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Abstract. This paper presents a novel approach to processing continuous aggre-
gate queries in sensor networks, which lifts the assumptionof tree-based rout-
ing. Given a query workload and a special-purpose gateway node where results
are expected, the query optimizer exploits query correlations in order to gen-
erate an energy-efficient distributed evaluation plan. Theproposed optimization
algorithms identify common query sub-aggregates, and propose common rout-
ing structures to share the sub-aggregates at an early stage. Moreover, they avoid
routing sub-aggregates of the same query through long-disjoint paths, thus further
reducing the communication cost of result propagation. Theproposed algorithms
are fully-distributed, and are shown to offer significant communication savings
compared to existing tree-based approaches. A thorough experimental evaluation
shows the benefits of the proposed techniques for a variety ofquery workloads
and network topologies.

1 Introduction

A typical way of extracting information from a sensor network is to disseminate declara-
tive aggregate queries from a gateway node to sensor nodes, asking them to periodically
monitor the environment, and return aggregate results in regular rounds. An example of
such long-running queries is“select avg(temperature) from Sensors where loc in Re-
gion every 10 min”. Since nodes are battery-powered, energy preservation is amajor
consideration in system design, as it directly impacts the lifetime of the network. Re-
cent studies have shown that radio communication is significantly more expensive than
computation or sensing in most existing sensor node platforms. Hence, the main con-
sideration in designing query processing algorithms is to minimize the communication
overhead of forwarding query results from the sources to thegateway node. The cost of
disseminating query information into the network is assumed to have a secondary role
for long-running queries, since query dissemination occurs once, whereas result propa-
gation occurs repeatedly at regular rounds. Moreover, manymonitoring scenarios apply
a pure push model, in which nodes are programmed to proactively send specific infor-
mation to the gateway. The communication cost of result propagation thus dominates
the communication cost of query dissemination.

Tree-based routing has been proposed as an energy-efficientmechanism for pro-
cessing aggregate queries in sensor networks [6,8]. Tree construction is performed us-
ing simple flooding algorithms [8], data-centric reinforcement strategies [6] or energy-
aware route selection schemes [13,16]. After a tree is constructed, sensor nodes forward



Fig. 1.Example with one query.

their readings along the paths of the tree, evaluating partial query results at intermedi-
ate nodes. The aforementioned research focused on processing asingle aggregate query
given a routing tree; the tree is generated using a tree selection scheme and is thereafter
used for result propagation. More recent research has focused onoptimizing multiple
aggregate queries given a routing tree[12]. Query commonalities are taken into ac-
count to reduce the communication cost of result propagation, but without making any
attempt to select suitable tree routes [12].

Unlike previous approaches, this paper considers the more general problem of multi-
query optimization lifting the assumption of an existing aggregation tree. The objective
is to find efficient routes that minimize the communication cost of executing multiple
aggregate queries, by studying the interplay between the processing and routing aspects
of query evaluation. In summary, the contributions of this paper are as follows:

– A demonstration of the interplay between the processing androuting aspects of
single- and multi-query optimization (Section 2).

– A formal definition of the multi-query optimization problemfor aggregate queries
(Section 3), which lifts the assumption of a communication tree used in [6,8,12].

– Two novel heuristic algorithms, SegmentToGateway (STG) and SegmentToSeg-
ment (STS), for optimizing multiple aggregate queries (Section 4), by carefully
interweaving routing and processing decisions at each node.

– Experimental results that compare the performance of the proposed algorithms with
the most efficient existing algorithm for multi-query optimization [12] (Section 5).

2 Illustrative examples

The potential advantages of carefully selecting a routing and processing plan for exe-
cuting aggregate queries are shown in the following examples. Figure 1 shows an ex-
ample of processing a single aggregate query, which asks forthe sum of all readings in
the dotted rectangular area. Notice that a total number of 15messages are sent along
the left minimum-hop tree of Figure 1, whereas only 6 messages are forwarded along
the carefully selected right tree of the same figure. The right routing tree is better not
only in terms of total communication cost, but also in terms of communication cost in
the critical area around the gateway. Informally, the benefit of the second plan is that
it aggregates all readings of a query early and avoids sending different subaggregates
through disjoint paths.
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Fig. 2.Example with two queries: (i) the left plan is based on a randomly selected tree,
(ii) the middle plan is the output of STG, and (iii) the right plan is the output of STS.

Figure 2 illustrates the benefits of building a suitable execution plan in the case of
processing multiplecountqueries. For ease of understanding the graphs also include
node IDs and messages forwarded through network links. Messages have the format
v(q1, . . . , qn), which denotes that valuev contributes to queriesq1, . . . , qn. The left
plan does not exploit query commonalities, and therefore fails to aggregate together
readings (of nodes 8 and 9) within the intersection area. Themiddle plan incurs smaller
communication cost, because it exploits query commonalities, but still forwards the
subaggregate of the intersection area separately all the way to the gateway. This be-
havior is similar to the first heuristic proposed in this paper called SegmentToGateway
(STG). The right plan has an optimal behavior because it exploits query commonali-
ties and it avoids sending partial aggregates through long disjoint paths. Notice that the
optimal plan does not follow a tree structure, as node 8 sendsthe partial aggregate of
the intersection area to two parents. The intersection partial aggregate is thus merged
immediately with the other two query subaggregates and, eventually, only two partial
results are sent to the gateway. This would be the plan identified by the second proposed
algorithm, called SegmentToSegment (STS). Although the examples above use a grid
topology, both STG and STS are designed to work well for random topologies with
potential empty areas (or holes).

3 Problem definition

Sensors and queries:Consider a set of sensor nodesS = {s1, . . . , sn} with known
location coordinates. Two nodes capable of bi-directionalwireless communication are
referred to asneighbors. Every node knows its location, as well as the identifiers and
locations of its neighbors. We consider a commonly used subclass of aggregate queries,
which we refer to as spatial range queries (SRQs). SRQs evaluate the aggregateaggr
of all sensors in a rectangular area, whereaggr is a distributive or algebraic aggregate
function (e.g. sum, count, avg, max, minbut notmedian) [8,4]. A query is denoted by
a tuple(aggr, x0, y0, xdim, ydim), wherex0 andy0 are bottom left coordinates of the
rectangular area andxdim andydim are the area’sx andy dimensions respectively. Let
Q = [q1, . . . , qm] be the vector of SRQ queries gathered for execution at the gateway
G ∈ S. Queries that evaluate the same aggregate function over different regions are
grouped together for periodic evaluation for a large numberof rounds. Each node knows
the identifiers (qi) and descriptions of queries thatcoveritself and its neighbors.



Computation and communication: Nodes receive input values from their neighbors
and the local sensors, and generate output values at a negligible cost. One-hop data
propagation is represented as a directed edge, labeled withthe pair(value, semantics),
where thesemanticsdenotes how thevaluecontributes to each one of the queries. For
uniformity, the generation of a reading locally at a node is also represented as a directed
edge with a dangling starting point. Such edges are calledinitial directed edges.

Let ui be the sensor reading generated locally at a nodesi. The semantics ofui

consists of the set of queries that access the particular node, and is represented as a bit
vector of sizem (equal to the number of queries). Thej-th entry of the vector is 1 if
queryqj accesses nodesi, and is 0 otherwise. Vectors that determine the contribution
of a value to the queries are referred to ascoefficientvectors (CVs). For example, in
Figure 3, the initial directed edge of nodes2, which holds information about the locally
generated reading, is labeled(1, [110]) to denote that the local sensor value 1 contributes
to the queriesq1 andq2, and does not contribute to the value ofq3.

As the initial (value,CV) pairs are pushed towards the gateway, they can be partially
processed at intermediate nodes. LetInAnnot = [(v1, CVv1

), . . . , (vk, CVvk
)] be the

labels of the input edges andOutAnnot = [(v′1, CVv′

1
), . . . , (v′ℓ, CVv′

ℓ
)] be the labels

of the output edges of a sensor node. In any query plan, there should be no loss of infor-
mation as data is routed through a node,i.e. the result of a query when evaluated based
on the input edges must be equal to its result based on the output edges. Formally, each
node must satisfy thecontent preservation property, i.e. for every queryj = 1, . . . , m,
aggrk

i=1(vi ∗ CVvi
[j]) = aggrℓ

i=1(v
′
i ∗ CVv′

i
[j]). This property is satisfied in Figure 3.

Theorem 1If every node in the graph satisfies the content preservationproperty except
for the gateway, then the values of all queries in the workload are given by the anno-
tated input edges of the gateway node. More specifically, if the gateway hask input
edges labeled with the pairs(v1, CVv1

), . . . , (vk, CVvk
), then the value of a queryqj is

Result(qj) = aggrk
i=1(vi ∗ CVvi

[j]). The proof is omitted for space reasons.
Optimization goal: Start with a graph that consists of all sensor nodes and one directed
dangling edge per node, carrying its source value. Minimizethe number of directed
edges that we need to add in the graph (excluding the initial dangling edges) such that
the content preservation property is satisfied at each node.

4 Algorithms

We now study the existing approach for processing aggregatequeries, and propose two
novel energy-efficient algorithms to improve its performance. All three algorithms con-
sist of two phases: (i) a network configuration phase and (ii)a result propagation phase.
The role of the former phase is to set up routes to prepare the ground for the second
phase, i.e. the forwarding of results to the gateway in regular rounds.

4.1 TheNoOptimization algorithm

The existing state-of-the-art in optimizing multiple aggregate queries is the ECReduced
algorithm proposed in [12]. It outperforms Tag [8] and Cougar [15] in the context of
multiple queries, since these approaches were originally designed to process a single



32

5(1,[111])

(1,[110])

4

1

6

(2,[001])

(2,[110])

(1,[001])

(1,[001])

(1,[111])

q2

q1

q3

(1,[001])

(1,[100])

(1,[100])

(1,[100])

Fig. 3. NoOptimization: Node 2 linearly reduces the three input (value,CV) pairs into
two output pairs

query, as shown in [12]. ECReduced is therefore a good basis for comparing the two
proposed algorithms. In this paper, it is hereafter referred to asNoOptimization, to de-
note that it does not jointly optimize routing and processing taking into account the
query workload. NoOptimization uses a predefined tree, and only optimizes the pro-
cessing aspect of query execution.
Network Configuration Phase: Control messages are first flooded into the network,
and every node selects as itsparent the neighbor in the shortest path to the gateway
node. If there are more than one candidate parents, the node selects its parent in one
of the following ways: (i) randomly, (ii) the first node from which it received a query
request, (iii) the node with which it consistently maintains better communication. In the
experimental evaluation of Section 5,NoOptimizationis implemented as in [12],i.e.
breaking ties by random parent selection. Dynamic node or link failures are handled by
a local flooding phase to repair affected tree routes, as in AODV [2].
Result Propagation Phase:The routes of query results are predefined in the network
configuration phase, and the only decision that a node needs to make in this phase is how
to convert its input (value,CV) pairs into output pairs. Alloutput pairs, irrespective of
their content, are forwarded to the node’sparent. A naive application of the in-network
aggregation technique to processing multiple queries would be to forward one partial
aggregate value per query, and denote the query identifier inthe coefficient vector. The
NoOptimization algorithm uses a more elaborate technique to reduce the number of
propagated (value,CV) pairs. In the case of algebraic aggregate functions, likesum,
countor avg, a node running NoOptimization computes a basis of its inputcoefficient
vectors and sends to itsparent the basis vectors (and corresponding values) [12]. An
example of the effect of linear reduction is shown in Figure 3, where node 2 receives
three input (value,CV) pairs and reduces them to two output pairs. The linear reduction
technique yields the optimal solution for these aggregatesin terms of communication
cost. The NoOptimization algorithm, which is used as a basisfor comparison, is to our
knowledge the most sophisticated existing approach to processing multiple algebraic
aggregate queries.

4.2 TheSegmentToGateway (STG) algorithm

The first proposed heuristic algorithm exploits the fact that the intersecting query rect-
angles naturally divide the network into smaller segments.A segmentS is a maximal set



event TOS MsgPtr RcvBeacon.rcv(TOSMsgPtr m)
{
bool mustRebroadcastBeacon = FALSE; else {// not equal vectors

BeaconMsg ∗ b = (BeaconMsg∗)m → data; if ((SGDistance > hopCount)
addBeaconSenderToNeighbors(b); || (SGDistance == hopCount&&
if (b → hopCount + 1 < hopCount) { b → source == parent &&

mustRebroadcastBeacon = TRUE; b → source! = SGParent &&
hopCount = b → hopCount + 1; closer(myLoc, leaderLoc))){
parent = b → source; mustRebroadcastBeacon = TRUE;

} SGParent = b → source;
if (equalVectors(SG, b → SG)) { SGDistance = hopCount;
if ((SGDistance > b → SGDistance) distToSGLeader = 0;
|| (SGDistance == b → SGDistance && leaderLoc = myLoc;
b → distToSGLeader + 1 < distToSGLeader) }}}
|| (SGDistance == b → SGDistance&&
strictlyCloser(b → leaderLoc, leaderLoc)){

mustRebroadcastBeacon = TRUE;
SGParent = b → source;
SGDistance = b → SGDistance;
distToSGLeader = b → distToSGLeader + 1;
leaderLoc = b → leaderLoc;

}}

Fig. 4.NesC code for the network configuration phase of STG (excl. lines in bold) and
STS (incl. lines in bold)

of nodes, s.t.∀si ∈ S, sj ∈ S, si andsj are covered by the same set of queries and they
areinternally connected, i.e. there exists path fromsi to sj consisting only of nodes in
S. For example, the queries in Figure 5 form five segments{s1, s4}, {s2}, {s3, s5, s6},
{s7} and{s8, s9}. A segmentS (or a noden in S) is represented by a bit vector that
denotes which queries cover the nodes ofS (e.g., SGVector({s3, s5, s6})=[010]). STG
performs aggregation of local sensor data by building a treeper segment, instead of
building a tree per query, or a tree for all queries. The segment tree is rooted at the
SGLeader, i.e. the node with the smallest hop count to the gateway. We refer to: (i)
the number of hops from the SGLeader to the gateway as theSGDistanceand (ii) the
number of hops from a node to its SGLeader as thedistToSGLeader. For instance,
SGDistance(s6)=2 and distToSGLeader(s6)=1.

Network Configuration Phase:This is similar to the corresponding phase of theNoOp-
timization algorithm, except that in this case each node identifies not only a parent
neighbor but also a SGParent (i.e., a neighbor on a path to the SGLeader). Upon receiv-
ing a beacon message, a node updates the local list of neighbors and, if necessary, the
hopCountvalue (as in NoOptimization). The next step depends on whether the beacon
is sent from a node in the same or in a different segment. In theformer case, the node
compares the local knowledge about theSGLeaderwith that in the beacon. If the bea-
con knows of aSGLeadercloser to the gateway (with smallerSGDistance), the local
SGDistancevalue is updated and the sender node is selected to be the local SGParent. In
the latter case where a node receives a beacon from a node in a different segment, it real-
izes that it is on the border of the segment and thus it is eligible to become aSGLeader.
It elects itself to be aSGLeaderif its hopCountis smaller than the localSGDistance.
The beacon message is updated accordingly and is rebroadcasted (Figure 4).
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Result Propagation Phase:By the end of the network configuration phase, every node
knows its parent andSGParent. In the result propagation phase, a node merges dupli-
cate input CVs into the same output CV, aggregating values accordingly. An output
(value,CV) pair is sent to theSGParentif and only if the CV is equal to the current
node’sSGVector. The remaining output (value,CV) pairs are forwarded to theparent
node (after they have been linearly reduced in the case of algebraic aggregates). The
gateway’s neighbors send all their messages without exception directly to the gateway.
Discussion:STG identifies query commonalities (segments) and aggregates the val-
ues of all nodes within each segment separately following a mini-tree rooted at the
SGLeader. The remaining values (whose CVs are not equal to theSGVector) are for-
warded through theparentnode (instead of theSGParent) and reach the gateway through
the shortest path. By definition, STG performs better than NoOptimization.

4.3 TheSegmentToSegment (STS) algorithm

Although STG performs well in terms of merging readings of the same segment, it often
fails to merge sub-aggregates of the same query that come from different segments. In
the worst case, these sub-aggregates are propagated from the SGLeadernodes to the
gateway through long disjoint paths. STS addresses the weakness of STG by sending
messages towards neighbors that are likely toreducethem.
Network Configuration Phase:The configuration phase ofSTSis similar to the corre-
sponding phase of STG except that each node selects as a segment parent a node on the
shortest (instead of on any) path to the SGLeader (Figure 4).
Result Propagation Phase:Initially, each node converts input to output (value,CV)
pairs exactly as in NoOptimization and STG. It then interleaves two novel steps: 1)
neighbor-message matching, which selects a suitable neighbor to forward each output
pair, and 2)message splitting, which often splits the output pair before forwarding it.
Step 1: Neighbor-message matching.The idea behind the first feature is to forward out-
put (value,CV) pairs towards nodes that are most likely to reduce them by merging them
with their local or route-thru data. The first (value,CV) pair considered for matching is
the one that contributes to most queries (with the greatest number of 1-bits in the CV).
The process of matching it with the best neighbor node is detailed below:

Step 1.1:To ensure that messages are not forwarded away from the gateway, only
neighbors closer to the gateway than the current node are considered,i.e. with lexi-
cographically smaller (hopCount,SGDistance,distToSGLeader,xCoord,yCoord).For in-



stance, nodes3 considers sending messages tos2 (Figure 5). As an exception, a node
also considers neighbors in the same segment that are not closer to the gateway, if (i)
they are closer to theirSGLeaderand (ii) all queries that cover these nodes are also
included in the message CV. For instance,s3 also considerss6 to forward its initial
data(1, [010]) to, becausedistToSGLeader(s6)<distToSGLeader(s3) and theSGVec-
tor(s6) = [010] marks queries{q2} that are all marked in the message CV[010].

Step 1.2: Among neighbors selected in Step 1.1, consider only those that best match
the message CV,i.e. which are covered by the maximum number of common queries
with the message CV. If this number is 0 or the node is next to the gateway, send the
message to itsparent. Nodes3 has two candidate neighbors,s2 ands6, to send (1,[010])
(from Step 1.1). TheSGVectors[011] and [010] of s2 ands6 both have one common
query with the message CV ([010]). Among neighbors with equal number of common
queries, select the one with the minimum number of queries (s6).

Step 1.3:Among neighbors selected in Step 1.2, select the one with thelexicograph-
ically smaller (SGDistance,distToSGLeader,xCoord,yCoord). For instance,s8 has two
candidate neighborss5 ands7 to send the output pair (2,[110]) to. Both haveSGDis-
tanceequal to 2 anddistToSGLeaderequal to 0 (both nodes are segment leaders), sos7

is selected because it has a smallerx coordinate.
Step 2: Message splitting.The rationale behind this step is that it is often beneficial to
divide data into its components in order to give it greater potential for later merging. Let
p be the pair considered for neighbor-message matching in theprevious step. The pairp
is split into two pairsp1 andp2, based on theSGVectorof the selected neighbor. Assume
that nodes8 choosess7 to forwardp = (2, [110]) in Step 3. Notice that the CV ofp has
more queries (q1 andq2) than the SGVector of the selected neighbor (SGV ector(s7) =
[100] denotes thats7 is covered only byq1). In this case,p is split into two pairs, one
contributing to the common queriesp1 = (2, [100]), and another contributing to the
remaining queriesp2 = (2, [010]). Pairp1 is sent to the selected neighbor andp2 is re-
inserted into the list of output pairs. During insertion, pairs with equal CVs are merged.
If the list of (value,CV) pairs is not empty, steps 1 and 2 are repeated.
Discussion: By means of careful message routing, merging and splitting,STS ensures
that all query subaggregates are merged together before they leave the query area, thus
offering significant benefits wrt STG and NoOptimization.

5 Experimental evaluation

A thorough experimental evaluation was performed to compare the proposed heuristic
algorithms with the existingNoOptimizationapproach using a home-grown simulator.
The experimental results below show the performance of the three algorithms varying:
(i) the number of queries, (ii) the number of nodes, (iii) theradio communication range,
and (iv) the number of holes (unpopulated areas in the network). The graphs below illus-
trate the communication benefits of STG and STS compared to NoOptimization. The
benefit of STG is(cost(NoOptimization) − cost(STG))/cost(NoOptimization)
and the benefit of STS is defined similarly. It remains to definehow the cost of an algo-
rithm is calculated. In each graph two costs per algorithm are considered, the number of
messages sent and the number of messages received during result propagation, thus re-
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sulting in four different measures of benefit (STG Send, STS Send, STG Receive
andSTS Receive). Depending on which nodes are monitored, we provide three differ-
ent types of graphs, those based on counts of messages sent (or received) (i) by nodes at
most one hop away from the gateway (left), (ii) by nodes at most two hops away from
the gateway (middle) and (iii) by all nodes in the network (right). The figure position
and caption indicate whether global or local communicationsavings are considered.

The default simulation settings are as follows: We deploy 100 nodes uniformly at
random in a 300m×300m network area. The radio communication range is set to 60m.
The default query workload consists of five rectangular queries with randomly chosen
dimensions (x, y ∈ [30, 300]). In our experiments below we vary the values of one
parameter at a time, keeping the default values for the remaining parameters. Each point
in a plot is drawn by averaging 40 repetitions in which we varythe query workload and
network topologies within the scope of the experiment.

In the experiments below, the cost of the network configuration phase is very similar
for the three algorithms, with NoOptimization sending 4%-10% less messages than
STG and STS. This overhead is paid infrequently, and is counterbalanced by the benefits
offered by STG and STS during the frequent result propagation phase.
Vary number of queries: The first experiment illustrates the effect of the number of
rectangular queries (sent together to the network for evaluation) on the communication
benefits of STG and STS compared to NoOptimization. Figures 6, 7 and 8 concern traf-
fic monitored within 1-hop, 2-hops, and max-hops (entire network) respectively. Notice
that the two proposed algorithms perform similarly in the context of the entire network
(Figure 8) obtaining a relative benefit of up to 20% compared to theNoOptimization
algorithm. However, STS outperforms STG if we take into account only the traffic near
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the gateway (Figures 6 and 7). Notice in Figure 6 how STS savesup to 60% receive
messages compared toNoOptimizationwhen the number of queries is 1, and the gap
between the benefits of STS and the benefits of STG increases aswe increase the num-
ber of queries. The performance of STG for 10 queries falls considerably whereas STS
continues to have a 42% advantage (for receive messages) anda 20% advantage (for
send messages) overNoOptimization(Figure 6).
Vary number of nodes:Another experiment was done to measure the effect of the node
cardinality in the performance of the proposed heuristic algorithms. Figures 9, 10 and 11
clearly show that as the number of nodes increases, and the network density increases,
STG and STS demonstrate greater benefits compared to NoOptimization. Intuitively,
when the number of nodes is very small (less than 60) the number of disjoing paths
from a node to the gateway becomes small, leaving no flexibility for further reducing
the communication cost. As the number of nodes increases, NoOptimization routes data
through a large number of disjoint paths, whereas STG and STSmanage to aggregate
results earlier by selecting suitable common paths.
Vary communication range: The next step is to monitor the role of the radio com-
munication range in the performance of the three algorithms(Figures 12, 13 and 14).
The increase in network connectivity (without increasing the number of nodes) initially
increases the benefits of STS and STG compared to NoOptimization. Figure 12 shows
that, for a communication range of 100m to 120m, nodes withinone hop from the
gateway receive up to 80% less messages with STS than with NoOptimization. STG
outperforms NoOptimization, but it is inferior to STS.
Vary number of network holes: We also measured the ability of STG and STS to
cope with network holes,i.e. areas completely void of sensors. Figures 15, 16 and 17



show that the number of holes (rectangles of dimension in therange[40, 80]) have a
minor effect in the benefits of STS and STG over the NoOptimization algorithm. In the
case of no holes, 48% less messages are received by the immediate 1-hop neighbors
of the gateway (from the 2-hop nodes) in STS compared to NoOptimization, and this
benefit decreases to 35% for 10 holes. The effect of holes is almost the same as the
effect of decrease of nodes from 100 to 80 in Figure 9. Holes donot cause the proposed
algorithms performance to deteriorate dramatically in unexpected ways.

6 Related work

There has also been a plethora of work on energy-aware routing [3,13,16] but with-
out considering the interplay of routing and query processing. The TinyDB [8,9] and
Cougar [14,15] projects investigate tree-based routing and scheduling techniques for
processing aggregate queries likeavg, count, sum, min andmax in sensor networks.
The concept of semantic routing trees (SRTs) [9] is used to forward queries only to
children that satisfy the query predicate. Zhao et al. [17] compute aggregate summaries
over a reliable tree, utilizing a tree construction scheme based on high-quality links,
similar to the one used in this work. More sophisticated aggregates are supported in [5],
and the benefits of in-network aggregation are discussed in [1]. Directed diffusion [6]
is a data-centric protocol that deals with continuous aggregate queries; the network is
flooded with an interest for named data and the sources that contain the relevant data
respond with the appropriate stream. Madden et al. considerthe problem of managing
multiple queries in [7], but without focusing on the routingaspect; they propose query
plan data structures (Fjords) that handle both push-based and pull-based extraction of
sensor data. Trigoni et al. [11,12] propose energy-efficient plans for optimizing multi-
ple algebraic aggregate queries in a sensor network. The aforementioned efforts rely on
tree-based aggregation and do not exploit the knowledge of the query workload to set
up efficient routes for result propagation. The study of decentralized operator placement
by Bonfils et al. is closer to our work since the idea is to placeoperators carefully in
the network to minimize the communication cost. Their work considers optimizing a
single query, and is more relevant to holistic aggregates, such as correlation or median,
and materialized aggregates, such as storage points. Sharaf et al. propose a query-aware
treeselection scheme, but for processing a different class of (GROUP-BY) queries [10].
We extend previous work on data aggregation in that we departfrom the model of tree-
based routing, and consider the interaction of processing and routing in reducing the
volume of propagated data.

7 Conclusions and Future Work

This paper shows the interplay of routing and processing in evaluating aggregate queries
in sensor networks, and proposes two novel algorithms that significantly outperform
the existing approach. STG exploits the new concept of segment-based aggregation,
and offers up to 60% energy savings compared to NoOptimization. STS, which avoids
sending query sub-aggregates through disjoint paths, offers even higher savings (up
to 80%). It consistently behaves better than STG, especially in the presence of many



queries. The greatest savings of STG and STS are observed in the critical area around
the gateway, which means that these savings directly reflectan increase in the network
lifetime. In the future, we plan to study the effect of local route repairs on the cost of
STS, as well as extensions of the algorithm to handle approximate aggregates. Another
exciting direction is to explore multi-query optimizationtechniques for non-summary
aggregates (e.g. median) and for queries without well-defined spatial coverage.
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