The remainder of this paper is organized as follows: Sec-
tion II provides an overview of related work on distributed ex-
ploration algorithms and technologies for sensor localization.
Section III provides a detailed description of the hardware
and software architecture of our testbed. Section IV proposes
practical mechanisms to localize sensors and navigate towards
them. Section V-A evaluates the performance of these mech-
anisms in a real testbed and provides illustrative examples
that show the impact of localization errors on the behavior of
exploration algorithms. Section V-B quantitatively evaluates
exploration algorithms in a simulation environment with and
without realistic localization and navigation errors.

II. BACKGROUND

A. Existing exploration algorithms

There is a plethora of distributed exploration algorithms in
which agents query a sensor-instrumented environment and
make navigation decisions based on the state of local sensors.
The purpose of this section is not to provide a complete
review of existing algorithms (we refer the interested reader
to [2]), but to provide a brief description of two representative
examples, Ants [4], [1] and Brick&Mortar [2], the first one
being a very simple and robust algorithm, and the second being
very efficient in terms of exploration time. Later in the paper,
we will examine issues pertaining to the implementation of
these algorithms in a real testbed.

Agents in both algorithms operate by reading and updating
the state of fixed sensors located in the current or surrounding
cells. A cell can be in one of the following states:

• Wall: The cell cannot be traversed by an agent because
it is blocked by an obstacle.

• Unexplored: No agent has been in the cell yet.
• Explored: The cell has been traversed at least once, but

the agents might need to go through it again in order to
reach other unexplored cells.

• Visited: The agents have already explored the cell, and
they do not need to go through it again to reach other
cells.

Both Ants and Brick&Mortar are guaranteed to achieve
the Exploration Objective, i.e. agents eventually traverse all
cells in the area at least once. This means that no cell is
left in the unexplored state. When this objective is achieved,
cells can be in any of the explored, visited or wall states. In
addition, Brick&Mortar is shown to achieve the termination
objective, which means that the agents not only traverse the

entire area, but are also able to determine when the task
is completed. When this happens, all cells in the area are
either walls or visited. No cell is left in the unexplored or
explored state. By definition, the Exploration Objective is
always achieved earlier (or at the same time as) than the
Termination Objective. Both objectives should be achieved
in the minimum amount of time, because in an emergency
scenario as the one we are considering, speed is essential.
The faster the Exploration Objective is achieved, the faster
victims and hazards are identified. The quicker the Termination
Objective is achieved, the earlier human responders can enter
the area with the certainty that there are no hidden hazards.

Ants: we first discuss the Ants algorithm proposed by
Svennebring and Koenig in [4], [1]. This is a distributed
algorithm that simulates a colony of ants leaving pheromone
traces as they move in their environment. Initially, all cells are
marked with value 0 to denote that they are unexplored. At
each step, an agent reads the values of the four adjacent cells
in the North, East, South and West directions and chooses to
step onto the least traversed cell (the one with the minimum
value, Fig.1A). Each time it steps into a cell, it updates its
value, for example by incrementing its value by one (Fig.1B).
The authors provide a proof that the agents will eventually
cover the entire terrain (provided that it is not disconnected by
wall cells), and thus that the Exploration Objective is always
achieved. The first advantage of the algorithm is its simplicity:
agents do not require memory or radio communication, but
only one-cell lookahead. Secondly, there is no map stored
inside the agents: if one of them is relocated (accidentally
or on purpose) it will not even realise it and it will continue
to do its work as if nothing happened. At the storage device
of each cell, we only need to store an integer counting the
number of times that agents have visited the cell. The main
limitation of the Ants algorithm is that the visited state is
not used during the process of marking cells. Therefore,
the termination objective is never achieved, and the agents
continue the exploration phase until they run out of energy.

Fig. 1. An agent running the Ants algorithm always chooses to go toward the
adjacent cell that was explored the least amount of times (A). Each time the
agent steps into a cell, it updates its current value, for example incrementing
it by one (B).

Brick&Mortar: the second algorithm [2] we examine is de-
signed to address the weaknesses of Ants algorithm described
above. Unlike Ants however, agents using Brick&Mortar know
when the exploration task is completed and they do not spend



much time revisiting the same cells. The driving idea is that
of thickening the existing walls by progressively marking the
cells that surround them as visited. Once again, visited cells
are equivalent to wall cells in that they can no longer be
accessed. In the description of the algorithm, we refer to
wall and visited cells as inaccessible cells, and to unexplored
or explored cells as accessible cells. The algorithm aims to
progressively thicken the blocks of inaccessible cells, whilst
always keeping accessible cells connected.

Fig. 2. The cell in the center of (A) cannot be marked as visited because it
would block the way between cells 1 and 2, while the cell in the center of
(B) is not blocking the way between two accessible cells and is thus marked
as visited.

In the marking step the agent updates the state of the current
cell, choosing between the explored and visited states. The
cell is marked as visited only if it is not blocking the way
between two accessible cells located in the North, East, South
or West directions. Two cases of applying this local rule are
illustrated in Figure 2: one where the current cell is marked
as explored (map a), and one where it is marked as visited
(map b). In addition to this local rule, Brick&Mortar uses a
loop closure mechanism to ensure that the Exploration and
Termination Objectives are achieved even in the presence of
obstacles (clusters of wall cells in the middle of the exploration
area). Details of this mechanism are beyond the scope of this
paper, and are omitted for space reasons.

Both Ants and Brick&Mortar abstract away the problems of
detecting fixed sensors in the vicinity of an agent, localizing
them (i.e. detecting in which cells they lie with respect to
the cell where the agent is located), and identifying them one
by one. However, in practice these tasks are far from trivial,
and failures to accurately detect, localize and identify sensors
could cause a significant degradation of the performance
of the two algorithms. Agents that do not accurately read
local sensor state are likely to make suboptimal navigation
decisions, slowing down the exploration process, and in the
case of Brick&Mortar even trapping and immobilizing agents
in inaccessible areas before the entire area has been explored.
In the next subsection, we overview several techniques of
localizing sensors with respect to an agent, using radio signal
strength, infrared, ultrasound and camera technologies.

B. Technologies for sensor localization

Radio Signals: Radio signal strength is a not reliable way
of identifying the robot relative position with respect to tags

deployed in an environment. In fact, it heavily depends on
factors like the relative orientation of the deployed motes,
their height from the floor, the material of the floor, and the
obstacles in the environment (the line of sight). Moreover, in
the literature (e.g. [5], [6], [7], [8], [9], [10], and [11]) it is
widely accepted that radio propagation is (i) non-isotropic (i.e.
the received signal, at a given distance from the sender, is not
the same in all directions), it has (ii) non-monotonic distance
decay (i.e. lower distance does not mean better link quality),
and (iii) the communication is based on asymmetrical links
(i.e. if A hears B, it cannot be assumed that B hears A).

However, several pervious studies used radio frequency
to cope with localisation issues. For example, to solve the
problem of determining if the robot is in the neighbourhood of
a sensor, Batalin et al. [12] create an algorithm called Adaptive
Delta Percent, which takes into account the signal strength of
the messages received from the various tags while the robot is
moving in order to guide it toward one of them. A strong
limitation of this approach is that the authors consider an
experiment to be successful if the robot is able to reach a tag in
the environment within a distance of 3m, an accuracy which is
unreasonable for our scenario. In their work, Bhattacharya et
al. in [13] assume that pre-deployed nodes are location-aware
and both robot and nodes have a limited radio communication
range, so that a robot can establish both if it is close to a certain
node and if it is able to communicate with it. The authors do
not provide results regarding the effectiveness of this method,
and the approach is not suitable if communication ranges from
different nodes overlap.

Infrared Signals: Several systems have been created to
define mobile robot localisation in indoor environments. Some
of them use ultrasonic and infrared technologies simulta-
neously [14], others radio frequency (RF) and infrared to-
gether [15], and some just infrared techniques [16]. However,
infrared signals are not completely suitable for our scenario
because they have a particularly limited transmission range
(i.e. ∼20-30cm), thus the robot risks not being able to identify
the deployed tag if the dimension of the cell is bigger than the
allowed range. Moreover, interference from the IR component
of other light sources could compromise the localisation
process [17].

Ultrasonic Signals: Ultrasonic sensors [18] alone could be
used to avoid obstacles, but not to identify specific tags in
the environment due to the poor resolution of their readings.
Therefore, we argue that IR or sonar could not represent
suitable technologies neither to localise the agent with respect
to the tags surrounding it (avoiding localisation errors), or to
guide the agent during the navigation process, thus correcting
movement errors.

Cameras and image processing: Since the previous ap-
proaches are not suitable for our scenario, we decided to
explore agent localisation using camera technologies. Sev-
eral approaches investigated this area adopting feature cluster
recognition [19], [20]. In particular, some of them use image
processing techniques to recognise landmarks in the environ-
ment [21], [22]. However, most of the approaches present
very sophisticated techniques to recognise specific features and
landmarks within the environment to autonomously guide the



agent in the exploration (e.g. in SLAM). On the contrary, we
plan to use cameras in a simpler way.

In particular, cameras allow us not only to extract the
infrared component of a LED light source, but also to identify
the position of the LED within the taken picture. Moreover, by
progressively processing all images that the agent takes of the
environment while moving and extracting their differences, it
is possible to keep the LED light in the centre of the image so
that odometry errors can be corrected if the relative position
of the LED light within the image changes. In this way, the
agent can be driven by more accurate movements and it is
able to correct its position autonomously. The camera range
is limited only by its resolution, thus we do not have the IR
short-range constraints. In fact, the chosen robot (described
in Section III-A) has not only a high-resolution camera, but
also a high computational power allowing it both to precisely
identify the LED light within the image and to progressively
process multiple images directly on the robot platform.

III. OUR SYSTEM

In the previous section, we provided a high level description
of two exploration algorithms, Ants and Brick&Mortar, which
have been extensively tested in simulation environments, but
not in a testbed of real robots and fixed sensors. Their main
shortcoming is that they ignore the issues of how a robot
localizes surrounding sensors, and moves accurately towards
a selected sensor. We overviewed alternative approaches for
sensor localization, and proposed cameras as the preferred
technology that enables agents to identify sensors and localize
them accurately.

We are now in a position to start describing our experiences
from building a real system of agents and fixed sensors,
and implementing exploration algorithms in the presence of
realistic localization and navigation errors. In this section, we
provide an overview of the system architecture, including the
hardware characteristics and the software modules of both the
agent and sensor platforms. As we will discuss in Section IV,
the hardware and software capabilities of our system affect the
design of practical localization and navigation techniques.

A. Hardware architecture

Our system consists of three different platforms: 1) mobile
agent: Surveyor SRV-1 robot connected with a Tmote Sky
mote; 2) fixed sensor: Tmote Sky mote with external bright
LED and 3) gateway: laptop connected with a Tmote Sky
mote (via its USB interface) used primarily for visualisation
of experiment results. Figure 3 shows the used robot together
with the Tmote Sky sensors.

The Surveyor SRV-1 robot has a 1000mips 500MHz pro-
cessor, 32 MB SDRAM and 4 MB flash. It has an omnivision
(OV9655) 1.3 megapixel camera with variable resolution from
160x128 to 1280x1024. It is also equipped with a Lantronix
Matchport 802.11b/g WiFi radio which it uses to communicate
results to the gateway for visualisation. It has tank-style treads
with differential drive via four precision DC gearmotors (100:1
gear reduction) and its speed ranges from 20cm to 40cm per
second. Its size is 120mm long, 100mm wide and 80mm

tall, and it weighs 350g. It has open source firmware written
in C programming language and provided by Surveyor. The
firmware has been custom edited to suit the needs of the
algorithms, and compiled using the GNU Toolchain for the
Blackfin processor. The robot is connected with a Tmote Sky
mote (described below) so that it can communicate with the
fixed sensors in its vicinity, using the IEEE 802.15.4 standard.

Fixed sensors are Tmote Sky motes with 8MHz TI MSP430
microcontrollers, 10KB RAM, 48 KB flash, and 1MB external
flash memory. They are equipped with 2.4 GHz IEEE 802.15.4
compliant radios that feature data rates of up to 250kbps. They
are approximately 70mm long, 30mm wide and 20mm tall, and
they weigh 23g excluding batteries. In order to increase the
visibility of fixed sensors by the mobile agents, we attached
to each mote a bright red LED (Maplin 5mm, 2.5V, 25mA)
via the GPIO line. The motes are able to switch the attached
LED on or off by a small driver which operates directly on
pin 23 of the MSP430 microcontroller.

Fig. 3. Hardware architecture of our system: Mobile agent (Surveyor SRV-1
robot with Tmote Sky mote on top) tasked to explore fixed sensors (Tmote
Sky motes) deployed on the floor.

Fig. 4. Software architecture of our system.

B. Software architecture

A graphical representation of the software architecture of
the system can be found in Figure 4. The software running
on each mobile agent consists of four distinct modules: 1)
the sensor localization module; 2) the sensor query module;
3) the sensor update module; and 4) the navigation module.
The role of the sensor localization module is to localize the
fixed sensors currently surrounding the mobile agent, which
consists of the subtasks of detecting these sensors by camera,
finding their relative positions with respect to the agent, and



identifying the unique ID associated with each sensor. This
module utilizes the camera for detection and identification
purposes, the motor to rotate the agent around itself to take
multiple pictures of its vicinity and the radio to communicate
with the fixed sensors within communication range. Details of
the sensor localization module will be provided in Section IV.
The sensor query module is dedicated to the retrieval of
information from nearby sensors that were localized in the
previous step. Query messages are sent to fixed sensors, which,
in response, send a report of their state. The type of state
information reported depends on the exploration algorithm; for
example, in Ants, sensors report how many times they have
been traversed by agents, whereas in Brick&Mortar they report
if they are in the unexplored, explored or visited state. The
sensor update module processes all the information received
from the sensors in the previous step, and updates the current
(closest) sensor accordingly. It also determines which sensor to
approach next. Finally, the navigation module ensures that the
mobile agent can accurately approach the carefully selected
fixed sensor. In Figure 4, it is possible to see which module
is using which capability of the robot, namely camera, motor
and radio, in order to accomplish its assigned task.

Since the robot in fact lacks any kind of visual output,
the debugging of the system would be almost impossible
without monitoring its status via network messages sent from
the mobile agent to the visual gateway. It must be noted
however that the image processing and all the computationally
challenging tasks are executed by the CPU of the mobile
agent, while the external computer is only relied upon to
visualise the progress of exploration. This is very important
because we wanted to test whether it is possible to execute
exploration algorithms on a small and inexpensive platform
such as the robot we are using, without any additional help
from an external processing unit or central server. The gateway
also hosts an additional console written in Python, which is
used to remotely control the mobile agent, in order to test all
its functions and calibrate the camera with the color of the
external LED used by the fixed sensors. The user is able to
move the robot to the desired position, facing a LED which
is currently switched on, and take a picture which is then
visualised on the screen by the console. After that, the user
can select a small sample of the depicted LED by dragging a
rectangle on the screen, and that sample will be used by the
robot as future reference of the LED color.

IV. TECHNIQUES

Previous work [2] focused on the sensor query and sensor
update modules, and made convenient assumptions about the
ability of agents to accurately localize local sensors, and
to navigate toward one of them without incurring odometry
errors. In this work, on the contrary, the main effort is focused
on the relaxation of these assumptions, and in particular on
building a working prototype of the entire system described
above, in order to prove that the exploration algorithms de-
scribed in Section II-A can be effectively ported from theory
to practice, and implemented in a real testbed.

In this section, we provide a detailed description of the steps
involved in localizing sensors by a mobile agent, and moving

towards one of them. Consider the example of a testbed layout,
in which the mobile agent is placed at the centre of a grid of
sensors, as depicted in Figure 5. In what follows, we discuss
practical techniques for 1) detecting sensor LEDs in a picture
taken by a mobile agent; 2) discovering the identifier of a
detected sensor; 3) establishing the relative position of the
sensor with respect to the mobile agent; and 4) moving towards
a selected sensor within view. All of these techniques are
performed by the mobile agent, and have been added to its
firmware.

Detecting a sensor LED: The color space used in the robot
to process images is YUV, which separates the luminance
component (Y) of a pixel from its colors components (U and
V). For this reason, by using this color space it is possible to
distinguish a color that is emitted from a light source (like a
red LED) from that of a less bright object (like a red chair)
by using the Y component. In order to correctly detect LEDS
in a captured frame, we first calibrate the mobile agent, with
the aid of the gateway. The mobile agent takes a picture of
the surrounding area, and sends it to the gateway, and the user
draws mini-rectangles around the LEDs of any sensors in the
frame. This process is used to sample the YUV color range of
LEDs mounted on the sensors in order to detect them correctly
during the exploration. The calibration script running on the
gateway scans every pixel within the given rectangle to find
the minimum and maximum value of each one of the Y,U and
V components of the color space. When sampling the picture
of an LED, the range of the Y component is expected to be
high and narrow, because an LED is always very bright, while
the U and V components may change according to the light
conditions.

Once the calibration phase is completed, the mobile agent
is ready to detect LEDs in a given frame as follows. In order
to identify the sensors within the current field of view, the
mobile agent sends a broadcast message to ask the motes to
switch their LEDs on. When the message has been sent, a
picture is taken, to identify any blobs within a given YUV
color range in the frame and return the coordinates of their
barycenter. Two different thresholds are given as parameters,
which are derived from the calibration phase: the first one
is the minimum dimension of a blob (in pixels), while the
other is the maximum gap (in pixels) between two blobs for
them to be considered the same blob. The first threshold is
very effective in fixing a maximum range for the vision of the
robot. Since the dimension of LEDs is in fact the same, the
size of a blob in the frame corresponds roughly to a sensor
which is at a given distance from the camera (and thus from the
mobile agent). Even if this information is not precise enough
to compute an accurate distance of the mote from the robot,
because of the different orientations in which the LED can be
at a given moment, it can be used to discard sensors which are
too far from the mobile agent, and thus not in an adjacent cell.
The function scans every pixel of the frame in horizontal lines,
keeping track of the ones within the given YUV color range.
For each line, pixels are clustered in different sets according
to their relative distance i.e. if the pixel currently examined
is further than the specified threshold from the previous set,
than a new set is created. Each time a new line of the frame



is processed, the sets in it are matched against the sets in the
previous lines (their number depending again on the specified
distance threshold) to see if they overlap. The overlapping
sets are clustered together in blobs, while the ones that do not
overlap are used to form new blobs. Finally, a list with only
the blobs that contain more than the given amount of pixels
are returned.

Discovering the IDs of detected sensors: In order to
identify the sensors within the current field of view, the mobile
agent broadcasts a message to all sensors in communication
range asking them to switch their LEDs on and off according
to their identifier. That is, if the identifier of a sensor is 101
in binary base, the sensor will switch its LED on in the first
time interval, off in the second, and on again in the third. The
mobile agent takes consecutive pictures at each time interval
and processes them in order to derive the identifiers of all
sensors detected in the previous step. A list of every sensor
with its corresponding ID and coordinates within the frame is
finally returned.

Locating sensors with respect to mobile agent: The goal
of this step is to establish the relative position of detected and
identified sensors with respect to the mobile agent. The mobile
agent starts turning the camera around in small steps, so as
to cover the whole area surrounding its current position. In
each step, it detects and identifies all sensors currently in its
field of view, and stores them, together with their coordinates
within the frame, and the number of steps which have been
performed, starting from the point when the first sensor was
detected. When the first identified sensor is detected once
again, the mobile agent assumes that the entire local area
has been scanned, and stops. At this point, the coordinates
of the motes are converted from cartesian frame coordinates
to polar, with the axis centered on the agent, and a map is
built with the positions of the sensors with respect to the
agent. The relative angle is computed by considering how
many steps the agent has performed to cover the area, the
number of steps after which a given sensor was identified,
and the horizontal position of the mote within the considered
frame. The distance of the sensor from the robot is instead
computed using the vertical coordinate of the sensor in the
frame. A fitting equation was computed for this purpose, using
a measurement tape in front of the camera and matching real
distances in the tape with vertical coordinates in the frame (in
pixels) and obtaining estDist = y2

420.0 − 0.931y + 65.0.
Moving toward a selected sensor within view: Once all

sensors in close proximity of an agent have been detected,
identified and localized, the exploration algorithm queries their
state, updates the state of the closest one, and carefully selects
which sensor to approach in the next step. The exact process
of sensor selection depends on the exploration algorithm and
is outside the scope of this paper. Instead, we are interested in
the practical issue of moving the agent from its current position
to its new position, which must be as close as possible to the
selected sensor. To do so, the agent must first face the selected
sensor, by performing a number of turning steps that depends
on the polar coordinates of the selected sensor. To ensure that
it faces the correct sensor, it tells all sensors to switch off their
LEDs except for the selected sensor which has its LED on.

As soon as the mobile agent detects the sensor’s LED in its
frame, it makes minor corrections to its orientation, so that
the x coordinate of the LED is at the center of the captured
frame. Once it is facing the sensor, the agent moves toward it,
regularly taking pictures to adjust its trajectory according to
the current position of the blob in the current frame. Once the
sensor is so close that the LED cannot be seen in the frame any
more, the agent stops and declares its mission accomplished.

V. EXPERIMENTS

We are now in a position to test the feasibility of our
proposed techniques in a real setting in order to derive realistic
localization and navigation errors. We will then feed the
derived error models into a simulation environment, to test
exploration algorithms extensively in realistic conditions.

A. Real Experiments

In this section, we describe our results from implementing
Ants (together with our localization and navigation techniques)
on a testbed of real agents and real sensors. The sensors are
deployed on the ground in a 5x5 grid, at the centers of square
cells of size 48 cm. The agent is placed in the middle of the cell
in the center of the grid, as shown in Figure 5. The purpose of
this experiment is four-fold: 1) to measure errors in localizing
detected sensors; 2) to measure the percentage of sensors that
are not detected at all; 3) to measure navigation errors, i.e.
inaccuracies in approaching a selected target sensor; and 4)
to count the times taken by an agent to localize surrounding
sensors and navigate towards one of them.

Fig. 5. Example of a testbed layout, with the mobile agent placed at the
centre of a grid of sensors.

Figure 6 shows estimated (circles) and real (squares) posi-
tions of sensors surrounding a given agent. In this case one
can notice how, even if the sensors were not always correctly
localised, the errors are always small enough, so that a sensor
can not be thought to be in another cell from its own. Figure 7
is the projection of an error model built from these data, with



10000 simulated sensor positions. These results imply that the
localization errors have a minimal impact on the performance
of exploration algorithms, since agents make decisions based
on the relative position of the cells where sensors are located,
and not based on their actual relative coordinates.

Fig. 6. Localisation of sensors around the agent. The positions of sensors
as estimated by the agent are represented as circles, while the real sensor
positions are represented as squares.

Fig. 7. Distribution of the localisation error model, as generated by a
projection of 10000 sensor positions.

Unlike localization errors, errors in actually detecting the
presence or absence of sensor nodes in the local neigh-
boorhood can have a much more detrimental effect. Real
experiments showed that the percentage of undetected sensors,
due to adverse light conditions, is not negligible and amounts
to 5.56% of all sensors. Let us consider the impact of unde-
tected sensors on the functionality of Ants and Brick&Mortar.
Recall that in Ants, an agent reads the state of surrounding
sensors and moves to the least explored one. If an agent
misses a sensor, it simply assumes that the cell has not been
equipped with a sensor before and it has not been explored
yet. Therefore it moves into the cell and places a new sensor
on the floor and marks it with the state 1 (meaning that it
has been explored once). Hence, in the worst case, a cell that
has already been traversed by an agent is traversed yet one
more time. However, since agents running Ants never stop the

exploration process, they are eventually guaranteed to explore
the entire area, which means that Ants is robust to undetected
sensors.

Fig. 8. A pathological case in which the problem of undetected sensors
adversely impacts the performance of Brick&Mortar.

On the other hand, undetected sensors can significantly
damage the performance of Brick&Mortar, by trapping agents
within visited cells, and not letting them participate in the
exploration process. Figure 8 shows such a pathological case,
while an agent is exploring a small area. In Stage A, the agent
does not detect the sensor on the bottom-right cell (cell 2),
and assumes that there is free path between cell 1 and 3.
For this reason, it marks the current cell as visited, in fact
disconnecting two explored areas while doing so. In Stage B,
the cell occupied by the agent does not block the path between
any two adjacent cells in the North, East, South or West
directions, because all such adjacent cells are already visited
(or walls). Hence, in Stage C, the agent marks the current
cell as visited and erroneously assumes that the exploration
task is finished. Since the adjacent cell on the east is wall,
and those on the West and South are visited, the agent cannot
step onto any of these inaccessible cells, and is effectively
trapped. After a while, all agents can potentially be trapped in
this manner long before the exploration process is completed.
Hence, undetected sensors can have a detrimental effect not
only in the efficiency, but also in the ability of Brick&Mortar
agents to cover the entire area. An empirical evaluation of
the performance degradation of Brick&Mortar as a result of
undetected sensors is provided in Section V-B.

Figure 9 represents the positions (circles) at which the
robot stopped when trying to reach the sensors on the ground
(squares): in this case the errors are almost unnoticeable,
because the robot only stopped when the LEDs on the sensors
were below the camera horizon, hence very close. For this
reason, we can assume that navigation errors are negligible
and non-cumulative during the exploration process.

Our final objective was to measure the time taken by each
agent to detect, identify and localize local sensors and move
towards one of them. The average number of turns required by
the agent to detect all the sensors around it is 18.28 (with st.
dev. 2.13). In each turn, if a sensor is detected, the agent takes
on average 9.55 sec. (st. dev. 0.34) to localize it, and, if not,
1.81 sec. (st. dev. 0.20) to move on. We also observed that it
takes an agent on average 55.42 sec. (st. dev. 3.62) to navigate
from its current position to the next selected sensor, because
it needs to stop several times and correct its orientation to be



Fig. 9. Points of arrival of the robot when trying to reach the sensors. The
points at which the robot arrived are circles, while the real sensors positions
are squares.

able to approach the target sensor accurately. These times are
of course very high and show that the system is not ready for a
deployment in a real emergency scenario. We plan to address
this issue in future work.

Fig. 10. Example of an office-like scenario with 4x4 rooms as used in the
simulations.

B. Simulations with realistic errors

Having derived realistic localization, detection and navi-
gation errors, we are now in a position to insert them in a
simulation environment and test Ants and Brick&Mortar in
realistic error conditions. Previous work [2] reported that in
idealized conditions, Brick&Mortar significantly outperforms
Ants in terms of exploration time, i.e. the time taken by
agents to explore all cells at least once. They also reported
that agents running Ants have no way of knowing when the
entire area is covered, whereas agents running Brick&Mortar
detect termination when they are surrounded only by visited
or wall cells. In this section, we show that although Ants is
less efficient than Brick&Mortar in idealized conditions, it is
significantly more robust in realistic error conditions.

In order to investigate the extent to which sensor detection
errors affect exploration, we ran several simulations varying
the number of agents and the size of the area. The simulations
were performed on automatically generated environments rep-
resenting office-like scenarios, like the one in Figure 10, with

Fig. 11. Effect of changing the number of agents.

Fig. 12. Effect of changing the area size.

a default area size of 30x30 cells and 4x4 rooms in them. The
positions of doors and walls was changed randomly during
the experiments, while the default number of agents was 20.
Figure 11 shows that one agent running Brick&Mortar is able
to explore only ∼50% of the area (and mark ∼40% of it
as visited) before stopping. Adding more agents allows us
to achieve better results, without however reaching the 100%
mark. In the same plot, we observe that agents running Ants
always manage to explore 100% of the area’s cells. Figure 12
shows the percentage of cells being explored or visited by
the two algorithms, as we vary the number of cells in the
area. In relatively small areas, agents running Brick&Mortar
manage to terminate before all of them are blocked, but as we
increase the area size, the agents have more opportunities to be
trapped before the Exploration and Termination Objectives are
achieved. Hence, it becomes obvious that a small percentage
of undetected sensors (5.56%) can greatly compromise the
performance of Brick&Mortar, whereas it has minor effects
on Ants.



VI. CONCLUSIONS AND FUTURE WORK

In this paper, we described our experiences from building a
real system consisting of a Surveyor SRV-1 robot and Tmote
Sky sensors running the Contiki OS [3]. We selected two ex-
isting exploration algorithms - Ants [1] and Brick&Mortar [2],
and discussed challenges in trying to implement them in our
testbed. To address these challenges, we proposed practical
solutions that allow a mobile agent to: (i) detect, identify
and localize fixed sensors deployed in its vicinity; and (ii)
accurately move towards a carefully selected fixed sensor. By
testing these techniques in a real testbed, we derived realistic
models of detection, localization and navigation errors, and
investigated how they affect the performance of two existing
exploration algorithms, namely Ants and Brick&Mortar. We
concluded that 1) localization errors, although non negligi-
ble, have almost no impact on the performance of the two
algorithms; 2) detection errors significantly compromise the
performance of Brick&Mortar, whereas they hardly affect the
simpler and more robust Ants algorithm; and 3) navigation
errors are negligible and can be completely ignored. Hence,
although Brick&Mortar was shown to outperform Ants in
idealized conditions, its performance is severely compromised
in the presence of sensor detection errors.

In the future, we plan to address a number of algorith-
mic and practical issues that stemmed from this research.
The algorithmic issues involve improving the Brick&Mortar
algorithm to make it robust to sensor detection errors. One
possibility would be to let Brick&Mortar agents adopt the
Ants approach whenever they are trapped, and to operate as
usual in normal conditions. In this way, we could potentially
combine the benefits of Brick&Mortar in terms of exploration
time, and the benefits of Ants in terms of robustness. The
practical issues involve reducing the time taken by agents to
detect, identify and localize local sensors, and move towards
a selected sensor. We also intend to study the case in which
sensors are not deployed in a perfect grid, but they are placed
by agents roaming through the area in an imperfect manner.
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