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Abstract

We describe a general framework in which we can precisely compare the structures of
quantum-like theories which may initially be formulated in quite different mathematical
terms. We then use this framework to compare two theories: quantum mechanics restricted
to qubit stabiliser states and operations, and a toy theory proposed by Spekkens. We discover
that viewed within our framework these theories are very similar, but differ in one key aspect
- a four element group we term the phase group which emerges naturally within our frame-
work. In the case of the stabiliser theory this group is Z4 while for Spekkens’s theory the
group is Za X Zs. We further show that the structure of this group is intimately involved in a
key physical difference between the theories: whether or not they can be modelled by a local
hidden variable theory. This is done by establishing a connection between the phase group,
and an abstract notion of GHZ state correlations. We go on to formulate precisely how the
stabiliser theory and toy theory are ‘similar’ by defining a notion of ‘mutually unbiased qubit
theory’, noting that all such theories have four element phase groups. Since Z4 and Z5 X Zo
are the only such groups we conclude that the GHZ correlations in this type of theory can
only take two forms, exactly those appearing in the stabiliser theory and those appearing
in Spekkens’s theory. The results point at a classification of local/non-local behaviours by
finite Abelian groups, extending beyond qubits to any finitary theory whose observables are
all mutually unbiased.

1 Introduction

Much interest recently has focused on picking out the key features of quantum mechanics which
make it special (for example, incompatible observables, non-locality, computational speed-up,
no-cloning), investigating the relationships between these features, and identifying the mathe-
matical aspects of the theory which embody these physical features. Quantum-like theories have
been constructed, which display certain features of quantum mechanics but not others, allowing
us to see which of these features are interlinked, and which are essentially independent.

These theories had diverse motivations and are expressed in a range of mathematical forms.
Quantum mechanics uses Hilbert space. Another theory which has recently attracted much inter-
est [22] employs subsets of a certain set to represent states, and relations between these sets to
represent the operations of the theory. Other quantum-like theories use quite different mathemati-
cal formalisms again. The task of comparing these theories would be simplified if we had a single
mathematical framework in which they could all be expressed. We could then pinpoint aspects of
the framework where theories differed, and identify these aspects with differing physical features
of the theories.

This paper will outline such a framework, developed in [1, 20, 10, 11, 6], and then use it to
analyse some key examples. In this case the physical property we will be interested in is non-
locality. To this end we extend the existing framework to encompass an abstract definition of
GHZ state, and a corresponding notion of correlations.

What is nonlocality? The name tells us that “it’s not locality.” The technical definition tells us
that “there is no local hidden variable theory.” By Bell’s theorem this means that “‘some inequality
is not satisfied.” All this tells us what nonlocality is not, but what actually “is” nonlocality? It is
our goal in this paper to identify the piece of structure of Hilbert space quantum mechanics that
generates non-locality.




To this end we will use our framework to analyse two theories which make very similar pre-
dictions, but differ principally in that one is local and the other is non-local. We will express
both standard quantum mechanics, and a quantum-like toy theory proposed by Rob Spekkens
[22], in the unifying framework. The toy theory replicates many features of QM (incompatible
observables, teleportation, no-cloning), but it is essentially a local hidden variable theory, and so
it lacks other typically quantum behaviour, specifically violation of Bell inequalities, and other
‘non-local’ behaviour. We will identify a key piece of the structure of the unifying framework
where QM and the Spekkens toy theory differ (an Abelian group we term the phase group). Fur-
thermore we will show explicitly that it is this piece of structure which in the QM case facilitates
a 'no-go theorem’ which rules out a hidden variable interpretation. Conversely, in the toy theory
case, the phase group does not allow construction of such a no-go theorem. We speculate that
this key piece of structure is responsible for the locality/non-locality of any quantum-like theory
capable of being phrased within our framework.

2 The framework: Dagger compositional theories

To make a comparison between qubit stabiliser formalism and Spekkens’ toy theory we need a
framework with concepts that are sufficiently general to accommodate both of them. In particular,
we need to be able to speak about GHZ states and observables for theories other than Hilbert space
quantum mechanics. Such a general account on physical theories was initiated by Abramsky and
one of the authors in [1], and further developed by several others [20, 10, 11, 6]. We refer the
reader for physicist friendly introductions and tutorials on symmetric monoidal category to [4, 3]
and [9, 2] respectively.

The operational foundation for these structures goes is follows — detailed discussions are
in [4, 9]. Systems are represented by their names A, B, C.,... Processes (or operations) are

represented by arrows A Ao f : A — B indicating the initial system A and the re-

sulting system B. States are special arrows v : I — A where I is the ‘unspecified’ system.

. . . . . h
We can sequentially compose processes if the intermediate systems match i.e. A 9, =

A2, C A4 Compound systems are denoned A ® B and separate

processes thereon A @ C' ELTY B ® D. We refer to the arrows I —— 1 as numbers. In addition

;
we assume that each process A N B admits a canonical counterpart B AN A. The precise
mathematical definition which accounts for how sequential composition and the tensor interact is
that of a dagger symmetric monoidal category, which we abbreviate as C.

Definition 2.1 A dagger symmetric monoidal category C is a category with a bifunctor — ®
— : C x C — C, associativity, unit and symmetry natural isomorphisms subject to the usual
coherence conditions, and a contravariant involutive functor —f : C — C which coherently
preserves the monoidal structure.

Each such dagger symmetric monoidal category moreover admits a purely diagrammatic cal-
culus [4, 9, 20, 21], for example:



f= 14 = go f= f®g£**

These diagrams are not merely denotation but are truly equivalent to the algebraic symbolic pre-
sentation in the following sense.

Theorem 2.2 [20] An equation expressible in the language of dagger symmetric monoidal cat-
egories is provable from the axioms of dagger symmetric monoidal category if and only if it is
derivable in the corresponding diagrammatic calculus.

Definition 2.3 A dagger compositional theory, or in short, {C-theory, is a dagger symmetric
monoidal category in which we interpret objects as systems, morphisms as processes, with states
and effect as the particular cases arising from the unit object, composition as performing one
process after the other, and the tensor as compoundness of systems and corresponding processes.

Example 2.4 The {C FHilb consists of finite dimensional Hilbert spaces, linear maps, the ten-
sor product, and the linear algebraic adjoint. States are of the form

W) :C—H=l—1,
hence correspond to vectors, and the numbers or of the form
(c):C—-C:u1lrc,

hence correspond to complex numbers. One can interpret these operations as pure quantum
processes with postselection, since postselected logic gate teleportation allows to produce any
linear map up to a probabilistic weight.

Example 2.5 The C FRel consists of finite sets, relations, the cartesian product, and the rela-
tional converse. Now states are of the form

r) :{x}—>X1—YCX,
hence correspond to subsets, and the numbers are of the form
(b) : {x} =}z %o Dorx,

hence correspond to the booleans. One can interpret these relational operations as ‘possibilistic’
(classical) processes.

Example 2.6 (From vectors to rays) The -{C FHilb as defined above has vectors in Hilbert
space as states, not one-dimensional subspaces. In other words, it contains physically redundant
‘global phases’. One way to eliminate these global phases is by considering equivalence classes
of linear maps that are equal up to a global phase. Another way, introduced in [5], and that applies
to arbitrary {C-theories, considers passing to morphisms (i.e. linear maps in the case of FHilb)
of the form f @ f1. This requires to adjust the composition rule such that the composite of f ® fT



and g ® g'is (f o g) ® (f o g)T. We refer to this construction as the WW-construction and refer to
the result of applying it to a 1C C as WC. For f a morphism in C we set Wf := f ® fT for the
corresponding morphism in WC. This WW-construction has the added advantage that expressions
of the form (v|@) := ' o ¢, after application of the WW-construction, become |(1)|¢)|> = (¥ o
#)t o (' o @), that is, transition probabilities according to the Born rule. For states in FHilb,
applying the VW-construction essentially boils down to the same thing as passing from kets |¢) to
projectors |1)) (1| in the density matrix formulation. The numbers in WFHilb are positive real
numbers, which we interpret as probabilistic weights. We have YW(WFHilb) ~ YWWFHilb, and
WPFRel ~ FRel.

Definition 2.7 [5] A tC-theory C is without global phases ifft WC ~ C

Below, we will always assume that we eliminated the global phases from FHilb, even when
we write FHilb. Hence the numbers in this categories are the positive reals, which we interpret
as probabilistic weights. Inner-products then provide the correct transition probabilities according
to the Born rule. More generally, we will interpret the numbers in {C-theories as probabilistic
weights and inner-products (—|—) := (—)! o (=) as transition probabilities.

3 Key features of the {C-theory framework

3.1 Observables in {C-theories

In this section we explain how the usual notion of non-degenerate observable for Hilbert spaces
can be generalised to other TC-theories.

Definition 3.1 [10] Let C be a {C. By an (non-degenerate) observable for an object X we mean
any commutative isometric dagger Frobenius comonoid (X, d, €).

We also sometimes referred to these non-degenerate observables as basis structures [6] or
classical structures [10]. What this mathematical concept exactly stands for will be explained
below. Their name is justified by the following theorem.

Theorem 3.2 [11] In FHilb, all observables in the sense of Definition 3.1 on a Hilbert space H
are in bijective correspondence with the orthonormal base of H. More precisely, each orthonor-
mal basis {|i) }; yields an observable (H, 9, €) with

S H—-HOIH = |i)w— |ii)
e:H—C:li)y—1

Conversely, all observables in the sense of Definition 3.1 arise in this manner.

Hence in FHilb an orthonormal basis can be equivalently defined as a commutative isometric
dagger Frobenius comonoid. The orthonormal basis is ‘encoded’ as the linear map which copies
the vectors of that basis together with the linear map which uniformly erases them. Of course,
in quantum theory obsevables correspond to the set of rays spanned by by an orthonormal basis
rather than to the basis itself. For a discussion of observables in the sense of Definition 3.1 within
WZFHilb we refer the reader to [6].

Next we define abstract counterparts of the basis vectors which are copied in FHilb:
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Definition 3.3 [6] The eigenstates of an observable (X, d,¢) in a fC are all states z : I — X
which satisfy d oz = (z ® ) o A\, eox = 1y and z, = x.

The definition of observable in {C-theories has an equivalent purely diagrammatic incarnation
which suffices for our purposes in this paper. We set:

a4 = 4

Diagrammatically eigenstates satisfy:

g:w ¥ =

where the first equality tells us that ‘eigenstates commute through dots’.

Theorem 3.4 [15, 8] Any connected diagrams built from ‘copying’ d, ‘erasing’ €, their daggers
and straight wires that have the same number of inputs and outputs are equal. We represent these
diagrams by a ‘spider’:

Conversely, all the defining equations of an observable in a 1C as in Definition 3.1 are all implied
by passing to the ‘spider normal form’.

Observables on ‘subsystems’ always lift to the whole system:

Proposition 3.5 [6] Two observables (A, dx,ex) and (B,0x,€x) in a TC canonically induce
an observable (A ® B,0xgx', €xox’) With

Ixgx' =(la®ocap®1p)o(dx ®dx) Expx =€x Q€exs,

that is, diagrammatically,

Oxex = W exox =11

Also eigenstates lift from subsystems to the whole system.

Proposition 3.6 [6] If x is an eigenstate for observable (A, dx,ex) and x' is an eigenstate for
observable (B, dx/,ex/) then © @ 1’ is an eigenstate for (A ® B,0xgx', €xex’) as defined in
Proposition 3.5.

Proposition 3.7 [10] Each observable (A, §, €) in tC-theory induces a self-dual dagger compact
structure (A,n:=0 o I A® A), that is,

(T ®14)0(la®n) =14 gAAO =T1].



Hence, for (A,7n4) and (B, np) such induced compact structures, and an arbitrary morphism
f A — B, thereis a transposed and conjugate [1], respectively

F = ®14)o(1p® f@14) 0 (15 ®14)

fo=(®1p)o(1a® fTo1p)o(la®ng).

We also refer to a dagger compact structure (A, n) as a Bell state. A graphical interpretation of
Bell states can be found below in Definition 3.8.

3.2 GHZ states in {C-theories

Definition 3.8 A GHZ state for an object X in a {C is a triple
X, V:I-X@XX,e: X =1
with

e U symmetric i.e.

o (e®1xgx)o VisaBell state i.e

u — % such that rU —

e U and € are both ‘real’ i.e.

Theorem 3.9 GHZ states in a T1C-theory for an object X are in bijective correspondence with
observables in that 1C-theory via the correspondences:

==
= Uy =y

Proof: This can be straightforwardly be verified using theorem 16.2 in [10]. O

andtj :U




3.3 Phase groups in {C-theories
Proposition 3.10 [6] For (X, d,€) an observable in a tC-theory let

o statesx :={z:1— X}

o:E@y::(STO(:E@y):ﬂ
e actionsx = {U, =0T o(z®1x) = ﬂﬁﬂ I— X}

then (statesx, ®, €) and (actionsx, o, 1x) are isomorphic commutative monoids.

Example 3.11 In FHilb, for ¢ = (¢1,...,%y) and ¢ = (¢1,. .., ¢y) in the basis correspond-
ing to (H, d, €) via Theorem 3.2, we have ¢ © ¢ = (11 - d1, ..., Vp - On).

Proposition 3.12 [6] In FHilb a state 1) with |1|*> = dim(H) is unbiased for the orthonormal
basis corresponding to (H, 6, €) via Theorem 3.2 iff 1, ® 1) = €.

Let dim(X) = € o €! for observable (X, 8, €).

Definition 3.13 [6] In any 1C a state ¢ : I — X with 9 0 o) = dim(X) is unbiased for an
observable (X, 6, ¢) if we have that ¢, © ) = €.

By choosing ¢! o ¢) = dim/(X) rather than ¢' o 1) = 1 as normalisation convention sub-
stantially simplifies the expressions in this paper. We refer to states ) : I — X which satisfy

Yt o = dim(X) as states of length /dim(X).

Definition 3.14 [6] Two observables are mutually unbiased if the eigenstates of one are unbiased
for the other.

The diagrammatic significance of this definition is studied in great detail in [6].
Theorem 3.15 [6] Let now
e U-statesx be all unbiased states in statesx

o U-actionsx be all unitary actions actionsx

then (U-statesx, ®, €) and (U-actionsx, o, 1 x) are isomorphic abelian groups. For U-actionsx
the inverses are provided by the adjoint and for U-actionsx the inverses are provided by the con-
Jjugates for the induced compact structure.

Definition 3.16 [6] We call the isomorphic groups of Theorem 3.15 the phase group.

Example 3.17 In the case of a qubit the phase group is the circle of ‘relative phases’. Concrete,
when expressed in the standard basis, the unbiased states and the unitary actions have respective

matrices:
1 1 0
wa—(eia) Ua—60<wa®1Q)_<0 6ia)'



3.4 GHZ correlations in {C-theories

In theorem 3.9 we showed the correspondence between observables and GHZ states. It comes as
no great surprise then, that the measurement correlations of our GHZ states are closely related to
the phase groups described in the previous section.

Definition 3.18 Let (X, J,¢) be n observable in a {C and let (X, ¥, ) be the corresponding
GHZ state. By a GHZ correlation triple we mean a triple (z, 2, 2”") of states z, 2/, 2" : T — X
of length y/dim(X) which is such that

m”z(m@w’@lxﬂo\lf:w-

By GHZ correlations we mean the set
rcC(l,X)x C(I, X) x C(I, X)
consisting of all GHZ correlation triples.

We can interpret these GHZ correlation triples as follows in operational terms: when in a
measurement of the first and second qubit of the GHZ state W the effects = and 2’1 occur then
the third qubit is necessarily in state 2", with the exception that if " = 0 this means that effects
2! and ' can never occur together.

Proposition 3.19 For GHZ correlations I' we have:

i. For states x,x'; 2’ we have that (x,2';2") € T iff 2!/ = x © 2’} in other words, correlation
triples are exactly all triples of the form (z,2'; (x ® x')).

ii. If (¢, 9", 4") is a correlation triple and 1,4’ 1)"" are in the phase group then any triple
obtained by permuting 1, 1)'and 1" is also a correlation triple.

Proof: Part i. follows from (reversed triangles are the transposed):

ESEPN

Part ii. We have ¢’ = (¢, ©¢) 0¢' = . 0 (Y OY') = (YO (Y OYP))ws0 (¢, (YO ) y’) =
(1, (Y @Y)s; (Y © (¥ © 9')4)4) is indeed a correlation triple by part i of this proposition. O



4 The key examples: Stab and Spek

Having surveyed our unifying categorical framework we now proceed to consider two specific
examples. The first is stabiliser qubit QM, a restricted version of standard qubit QM. The second
is a theory constructed by Rob Spekkens, which closely models many features of stabiliser QM,
despite being essentially a local hidden variable theory. When considered within the categorical
framework the similarity between the two is striking; and the precise difference between the
two can be clearly pin-pointed. Furthermore the difference is to be found precisely in a certain
categorical structure which is intimately involved in describing the physical phenomena where
the two theories differ most significantly - locality v. non-locality.

4.1 Stabiliser qubit quantum mechanics

This is a subset of standard QM. The only systems in the theory are qubits, or collections of qubits
taken together as a single system (such a system might be in an entangled state). The states which
these ‘qubits’ can occupy are the stabiliser states of standard QM (these are the +1 eigenstates
of tensor products of Pauli operators). For the single qubit there are six such states, the standard
|0, [1), |4+),|—),|?) and | — i). For two qubits we have all 36 possible tensor products of these
single qubit states, plus 24 maximally entangled states, all related to the Bell state % |00) + [11)
by local unitary operations. For three qubits we have many more states, including the GHZ state
%yoom + [111).

The time evolution of states is given by those unitary operations which preserve stabiliser
states. Such operations are called Clifford unitaries and form a group. In fact, all n-qubit Clifford
operations can be simulated using the CNOT gate (which is itself a Clifford unitary), and the sin-
gle qubit Clifford unitaries. These single qubit operations themselves form a group, isomorphic
to the permutation group Ss. The only measurements allowed in the the theory are projective
Pauli measurements.

Though a restricted version of QM, qubit stabiliser theory exhibits most of the key features of
full QM. It has incompatible observables. There is a no-cloning theorem. Local hidden variable
no-go proofs exist, as we shall soon see (although in the case of stabiliser QM we need to employ
three qubit states, as in the GHZ no-go proof: although we have the Bell state, making Pauli
measurements alone cannot violate Bell inequalities).

We have chosen to investigate stabiliser QM rather than the full theory, because it is much
closer to the second theory which we will consider.

4.2 Spekkens’s toy theory

We don’t have space here to give full details of Spekkens’s theory, these can be found in [22].
A brief description of the key points will suffice. The theory attempts to approximate stabiliser
qubit QM: there is only one type of system, which is something like a qubit, and the states are
discrete. The theory does not employ vector space. Instead a single system is described by a four
state phase space. The actual state occupied in the phase space is called the ontic state. However,
the theory posits a fundamental restriction on our knowledge of the ontic state. This restriction is
the fundamental principle of the theory; Spekkens calls it the ‘knowledge balance principle’. In



full generality this principle is a bit awkward to state, but in the case of a single ‘qubit’ it boils
down to saying that we can at best know that the system is in one of two ontic states, with equal
probability. Our state of knowledge - the epistemic state - is the toy theory’s analogue of the
quantum state. The theory is clearly, by construction, a local hidden variable theory.

Because of the equal probability caveat, mathematically the epistemic states of the ‘qubit’
system are subsets of a four element set. It turns out that there are six such states, just as in the
case of stabiliser qubit QM. Invoking the knowledge balance principle, one can go on to derive
the allowed states of composite systems, and all the operations on systems which are allowed in
the theory. There turns out to be a one-to-one correspondence between the states and operations
of the toy theory and those of the stabiliser theory, although how the operations combine together
is not homomorphic. The operations of the toy theory transform between subsets of sets which
represent the phase spaces of the various systems - thus they are most naturally described by
relations on these sets.

4.3 The {C-theories Spek and Stab

We now express both these theories within our C framework. Interestingly, both theories can be
defined in a constructive fashion:

Definition 4.1 The {C Stab is the sub-1C of FHilb (recall example 2.4) generated by:
e nth powers of qubits @ :=C & C
o the single qubit Clifford unitaries

o the linear map
|0) —00)
1) = [11)

together with the (necessarily unique) unit of this comultiplication.

5stab:Q_’Q®Q::{

That this collection of operations is enough to generate all the states and operations of the
stabiliser theory can be seen as follows:

e The Hadamard operation H is a single qubit Clifford unitary.
e CNOT:=(1g® (HodT o (H® H)))o (6 ®10)

e Arbitrary n-qubit Clifford unitaries Ugpitrary can be generated from the single qubit Clif-
ford unitaries and CNOT.

e Arbitrary n-qubit stabiliser state W o, pitrary = Umnbz-tm,.y(ef R ®... @)

Note that a similar construction actually applies to FHilb if we substitute the single qubit
unitaries for the single qubit Clifford unitaries.

It is straightforward to verify that d4p is an observable as defined in section 3.1. The abstract
GHZ state derived via theorem 3.9 is exactly the standard GHZ state % |000) + |111), which, as
mentioned earlier, is a stabiliser state. All the results of section 3, on phase groups, correlation
triples etc. apply.
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Proposition 4.2 The object () in Stab has three observables in total: the one mentioned in defi-
nition 4.1, and two others which copy the vectors |+) and |—), and |¢) and | — ¢) respectively. All
three observables are mutually unbiased.

Proof: That these are the only other observables on () follows as a corollary of theorem 3.2, and
the fact that Stab is a sub-category of FHilb. That they are all mutually unbiased follows from
straightforward computation. O

Definition 4.3 The {C Spek is the sub-{C of FRel (recall example 2.5) generated by:
e nth powers of qubits IV := {1,2,3,4}
e all permutations on IV

e the relation

Ospek : IV — IV x IV =

together with the (necessarily unique) unit of this comultiplication

That these relations are sufficient to generate all the states and operations of Spekkens’s toy
theory (and no more) is not at all obvious, and is proved in [7]. Perhaps unsurprisingly given
our choice of notation d, turns out to be an observable. All the results of section 3, on phase
groups, correlation triples etc. again apply.

Proposition 4.4 The object IV in Spek has three observables in total. All three observables are
mutually unbiased.

Proof: The three observables are detailed in [7]. That these are the only observables is shown in
[18]. That they are mutually unbiased follows from straightforward computation. O

Remark 4.5 The use of relations in our construction actually leads to something we would term
a possibilistic theory. The scalars in FRel and thus in Spek are the two-element Booleans. Such
a theory can’t really tell us the probability of any measurement outcomes, only whether such
outcomes are possible or not. This is actually adequate for our later discussions of non-locality,
since the kind of non-locality proofs we will invoke only involve measurement probabilities of O
and 1. However, it should be noted that there is a well-defined procedure for modifying Spek so
that its scalars are positive real numbers, and we can discuss probabilities.

4.4 Pinpointing the difference between Spek and Stab

Our definitions of Stab and Spek are in terms of concrete vector spaces and linear maps, sets
and relations. This allows us to make a clear connection with the way in which the theories
were originally formulated. From our categorical perspective however the internal structure of
the objects of a category is irrelevant, only the algebra of composition of morphisms is important.
From this perspective, both Stab and Spek are generated by:

11



e nth powers of qubit objects )
e the group S acting on ()

e an observable: § : ) — Q ®  andits unite : ) — [

By definition, we know that the 6 and ¢ morphisms always combine in the same way: accord-
ing to theorem 3.4. And by specifying the group .S;4 we have ensured that the group elements
combine with one another in the same way in both cases. From this point of view it looks like
Stab and Spek might be the same theory viewed in abstract categorical grounds. But this can’t
be the case: they describe quite different physical theories!

In fact the difference lies in the way that the group elements interact with the observable. One
key example of such an interaction is the phase group. And indeed it is straightforward to verify
that the phase groups of the qubit observables of Stab and Spek differ:

Theorem 4.6 The phase group for qubits in Stab is the four element cyclic group Z, and the
phase group for qubits in Spek is the Klein four group Zs X Zs.

Proof: Straightforward computation. O

In the next section we will show that this mathematical difference between the theories is
intimately related to one of their key physical differences: the presence or absence of non-locality.

5 Mutually unbiased qubit theories

We have mentioned how Spekkens’s toy theory and stabiliser qubit QM are similar kinds of
theory: in both cases there is a discrete collection of states; in both cases the ’qubit’ system’s
observables (of which there are three) are all mutually unbiased. We next try to formally pin
down the features which these theories share, within our categorical framework.

Definition 5.1 A mutually unbiased qubit theory, or MUQT, is a dagger symmetric monoidal
category with basis structures, which satisfies the following additional criteria:

1. The objects of the category are I, () (which will represent a qubit-like system), and n-fold
monoidal products of @, ie. Q RQ X ... R Q.

2. The observables on any given object are all alike: that is to say, they have the same number
of eigenstates, and the same phase groups.

3. The observables of () are all mutually unbiased (recall definition 3.14).
4. All states of @) (i.e. morphisms of type I — () are eigenstates of some observable.

5. @ has three observables, each with two eigenstates.
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Various results follow directly from this definition. (4) and (5) together imply that ) has six
states. (3) and (4) together imply that, with respect to any observable on (), all states are either
eigenstates or unbiased. We can further conclude that each observable on () has two eigenstates
and four unbiased states.

Proposition 5.2 Stab and Spek are both MUQTs.

Proof: This follows from the definitions of the categories, and propositions 4.2 and 4.4. O

MUQTs apparently have some fairly severe restrictions placed upon them but these apply
principally to the observables and states on the object (), and there is still considerable freedom
to define the properties of the observables and states on compound systems. Furthermore different
MUQTs could differ greatly in their other morphisms on (). Stab and Spek are far from being
the only MUQTs.

5.1 Classification

However we will show that in a MUQT the possibilities for the basis structures on () are quite
limited. More precisely the GHZ correlations can take one of two forms, and Stab and Spek
cover these two possibilities.

The outline of this argument is fairly straightforward. Firstly, we recall the connection es-
tablished in 3.19 between GHZ correlations and the monoid generated by the corresponding
observable. We will shortly show that in a MUQT the monoid generated by the basis structures
on () is completely determined by their phase group. Next we note that the phase group is an
Abelian group, and has as many members as the basis structure has unbiased states, in this case
four. Finally we recall that there are only two Abelian groups of four elements, the cyclic group
Z, and the Klein four-group Zy x Zs.

So it simply remains to prove the first step, that in a MUQT the GHZ correlations on @)
are completely determined by the phase group. Recall definition 3.3 of an eigenstate. From the
axioms of an eigenstate it immediately follows that =T o z = 1;. More specifically, if § o z =
(z ® x) o \; and 2, = x, then we have that e o z = z' o .

Lemma 5.3 For z,2’ : 1 — X eigenstates we have (zf 0 2')? = 2t o /.

Proof: (zfo2/)2 = Ao (z @)l o (2’ @) o =2l 06T 0doa/ =2l oa’, O
Lemma 5.4 Iffor z, 2’ : 1 — X eigenstates x' o 2’ = 11 then x = .

Proof: Ignoring natural isomorphisms, (1x®z')odoz’ = (1x®z)o(2/®z’) = (zToz’)-2' = 2’
from which it follows by z, = z that z ©® 2’ = 2’. By symmetry we also have z ® 2’ = x and

hence ' =z ® 2’ = z. O

Hence the inner product of two eigenstates is always an idempotent and for non-equal eigen-
states this idempotent cannot be 1.
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Definition 5.5 A C has a zero if it has exactly two idempotent numbers. The idempotent number
0 which is not the identity is referred to as zero.

Proposition 5.6 If two states © # x' are eigenstates for an observable in a 1C with zero then we
have zt o2/ = 0and zt oz = 1;.

Proof: Follows from Lemma 5.3 and Lemma 5.4. |

In R, R and C the only idempotents are 0 and 1. We will furthermore assume that any
O-multiple of a state v : I — A is a unique (trivial) state which we also denote by 04. We
will indicate reliance on this assumption that there is a unique ‘absorbing idempotent number’ by
(0). This assumption is conceptually justified by the interpretation of numbers as probabilistic
weights — see Example 2.6.

Lemma 5.7 [6] For x : I — X an eigenstate and 1 : 1 — X unbiassed we have:
dim(X) - (zT o)t (aT o) = 11.

Setting |(z|¢)|? := (2T o )T - (z' 0 4)) and assuming that dim(X) admits an inverse 1/D,
i.e. dim(X)-1/D = 1y, results in the familiar form |(z|t/)|?> = 1/D. When we now subject a
1C-theory to the VW-construction of [5] discussed in Example 2.6, then in the newly constructed
category we have

WzWi) = Wa) oW = (zf o)t - (zT o) =1/D.

We will assume below that we always are in a ‘tC-theory without global phases’ i.e. a TC-theory
which is invariant under the V- construction. We will indicate reliance on this assumption by
(W). This assumption is again conceptually justified by the interpretation of numbers as proba-
bilistic weights — see Example 2.6.

Remark 5.8 Note that while Spek, as a subcategory of FRel, obviously has no global phases,
but has non-trivial relative phases, namely Zy X Zs.

Lemma 5.9 Ler (X, 0, €) be an observable in a tC, let 1, ¢ : 1 — X be unbiased for it and let
x # 2’ : 1 — X be eigenstates for it. Then we have:

) x@x:xandex’:(:pTox’)-x(g 0;

=

@ 200 =(tov).2 X 1/D.2;

) Y ® ¢ is completely determined by the phase group.

Proof: For (1) we have:

A-F1=v9-44

14



where the last step follows by = = x,. Hence &’ = (2-2)-2 = 0-x = 0. If rather than 2’ we
would have considered x itself then this graphical argument yields t©x = (90T -x)-x = x. For (2)
the same graphical argument, now substituting ¢ for 2/, results in 2©2’ = (z1-)-z = (2Tor))-x.
(]

Corollary 5.10 Consider a T1C which obeys (0) and (VW) and consider an observable in it for
which all states on the underlying object are either eigenstates or unbiased. Then, the choice of
phase group constitutes the only degree of axiomatic freedom for how the multiplication — ® —
of the observable acts on states.

Next we can use proposition 3.19 to make the link to GHZ correlations:

Lemma 5.11 Let (X, WV, €) be a GHZ state in a tC, let ¢, ¢ : 1 — X be unbiased for it and let
x # 1’ : 1 — X be eigenstates for it. Then we have:

(la) (z,x;x) is a correlation triple ;
(1b) there are no correlation triples involving both x and z' ;
(2) (z,v;x) is a correlation triple ;

(3) all correlation triples involving at least two phase group elements are of the form (1, ¢; (Y©®
®)«) — which by Prop. 3.19 ii. includes permutations hereof.

Corollary 5.12 Consider a 1C which obeys (0) and (W) and consider a GHZ state in it for which
all states on the underlying object are either eigenstates or unbiased. Then, the choice of phase
group constitutes the only degree of axiomatic freedom for the corresponding GHZ correlations.

Finally considering that in a MUQT the phase group must have four elements, and that there
are only two four element groups Z4 and Zs X Zo, we can state our main result:

Theorem 5.13 The GHZ correlations of the ‘qubit’ object in a MUQT can take only two forms,
corresponding to the two four-element groups, Z, (as in the case of Stab) and Zs X Zs (as in the
case of Spek).

We conclude that, whilst there is a vast number of possible MUQTs, their GHZ correlations
can take only one of two forms, and Stab and Spek exemplify the two possibilities.

5.2 Link to non-locality

The GHZ correlations in the theories are of particular interest, because these correlations are
invoked in one of the most elegant 'no-go’ proofs showing that quantum mechanics cannot be
explained by a local hidden variable theory. For the full details of this famous proof the reader is
referred to [17].

Note the following key points:
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o This no-go proof also applies to stabiliser theory. The proof begins with a GHZ state. The
key ingredients are the probabilities of outcomes when we measure the variables X @ X ®
X, XYY, Y®X®Y,andY ® Y ® X. GHZ states and Pauli measurements both
survive the restriction from full QM to the stabiliser theory, so the proof applies equally
well in this case, i.e. it is impossible to model stabiliser theory with a hidden variable
theory.

o The key structural ingredients of the proof are all present in any MUQT'. We can depict
all the key ingredients of the proof in our categorical framework. Diagrammatically the
relevant probabilities are given by:

S 45 42 4P

In our abstract terminology we would say that the proof is employing a basis structure,
and four of its unbiased states. An analogue of the argument could be reconstructed in
any dagger symmetric monoidal category with these features, and with scalars which are
numbers or Booleans. Certainly any MUQT will have an analogue of the proof, where the
scalars pictured above are the GHZ correlations.

o No Z4 MUQT can have a local hidden variable interpretation. For MUQTs with a Z, qubit
basis structure the proof will be identical to the quantum stabiliser case, ruling out a local
hidden variable theory.

e A hidden variable interpretation can be constructed for the GHZ state in any Zs X Zs
MUQT. In contrast, in the case of MUQTSs with Zs x Z5 correlations, we cannot rule out
such a theory, because we have a concrete example of a local hidden variable theory, Spek
which exhibits exactly these correlations. Put another way, if we were presented with the
data of a set of Zy X Z5 correlations, we could always explain them via the hidden variables
of Spek.

Thus we can conclude that any MUQT of the Z, type, cannot have a local hidden variable
interpretation, since at least one of its states (the GHZ) does not have such an interpretation.
We cannot conclude that all MUQTs of the Zy x Z3 type (will have a local hidden variable
interpretation, since they might have other states which had no LHV interpretation. We can at
least conclude though, that GHZ-type no-go arguments will not work for them.

Turning this on its head, we can see that the Z, type basis structure, within our framework,
is a structural resource which embodies non-locality. If your theory has a basis structure of this
type, then your theory has ‘got non-locality’. The Zs X Zs structure has no non-locality. Whilst a
Zo X Z3 type MUQT might have some other non-local piece of structure, the Zo X Zs type basis
structure cannot itself endow a theory with non-locality.

'In fact, in this section we restrict attention to probabilistic and possibilistic MUQTS, as defined in section REF,
since these are the only {-C theories where it makes sense to discuss locality/non-locality.
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6 Non-locality directly from abstract arguments

The arguments above are slightly round-about: we show that certain phase groups are exhibited
by either Stab or Spek, which we know by other arguments to be non-local and local respectively.
We then conclude that Z, GHZ states must have non-locality, whereas Zo x Zy GHZ states can
not. In fact, in the case of Z, we can provide a more general argument directly from abstract
reasoning.

abstract

/w\
Zy Stab

Let O 4 be the set of observables on an object A in a {C. Let &, , be the set of eigenstates of an
observable o4 € O4. We now define a notion of hidden variable representation which applies
to arbitrary {C-theories with R as numbers. This can be extended to {C-theories with more
general numbers, as we show at the end of this section for the case of purely qualitative relational
theories.

non-local

Definition 6.1 Let C be a 1C with Ry as numbers. A state ¥V : I — 41 ® ... ® A, in C admits
a local hidden variable representation if there exist:

e a set of hidden states = C [, co, €0, X -+ X I, co, €o, €ach of which assigns an
eigenstate in &,, to each observable o; € O; on each subsystem A;, and we denote this
eigenstate for £ € = by £(0;)

e a cg-additive measure i : B(E) — R4 with u(E) =1

and these are such that for each choice of observables 01 € O1,...,0, € O, and each choice of
eigenstates x1 € &,,,...,Ty € &,, We have

pE eS| =€), o =&on)}) = (o] @, @al) 0w,

The {C-theory C admits a local hidden variable representation if each of its states admits a local
hidden variable representation

We provide nogo argument for GHZ states that applies to the GHZ states on qubits in Stab
and FHilb. This argument is not very different from the usual one [17], except for the fact that
there is no reference to Hilbert space anymore and that a contradiction is directly drawn from the
structure of the Z, phase group.

Definition 6.2 Let (A, U, e) be a GHZ state in a {C. A forbidden triple is a triple of states
(x,2';2") such that 2" and x @ 2/ are eigenstates for the same observable.

Proposition 6.3 If (x,x';2") is a forbidden triple for GHZ state (A, ¥, €) in a 1C with zero then
we have (xr @ ' @ 2") o ¥ = 0.

Proof: Since z” and x ® 2’ are eigenstates for the same observable, Ignoring natural isomor-

phisms we have (z ® 2/ ® 2")T o ¥ = 2T o (2 ® 2/ ® 14)T 0 ¥ = 2"T o (x ® 2’) = 0 by
Proposition 5.6. O
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Theorem 6.4 Let (A, V7, ez) be a GHZ state in a 1C with Ry as numbers, which contains
Zy as a subgroup of the phase group, and let the identity and the involutive element of this
subgroup constitute the eigenstates of an observable (A, V x, ex ), and its other two elements the
eigenstates of an observable (A, Vy , ey ). Then the state V; : 1 — A ® A ® A does not admit a
local hidden variable representation.

Proof: We denote the identity of the phase group by |+) and the involutive element by |—), and
the two other elements by |£) and |=). By the Z; structure we have:

H o=+ Hel-)=I-) [Fol= =+

Hence, by Proposition 3.19 ii we have that each correlation triple involving only states {|+), |—)}
must have an even number of occurences of |—)’s, and hence those with an odd number of |—)’s
are forbidden triples. Also:

mol= =1+ I=ol==I- BHol)=I[-)

Hence, by Proposition 3.19 ii we have that each correlation triple involving two states in {|f), | =
) } and one state in {|+), |—) } must have an even number of occurences of elements in {|—), |=) },
and hence those with an odd number of elements in {|—), | =)} are forbidden triples. Assume
that U admits a hidden variable representation (Z, iz). To distinguish between the three objects
in A® A ® A we will denote them by Ay, As, As respectively. Using the notation of Definition
6.1, we have for o/~ the observable with eigenstates {|+), |—)} that

u({eez|m =€) m =805 s =0 )}) =0
whenever the number of |—)’s in (21, 22, x3) is odd by Proposition 6.3. Hence
u(a5r? = {ee=]oda|-ysin (g(of/7). 603" 7) 6003 )) }) = 0.

and so for Aéif,f’) ==\ Af}b’j’?’) we have M(Agfﬁg)) = 1. Similarly, for

A&l)d = {5 €E|odd|-)s & [=)sin (5 ), €047, 5(0?3/:))}
Agi)d = {565 odd [~)’s & |=)’s in (5 )75(05’/:))}
Aféz)d = {565 odd [—)’s & |=)’sin (&(o )75(0;/—))}
we have u(Agd)d) B M(Agz)d) - “(Aodd) - n(A 021 N Aodd N A(()d)d) = 1. But an odd

number of |—)’s and |=)’s in
(€007, €(08 ), €08 7). 8008 7). 600377, 6008 7). (01 ), €08 )60 )

due to the double occurences of & (oﬁ/ 7)€ (og/ ), € (og/ ~) means an odd number of |—)’s in
(07 7) 6037 7),60377)) s0 Al 0 Al 1Al © ALY and hence 1 = p(aly, n

Af)d)d N A(3) ) M(Agb’j’g)) = 0, hence a contradiction. O
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7 Conclusions and further work

We have described a categorical framework which is sufficiently flexible to accommodate both
stabiliser QM, and the Spekkens toy theory (not to mention full QM!), and which helps to cast
light on the essential difference between the two. Structurally this difference is in the phase
group: Z4 in the case of Stab and Z, x Zs in the case of Spek. Physically the difference between
the theories is that one is non-local whilst the other is local. We went on to show that it is the
presence of the Z, phase group that makes stabiliser QM non-local. In fact, this structure suffices
to show that full QM is non-local.

We have furthermore defined a special class of toy theories, in which all ‘qubit’ observables
are mutually unbiased, which can all be modelled in the categorical framework. We have shown
that the GHZ-correlations in these theories are parametrised by finite groups.

We could extend the definition of a MUQT beyond ‘qubits’, by allowing our basic system to
have more observables, and its observables to have more eigenstates, while still insisting that the
observables are all mutually unbiased. We would then have a more general mutually unbiased
theory or MUT. The result that the GHZ correlations in such a theory are completely determined
by the phase group, established in corollary 5.12, would still hold. For example, in the case of
qutrits, there are four mutually unbiased observables, each with three eigenstates. Phase groups
in this case would have nine elements. There are two nine-element groups, Zg and Z3 X Z3 - what
theories do these correspond to? We know some of the answer to this. There is a well-defined
way to extend stabiliser QM to higher dimensional systems. Spekkens has also recently proposed
a ‘trit’ version of his toy theory, and in fact in this case the two theories coincide. Their phase
group is Z3 X Zs. But what kind of theory is the one with phase group Zg?

There is still much to be done. Several avenues of research suggest themselves:

e The question of what sort of theory a MUT with phase group Zy is still stands. An obvious
line of work beyond this is to consider ‘higher-dimensional’ MUTs, beyond qubits and
qutrits. The locality/non-locality properties of such theories will still be parametrised by
Abelian groups. What sorts of locality/non-locality do we find? There is a well-defined
way to extend stabiliser theory to any finite dimensional system. What is the phase group
in each case? Can Spekkens’s toy theory be extended beyond trits? What would its phase
group be?

e We have shown that the phase group is important in determining whether theories are local
or exhibit quantum non-local correlations. In fact, theories have been proposed whose
non-locality goes beyond that of quantum mechanics REF. Can these be accommodated
within our framework? Some such theories are ‘qubit-like’ in that they have two valued
observables. It would seem that mutually unbiased qubit theories are unable to exhibit
super-quantum correlations, since with Z4 and Zs x Zs we have exhausted the possibilities.
Perhaps measurements on observables which are not mutually unbiased are required to
display the super-quantum correlations.

e We have shown in section 6 that there is an abstract argument that a Z4, MUQT must be
non-local. Could we construct a purely abstract argument that Z> x Zy MUQTs must be
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local?

?
Zy X Zy /m local

Could we develop a classification of groups, depending on whether they encode locality,
quantum non-locality, or possibly super-quantum non-locality?
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