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Abstract. This paper presents a novel approach to processing consraggre-
gate queries in sensor networks, which lifts the assumpaifanee-based rout-
ing. Given a query workload and a special-purpose gatewdg mthere results
are expected, the query optimizer exploits query corm@batiin order to gen-
erate an energy-efficient distributed evaluation plan. fiteposed optimization
algorithms identify common query sub-aggregates, andga®gommon rout-
ing structures to share the sub-aggregates at an early Mageover, they avoid
routing sub-aggregates of the same query through longidigaths, thus further
reducing the communication cost of result propagation.ffeposed algorithms
are fully-distributed, and are shown to offer significantntounication savings
compared to existing tree-based approaches. A thorougdriengntal evaluation
shows the benefits of the proposed techniques for a variequerdy workloads
and network topologies.

1 Introduction

A typical way of extracting information from a sensor netwisrto disseminate declara-
tive aggregate queries from a gateway node to sensor nadké@sgahem to periodically
monitor the environment, and return aggregate resultgjnlae rounds. An example of
such long-running queries fselect avg(temperature) from Sensors where loc in Re-
gion every 10 min? Since nodes are battery-powered, energy preservatiomisj@
consideration in system design, as it directly impacts ifietime of the network. Re-
cent studies have shown that radio communication is sigmifig more expensive than
computation or sensing in most existing sensor node plagoHence, the main con-
sideration in designing query processing algorithms is ittimize the communication
overhead of forwarding query results from the sources tgéteway node. The cost of
disseminating query information into the network is asstiteehave a secondary role
for long-running queries, since query dissemination cgomce, whereas result propa-
gation occurs repeatedly at regular rounds. Moreover, masmjitoring scenarios apply
a pure push model, in which nodes are programmed to profctigad specific infor-
mation to the gateway. The communication cost of result @agagion thus dominates
the communication cost of query dissemination.

Tree-based routing has been proposed as an energy-efficemttanism for pro-
cessing aggregate queries in sensor netwaiks [6,8]. Tresroction is performed us-
ing simple flooding algorithm$[8], data-centric reinfoment strategies [6] or energy-
aware route selection schemesl[13,16]. After a tree is naeted, sensor nodes forward
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Fig. 1. Example with one query.

their readings along the paths of the tree, evaluatingglartiery results at intermedi-
ate nodes. The aforementioned research focused on progeasgngle aggregate query
given a routing tregthe tree is generated using a tree selection scheme aratéafter
used for result propagation. More recent research has édooisoptimizing multiple
aggregate queries given a routing tr¢€?]. Query commonalities are taken into ac-
count to reduce the communication cost of result propagaltiot without making any
attempt to select suitable tree routes [12].

Unlike previous approaches, this paper considers the nesrergl problem of multi-
query optimization lifting the assumption of an existingyegpation tree. The objective
is to find efficient routes that minimize the communicatiostoaf executing multiple
aggregate queries, by studying the interplay between theegsing and routing aspects
of query evaluation. In summary, the contributions of thaper are as follows:

— A demonstration of the interplay between the processingranting aspects of
single- and multi-query optimization (Sectibh 2).

— A formal definition of the multi-query optimization problefor aggregate queries
(SectiorB), which lifts the assumption of a communicatiee tused in[6]8,1.2].

— Two novel heuristic algorithms, SegmentToGateway (STGQ) SagmentToSeg-
ment (STS), for optimizing multiple aggregate queries (®add), by carefully
interweaving routing and processing decisions at each.node

— Experimental results that compare the performance of thegsed algorithms with
the most efficient existing algorithm for multi-query optiration [12] (Sectiolb).

2 lllustrative examples

The potential advantages of carefully selecting a routimg) @rocessing plan for exe-
cuting aggregate queries are shown in the following examligurdl shows an ex-
ample of processing a single aggregate query, which askBdaum of all readings in
the dotted rectangular area. Notice that a total number ohé&sages are sent along
the left minimum-hop tree of Figuid 1, whereas only 6 message forwarded along
the carefully selected right tree of the same figure. Thet righting tree is better not
only in terms of total communication cost, but also in terrhs@mmunication cost in
the critical area around the gateway. Informally, the beéméfihe second plan is that
it aggregates all readings of a query early and avoids sgrdifferent subaggregates
through disjoint paths.
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Fig. 2. Example with two queries: (i) the left plan is based on a ranlgselected tree,
(i) the middle plan is the output of STG, and (iii) the righ&p is the output of STS.

Figurel2 illustrates the benefits of building a suitable exien plan in the case of
processing multipleountqueries. For ease of understanding the graphs also include
node IDs and messages forwarded through network links. &gesshave the format
v(q1,-..,qn), Which denotes that value contributes to querieg,, ..., ¢,. The left
plan does not exploit query commonalities, and therefoite fa aggregate together
readings (of nodes 8 and 9) within the intersection areaniidéle plan incurs smaller
communication cost, because it exploits query commoealitbut still forwards the
subaggregate of the intersection area separately all tyetavithe gateway. This be-
havior is similar to the first heuristic proposed in this pagedled SegmentToGateway
(STG). The right plan has an optimal behavior because itoitgptjuery commonali-
ties and it avoids sending partial aggregates through lisjgidt paths. Notice that the
optimal plan does not follow a tree structure, as node 8 sthalpartial aggregate of
the intersection area to two parents. The intersectiongbaggregate is thus merged
immediately with the other two query subaggregates andteadly, only two partial
results are sent to the gateway. This would be the plan iikxhby the second proposed
algorithm, called SegmentToSegment (STS). Although tlaergtes above use a grid
topology, both STG and STS are designed to work well for ramdopologies with
potential empty areas (or holes).

3 Problem definition

Sensors and queriesConsider a set of sensor nodgs= {s1,...,s,} with known
location coordinates. Two nodes capable of bi-directiovie¢éless communication are
referred to aseighbors Every node knows its location, as well as the identifiers and
locations of its neighbors. We consider a commonly usedlasbof aggregate queries,
which we refer to as spatial range queries (SRQs). SRQsateallie aggregateygr

of all sensors in a rectangular area, wheger is a distributive or algebraic aggregate
function (e.g. sum, count, avg, max, nbnt notmediar) [8/4]. A query is denoted by
a tuple(aggr, xo, Yo, Tdaim, Yaim ), Wherezg andy, are bottom left coordinates of the
rectangular area andy;,,, andyy;,, are the area’s andy dimensions respectively. Let
Q =|q,---,qm] be the vector of SRQ queries gathered for execution at trengat
G € S. Queries that evaluate the same aggregate function oVeretit regions are
grouped together for periodic evaluation for a large nunolbesunds. Each node knows
the identifiers ¢;) and descriptions of queries thaiveritself and its neighbors.



Computation and communication: Nodes receive input values from their neighbors
and the local sensors, and generate output values at a ib&glkgst. One-hop data
propagation is represented as a directed edge, labeledhgithair(value, semantics)
where thesemanticglenotes how thgaluecontributes to each one of the queries. For
uniformity, the generation of a reading locally at a noddss aepresented as a directed
edge with a dangling starting point. Such edges are caligdl directed edges

Let u; be the sensor reading generated locally at a ngd&he semantics of;;
consists of the set of queries that access the particulas, rmodl is represented as a bit
vector of sizem (equal to the number of queries). Theh entry of the vector is 1 if
querygq; accesses nodg, and is 0 otherwise. Vectors that determine the contributio
of a value to the queries are referred tocagfficientvectors (CVs). For example, in
Figurel3, the initial directed edge of noslg which holds information about the locally
generated reading, is labeléd [110]) to denote that the local sensor value 1 contributes
to the querieg; andg,, and does not contribute to the valuegef

As the initial (value,CV) pairs are pushed towards the gajgthey can be partially
processed at intermediate nodes. Leinnot = [(v1,CV4,), ..., (v, CV4, )] be the
labels of the input edges aeit Annot = [(vy,CV,;),..., (v, CV,;)] be the labels
of the output edges of a sensor node. In any query plan, thertddsbe no loss of infor-
mation as data is routed through a node,the result of a query when evaluated based
on the input edges must be equal to its result based on thatedpes. Formally, each
node must satisfy theontent preservation propertie. for every queryj = 1,...,m,
aggri_, (vi x CVy,[j]) = aggri_, (vj * CV,.[4]). This property is satisfied in FiguEe 3.
Theorem 1If every node in the graph satisfies the content preservatioperty except
for the gateway, then the values of all queries in the worttlage given by the anno-
tated input edges of the gateway node. More specificallhefgateway hag input
edges labeled with the paifs,, CV,,),. .., (v, CV,, ), then the value of a quegy; is
Result(q;) = aggrk_, (v; * CV,,[§]). The proof is omitted for space reasons.
Optimization goal: Start with a graph that consists of all sensor nodes and oreetéid
dangling edge per node, carrying its source value. Minintie number of directed
edges that we need to add in the graph (excluding the iniaialgling edges) such that
the content preservation property is satisfied at each node.

4 Algorithms

We now study the existing approach for processing aggregegges, and propose two
novel energy-efficient algorithms to improve its perforroanAll three algorithms con-
sist of two phases: (i) a network configuration phase and figsult propagation phase.
The role of the former phase is to set up routes to preparerthend for the second
phase, i.e. the forwarding of results to the gateway in @gualunds.

4.1 TheNoOptimization algorithm

The existing state-of-the-art in optimizing multiple aggate queries is the ECReduced
algorithm proposed i [12]. It outperforms Tdg [8] and Coufdd] in the context of
multiple queries, since these approaches were originatygthed to process a single
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Fig. 3. NoOptimization: Node 2 linearly reduces the three inputy@aCV) pairs into
two output pairs

query, as shown ir [12]. ECReduced is therefore a good basisomparing the two
proposed algorithms. In this paper, it is hereafter retetoeasNoOptimizationto de-
note that it does not jointly optimize routing and procegdiaking into account the
query workload. NoOptimization uses a predefined tree, aryl @ptimizes the pro-
cessing aspect of query execution.

Network Configuration Phase: Control messages are first flooded into the network,
and every node selects as ffarentthe neighbor in the shortest path to the gateway
node. If there are more than one candidate parents, the edelEssits parent in one
of the following ways: (i) randomly, (ii) the first node fromhich it received a query
request, (i) the node with which it consistently maintabetter communication. In the
experimental evaluation of Secti@h BpOptimizationis implemented as i [12],e.
breaking ties by random parent selection. Dynamic nodenkiféiilures are handled by

a local flooding phase to repair affected tree routes, as iDVA(R].

Result Propagation PhaseThe routes of query results are predefined in the network
configuration phase, and the only decision that a node neadake in this phase is how
to convert its input (value,CV) pairs into output pairs. Alitput pairs, irrespective of
their content, are forwarded to the node&ent A naive application of the in-network
aggregation technique to processing multiple queries dvbelto forward one partial
aggregate value per query, and denote the query identiftaeinoefficient vector. The
NoOptimization algorithm uses a more elaborate techniqueduce the number of
propagated (value,CV) pairs. In the case of algebraic agdeefunctions, likesum
countor avg, a node running NoOptimization computes a basis of its igpefficient
vectors and sends to ifsrentthe basis vectors (and corresponding values) [12]. An
example of the effect of linear reduction is shown in FigdrevBere node 2 receives
three input (value,CV) pairs and reduces them to two outpiuspThe linear reduction
technique yields the optimal solution for these aggregatésrms of communication
cost. The NoOptimization algorithm, which is used as a blasisomparison, is to our
knowledge the most sophisticated existing approach togssicg multiple algebraic
aggregate queries.

4.2 TheSegmentToGateway (STG) algorithm

The first proposed heuristic algorithm exploits the fact tha intersecting query rect-
angles naturally divide the network into smaller segmekhtsgmens is a maximal set



event TOS_MsgPtr RcvBeacon.rcv(TOSMsgPtrm)

{
bool mustRebroadcastBeacon = FALSE; else {// not equal vectors
BeaconMsg * b = (BeaconMsg#)m — data; if ((SGDistance > hopCount)
addBeaconSenderToNeighbors(b); || (SGDistance == hopCount &&
if (b — hopCount + 1 < hopCount) { b — source == parent &&
mustRebroadcastBeacon = TRUE; b — source! = SGParent &&
hopCount = b — hopCount + 1; closer(myLoc, leaderLoc))){
parent = b — source; mustRebroadcastBeacon = TRUE;
SGParent = b — source;
if (equalVectors(SG,b — SG)) { SGDistance = hopCount;
if ((SGDistance > b — SGDistance) distToSGLeader = 0;
|| (SGDistance == b — SGDistance && leaderLoc = myLoc;

b — distToSGLeader + 1 < distToSGLeader) 11}
|| (SGDistance == b — SGDistance &&
strictlyCloser(b — leaderLoc, leaderLoc)){
mustRebroadcastBeacon = TRUE;
SGParent = b — source;
SGDistance = b — SGDistance;
distToSGLeader = b — distToSGLeader + 1;
leaderLoc = b — leaderLoc;

H}

Fig. 4.NesC code for the network configuration phase of STG (exaslin bold) and
STS (incl. lines in bold)

of nodes, s.tvs; € S,s; € S, s; ands; are covered by the same set of queries and they
areinternally connected.e. there exists path from; to s; consisting only of nodes in
S. For example, the queries in Figlile 5 form five segméntss, }, {s2}, {s3, s5, 6}
{s7} and{ss, s9}. A segmentS (or a noden in S) is represented by a bit vector that
denotes which queries cover the nodesSde.g, SGVectof{ ss, ss, s¢})=[010]). STG
performs aggregation of local sensor data by building a peresegment, instead of
building a tree per query, or a tree for all queries. The segrree is rooted at the
SGLeaderi.e. the node with the smallest hop count to the gateway. & to: (i)
the number of hops from the SGLeader to the gateway aS@Ristanceand (i) the
number of hops from a node to its SGLeader asdisToSGLeaderFor instance,
SGDistance{;)=2 and distToSGLeades{)=1.

Network Configuration Phase:This is similar to the corresponding phase of @Op-
timization algorithm, except that in this case each node identifies nit @ parent
neighbor but also a SGPareng(, a neighbor on a path to the SGLeader). Upon receiv-
ing a beacon message, a node updates the local list of negyabd, if necessary, the
hopCountvalue (as in NoOptimization). The next step depends on vanghie beacon
is sent from a node in the same or in a different segment. Ifctmeer case, the node
compares the local knowledge about B@Leademith that in the beacon. If the bea-
con knows of aSGLeadercloser to the gateway (with small&GDistancg the local
SGDistancevalue is updated and the sender node is selected to be th&BParentin
the latter case where a node receives a beacon from a nodéferard segment, it real-
izes that it is on the border of the segment and thus it istdégd become &GLeader

It elects itself to be &GLeadeif its hopCountis smaller than the loc&GDistance
The beacon message is updated accordingly and is rebroed¢Bgjurd ).
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Fig. 5. Value-semantic pairs in the evaluation plan of the sum gseri ¢> andgs

Result Propagation PhaseBy the end of the network configuration phase, every node
knows its parent an@GParentIn the result propagation phase, a node merges dupli-
cate input CVs into the same output CV, aggregating valuesrdingly. An output
(value,CV) pair is sent to th8GParentf and only if the CV is equal to the current
node’sSGVector The remaining output (value,CV) pairs are forwarded topheent
node (after they have been linearly reduced in the case ebedir aggregates). The
gateway'’s neighbors send all their messages without execegirectly to the gateway.
Discussion: STG identifies query commonalities (segments) and aggredhe val-
ues of all nodes within each segment separately followingiré-tree rooted at the
SGLeaderThe remaining values (whose CVs are not equal to@&/ectoy are for-
warded through thparentnode (instead of thE GParentand reach the gateway through
the shortest path. By definition, STG performs better tha@®ptanization.

4.3 TheSegmentToSegment (STS) algorithm

Although STG performs well in terms of merging readings ef$ame segment, it often
fails to merge sub-aggregates of the same query that comredifterent segments. In
the worst case, these sub-aggregates are propagated ed@®Gtteademodes to the
gateway through long disjoint paths. STS addresses thenesalof STG by sending
messages towards neighbors that are likelgthucethem.
Network Configuration Phase: The configuration phase &TSs similar to the corre-
sponding phase of STG except that each node selects as arggmarent a node on the
shortest (instead of on any) path to the SGLeader (FIdure 4).
Result Propagation Phaselnitially, each node converts input to output (value,CV)
pairs exactly as in NoOptimization and STG. It then inter&satwo novel steps: 1)
neighbor-message matchinghich selects a suitable neighbor to forward each output
pair, and 2message splittingvhich often splits the output pair before forwarding it.
Step 1: Neighbor-message matchiipe idea behind the first feature is to forward out-
put (value,CV) pairs towards nodes that are most likely tluoe them by merging them
with their local or route-thru data. The first (value,CV)pednsidered for matching is
the one that contributes to most queries (with the greatesbier of 1-bits in the CV).
The process of matching it with the best neighbor node islddtbelow:

Step 1.1:To ensure that messages are not forwarded away from the ayatenly
neighbors closer to the gateway than the current node arsd=myrd,i.e. with lexi-
cographically smallef{opCouniSGDistancgalistToSGLeadgxCoordyCoord. For in-



stance, node; considers sending messages{qFigurel®). As an exception, a node
also considers neighbors in the same segment that are et ¢tothe gateway, if (i)
they are closer to thefBGLeaderand (ii) all queries that cover these nodes are also
included in the message CV. For instangg,also considersg to forward its initial
data(1, [010]) to, becauseistToSGLead€s;)<distToSGLeadéss) and theSGVec-
tor(sg) = [010] marks queriegq:} that are all marked in the message {EN0].

Step 1.2Among neighbors selected in Step 1.1, consider only thesdiest match
the message CV,e. which are covered by the maximum number of common queries
with the message CV. If this number is 0 or the node is next ¢éogdteway, send the
message to itparent Nodess has two candidate neighboss,andsg, to send (1,[010])
(from Step 1.1). Th&sGVectorg011] and[010] of sz and s both have one common
query with the message C\Y0(0]). Among neighbors with equal number of common
queries, select the one with the minimum number of quesigs (

Step 1.3Among neighbors selected in Step 1.2, select the one witlexiegraph-
ically smaller SGDistance,distToSGLeader,xCoord,yCQoFer instancesg has two
candidate neighbors, ands; to send the output pair (2,[110]) to. Both haS8&Dis-
tanceequal to 2 andlistToSGLeadeequal to O (both nodes are segment leadersy; so
is selected because it has a small@oordinate.

Step 2: Message splittinghe rationale behind this step is that it is often benefical t
divide data into its components in order to give it greateeptal for later merging. Let
p be the pair considered for neighbor-message matching ioréwous step. The pair

is split into two pairg; andp,, based on th8GVectoof the selected neighbor. Assume
that nodess chooses to forwardp = (2, [110]) in Step 3. Notice that the CV gfhas
more queriesq; andgz) than the SGVector of the selected neight®&{ ector(s7) =
[100] denotes that; is covered only by ). In this casep is split into two pairs, one
contributing to the common querigs = (2,[100]), and another contributing to the
remaining queriep, = (2, [010]). Pairp; is sent to the selected neighbor ands re-
inserted into the list of output pairs. During insertionirpavith equal CVs are merged.
If the list of (value,CV) pairs is not empty, steps 1 and 2 aEeated.

Discussion: By means of careful message routing, merging and split8i@ ensures
that all query subaggregates are merged together beforéetine the query area, thus
offering significant benefits wrt STG and NoOptimization.

5 Experimental evaluation

A thorough experimental evaluation was performed to compiae proposed heuristic
algorithms with the existingloOptimizatiorapproach using a home-grown simulator.
The experimental results below show the performance oftttetalgorithms varying:
(i) the number of queries, (ii) the number of nodes, (iii) thdio communication range,
and (iv) the number of holes (unpopulated areas in the n&wbine graphs below illus-
trate the communication benefits of STG and STS compared @phimization. The
benefit of STG ig(cost(NoOptimization) — cost(STG))/cost(NoOptimization)
and the benefit of STS is defined similarly. It remains to defioe the cost of an algo-
rithm is calculated. In each graph two costs per algorithercansidered, the number of
messages sent and the number of messages received duthgregagation, thus re-
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sulting in four different measures of beneftl{G_Send, ST S_Send, STG_Receive
andSTS_Receive). Depending on which nodes are monitored, we provide thiféerd
ent types of graphs, those based on counts of messagess@utigjwed) (i) by nodes at
most one hop away from the gateway (left), (i) by nodes attrivas hops away from
the gateway (middle) and (iii) by all nodes in the networkl(t). The figure position
and caption indicate whether global or local communicasi@vings are considered.

The default simulation settings are as follows: We deplo§ @bdes uniformly at
random in a 300m 300m network area. The radio communication range is setrm 60
The default query workload consists of five rectangular gsewnith randomly chosen
dimensions £,y € [30,300]). In our experiments below we vary the values of one
parameter at a time, keeping the default values for the mntaparameters. Each point
in a plot is drawn by averaging 40 repetitions in which we vilwg/ query workload and
network topologies within the scope of the experiment.

In the experiments below, the cost of the network configargthase is very similar
for the three algorithms, with NoOptimization sending 4994 less messages than
STG and STS. This overhead is paid infrequently, and is @batanced by the benefits
offered by STG and STS during the frequent result propaggtiase.

Vary number of queries: The first experiment illustrates the effect of the number of
rectangular queries (sent together to the network for eNiin) on the communication
benefits of STG and STS compared to NoOptimization. FiJui@ds6d® concern traf-
fic monitored within 1-hop, 2-hops, and max-hops (entirevoek) respectively. Notice
that the two proposed algorithms perform similarly in thatext of the entire network
(Figurel®) obtaining a relative benefit of up to 20% comparethe NoOptimization
algorithm. However, STS outperforms STG if we take into art@nly the traffic near
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the gateway (Figurdd 6 aldl 7). Notice in Figllke 6 how STS sapes 60% receive
messages compared mOptimizatiorwhen the number of queries is 1, and the gap
between the benefits of STS and the benefits of STG increasesiasrease the num-
ber of queries. The performance of STG for 10 queries falfsicterably whereas STS
continues to have a 42% advantage (for receive messages) 20 advantage (for
send messages) oMdpOptimizationFigure®).

Vary number of nodes: Another experiment was done to measure the effect of the node
cardinality in the performance of the proposed heuristioathms. FigureEl€,10 afdl11
clearly show that as the number of nodes increases, and tivenkedensity increases,
STG and STS demonstrate greater benefits compared to No@ggion. Intuitively,
when the number of nodes is very small (less than 60) the nuofbdisjoing paths
from a node to the gateway becomes small, leaving no fletilidr further reducing
the communication cost. As the number of nodes increase3phimization routes data
through a large number of disjoint paths, whereas STG andr&ditage to aggregate
results earlier by selecting suitable common paths.

Vary communication range: The next step is to monitor the role of the radio com-
munication range in the performance of the three algorittfiguredTP[II3 and14).
The increase in network connectivity (without increasimg tumber of nodes) initially
increases the benefits of STS and STG compared to NoOptiomz&igure[IP shows
that, for a communication range of 100m to 120m, nodes witltia hop from the
gateway receive up to 80% less messages with STS than witlptioation. STG
outperforms NoOptimization, but it is inferior to STS.

Vary number of network holes: We also measured the ability of STG and STS to
cope with network holes,e. areas completely void of sensors. Figures[Th, 16[ahd 17



show that the number of holes (rectangles of dimension irrdhge[40, 80]) have a
minor effect in the benefits of STS and STG over the NoOptitiomealgorithm. In the
case of no holes, 48% less messages are received by the iatemé&eiop neighbors
of the gateway (from the 2-hop nodes) in STS compared to No@ygztion, and this
benefit decreases to 35% for 10 holes. The effect of holesrissilthe same as the
effect of decrease of nodes from 100 to 80 in Fidure 9. Holesadcause the proposed
algorithms performance to deteriorate dramatically inqpeeted ways.

6 Related work

There has also been a plethora of work on energy-aware p[BIA3.16] but with-
out considering the interplay of routing and query progessihe TinyDB [&.9] and
Cougar [1%.15] projects investigate tree-based routirgysineduling techniques for
processing aggregate queries lieg, count sum min and maxin sensor networks.
The concept of semantic routing trees (SRT$) [9] is used tedod queries only to
children that satisfy the query predicate. Zhao efal. [brhpute aggregate summaries
over a reliable tree, utilizing a tree construction schemseld on high-quality links,
similar to the one used in this work. More sophisticated aggtes are supported [n [5],
and the benefits of in-network aggregation are discusset].ibjrected diffusion([5]
is a data-centric protocol that deals with continuous aggfeequeries; the network is
flooded with an interest for named data and the sources timiocthe relevant data
respond with the appropriate stream. Madden et al. consiégoroblem of managing
multiple queries inlll7], but without focusing on the routiagpect; they propose query
plan data structures (Fjords) that handle both push-basgguall-based extraction of
sensor data. Trigoni et al._[[L1]12] propose energy-effiqgians for optimizing multi-
ple algebraic aggregate queries in a sensor network. Theraémtioned efforts rely on
tree-based aggregation and do not exploit the knowledgleeofitiery workload to set
up efficient routes for result propagation. The study of déedized operator placement
by Bonfils et al. is closer to our work since the idea is to plaperators carefully in
the network to minimize the communication cost. Their wookgiders optimizing a
single query, and is more relevant to holistic aggregates) as correlation or median,
and materialized aggregates, such as storage pointsf8hatgpropose a query-aware
treeselection scheme, but for processing a different class REXGP-BY) queries [10].
We extend previous work on data aggregation in that we démentthe model of tree-
based routing, and consider the interaction of procesgigrauting in reducing the
volume of propagated data.

7 Conclusions and Future Work

This paper shows the interplay of routing and processingafuating aggregate queries
in sensor networks, and proposes two novel algorithms fatficantly outperform
the existing approach. STG exploits the new concept of sagiesed aggregation,
and offers up to 60% energy savings compared to NoOptiniza8TS, which avoids
sending query sub-aggregates through disjoint pathstsoffeen higher savings (up
to 80%). It consistently behaves better than STG, espgdialhe presence of many



queries. The greatest savings of STG and STS are observied amitical area around

the gateway, which means that these savings directly reftericrease in the network
lifetime. In the future, we plan to study the effect of localte repairs on the cost of
STS, as well as extensions of the algorithm to handle apprate aggregates. Another
exciting direction is to explore multi-query optimizatitechniques for non-summary
aggregatess(g. mediahand for queries without well-defined spatial coverage.
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