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Social hierarchies are a common feature of the Animal Kingdom and
control access to resources according to the fitness of the individual.
We use a similar concept to form an Adaptive Social Hierarchy amongst
nodes in a heterogeneous wireless network so that they can discover their
role in terms of their base attributes (such as energy or connectivity).
Three different methods of forming the hierarchy are presented (pairwise,
one-way and agent based). With Agent ASH we show that the time taken
for the hierarchy to converge decreases with increasing N, leading to good
scalability. The ranked attributes are used as a network underlay to
enhance the behaviour of existing routing protocols. We also present an
example of a cross-layer protocol using ranked connectivity and energy.
The ASH hierarchy provides an abstraction of real world, absolute values
onto a relative framework, and thus leads to simpler and more general
protocol design.

1.1. Introduction

A group of network nodes can be regarded as a society which is performing
a task (such as sensing). How well the group performs this task affects
information delivery and network longevity. Nodes in a network generally
form a heterogeneous set, differentiated by explicit attributes (such as size
of energy reserve, amount of buffer space) and implicit attributes (such
as connectivity). The network must efficiently transfer information from
source to sink, generally through intermediate nodes in the absence of direct
connectivity between source and sink. Choosing which intermediates to
transfer through is the subject of routing protocols, of which there exist a
plethora.
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Rather than introduce yet another routing protocol, we consider how a
network could manage itself, given that nodes ‘knew’ their role within the
group. For example, a node with low remaining energy level is likely to be
exhausted soon and should thus adopt a less active role in the network than
a node with a large amount of battery energy. What is meant by a less
active role is application dependent, but could range from avoiding routing
other node’s packets to disabling energy hungry sensors or altering their
duty cycle. In a network where all the nodes are initialized with identical
sized energy reserves, determining whether a node should have a low or
high role is simply related to the remaining proportion of energy.

Consider now the case where nodes are not introduced with the same
initial amount of energy. Such would be the case in a widely heterogeneous
network. We have previously introduced the example scenario of an animal
tracking network, where the size of the host animal dictates the maximum
weight of the tracking collar.1 This results in a large degree of diversity in
initial energy reserves. Assessing when a node is a low energy node now
becomes dependent on the composition of the group, and no longer related
to the absolute amount of energy. For example, in a network with nodes
with energy levels of 100J, 200J and 300J, a 100J node has the lowest energy
and thus should adopt a low role. Conversely, in a network composed of
nodes with energy levels 20J, 50J and 100J, the 100J node is the ‘best’ in
terms of energy and thus should be the most active. Although the energy
of the node is the same, its behaviour is dictated by the energy reserves of
its peers.

This simple example demonstrates that some sort of network wide dis-
covery system is required in order to determine the role of nodes in the
network. Nodes could send their attributes to a central server which would
gather network information and from this instruct each node to adopt a
certain behaviour. Whilst this is simple, it presents a single point of failure
and does not scale well to large numbers of nodes in the network. A simple
and lightweight localized discovery scheme is thus required so that each
node can decide on its own level, based on information acquired from its
peers.

We turn to the Animal Kingdom for inspiration, and observe that ani-
mals are able to determine their role within a society without any central-
ized control. Animals form collective groups, with an order of precedence,
where some individuals are superior to others in their preferential access
to resources (such as mates and food). We transpose this method of social
organization onto our wireless network, so that nodes can determine their
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role and access scarce resources (such as network bandwidth and energy).
In this chapter, we first examine social hierarchies in nature, to un-

derstand how and why they form and adapt to changes. The application
and construction of social hierarchies to wireless networks are discussed in
Sections 1.3 and 1.3.1 respectively. A method of creating a stable social hi-
erarchy through pairwise exchange is presented in Section 1.4. Based on the
observation that pairwise exchanges place a high burden on the MAC layer,
a broadcast version of social hierarchy formation is elaborated upon in Sec-
tion 1.5. To remove the restriction that the network be mobile in order for
the hierarchy to correctly form, pseudo mobility is introduced through the
action of random network agents in Section 1.6. This section also examines
how mobility models impact on the rate of convergence and adaption. The
focus of the chapter then turns to suitable network attributes to rank in
Section 1.7, followed by a presentation of some example scenarios show-
ing the use of the social hierarchy approach. Lastly, our work is contrasted
with related work in Section 1.9, before conclusions and future direction are
posed in Section 1.10. We now examine how social hierarchies are formed
in nature.

1.2. Social Hierarchies in Nature

Many animals live in societies or groups of individuals. The size and com-
position of these groups vary, but most have a common feature of the im-
position of a social hierarchy. A social hierarchy can be regarded as the
organisation of individuals of a collective into roles as either leaders or fol-
lowers with respect to each other. In biological terms, leading and follow-
ing are referred to as dominance and submission respectively. A individual
dominant over another typically has preferential access to resources such
as food, water or mating rights. Note that although one animal may be
dominant over another, it itself may be dominated by yet another member
of the group. Social hierarchies are such a pervasive natural formation that
words describing their behaviour have taken on colloquial usage, such as
‘pecking order’, ‘leader of the pack’ and ‘alpha male’.

Some hierarchies are statically created through gross physiological dif-
ferences, where it is impossible for certain individuals to dominate others.
Such an example would be the relationship between sterile worker bees
(drones) and the queen bee. It is impossible for a drone to become a queen
as it lacks the required reproductive organs. We will not consider static
hierarchies here, but are more interested in how hierarchies can be dynami-
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cally formed based on differences between the members in the group. This,
for example, would be how the queen bee dominates her sisters for the right
to lay eggs in a hive .

We examine how these hierarchies form and adapt and consider how
they result in a cohesive structure.

1.2.1. Formation and maintenance of hierarchies

Different species form hierarchies in different ways, but there is a com-
mon feature to all: communication of relative dominance or submission.
Based on the received communication, animals subsequently update their
perception of position within the hierarchy. Communication can be im-
plicit, such as another animal observing the physical size of another or it
can be explicit in the form of an interaction, such as an aggressive fight.
Communication can take on many forms, depending on the capabilities of
the particular species and can be tactile, olfactory, acoustic/vocal or vi-
sual. Whatever its form, the communication can be regarded as a stimulus
emitted by the sender which alters the receiver’s behaviour. We refer to
the communication exchange followed by the hierarchy update as a dyadic
(pairwise) tournament. Tournaments generally result in a winner and a
loser, with the winner increasing its role in the hierarchy upwards and the
loser downwards. An animal which frequently wins encounters with other
animals is likely to have a high role in the hierarchy. We now consider some
attributes which are used to construct the social hierarchy and how they
are communicated.

In a hive of bees, there is only one queen. This individual is responsible
for the laying of all the eggs within the hive. The queen is tended to by her
sister bees, and the queen emits a hormone which suppresses the formation
of ovaries in her peers.2 This is an example of a totalitarian or despotic
hierarchy.2 If the queen bee leaves to form a new nest or dies, in the absence
of the hormone, the sister bees start to regrow their ovaries. One bee will
dominate the rest, becoming the new queen. A similar structure also occurs
in other eusocial organisms such as wasps,3 ants4 and termites.5

The formation of dominance structures in chickens is a well studied
area,6.7 Hens form a linear dominance structure, with a dominant indi-
vidual meting out pecks to subordinates, hence the term ‘pecking order’.8

When a group of hens are assembled, there are frequent fights and changes
in rank initially. Over time, as the structure becomes known, there are
fewer and fewer fights as the hens are aware of their role or position within
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the hierarchy.2 If a new hen is introduced into the flock, the other hens
will attack it as a group.9 In a linear dominance hierarchy, an alpha or
super-dominant individual dominates all others. The next individual in
the hierarchy, the beta individual dominates all bar the alpha and so on.
Linear dominance hierarchies are a common feature in many species, such
as crayfish,10 anemones,11 goats12 and ibex.13

Hierarchies are also a common system in primates, such as baboons and
rhesus monkeys.14 Baboons have a complex culture of social interaction
which cements the troop together. Within human societies, hierarchies are
also pervasive theme. Political and business structures are organized along
the lines of dominance hierarchies, with presidents, vice presidents and so
forth. Even the academic world is an example of a social hierarchy, with
professors, lecturers and students being its constituents.

There are many attributes which are hypothesized to be important in
the formation of social hierarchies, and these depend on the individual
species. In crayfish, there is a strong correlation between claw length and
social status.10 In anemones the length of the feelers results in a difference
in ranking in individuals.11 In hens, there was a strong correlation between
rank and comb size.9

The exact mechanism which is behind the formation of a social hierarchy
in natural systems is unclear.15 In repeated experiments with the same
fish, researchers demonstrated that the rank order formed in successive
trials was not identical, as would be the case under the assumption that
rank order was solely based on observed differences between individuals.16

There is a strong correspondence between the rank of the attribute and the
resulting social hierarchy ranking, but it does not appear to be the only
process at work.17 It has been hypothesized that there is a form of positive
reinforcement, where an individual which has recently won a tournament
is more likely to win a subsequent tournament.16 The reasons for this are
unclear, but it is assumed to be as a result of increased hormone production,
leading to the individual becoming more aggressive.

It must be made clear that social hierarchies are formed along the lines
of comparative or relative differences between individuals, rather than ab-
solute attributes. For example, in one group of animals, an individual may
be ranked at the top, but in a fitter group of animals, it may only be ranked
in the middle. Thus, an individual’s role within the hierarchy is not only
dependent on its own attributes, but also the composition of the group it-
self. Social hierarchies are not static structures and dynamically react to
changes as the result of insertion or removal of other creatures. They also
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alter if the attributes of a creature change, such as a result of injury or age.

1.2.2. Purpose of social hierarchies

Why do animals and insects form social hierarchies? The strongest driver
for social agglomeration and organisation is thought to be the avoidance or
minimization of predation. This is the ‘selfish herd’ hypothesis of Hamil-
ton.18 Essentially, it states that an animal is less likely to be a target
for predation if its chances of being picked by the predator are minimized.
Hence, if an animal is alone, it is more likely to be chosen by a predator.
However, if it is part of a large group, it is less likely to be attacked. Some
social animals form a ‘mob’ which collectively acts to drive away a predator,
giving further evidence for the purpose of the formation of the group.19

Some predators also form societies in order to hunt more effectively.
Wild dogs form packs that can bring down a large animal which one dog
could not do by itself.20 Although the prey needs to be shared amongst
more animals, the individual effort and risk required to obtain the food is
reduced. There is also a strong correlation between the size of the wild dog
pack and their hunting success.21

In essence, the role or position of an animal within its society controls its
preferential access to resources with respect to its peers. A super-dominant
individual generally has first choice of mate, food and other resources and
thus is more likely to propagate its genes onto a future generation. This
comes at the cost of maintaining its position at the apex of the hierarchy,
and a deposition can often result in death or serious injury. However, social
structures provide for an organized access to resources, and are thought to
lead to less competition over resources, as each individual is aware of its
position.2

1.3. Using adaptive social hierarchies in wireless networks

Wireless networks are by their very nature amenable to the imposition
of a social hierarchy. A hierarchy is a relative ranking system, based on
measurable differences between individual nodes. Essentially, a hierarchy
provides an abstraction of the real world resources onto a framework which
indicates relative performance (such as poor, good, best). The purpose
of a network is to transfer information from a source to a sink, through
multiple nodes. To conserve resources (such as bandwidth and energy), the
information is sent along the shortest path (as measured by some metric
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such as hop-count or latency) between the sink and the source, through
intermediate nodes. The aim of a routing protocol is in essence to determine
the ‘best’ path for the information to take. This means that the set of all
possible paths can be cast into a hierarchy, ordered by the desired metric,
and the routing algorithm decides which is the best path. All routing
protocols which are based on minimizing some metric are implicitly forming
a hierarchy amongst the nodes in the network and basing routing decisions
upon differences between individuals. However, explicitly constructing and
adapting a hierarchy is an area which yet to be investigated fully.

Hierarchies are a common feature of network protocols, but many are
imposed at design time, based on physical differences between nodes (for
example, the Data Mule system is composed of a three tier static structure:
stationary nodes ; mobile (higher power nodes) and base-station nodes22).
A network should be able to learn the differences between nodes, rather
than have the differences specified prior to deployment. In this way, the
network will be able to dynamically adapt to insertions and removals. Thus,
we refer to the structure as an adaptive social hierarchy to reflect the fact
that the hierarchy adapts to changes in attributes and is not static.

A hierarchy can be thought of as a mapping from an absolute domain
(such as 1 joule of energy, 3 hops from sink) to a relative domain (e.g.
best node in network). An example of this mapping is shown in Fig. 1.1.
Although the real world values of the nodes in in network B are ten times as
large as the metrics in network A, they both map to the same system when
viewed from a relative ranking perspective. In the presented protocol, the
rank is scaled to lie within [0;1], where 0 corresponds to the lowest ranked
node and 1 corresponds to the highest ranked node.

Node management and routing is based on the relative parameters,
rather than the absolute. This means that network decisions are based
on factors which are independent of the real values, leading to scalability in
the resource domain. In a relative domain, network decisions do not need
to take into account real values, with the implication that a network proto-
col can be used in vastly different application scenarios, without having to
alter network tuning parameters. In addition, any parameter that can be
measured can be placed into a social hierarchy. Thus, the design of network
protocols can be separated from the real world scenario. For example, in
a static network, hop count is an important metric, whereas in a mobile
network other metrics such as utility are more useful. Traditionally, each of
these would require a different routing protocol, whereas if a social hierar-
chy is used, a single network protocol can be used for both problems. This
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Fig. 1.1. Illustration of ASH ranking procedure. Although the networks in A and B
have different energy levels, they rank to the same network when viewed in the ASH
sense. This resource abstraction makes network design independent of real world values.

is illustrated in Fig. 1.2 for a stationary and a mobile system, showing how
they both map into the same relative network, simplifying network design.
In the stationary network, hop count is used as a measure of ‘goodness’,
whereas in the mobile network, transitive connectivity is used. The fixed
network would require different routing rules to the mobile network, as the
range of the values of the absolute parameters is different. However, if a
ranking system is used, the absolute values of the parameters are mapped
onto relative values which are between 0 and 1. In this way, the same
routing rules can be used if a social hierarchy is constructed.

Thus, there are now two different areas in network protocol design:
constructing the social hierarchy and the formulation of protocol rules.
The hierarchy can be regarded as an underlay which provides the resource
abstraction onto a relative structure. Various methods of creating a social
hierarchy are discussed in the following section.
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Fig. 1.2. ASH working on two different connectivity metrics. In mobile network A,
connectivity is measured by the transitive connectivity, whereas in the stationary network
B, connectivity is measured using the traditional hop count. Note that both networks
map to the same network when ranked

1.3.1. Constructing an Adaptive Social Hierarchy

As previously stated, a hierarchy can be viewed as a mapping from an
absolute parameter space to a relative parameter space. This mapping can
be undertaken in many different ways. Ranking needs to be determined
in a distributed fashion amongst all the nodes, as opposed to a centralized
system which has a single point of failure. As nodes are typically resource
constrained, methods to determine ranking should not result in a high
level of overhead in the form of ASH ranking and updating. In addition,
the ranking needs to be scalable not only with the number of nodes in
the network, but also with the range of parameter values. Before various
ranking systems are discussed, some terminology is introduced.

Let S be the set of a particular attribute A of the N nodes in the
network

S = {A1, A2, . . . , AN} . (1.1)

When the order of the elements in this set is taken into account, an
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ordered set is formed. For example, consider the four element set of at-
tributes S = {10, 4, 8, 6}. The ordered set, φ = [4, 6, 8, 10] is the original
set, sorted into order of size. The rank order of the sorted set is given by
R = [4, 1, 3, 2] where the rank refers to the index of the original element.
In our case, however, we are interested in the scaled or normalized rank,
which is expressed as

R̂ =
R − 1
N − 1

. (1.2)

Thus, for the given example with rank order R = [4, 1, 3, 2], the nor-
malized rank is found to be R̂ = [1, 0, 2

3 , 1
3 ]. By normalizing the rank, the

rank is made independent of the number of nodes in the network, leading
to scalability. This is because it is known that the maximum rank is 1 and
the minimum rank is 0. Thus a node with an attribute that has a rank
of 1 can be regarded as the ‘best’ node in the network, in terms of that
attribute.

The goal of our work is to present various methods of evaluating the
ranking in a distributed fashion, much like animals form social hierarchies
based on measurable or perceived differences. We denote the rank as es-
timated by a method of ranking as Ê. First though, we consider how to
measure how well a method performs in the task of ranking a set of at-
tributes.

There are a number of factors which we are interested in with respect
to the formation and maintenance of the social hierarchies. Probably the
most important factor is the rate of convergence or settling time of the
social hierarchy, from initialization to a point when it is deemed to be
settled. Another factor is the stability of the hierarchy - whether nodes
remain in the correct order, or whether there are time varying errors in
the ranking. Lastly, we are also interested in the adaptibility of the social
hierarchy - how long it takes the system to react to disturbances, such as
node insertion or removal or a change in a node’s attribute. With all of
these performance metrics, it is necessary to determine whether they are
scalable in terms of increasing N, the number of nodes in the network.

To determine when the hierarchy has converged, a metric is required
that reflects the degree of order of the rankings of the nodes in the system,
and whether they are in concordance with the order of the absolute pa-
rameters. The simplest metric is one which indicates when the estimated
ranks are perfectly ordered. In this case, we can say the system is correctly
ordered when Ê = R̂
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In a network of this nature, subject to frequent changes and rank re-
versals, it is not necessary for the hierarchy to be perfectly sorted in order
for the nodes to know their approximate role in the network. One possi-
ble measure of error is the Mean Squared Error (MSE). This reflects how
close the system is to its desired steady state values, but does not weight
incorrect orderings highly. Another metric, formulated especially for deter-
mining ordinality of the ranking, is the Kendall Correlation Coefficient, de-
noted by τ .23 This indicates the normalized number of pairwise exchanges
or switches required for the set of estimated ranks to be perfectly sorted.
A Kendall τ of -1 corresponds to perfectly reversed ranking (for example
[4;3;2;1]), whereas a τ of +1 reflects that the system is perfectly ordered.

However, we are interested in the worst case performance, and this
would be expected from the node with the greatest error in ranking. For
example if a node has a small amount of energy, and it is erroneously
ranked highly relative to its peers, then depending on the application, it
could expire rapidly. Thus, we define another convergence time as the
expected time taken for the maximum rank error in the network to drop
below a certain threshold. We define the maximum (absolute) rank error
as emax = max

∣∣∣Ê − R̂
∣∣∣, and we say that our system is converged when

emax < ε, where ε is the acceptable percentage error tolerance. The time
taken for this to occur is denoted as T±ε. Note that T0 corresponds to the
expected time to be perfectly settled. We use T±20% , T±10%, T±5% and T0

(corresponding to a maximum error of 20%, 10%, 5% and 0 respectively) to
measure Rate of Convergence. Different applications will require different
error thresholds depending on their requirements.

Closely related to the initial Rate of Convergence is the performance of
the system when nodes are subject to changes in their attributes or nodes
are inserted or removed. In control theory terms, the Rate of Adaption
(ROA) is a measure of disturbance rejection. A system which takes a long
time to recover from perturbations will not be suitable for use in a wire-
less network, which is characterised by frequent variations in resources and
connectivity. To measure the ROA, we vary 10% of the node’s attributes
to new, random values once the network has converged to the specified
error threshold. The ROA is defined as the time taken for the system to
re-achieve T±ε after the pertubation.
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1.4. Pairwise ASH

Much like the way animal dominance hierarchies form through dyadic in-
teractions, we start with a simple pairwise switch or exchange method of
sorting the ranks of the nodes, in concordance to their attributes. When a
pair of nodes meet, they trade their attributes and ranks. If the order of
their ranks are in contradiction to the order of their attributes, their ranks
are switched. If there is no contradiction, their ranks are left unchanged.
The rules for this method of ranking are shown in 1.3. There are four pos-
sible combinations - two correspond to ranks and attributes with the same
order and the other two deal with contradictions.

Fig. 1.3. Rank update rules for pairwise ASH. Both nodes perform the same rules at
the same time, which will lead to a simultaneous exchange of ranks in the event of a
contradiction

A demonstration of the sorting action is shown in Fig. 1.4 for a 10 node
network. Initially, the nodes were assigned to have ranks in perfect reverse
order. After 89 meetings, the network is perfectly ordered. Note the fre-
quency of switches with respect to the number of meetings – initially, most
meetings result in rank alteration. However, as the system becomes more
ordered, fewer node meetings result in a rank exchange. This is similar to
what is observed in many animal social hierarchies which are characterized
by a high initial competition rate which decreases as the hierarchy becomes
ordered. The corresponding maximum rank error plot for the trajectory
of Fig. 1.4 is shown in Fig. 1.5. It can be seen that the error decreases
rapidly, with the maximum error of any node being less than 30% after 30
meetings. However, to reach perfect order, it takes a further 60 meetings.

We use this simple method of sorting as a baseline to compare other
methods against. The possible transitions between all the possible order-
ings, as well as the probability of the transition are shown in Fig. 1.6 for
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Fig. 1.4. Rank trajectories for a 10 node network, starting from perfect reverse order.

a three node system. Note that the transition graph is a Directed Acyclic
Graph (DAG), as it can be topologically sorted. In addition, the Kendall
correlation coefficients are strictly increasing with the transitions. This has
the implication that any meeting that results in a transition will result in a
more ordered network. It is impossible for a meeting to result in a network
which is less ordered.

We can place an upper bound on the expected number of meetings
by examining how long it will take if the system traverses the maximum
number of switches from perfectly disordered to perfectly ordered. The
maximum number of switches is given by Ns = N(N−1)

2 , which is the same
as the number of possible combinations in which two unique nodes can be
picked at random. For a three node system, this results in the maximum
number of switches being 3.

It will now be shown how to calculate the upper bound, given that
the system starts from perfectly disordered, i.e [3;2;1]. From this ordering,
every possible meeting results in a transition to a new sequence. Thus the
time that the system remains in this sequence before leaving is 3/3 = 1
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Fig. 1.5. Maximum rank error for the trajectories shown in Fig. 1.4. Note that the
network is perfectly ordered after 89 meetings. The error thresholds corresponding to
the determination of T±20% , T±10% and T±5% are shown on the diagram as dotted
lines.

meeting. Consider if the next ordering chosen is [3;1;2]. From this point,
two out of a possible three meetings will result in a transition to a new
ordering. Hence, we can expect the system to remain in this ordering
for 3/2 meetings. Lastly, if the rank ordering is [1;3;2], only one meeting
(one between nodes 2 and 3) will result in a transition to [1;2;3]. The
system will be expected to take 3/1 meetings on average to leave. Once
in the final state, the system will never leave. Thus, the total expected
time to transition from completely disordered to perfectly disordered is
the sum of the number of meetings required to reach this state, which is
3/3+3/2+3/1 = 5.5 meetings. In general the upper bound on the expected
number of meetings can be written as

Tmax =
Ns∑
i=1

Ns

i
, (1.3)
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Fig. 1.6. Transition diagram for the possible sequences of a three node network. Prob-
abilities next to each arrow are the exit probabilities from each state. The τ value shown
is the Kendall rank correlation coefficient. It should be observed that τ is monotonically
increasing from left to right, and that the transition graph results in strictly increasing

values of τ .

where Ns = N(N−1)
2 .

For large N, this can be expressed as

Tmax = Ns(ln(Ns) + γ), (1.4)

where γ = 0.57721... is the Euler-Mascheroni constant.
Thus, in the limit, this shows that the upper bound on the settling

time varies as O(Ns ln(Ns)), or in terms of N as O(N2 log(N)). This has
the implication that the required number of meetings for the system to
converge perfectly appears to be prohibitively large as N increases. Later,
in Section 1.6.2, we show that in the more realistic scenario where more than
one node can meet per time interval, the effect of increasing node density
counteracts the polynomial convergence time, resulting in a decrease in
convergence time with increasing N.

However, whilst the result of Eq. 1.4 is useful to place an upper bound
on the performance of the switching scheme in terms of the expected number
of meetings, in reality the meetings are random and thus the system is
unlikely to pass through every possible combination to reach the ordered
state. In addition, initial node rankings are likely to be random, not in
perfect disorder.

To calculate the expected settling time, we can formulate this problem as
a Markov Chain. The terminal state, corresponding to perfectly ordered,
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is called an absorbing state, and the ROC is equivalent to the expected
absorption time. The possible state transitions are expressed as a transition
matrix. This indicates the probability of moving from one state to another.
The transition matrix for a system with N nodes is denoted by PN . Thus,
the transition matrix for the case of N = 3 is given by

P3 =

321 312 231 132 213 123
321 0 1

3
1
3 0 0 1

3

312 0 1
3 0 1

3
1
3 0

231 0 0 1
3

1
3

1
3 0

132 0 0 0 2
3 0 1

3

213 0 0 0 0 2
3

1
3

123 0 0 0 0 0 1

(1.5)

There are some things to notice about the P matrix, which we will later
use to simplify our calculations. Firstly, it is of size N ! × N !, which has
the implication that large N results in state space explosion. It is strictly
upper triangular, as it is impossible for two nodes to meet and result in
the system becoming more disordered. The first element on the diagonal
is 0, as any meeting will result in an exit from this state. The last element
on the diagonal is 1, as once the system is in this state it can never exit,
corresponding to the absorbing state.

To determine the expected time to absorption, we express P in canonical
form as

P =
[

Q R

0 I

]
. (1.6)

Using a standard result from the theory of Markov Chains, the expected
time from each state to absorption is given by

D = (I − Q)−1 = I + Q + Q2 + Q3 + . . . . (1.7)

D is a vector of dwell times, and the mean time to absorption from any
state (assuming there is an equal chance of starting in any state, including
starting off perfectly ordered) can be calculated as

t0 =
∑

D

N !
(1.8)
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For P3, the mean time to absorption is 3.167, which means that on
average, just over three pairwise meetings are required to perfectly sort the
system.

To prevent state explosion, we attempt to reduce the size of the state
universe. We note, that although the number of possible states varies as
N !, the number of possible exchanges only grows as N(N−1)

2 . We thus
redefine our states as the expected number of exchanges to reach perfect
order. This smaller matrix will be numerically easier to invert in order to
find the expected time to absorption.

We define the reduced state transition matrix as SN . The reduced
transition matrix for a three node network is given by

S3 =

3 2 1 0
3 0 2

3 0 1
3

2 0 1
3

2
3 0

1 0 0 2
3

1
3

0 0 0 0 1

(1.9)

The expected time to absorption still evaluates as 3.167, indicating that
this approach of reducing the state universe is valid. However, even con-
structing the smaller matrix and inverting it is tedious. Table 1.7 shows the
expected mean time to absorption as N varies for the various methods. Also
shown is the convergence time as evaluated by the Monte Carlo simulation
of the ranking process.

Fig. 1.7. Convergence times as predicted by the various methods for different N. Also
shown is the upper bound on the expected settling time, Tmax.

To this end, we have obtained an approximation to the expected con-
vergence time for large N

T0 =
Ns

2
+ Ns(ln(N) + γ) (1.10)

A diagram showing the Monte Carlo simulated convergence time compared
against the approximation given by Eq. 1.10 is shown in Fig. 1.8. This
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shows that the approximation achieves a good correspondence to the Monte
Carlo simulated convergence times. For comparison, the upper bound of
expected convergence time, Tmax is also shown.
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Fig. 1.8. Variation in Rate of Convergence against N for different error thresholds. The
diagram shows that the approximation of 1.10 accurately predicts the convergence time
as estimated by the Monte Carlo simulation. The upper bound on the convergence time
is also shown.

Up to now, we have considered the time taken to be perfectly converged
as a guideline. However, the question that must be posed is ‘how close
to correctly ordered, must the system be to behave well?’ This is because
once a node has determined its approximate position in the network, the
decisions made by the node are generally not fine-grained. For example,
the node behaviour is likely to be largely the same whether its rank is 0.16
or 0.17. Furthermore, attributes change with time, so a dynamic system is
unlikely to be ever correctly ordered.

Error plots for the rank estimator are shown in Fig. 1.9 for two different
error thresholds (ε = 0.5 and ε = 0.05) for a 100 node network. Fig. 1.9
(a) shows that a maximum rank error of 0.5 leads to a wide spread of the
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ranks around the correct value. In most instances, this spread would make
the network unusable. Fig. 1.9 (b) demonstrates that for a maximum rank
error of 0.05, the correspondence between actual rank and estimated rank
is very close to linear, with the majority of nodes having ranks that differ
only a few percent from the correct values.
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Fig. 1.9. Ranks and the distribution of errors for two different error thresholds. Note
how the distribution of the error becomes more peaked as the ε value is decreased, and
how the distribution is approximately normal. The top plots show the scatter between
estimated and correct rank and the bottom plots show the distribution of the error. (a)
Error diagrams for ε = 0.5 (b) Error diagrams for ε = 0.05

Fig. 1.10 shows how T±20% ; T±10% and T±5% vary with increasing
N. For comparison, T0 is also shown. It can be seen that allowing for
a looser definition of converged results in more rapid settling times. In
addition, the growth of the convergence times with increasing N slows with
increasing error tolerance. This can also be seen in the plot in Fig. 1.5
which shows the rapid drop in the initial error, followed by a long time
to converge to perfectly settled. Based on our simulations and our prior
results, it was found that the rate of convergence with N tended towards a
log-linear relationship:

T±20% = 3.32N(ln(N)) (1.11)

T±10% = 7.08N(ln(N)) (1.12)

T±5% = 14.2N(ln(N)) (1.13)
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These equations show that the number of meetings required for the
system to converge increases in sub-polynomial time, illustrating that this
simple protocol will scale acceptably to large N. It should be noted that
this is for the case when there is one pairwise meeting per unit time. In a
realistic network scenario (which we encounter in Section 1.6.2), the number
of meetings per unit time depends on the underlying mobility model. We
deliberately decouple the mobility model from this analysis in order to
provide general results that can be applied to many different application
scenarios.
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Fig. 1.10. Variation in Rate of Convergence against N for different error thresholds.
The approximations to the ROC for the differing thresholds are shown in grey. Note the
slow growth of T±20% compared with T0.

1.4.1. Pairwise ASH with reinforcement

In Section 1.4, it was assumed that the initial ranks were equally spaced
over the extent of the ranking interval. The restriction of equally spaced
ranks makes initialization complex. Worse still, adaption to node insertions
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and removals is impossible, as the former will result in duplicate values and
the latter in gaps in the ranking order. This makes scaling to dynamically
varying numbers of nodes in the network impossible, precluding its use in
most scenarios.

To deal with this problem, nodes on startup choose a random normalized
rank value between 0 and 1, with no input from their peers. Based on their
meetings, nodes switch their rankings as in the prior section. However, in
order that the ranks converge to be equally spaced over the interval [0;1],
regardless of the number of nodes in the network, an additional update
rule is introduced. If two nodes meet and their ranks are in agreement
with their attributes, each node reinforces its rank. The node with the
lower attribute reinforces its rank towards 0 and the node with the higher
attribute reinforces its rank towards 1. Reinforcement upwards is defined
as

R = R(1 − α) + α (1.14)

and reinforcement downwards as

R = R(1 − α), (1.15)

both under the condition that 0 < α < 1, where α is the reinforcement
parameter. The ranking update rules are shown graphically in Fig. 1.11. A
large α results in rapid rank updates, but leads to rank instability, whereas
a very small α leads to little success in spreading the ranks equally. Note
that for the case when α = 0, this method devolves to that presented in
Section 1.4. Thus, this method can be regarded as a more generalized
version of pairwise ASH.

Fig. 1.11. Rank update rules for pairwise ASH with reinforcement. This allows for
dynamic insertion and removal of nodes, resulting in equal spacing of ranks over time.
The reinforcement parameter, α controls the rate of adaption.
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Rank trajectories highlighting how this method can handle node inser-
tion are shown in Fig. 1.12, and the corresponding maximum rank error
plot in Fig. 1.13. At the start of the simulation, 10 nodes with random
ranks are placed into the network. The reinforcement parameter was set
to be α = 0.01. After 500 pairwise meetings, an additional 10 nodes with
random ranks were injected into the network. This causes a spike in the
maximum error, which is rapidly corrected through the switching (contra-
diction) action of the pairwise ASH protocol. The reinforcement action
gradually causes the ranks to vary towards their correct values. The effect
of random meetings can be seen as ‘noise’ in the ranks of the nodes.
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Fig. 1.12. Rank trajectories for pairwise ASH with reinforcement demonstrating node
insertion. The reinforcement parameter was set to α = 0.01. Initially ten nodes with
randomly assigned ranks were present in the network. After 500 meetings, another ten
nodes (also with randomly assigned ranks) were introduced into the network. Note how
the trajectories spread out evenly.

The value of the reinforcement parameter affects how rapidly the sys-
tem is able to adapt to changes in network composition. However, if the
reinforcement parameter is too large, the ranks will ‘chatter’ and never
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Fig. 1.13. Maximum rank error for the trajectories shown in Fig. 1.12. The error
thresholds corresponding to the determination of T±20% , T±10% and T±5% are shown
on the diagram as dotted lines.

converge to their correct value. Consider the extreme case if α = 1. In
this case, reinforcement will result in a node either having a rank of 0 or 1,
depending on the direction of reinforcement. Thus, there will be no other
values for the ranks in the network, leading to rapid switchings from max-
imum to minimum rank. To determine suitable values of α the average
rate of convergence (for different error thresholds) against α for a 50 node
network has been plotted in Fig. 1.14.

1.5. One Way ASH (1-ASH)

The algorithms presented so far deal with the case when a pair of nodes meet
and trade their attributes and ranks. In a more typical network scenario
we need to deal with the nature of the radio medium - being broadcast -
from one transmitter to many receivers.

For many routing protocols, nodes emit ‘beacons’ as network discov-
ery packets (commonly termed ‘Hello’ packets24). ASH parameters can
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Fig. 1.14. Rate of convergence of a 50 node network with α for the various error thresh-
olds. Note that large α results in excessively high (or infinite) convergence times.

piggyback on top of these ‘Hello’ packets such that they do not lead to a
detrimental increase in network overhead. When nodes are in receive mode,
discovering active nodes within their neighbourhood, they can update their
ASH ranking according to the transmitted ASH attribute/rank pairs. The
only issue is that although the receiver nodes can update their rankings
depending on the newly acquired information, the transmitting node is un-
able to update its ranking until it later switches to receiver mode. This is
essentially an asynchronous method of updating the ranks, and it can lead
to slower convergence and more churn.

1.5.1. Domination ASH

A hypothesized method of forming linear dominance hierarchies in nature
is thought to be the win/loss ratio.17 In this method, each node tracks
how many nodes it dominates (i.e. the number of nodes which it exceeds
in the value of its attribute) relative to the total number of nodes it meets.
The rank update rules are shown in 1.15. Every time a node is met, the



July 7, 2008 10:21 World Scientific Review Volume - 9in x 6in ASH

Adaptive Social Hierarchies: From Nature to Networks 25

total number of observed nodes, M, is increased by 1. If the attribute of
the receiving node dominates that of the transmitter, the win counter, W,
is also increased by 1. Initially, W and M are both set to zero.

Fig. 1.15. Rank update rules for domination ASH. As this is a one way process, only
the receivers update their ranks in relation to the transmitted attributes. W is a node
variable which records the number of nodes dominated and M is the total number of
nodes met.

As this is a ratiometric measure, it is not dependent on the absolute
number of nodes in the network, leading to good scalability. It is simple
to compute, but adapts slowly to changes and converges slowly. However,
each node’s rank converges to the correct asymptotic value with increasing
M. Essentially, the domination ratio can be thought of as the probability
of dominating another node chosen at random. This is shown in Fig. 1.16
which demonstrates the long settling time coupled with the diminishing
rank variation as the number of meetings increase for a 20 node network.
After 1000 meetings, two nodes (corresponding to 10% of the nodes) at-
tribute values are randomly changed. The recovery from this disturbance
is slow as M is large. Fig. 1.17 shows the change in error with respect to
time for the simulation conducted in Fig. 1.16.

1.5.2. Domination ratio with switching

There are two main problems with the approach of Section 1.5.1. The
first drawback is that it reacts very slowly to node insertions and removals,
especially for large M. The second issue is that it only uses the comparison
between the attributes to update its rank. This is clear from Fig. 1.15,
where it can be seen that the rank comparison plays no part in updating
the ranks of the nodes. To address these two issues, we modify the rank
update rules slightly, incorporating the idea of switching from Section 1.4,
and limiting the maximum value of M (and hence W).
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Fig. 1.16. Rank trajectories for a 20 node network. After 1000 meetings, two nodes’
attributes are randomly changed.

These new rules are shown in Fig. 1.18.
Before the update rules are executed by the receiving node, the total

number of nodes that have been observed is compared against a limit L.
If M exceeds L, both M and W are multiplied by a factor 1 − 1/L. This
parameter controls the ‘memory’ of the rank update. A large value of L
leads to slow convergence but stable ranks, whereas a value of L which is
too small leads to excessive rank oscillation. Rank trajectories for a 20 node
network with L = 100 are shown in 1.19. After 1000 meetings two nodes’
attributes are randomly changed to new values. The corresponding error
plot is shown in 1.20. Note how the system recovers much more rapidly
from the perturbation than the previous domination algorithm with no
switching.

The simulation plots shown so far deal with the case when only one
node is listening to the ASH broadcast. We now consider how the ROC
varies when multiple nodes listen to the same transmitter in each time in-
terval. Fig. 1.21 demonstrates how increasing the number of receivers in
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Fig. 1.17. Maximum rank error for the trajectories shown in Fig. 1.16. Note how the
error ‘spikes’ at 1000 meetings when two nodes randomly change their attributes and
that the recovery from this error is very slow. The error thresholds corresponding to the
determination of T±20% , T±10% and T±5% are shown on the plot as dotted lines.

a time window leads to a much more rapid rate of convergence. Increas-
ing the number of receivers results in an increase in the dissemination of
information across the network.

It should be noted that if the number of receiver nodes is increased from
1 to 2, the expected rate of convergence halves, regardless of the value of N.
This is an important result, as it demonstrates that it is not the proportion
of nodes receiving rank information, but rather the number of nodes. Thus,
it would be expected that in a network with increasing N, the important
factor is the average node degree, not the edge density. Lastly, in Fig. 1.22,
we show how one-way ASH can converge more rapidly than pairwise ASH,
for the situation where there are multiple receivers (in this case 3) to each
node broadcast. For the case of N = 150, a node degree of 3 corresponds
to a network density of 2%. This shows that one way ASH can converge
quickly even in sparsely connected networks.

Fig. 1.22 demonstrates the performance of one-way ASH compared to
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Fig. 1.18. Rank update rules for domination ASH with switching. Before nodes update
their rank, they first check the limit on M. If M exceeds the limit, both W and M are
proportionally reduced. The nodes then run the update rules in the table. In the event
of a contradiction, the receiver will adopt the transmitter’s rank.

pairwise ASH for varying N. The Rate of Convergence for T±10% for both
approaches is shown, when each transmitter in one-way ASH transmits to
three receivers. This shows that although one-way ASH suffers from asyn-
chronous updates, it can exceed the performance of pairwise ASH whilst
being more suited to the broadcast nature of the wireless medium.

1.6. Dealing with mixed mobility: An agent based approach

The prior approaches to ranking nodes discussed in Sections 1.4 and 1.5 rely
on the assumption that nodes meet at random (with a uniform probability)
in order to percolate the attribute/rank information throughout the whole
network. If nodes are stationary, the previously presented techniques can
fail as a result of the restricted neighbour horizon, leading to limited node
discovery.

We can introduce pseudo-mobility by recreating the effect of randomized
meetings. Nodes listen to transmissions from nodes within their immediate
radio range. If they repeat these transmissions to their neighbours, two
nodes which do not have a direct connection can ‘observe’ each other and
correctly update their ASH ranking. This has the effect of artificially in-
creasing the probability of connection between any two nodes, increasing
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Fig. 1.19. Rank trajectories for a 20 node network with a limit L = 100. After 1000
meetings, two nodes’ attributes are randomly changed. Note the rapid switching action
at the start of the simulation due to the rank exchange.

the network connectivity. Thus, the goal of disseminating rank/attribute
pairs to a large number of nodes in the network can be achieved, lead-
ing to a more accurate representation of the social hierarchy. We refer to
these rebroadcasted rank/attribute pairs as agents, as they can be viewed
as independent carriers of information. The problem with the agent based
approach is that agents can be carrying outdated information. Thus churn
(or rank variation with time) is expected to be higher in this scheme than
in the other systems under purely random motion.

To prevent flooding and unacceptably high overhead, nodes only re-
broadcast other node’s data as part of the ‘Hello’ packet, as in the previous
sections. Nodes select at random which rank/attributes to rebroadcast from
a small local buffer, and upon overhearing new data, pick a rank/attribute
pair in the buffer to replace. This way, ranks are randomly rebroadcast,
without detrimentally loading nodes in the network. Agent ASH uses dom-
ination with switching as presented in Section 1.5.2, with the incorporation
of additional rules which control agent creation and spreading.
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Fig. 1.20. Maximum rank error for the trajectories shown in Fig. 1.19. Note how the
error ‘spikes’ at 1000 meetings when two nodes randomly change their attributes. The
error thresholds corresponding to the determination of T±20% , T±10% and T±5% are
shown on the plot as dotted lines.

1.6.1. Agent Rules

Each node has a cache of length C entries. Each entry can store one
rank/attribute pair. When nodes broadcast their ‘Hello’ packets, they send
their own rank/attribute pairs as before. However, they now append G

‘agents’ or rebroadcast rank/attribute pairs from their local cache. Note
that G <= C. For the case where G < C, not all entries in the cache are re-
broadcast. Each entry is thus picked without replacement at random with
a uniform probability of G/C. Obviously, when G = C, the probability of
an entry being picked from the cache is 1.

When a node overhears a broadcasted ‘Hello’ packet, it can use this
new information to update its cache. It randomly replaces entries in its
local cache from the rank/attribute pairs sent in the message. There are
G + 1 entries in the message, as each node sends its own rank/attribute
pair followed by G agent entries. To populate its local cache with this new
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Fig. 1.21. Normalized Rate of Convergence (T±10%) against number of receivers for
varying number of nodes in the network. The time to converge for one receiver is taken
as the base figure of 100%. Note how increasing the number of receivers leads to a rapid
decrease in the normalized ROC.

information, the receiving node places each new piece of information into
a random slot in the cache. Thus, the local cache is refreshed with new
information as it arrives. To prevent the cache from containing repeated
information, an entry is only replaced if that node has never seen that
particular rank/attribute pair.

The receiving node updates its rank using only the agent informa-
tion carried in the message. It does not use the neighbouring node’s
rank/attribute information, as this will lead to bias for frequently encoun-
tered peers, distorting the ranking process. This is not to say that a node
will never use its neighbour’s data. It is possible that it will observe this
information indirectly through another node’s agent data.

This is a very simplistic approach to using agents to spread information
through the network, using no state information carried in the agents to
control their spread and route. However, these random agents improve
the connectivity of the underlying graph by creating ‘pseudo-edges’. This
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Fig. 1.22. Rate of Convergence (T±10%) against number of nodes for pairwise ASH
and one-way ASH. For one-way ASH, L = 100 and the number of receivers for each
transmission was set to 3.

is shown graphically in Fig. 1.23 which shows the network edge density
artificially increased for a 20 node stationary network.

In terms of ASH performance, we compare how Agent ASH is able to
form the social hierarchy with how ordinary one-way ASH is unable to
discover the nodes in the network, due to a limited horizon. This is shown
in Fig. 1.24, where it can be seen that the Agent approach is able to result
in a lower error and faster convergence for a 100 node stationary network.
This network was generated randomly to be connected with an edge density
of 5%. Nodes transmitted ‘Hello’ packets with a duty cycle of 5%. For the
rest of the time, nodes were in receive mode. The cache size, C, was set to 3
entries, and the number of agents transmitted per message (G) was set to 1.
This illustrates that Agent ASH can correctly discover the network ranking
with a very modest increase in node resources, even in sparse stationary
networks. Agent ASH is not restricted to stationary networks however – in
Section 1.6.2 we demonstrate how it functions when nodes are mobile.

Ranking trajectories for a random 20 node connected network with edge
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(a) (b)

Fig. 1.23. Graphs showing connectivity between nodes for a 20 node network. The
graph on the right demonstrates the action of the agents which enable nodes which are
not connected to each other to overhear their rank/attribute broadcasts. (a) Direct
connections between nodes (indicated by solid lines) (b) Density of connectivity between
nodes (line intensity denotes proportion of time edge is present)

density of 10% are shown in Fig. 1.25. In this example, both the cache
and the number of agents per message were set slightly larger, to 4 and 2
respectively. The error plot for this simulation is shown in Fig. 1.26 which
demonstrates the rapid recovery from the pertubation imposed after 1000
meetings. In this simulation, for fair comparison to the other protocols,
one node was chosen at random to be the transmitter.

1.6.2. Realistic meetings

In the prior sections, we have assumed that only one node is active and
transmitting at any one point. In reality, the way nodes meet is dependent
on the underlying mobility model. In a realistic network scenario, it is
possible that at any point in time, that no nodes meet or more than two
meet (possibly in geographically distinct locations). To account for this,
we incorporate the effect of the mobility model into the way nodes meet.

We examine how Agent ASH performs when subject to two commonly
discussed mobility models - the random walk model and the random way-
point model. In the random walk model, at each point in time, a node
chooses to move to another location that is one-step away. In the random
waypoint model, nodes travel in a straight line at a randomly chosen speed
until they reach their destination. Once the destination is reached, nodes
choose a new destination and velocity and travel towards that. The random
walk model exhibits a very slow mixing time, in the order O(K2) where K
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Fig. 1.24. Rank errors for one-way ASH and Agent ASH applied to the same 100 node
stationary network. Observe how the error for one-way ASH never drops lower than 0.5.
This is as a result of the limited discovery horizon. The error thresholds corresponding
to the determination of T±20% , T±10% and T±5% are shown on the plot as dotted lines.
In the simulation, L = 500, G = 1, C = 3.

is the length of one side of the simulation area, whereas the random way-
point has mixing times of the order O(K).25 Thus, we would expect the
performance of ASH to be worse when subject to the random walk model
in comparison to the random waypoint mobility model.

For the random walk model, N nodes are placed on a K × K toroidal
simulation area. The radio radius, U , is varied from 5 to 15. The transmis-
sion range (along with the number of nodes) controls the connectivity of
the network. The rate of convergence is examined for N = 50; 100 and 200.
We examine the time taken for the system to converge to ±20% of its final
value, and denote this as t±20%, where the lower case t indicates real time
results, as opposed to the number of meetings. To introduce some realism
into the MAC layer, we assume that nodes transmit ‘Hello’ packets 10% of
the time. For the remaining time, the nodes are in receive mode. Unless
otherwise stated, the parameters for the Agent ASH model were chosen to
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Fig. 1.25. Rank trajectories for a 20 node network with C = 4 and G = 2, using Agent
ASH. After 1000 meetings, two nodes’ attributes were randomly changed.

be G = 1; C = 3 and L = 500.
The simulation results for the Random Walk model are shown in Fig.

1.27. The graph shows that the radio range has a large effect on the Rate
of Convergence. Increasing the number of nodes has the effect of reducing
the simulation time. Contrast this to the previous results from Section 1.4
which showed that an increase in N resulted in an increase in the number of
meetings for the system to converge. This demonstrates the scalability of
the ranking system - an increase in N actually results in a faster convergence
time, as it results in a more dense network.

In the simulation of the Random Waypoint Model, all common parame-
ters are kept the same as the Random Walk. Nodes have a random speed
uniformly chosen between 1 and 2 units/s. The results from this simulation
are shown in Fig. 1.28. Comparing these results to those of the random
walk simulation, it can be seen how the Random Waypoint model leads to
faster convergence as it has a faster expected mixing time. Like the Ran-
dom Walk results, it can be seen that an increase in N results in a decrease
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Fig. 1.26. Maximum rank error for the trajectories shown in Fig. 1.25. When the
attributes are randomly changed after 1000 meetings, the error sharply peaks, followed
by a rapid switching action to correct the erroneous ranks. The error thresholds corre-
sponding to the determination of T±20% , T±10% and T±5% are shown on the plot as
dotted lines.

in the Rate of Convergence.
The Agent ASH algorithm demonstrates that it is possible to sort or

order a network according to its attributes, even if the network is purely
stationary or subject to mixed degrees of mobility. In addition, only small
amounts of local information are used to infer global attribute distribu-
tion. ASH piggybacks on top of existing network discovery packets, so does
not present a large overhead burden. Now that we have described various
methods of forming a social hierarchy, we now consider how to use this
information for network control, access, management and routing. First
though, we examine some common network attributes.
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Fig. 1.27. Rate of convergence to t±20% for the Random Walk Mobility model for
different numbers of nodes. Note how the radio radius (U) has a strong impact on the
ROC, as it alters the connectivity of the graph.

1.7. Suitable attributes to rank

Any network parameter which can be measured on a node-by-node basis
can be ranked in the global sense using one of the ASH ranking meth-
ods. Suitable attributes are obviously ones which have a direct and useful
impact on network performance and control. We present a few useful at-
tributes, which we will later use in Section 1.8 to demonstrate the power
and flexibility of the ASH philosophy.

1.7.1. Energy/Lifetime

Of prime importance in deeply embedded and remote networks is energy,
and coupled to that, rate of use of energy. This is reflected in the vast
number of energy aware network routing protocols (refer to26 and27 for
more information). Nodes, depending on their hardware capabilities can
measure their energy reserves and usage, in an absolute sense (such as 100J
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Fig. 1.28. Rate of convergence to t±20% for the Random Waypoint Mobility model for
different numbers of nodes.

remaining). However, it is also possible to estimate energy usage in software
(for example using the Contiki Operating System28), and knowing the size
of the battery that the unit is equipped with, determine the remaining
amount of energy. A node with a large amount of energy in relation to
its peers can be expected to survive longer in the network. However, this
assumption of survival is made under the pretext that all nodes consume
energy at the same rate. Thus, a more useful indicator is estimated node
lifetime, based on a long term average of prior energy usage and current
reserves.

A composite indicator of lifetime and connectivity can be formed from
the lifetime of the path to the sink. The lifetime of the path can be regarded
as the expected lifetime of the node with the lowest energy along the path,
as this is the likely point of failure. To incorporate the distance from sink to
source, the minimum path lifetime is decreased by a factor with each hop.
The amount by which the minimum path lifetime is decreased controls
whether shorter paths that travel through low energy nodes are favoured
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over longer paths which avoid low energy nodes. This metric is similar to
the Conditional Battery (MMCBR) protocol proposed by Toh.29

1.7.2. Connectivity

The purpose of a wireless network is to transfer information from source
to sink, through intermediate nodes. The purpose of a routing protocol is
to deliver the data along the ‘best’ possible path, where the desirability
of each path depends on some underlying cost function of suitability (such
as delay, hop count or redundancy). In a network for information delivery,
nodes need to send information to base-station(s). At each hop, data should
be sent to a node which is ‘closer’ to a base-station. Lindgren et al. present
a method of evaluating transitive connectivity to a base-station,30 which
is based on the observation that if A and B frequently meet, and B and
C frequently meet, then A and C can be regarded as being transitively
connected through B. In static networks, the conventional hop-count metric
can be used a measure of connectivity.

Another metric which impacts the delivery of information is the local
traffic density. In regions of high traffic density, it would be expected that
collisions will be more frequent. Nodes can assess the local error rate, pos-
sibly by monitoring how many of their transmissions fail. This information
can be used to build a ranking of the expected congestion in the network.
Data can be sent along paths where the expected congestion is low, thus
balancing traffic across the network.

1.7.3. Buffer space

Depending on their physical memory size and their role within the network,
nodes will have varying amounts of buffer space available for messages from
other nodes. This can be ranked, although the ranking would be expected
to be very dynamic as buffers are cleared upon successful delivery. A long
term average of available buffer space would possibly be a better metric of
delivery rate.

1.7.4. Functions of attributes

Ranked attributes do not need to be based on a single measure of network
performance, but can be a composite of multiple attributes, weighted in
various ways. There are many ways of constructing a combined attribute.
Context Aware Routing (CAR) combines attributes to form a single weight-
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ing.31 Of particular interest with the CAR approach is that the availability
and predictability of the various attributes is incorporated into the weight-
ing procedure.32 The ranking process can be performed on the combined
attributes, or ranked attributes can be combined (and further ranked if
necessary).

1.7.5. Levels and loops

In a practical network scenario, a node needs to decide whether to send a
message to another node based on the difference in their ranks. If a node
sends its data to another node with a greater rank, this can lead to an
explosion in traffic. In addition, there is the possibility of data forming a
loop as the rank of the host varies over time.

To address these issues, we quantize the rank into L discrete levels. As
all the ASH methods presented in this Chapter generate linear hierarchies,
it can be easily seen that each level (or bin) will contain N/L nodes. Assume
that traffic is generated at a rate of λ messages per unit time, and nodes
only send messages to nodes which have a greater level. The traffic density
of the lowest nodes in the level is D1 = λ as they will only forward the
packets they generate, and not route any other traffic. A level 1 node will
send its messages to any node with a higher level. There are L − 1 levels
that are higher, and they will thus each expect to receive (and subsequently
be responsible for forwarding) λ/(L−1) messages. Thus, in general, we can
express the traffic density at each level in the hierarchy using the recursive
equation

Dk = Dk−1(1 +
1

L − k + 1
), (1.16)

where 1 ≤ k ≤ L.33

This can be simplified to obtain an expression for the traffic volume at
level k

Dk =
λL

L − k + 1
. (1.17)

This important result shows that traffic density is independent of the
number of nodes in the network, and only related to the number of levels
in the quantized hierarchy. This demonstrates that the ASH framework
results in good scalability by controlling traffic density.
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To prevent packets from looping through the hierarchy, in the event of
dynamic ranks, packets can be tagged with the rank of the node which sent
the data to the current node. As packets can only ascend the hierarchy this
means that loops cannot form.

1.8. Example scenarios of ASH

We now show how ASH can be used as an underlay to enhance existing
protocols and also to form a cross-layer protocol in its own right. For
reasons of space, we omit any simulations, but rather discuss how ASH can
be used to improve the behaviour and functioning of protocols.

1.8.1. Enhancing Spray and Focus

Spray and Focus34 is a multi-copy controlled replication routing protocol.
Routing is divided into two phases. The first phase, Spraying, creates
multiple copies of a message around a source. There are different ways
of undertaking the spraying, but the authors show that binary spraying is
optimal.34 In this situation, given that L distinct copies are to be created,
the source will hand over L/2 copies to the first node it meets, keeping L/2
for itself. At each point in time, a node can hand over half the remaining
copies of the message, until there are L nodes in the network, each carrying a
single copy. In the original version of this protocol, Spray and Wait,35 nodes
then performed direct delivery to the sink of the information. However, in
the most recent version, nodes enter a Focus phase, where data is forwarded
along a utility gradient towards the sink. A timer indicating the time
of last contact with the destination is used as the utility parameter. To
capture transitive connectivity, the timer value is updated if a node meets
an intermediate node which was recently in contact with the destination.
The use of the focus phase dramatically reduces delivery latency, whilst
maintaining the benefits of controlled replication.

The details of the Focus phase are as follows. A node sends its local copy
of a message to another node, if and only if the utility of the receiving node
exceeds the sending node by a certain threshold, Uth. Clearly, the choice
of this threshold is critical. If it is too large, then messages will rarely
be forwarded closer to the destination, leading to increased delivery delay.
Conversely, for a small threshold, a message can possibly be forwarded
many times before reaching its destination, leading to resource exhaustion.
Tuning the threshold parameter can be done at run time by the user, but
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is likely to be time-consuming. Rather, by ranking the utility values, the
choice of the threshold can be made independent of the underlying mobility
model. Thus, using ASH as an underlay on this protocol will simplify the
choice of the tuning parameter by making it scalable across wide attribute
values.

1.8.2. Enhanced Context Aware Routing

Musolesi and Mascolo presented Context Aware Routing (CAR), which is
a utility based routing protocol for intermittently connected networks.31 In
CAR, nodes evaluate their ‘utility’ which is a metric indicating the useful-
ness of a node in terms of network specific parameters such as connectivity
or energy level. These different parameters are combined to give a single
utility value for each node in the network. One of the main contributions
of this work was the idea of predicting future values of the utility, using
Kalman filters (or the reduced form of a Exponentially Weighted Moving
Average).

A more recent work considered the application of CAR to sensor net-
works with mixed mobility (so called SCAR36). In this scenario, sources
of information (which can be fixed or mobile) deliver information to sinks
(which can also be fixed or mobile). As connectivity is intermittent, infor-
mation is buffered at intermediate nodes which are more likely to be able to
forward the data to a sink. Note that data can be delivered to any sink. To
reduce the delivery delay, messages are replicated to multiple neigbouring
nodes before forwarding along the utility gradient towards the sinks, in a
similar manner to Spray and Focus.34

Three measures of context information are used to decide on routing.
The first, is the change rate of connectivity (CRC) which essentially is a
metric of the change in the local connectivity graph, a measure of relative
mobility through the network. The degree of colocation with the sink is
proposed as the second measure of utility. Lastly, the remaining battery
level. The battery level is the proportion of remaining energy, relative to the
initial battery level. Clearly, this protocol does not handle heterogeneity in
initial battery level. By using the ASH framework, the energy level can be
ranked on the interval [0;1], regardless of the distribution of energy in the
absolute sense.

The absolute level of energy is ranked using ASH, and then the energy
ranking is used to construct the utility parameter. Thus, the introduction of
the simple ASH protocol as an underlay vastly increases the scope of SCAR,
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allowing it to be used in networks with widely heterogeneous distributions
in energy. It should also be noted that ASH can also be used to rank the
calculated utility, as SCAR also has a threshold value, ζ, which is used to
control replication.

1.8.3. A simple cross layer protocol

In this example we demonstrate how network information can be used at all
levels of the traditional network stack, collapsing the strict segmentation,
leading to a simpler implementation. We rank both energy and connectivity
separately and use the ranked data throughout all the levels of the network
stack.

1.8.3.1. Medium Access

Nodes with low ranks both in connectivity and energy are not active in
network tasks such as routing and replication. They essentially act as leaf
nodes, only injecting packets into the network. As a leaf node is not required
to route other node’s packets, there is no cause for it to ever attempt to
listen for other node’s data transmissions (it does still need to observe
‘Hello’ packets in order to maintain its correct rank). In addition, due
to its scarce resources, it should not have to compete equally with higher
ranked nodes for access to the medium. Furthermore, as packets can only
ascend the hierarchy, there is no point in a low ranked node listening to a
high ranked node’s transmission. We present a simple slotted MAC scheme
to demonstrate how ranking can result in a sensible preferential access to
the shared medium. This is shown in Fig. 1.29 which shows the behaviour
of each node in its assigned slot. This is only one possible arrangement
of slots. A more realistic approach might be to have wider or more slots
for higher ranked nodes as they spend more time on the medium as they
will have a greater amount of data to send. The scheme does not have to
be slotted (relaxing the requirement of synchronization), but can also be
made into a random access protocol, where the probability of listening to
the medium is based on the node’s level.

1.8.3.2. Routing and Replication

We now show one possible method to control data delivery in a network
ranked by ASH. Low ranked nodes perform direct delivery to higher ranked
nodes. High ranked nodes share information amongst themselves, epi-
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Fig. 1.29. Slotted MAC organisation example for a 5 level network. Based on their
level, nodes choose what action to take in each slot. Note that the lowest level nodes
spend the majority of their time in low power sleep mode.

demic style. Thus, replication and delivery is controlled according to rank.
Clearly, duplicating a message across low level nodes does not achieve any
useful redundancy, as these nodes are not active in disseminating informa-
tion and are likely to be severely resource constrained compared to their
higher ranked peers. Thus, messages are replicated with a probability that
increases with node level. Hence, delivery amongst low level nodes will
resemble direct routing (with low traffic overhead, but high latency) and
delivery between high level nodes will resemble epidemic routing (with high
traffic overhead and low latency).37

The probability of a level k node sending a message to a level j node is
given by

psend =
1 : j > k

pt : j = k

0 : j < k

(1.18)

where pt is the horizontal (i.e. across the same levels in the hierarchy)
transmission probability. Once the message has been sent to a higher level
node, the node can either keep the message or delete it. The probability of
a level k node keeping a sent message for future replication is given by

preplicate = rL−k+1 (1.19)

where r is a parameter that controls the degree of the replication. This
equation results in a probability of keeping a message for future replication
that increases with level in the hierarchy. The value of r affects the expected
number of copies present in the network.

To prevent thrashing due to rank promotion and demotion due to at-
tribute changes, packets are not allowed to descend in rankings, even if
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the host’s ranking has dropped. This prevents issues with packets forming
loops in the hierarchy, leading to rapid network exhaustion.

1.8.3.3. Application

Information about the node’s local variables, such as energy and connec-
tivity can also be used at the application layer. A node with a low ranking
in energy is likely to expire sooner than once with a high energy ranking.
Thus, based on the energy ranking, the application running in the node can
shut down or throttle back energy consuming tasks. For example in a GPS
based system, the GPS receiver consumes a large amount of power. To
conserve energy, the sampling rate of the system can be reduced, leading to
a greater node lifetime at the cost of location resolution. The application
can also use lossy compression algorithms to reduce the volume of data that
needs to be sent over the radio medium. The amount of compression can
be controlled by the rank in the hierarchy.

1.9. Related Work

The primary contribution of this work is the presentation of methods that
can be used to rank heterogeneous attributes in a network into a relative
framework. As such it is complementary to many routing protocols as it
can act as a network underlay, enhancing their performance.

The idea of using hierarchies in networks is not a new one, but to the
best of our knowledge this is the first work that has considered the general
situation of how to dynamically cast any measurable resource into a network
wide ranking system. Many networks use hierarchies that are imposed at
design time. These are akin to the static hierarchies discussed in Section 1.2
where there are gross differences that result in a pre-defined social structure.
In the Data Mule structure, there are three classes of nodes - low energy
stationary nodes, high capability mobile nodes and base-stations.22

Some network hierarchies are dynamic. For example in the Low En-
ergy Adaptive Clustering Hierarchy (LEACH), a node is selected from a
small group to act as a ‘cluster-head’ which is responsible for relaying the
combined information of the local group.38 As nodes age, the role of cluster-
head is rotated amongst the group. This two-level hierarchy is an example
of a despotic or totalitarian structure. Other cluster based schemes have
improved on the performance of LEACH, yet still retained the two-tier
structure.39
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The work that is most closely related to ours is the role assignment algo-
rithms of Römer et al,40.41 In this scheme, nodes decide on their role within
the network based on information acquired from their local neighbourhood,
by populating a cache of node properties and running node assignment rules
based on their cache. Their algorithms were explicitly designed for station-
ary networks, as a change in the neighbourhood would result in a cache
update. They introduced high level compiler directives that are used to de-
cide on the most suitable role for a node (such as cluster-head or ordinary
node), whilst satisfying requirements such as coverage. Their algorithms
require the specification of time-out factors and explicit update methods -
ASH is lightweight in comparison to the role assignment algorithms as it
piggybacks onto existing network control packets providing a transparent
evaluation of local role. To control flooding, the role assignment algorithms
use a limited hop neighbourhood, whereas ASH discovers network wide
information in order to assess rank.

The ranking of nodes can be viewed as sorting them into order accord-
ing to their attributes. We use a scaled domain though to represent the
maximum value of the attribute as 1 and the minimum as 0, so this method
is not entirely a simple sorting procedure. Some recent work has been per-
formed on the theory of Random Sorting Networks.42 Random Sorting
Networks are networks for sorting information that are created at random.
This is similar to our pairwise ASH scheme presented in Section 1.4 which
can also be viewed as a randomized version of a Bubble Sort.

We use a very simple agent based approach. Far more sophisticated ant
based routing and discovery methods have been presented in the literature
which use stateful agents and pheremone trails,43,44.45 However, it was our
intention to keep ASH formation and maintenance as simple and lightweight
as possible. This can be seen in our simulation results, where the error
dropped to acceptable levels with a cache size of 3 entries and an agent
repetition rate of 1 entry per ‘Hello’ message.

1.10. Conclusions and future work

1.10.1. Future directions

This work has discussed methods of forming a social hierarchy amongst
nodes in various situations. However, there is scope for further exploration
into some of the areas which have yet to be addressed. One such avenue
is security and protecting the nodes from malicious attacks. For example,
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a rogue node could falsely advertise maximum rank and attribute and so
act as an attractor for packets. In this way, it could remove and use in-
formation from the network, preventing it from reaching the base-station.
In conventional networks, this is equivalent to a node masquerading as a
base-station. We are currently exploring methods of protecting the network
from attacks of this sort.

All the methods for forming the Adaptive Social Hierarchies form a
linear dominance hierarchy. In this type of hierarchy, only ordinality is
relevant, not the degree of difference between nodes. In a heavily resource
partitioned network, there will be nodes with a large attribute value and
nodes with low attribute values, but nothing in between. Such would be the
case with small battery powered sensors connected into a mains network,
with no intermediate nodes in terms of resource size. In this case, two nodes
which are close to each other in rank value could have large difference
in resource value. This could place an unfair load on a falsely ranked
node. This suggests that a non-linear hierarchy should be formed in this
instance. This could be done by nodes exchanging a histogram reflecting
the distribution of resource values across the network. We are currently
investigating how exactly to undertake this task, whilst keeping network
overhead low and being able to rapidly react to network changes.

In Section 1.6 we discussed how to use simple random agents to dissem-
inate rank/attribute information across the network, to recreate the effect
of randomized meetings. The agents used are extremely simple and essen-
tially stateless. There is a large body of work on agent based (also known as
ant inspired) algorithms for exploring networks and routing data. We are
planning on extending the agent based approach in a more refined manner,
which will hopefully lead to faster convergence and lower error thresholds.

Another area which needs to be explored is how to factor in the rate
of change of rank, both into the rank determination process and also the
routing protocol. Thus nodes can be ranked according to their rank re-
liability or stability. Nodes would thus avoid using intermediates which
display large rank variance. We are also looking at using some of the ideas
presented in CAR,31 in particular the prediction process to result in a more
stable and useful system.

1.10.2. Conclusion

We have presented a novel biologically inspired method of forming a hierar-
chy based on differences between individual nodes. This hierarchy adapts
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to changes in node resources and provides the ability for nodes to determine
their role in the network relative to their peers. Three different approaches
to forming the hierarchy have been presented. The first method assumes
that nodes engage in pairwise meetings and from this sort or exchange their
ranks according to the relative order of their attributes. We showed that
this leads to poor adaption to node insertion and removal, and to this end
refined the protocol by introducing a reinforcement factor which spreads
the ranks out evenly across the ranking space.

In the next method, we removed the assumption that nodes undertake
pairwise exchange of information, as this imposes constraints on the MAC
layer. Instead, we investigated how a single transmitter can broadcast
its rank/attribute information to a number of receiving peers. Based on
this newly acquired information, they update their ranks using a win/loss
ratio method as used by researchers in the biological literature to measure
dominance. This was found to have slow convergence and adaption to
changes. To remedy this, we used the switching idea from pairwise ASH to
result in rapid adaption to resource variation.

Both of the methods are designed with mobile networks in mind. In sta-
tionary networks, due to a limited discovery horizon, the ranks do not con-
verge to their correct values. To this end, we presented our third method,
Agent ASH, which replicates the effect of randomized meetings by spawning
random agents which carry rank/attribute information to non-neighbouring
nodes, resulting in correct ASH convergence.

The effect of real world mobility was shown to result in more rapid
convergence. Agent ASH works well for both purely stationary and mixed
mobility networks, whereas the other two methods work best in mobile
networks. To avoid the formation of loops, levels were introduced, along
with hysteresis to ensure that messages only permeate upwards through the
hierarchy.

Lastly we examined some possible applications for the Adaptive Social
Hierarchy approach, showing how it can be used as a network underlay
to enhance the performance of existing protocols by providing resource
abstraction and also as a powerful cross layer management and routing
protocol.

In summary, ASH provides a framework for nodes to discover their
role within diverse networks, by allowing resource abstraction. This leads
to simpler routing and management protocols, that are removed from the
imposition of absolute values. This work is an example of the application
of a common method of self-organisation in nature to network management
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and control.
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