
Modular Visitor Components

A Practical Solution to the Expression Families Problem

Bruno C. d. S. Oliveira

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

bruno@comlab.ox.ac.uk

Abstract. The expression families problem can be defined as the prob-
lem of achieving reusability and composability across the components
involved in a family of related datatypes and corresponding operations
over those datatypes. Like the traditional expression problem, adding new
components (either variants or operations) should be possible while pre-
serving modular and static type-safety. Moreover, different combinations
of components should have different type identities and the subtyping
relationships between components should be preserved. By generalizing
previous work exploring the connection between type-theoretic encod-
ings of datatypes and visitors, we propose two solutions for this problem
in Scala using modular visitor components. These components can be
grouped into features that can be easily composed in a feature-oriented

programming style to obtain customized datatypes and operations.

1 Introduction

Component-oriented programming (COP) [1], a programming style in which soft-
ware is assembled from independent components has, for a long time, been ad-
vocated as a solution to the so-called software crisis [2]. However, the truth is
that to date the COP vision has not been fully realised, largely due to limi-
tations of current programming languages. A particular problem is that most
languages have a bias towards one kind of decomposition of software systems,
which imposes a corresponding bias on the kinds of extensibility available [3, 4]:
in same languages adding new datatype variants is easy, while in others adding
new operations is easy. Providing software systems that support both kinds of
extensibility at the same time has proved itself quite elusive to achieve in existing
languages and leads to what Wadler calls the expression problem [5].

In this paper we will look at a variation of the expression problem (EP)
that we call the expression families problem (EFP). The EFP can be defined
as the problem of achieving reusability and composability across the components
involved in a family of related expression datatypes and corresponding operations
over those datatypes. Like with the traditional EP, adding new components
(either variants or operations) should be possible while preserving modular and

static type-safety (that is, no modification or duplication and no re-compilation
and re-typechecking of existing code should be needed). Furthermore, it should



2 Bruno C. d. S. Oliveira

also be possible to combine independently developed extensions [6]. Additionally,
a solution to the EFP should: allow different combinations of components to
have different type identities ; preserve the subtyping relationships between the
different components (whether in the same family or a different one); and provide

a high degree of composability and decoupling of components.
By generalizing previous work [7, 8] exploring the connection between type-

theoretic encodings of datatypes [9, 10] and the Visitor pattern [11], we propose
two solutions for this problem in Scala1 using modular visitor components. These
components can be grouped into features that can be easily composed in a
feature-oriented programming style. The solutions presented in this paper do
not require any extensions to Scala and rely only on features that, although
not yet widely available in mainstream OO languages, have been shown to be
independently useful in the past. In particular, we make use of the following
features: higher-order type parameters [12, 13], traits and mixin composition [14,
15], self-types [16] and variance annotations [17]. Of these, self-types are only
required by one of the solutions and could potentially be completely eliminated
using a technique devised by Torgersen [18]. The other three features are needed
to address all the requirements of the EFP. However we should remark that
variance annotations are only required to ensure that the subtyping relations
between different datatypes are preserved, but otherwise they would not be
necessary (in particular, they would not be needed to solve the traditional EP).

In Section 2 we motivate and formulate the expression families problem. The
technical contributions follow:

– Section 3 shows how to adapt type-theoretic encodings of datatypes to sup-
port extensibility of variants as well as extensibility of operations.

– Section 4 shows a simple solution for the EFP inspired by Church encodings
of datatypes. It is also shown how the subtyping relations between compo-
nents of different families can be helpful for scalability and reuse.

– Section 5 shows another solution for the EFP inspired by Parigot encodings
of datatypes. This solution is more expressive than the one in Section 4, but
it is also slightly more complex to use.

– Section 6 shows how we can group the modular visitor components into fea-
tures that can be easily combined by clients to obtain customized datatypes
and operations.

A comparison between our work and solutions to the expression problem is
presented in the Section 7. Conclusions are presented in Section 8.

2 The Expression Families Problem

In the expression families problem we are interested in modularizing and reusing
the common parts of a family of expression datatypes and corresponding family
of operations. For example, in some context, we may have a system composed of

1 Source code available at: http://web.comlab.ox.ac.uk/people/Bruno.Oliveira/EFP.tgz



Modular Visitor Components 3

a datatype of expressions Exp
1

that supports numeric, addition and subtraction
variants together with a corresponding evaluation function:

data Exp
1

= Num1 Int | Add1 Exp
1

Exp
1
| Minus1 Exp

1
Exp

1

eval1 :: Exp
1
→ Int

eval1 (Num1 x ) = x

eval1 (Add1 e1 e2 ) = eval1 e1 + eval1 e2

eval1 (Minus1 e1 e2 ) = eval1 e1 − eval1 e2

In a different context we may have a system composed of a datatype Exp
2

that also supports negation and provides both an evaluation operation and an
operation that narrows Exp

2
expressions into Exp

1
expressions:

data Exp
2

= Num2 Int | Add2 Exp
2

Exp
2
| Minus2 Exp

2
Exp

2
| Neg

2
Exp

2

eval2 :: Exp
2
→ Int

eval2 (Num2 x ) = x

eval2 (Add2 e1 e2 ) = eval2 e1 + eval2 e2

eval2 (Minus2 e1 e2 ) = eval2 e1 − eval2 e2

eval2 (Neg
2

e) = − (eval2 e)

narrow21 :: Exp
2
→ Exp

1

narrow21 (Num2 x ) = Num1 x

narrow21 (Add2 e1 e2 ) = Add1 (narrow21 e1 ) (narrow21 e2 )
narrow21 (Minus2 e1 e2 ) = Minus1 (narrow21 e1 ) (narrow21 e2 )
narrow21 (Neg

2
e) = Minus1 (Num1 0) (narrow21 e)

The two systems are clearly related and share a lot of code, but there is not
any reuse of code (in a software engineering sense) between them. In current
programming languages, achieving reusability between these two systems is not
easy because datatypes and operations are evolving at the same time. This is,
after all, the EP — we suggest [6] for a good introduction to the original EP
for readers unfamiliar with it. However, there is something more about this
example that is not normally emphasized in the context of the EP. The narrow21

operation takes a value of Exp
2

and converts it to a value of Exp
1
. Among other

things, it is statically known that the result of narrow21 will not contain any
negation variant. Solutions for the EP are only required to allow extensibility, but
there is no explicit requirement about the interaction between distinct types of
expressions. In particular, this allows for solutions where there is only a single,
global expression datatype [19–21]. However, with these approaches it is not
possible to accurately express the type of narrow21. Consequently these solutions
fail to solve the EFP because they do not meet the following requirement:

Different kinds of expressions should have different type identities.

Another aspect about this example that is not normally emphasized in the
context of the EP — although both Wadler [5] and Zenger and Odersky [20]
do mention it — is that there are interesting subtyping relationships between
some of the components in different families. In particular Exp

1
<: Exp

2
and

eval2 <: eval1. More generally, the extension of a datatype becomes a supertype

of the original datatype; while the extension of an operation becomes a subtype



4 Bruno C. d. S. Oliveira

of the original operation [22]. These relations are important for legacy and per-
formance reasons since it means that, for example, a value of type Exp

1
can be

automatically and safely coerced (at no run-time cost) into a value of type Exp
2
,

allowing some interoperability between new functionality and legacy code. This
leads us to the following requirement for the EFP:

Subtyping relationships between components should be preserved.

In our example we can identify a number of different features: on the one
hand we have the set of operations {eval ,narrow } and, on the other hand,
we have set of variants {Num,Add ,Neg,Minus }. The two systems above are
just two possible combinations of those features, but there are many other valid
possibilities. Ideally, we would like to allow any possible combination of features,
since in general it is not possible to know which of these features are relevant
to the different clients. We expect the EFP to be particularly relevant in the
context of component-based frameworks and software product-lines. In fact, the
EFP is closely related to the expression product lines of Herrejon et al. [23].
Therefore, the final requirement for the EFP is that:

A solution should allow a high degree of composability and decoupling of

components so that no valid combinations of features are ruled out.

3 Extensible Encodings of Datatypes

In this section, we discuss the relationship between visitors and encodings of
datatypes, and show how to make these encodings extensible. This will provide
the foundations for the two Scala solutions presented in Sections 4 and 5.

3.1 Encodings of Datatypes and the Visitor Pattern

The Visitor design pattern [11] shows how to separate the structure of an
object hierarchy from the behaviour of traversals over that hierarchy; it can be
used in object-oriented languages to provide a functional decomposition style.
Buchlovsky and Thielecke [7] formalized the relation between two variants of the
Visitor pattern and encodings of datatypes in a minor variant of System Fω

with products. They observed that external visitors (visitors where the traversal
of the object structure is explicitly controlled by the programmer) are related
to Parigot encodings of datatypes [10], while internal visitors (visitors where
the traversal is automatically performed by the object structure) are related
to Church encodings of datatypes [9]. The basic idea behind the relationship
between visitors and encodings of datatypes is briefly illustrated next (the reader
wishing to know more details may look at [7, 8]):

Expr ≡ ∀X .

ExprV isitor
︷ ︸︸ ︷

(Int ⇒ X )
︸ ︷︷ ︸

num

⇒ (X ⇒ X ⇒ X )
︸ ︷︷ ︸

add

⇒ X



Modular Visitor Components 5

ExprVisitor X ≡ {num ∈ Int ⇒ X , add ∈ X ⇒ X ⇒ X }

Expr ≡ {accept ∈ ∀X . ExprVisitor X ⇒ X }

Num ∈ Int ⇒ Expr

Num x ≡ {accept v ≡ v .num x }

Add ∈ Expr ⇒ Expr ⇒ Expr

Add e1 e2 ≡ {accept v ≡ v .add (e1 .accept v) (e2 .accept v)}

Fig. 1. Church encoding for numeric expressions using records.

ExprVisitor X ≡ {num ∈ Int ⇒ X , add ∈ Expr ⇒ Expr ⇒ X }

Expr ≡ {accept ∈ ∀X . ExprVisitor X ⇒ X }

Num ∈ Int ⇒ Expr

Num x ≡ {accept v ≡ v .num x }

Add ∈ Expr ⇒ Expr ⇒ Expr

Add e1 e2 ≡ {accept v ≡ v .add e1 e2 }

Fig. 2. Parigot encoding for numeric expressions using records.

This example is based on the type of a Church encoding for a simple datatype of
expressions. What the reader should note is that the two functional arguments
num and add can be seen as, what in the Visitor pattern are called, the visit

methods for the type Expr . In order to make the connection to OO languages
more clear we will assume, in what follows, a calculus much like the one pre-
sented by Buchlovsky and Thielecke, but also featuring subtyping [24] and using
records [25] instead of products.

In Figure 1, instead of defining Expr as a higher-order function type, we use
a record ExprVisitor to capture the visitor type and visit methods explicitly.
We also use a record for Expr and name the functional type as accept . The two
functions Num and Add are the two constructors (or concrete elements) for the
Expr datatype. This is essentially an instance of the Visitor pattern and can
be easily translated into any OO language with support for generics.

A very similar construction can be done using Parigot encodings instead
(but we need to additionally extend the calculus with both value and type level
recursion). We show the code for Parigot encodings in Figure 2. The essential dif-
ference to Church encodings is that, for constructors with recursive occurrences
of expressions such as Add , the expressions are not traversed by the constructor
but are instead passed to the add visit method, delegating the responsibility of
traversal to the client implementing the add operation.

Buchlovsky and Thielecke show that we can provide a shape generic ver-
sion of the encodings that can be instantiated with different visitor shapes, by
parametrizing over the visitor type — in this context “shape” essentially means



6 Bruno C. d. S. Oliveira

Expr V ≡ {accept ∈ ∀X .V X ⇒ X }

num X ≡ {num ∈ Int ⇒ X }
add X ≡ {add ∈ X ⇒ X ⇒ X }

ExprNum (V <: num) ≡ Expr V

ExprAdd (V <: add) ≡ Expr V

Num ∈ ∀(V <: num). Int ⇒ ExprNum V

Num x ≡ {accept v ≡ v .num x }

Add ∈ ∀(V <: add). Expr V ⇒ Expr V ⇒ ExprAdd V

Add e1 e2 ≡ {accept v ≡ v .add (e1 .accept v) (e2 .accept v)}

Fig. 3. Extensible Church encoding using record subtyping.

the set of visit methods in a visitor. We need two versions of the shape generic
encodings for internal and external visitors.

Internal V ≡ {accept ∈ ∀X .V X ⇒ X }

External V ≡ {accept ∈ ∀X .V (External V ) X ⇒ X }

In each case, V is a type constructor (that is, a type that is itself parametrized
by other types) and abstracts over the concrete visitor components. In the case
of Internal , the visitor only needs to be parametrized by the result type. For
External , the visitor also requires a second argument for abstracting over the
recursive occurrences of External . Although type constructors are native to cal-
culi of the System Fω family, they are not normally found in mainstream OO
languages with generics, since only first-order type parameters are allowed. So,
these generic versions of visitors cannot be encoded in those languages. How-
ever, Scala has recently been extended with support for type constructors [13]
and there have been proposals for supporting them in Java too [26].

3.2 Extensible Encodings of Datatypes using Record Subtyping

A major problem with the encodings of datatypes presented in Section 3.1 is
that they are not extensible: we cannot easily add new variants to a datatype.
With a standard encoding like the one presented in Figure 1, the datatype (or
composite) type needs to know in advance about all the variants because of the
fixed shape imposed by ExprVisitor . Interestingly, in the generic version of the
encodings, the visitor shape is abstracted and the composite types Internal and
External are not tied to any particular variants. Inspired by this observation, we
can define an expression type that does not commit to a particular shape:

Expr V ≡ {accept ∈ ∀X .V X ⇒ X }

(This is basically the same type as Internal). We could easily obtain the type for
expressions presented in Figure 1, by simply parametrizing Expr with ExprVisitor .
However, we want to be able to define the constructors for numeric and addition
expressions in a way that does not commit to a particular shape.



Modular Visitor Components 7

Clearly, we seek a solution that provides just enough information to define
the constructor, but no more. In fact, all we need to know is that, for the con-
structor that we are defining, the visitor provides a corresponding visit method.
This minimal shape information can be easily captured using standard record
subtyping bounds as we can see in Figure 3. The type Expr V is, as we have al-
ready discussed, just the type for expressions with a parametrized visitor shape.
The types num X and add X define two atomic visitor components that pro-
vide, respectively, num and add visit methods. Here, we use the convention that
these atomic visitor types have names spelled in exactly the same way than the
visit methods they contain. The idea is that when we see a bound like V <:num

we can read it as “the visitor V contains the visit method num”. The types
ExprNum V and ExprAdd V define refinements of Expr V that specify some
extra information about the shape. These types are used to provide construc-
tors with more accurate types; but we should note that they are orthogonal
to the extensibility problem and a slightly simpler extensible encoding can be
achieved by just using Expr V instead. Finally, the constructors Num and Add

are defined almost in the same way as with traditional Church encodings. The
only difference is that the types of our extensible encodings only assume minimal
shape information by using subtyping bounds to specify which visitor component
provides the respective visit method.

With this encoding the expression type is parametrized by a shape instead
of having a hard reference to a particular shape, which decouples the expression
type from the visitor. Furthermore, the constructors only need minimal shape
information, which allows them to be developed independently of other vari-
ants. This means that adding new variants and new functions is possible and,
consequently, achieves a solution to the expression problem. A very similar con-
struction can be done for Parigot encodings. We will now switch to Scala and
explore solutions to the expression (families) problem using both generic Church
encodings (in Section 4) and generic Parigot encodings (in Section 5).

4 Modular Internal Visitor Components

In this section we explore a solution to the expression families problem using
modular internal visitors, inspired by Church encodings of datatypes.

4.1 Modular Internal Visitors in Scala

In Figure 4 we show a translation of the code in Figure 3 into Scala. Apart from
fairly obvious idiomatic conversions (like, for example, encodings types as traits

and classes) the Scala code is surprisingly faithful to the original code in Fig-
ure 3. Even though there is a significant gap between a calculus like System F<:

ω

and Scala, the fact is that Scala supports the essential features that are required
by the encodings. In particular, the encoding requires type parametrization (or
parametric polymorphism) in both the first-order and higher-order forms, the



8 Bruno C. d. S. Oliveira

trait Expr [−V [ ] ] {
def accept [a ] (vis : V [a ]) : a

}

trait num [A ] {
def num (x : Int) : A

}

case class Num [−V [X ] <: num [X ] ] (x : Int) extends Expr [V ] {
def accept [a ] (vis : V [a ]) : a = vis .num (x )

}

trait add [A ] {
def add (e1 : A, e2 : A) : A

}

case class Add [−V [X ] <: add [X ] ] (e1 : Expr [V ], e2 : Expr [V ]) extends Expr [V ] {
def accept [a ] (vis : V [a ]) : a = vis .add (e1 .accept (vis), e2 .accept (vis))

}

Fig. 4. Extensible expressions in Scala.

latter of which has been recently added to Scala [13]. The most significant dif-
ference between the Scala version and the System F<:

ω version is the use of a
contravariance annotation (the “-” preceding V ) for the visitor type parameter.
This annotation is not strictly necessary, but without it this solution would not
preserve the following subtyping relationship

Expr [V ] <: Expr [U ] if U <: V
which is one of the requirements for a solution for the EFP. There are a few other
minor points that are worthwhile noting. Firstly, the Scala version combines the
definitions of the constructors with the refined types for those constructors.
For example, in the extensible Church encoding, we define a type ExprNum

which captures the more refined type for the result type of the constructor Num.
In Scala, a class declaration together with the extends clause captures these
two constructions. Secondly, in Scala type constructor declarations are provided
together with their corresponding arity and bounds. For example, V [X ] <:
num [X ] declares a type constructor variable V that has one type argument X

and is bounded by num [X ]. In the definition Expr [−V [ ] ], naming the type
constructor argument is not necessary, so we use the anonymous variable “ ”
to declare the existence of one type argument. Finally, we use a case class [27]
instead of a standard class for syntactical brevity when constructing new values
(since it allows us to avoid uses of new).

4.2 Adding New Operations

An operation that evaluates expressions can be defined, using a visitor, with the
following trait:



Modular Visitor Components 9

trait BaseEval extends num [Int ] with add [Int ] {
def num (x : Int) = x

def add (e1 : Int , e2 : Int) = e1 + e2

}

This trait extends the numeric and addition visitors, using mixin composi-
tion [14] of traits, and provides the definition for the corresponding visit methods.
Because we use an internal visitor, all the traversal code is handled in the con-
structors, so in the add visit method, the only thing that is left to be done is to
add the two results together.

We can write some simple testing code that demonstrates a possible way to
use BaseEval from a client perspective.

type numadd [A ] = num [A ] with add [A ]
type NumAdd = Expr [numadd ]

def exp : NumAdd =
Add [numadd ] (Num [numadd ] (3),Num [numadd ] (4))

def evalNumAdd (e : NumAdd) : Int = e.accept (new BaseEval () {})

val test1 : Int = evalNumAdd (exp)

For the sake of clarity and brevity, we define numadd and NumAdd type syn-
onyms, which correspond, respectively, to the visitor and composite types in-
stantiated with a more concrete shape. We create a basic test expression exp

that encodes the expression 3+4 and test it by calling the evalNumAdd on that
expression. There are a couple of inconveniences about this client code that we
should note. Firstly, we need to parametrize the constructors with the visitor
type, which makes the use of constructors significantly verbose (we would like to
write Add (Num (3),Num (4)) instead). Secondly, we are providing evalNumAdd

in the client code. It would be preferable to have a “generic” eval definition that
would be provided in the library code instead. We shall address these convenience
issues in Section 6.

4.3 Adding New Variants and Extending Existing Operations

Suppose that we want to add a new constructor that negates expressions. With
our approach, this is also very easy: all we need to do is to introduce the visitor
and corresponding constructor.

trait neg [A ] {
def neg (e : A) : A

}

case class Neg [−V [X ] <: neg [X ] ] (e : Expr [V ]) extends Expr [V ] {
def accept [a ] (vis : V [a ]) : a = vis .neg (e.accept (vis))

}

The trait neg is the visitor type and defines the neg visit method and the case
class Neg defines a constructor taking a single expression as argument.

We can provide a definition for eval independently of the definitions for num

and add



10 Bruno C. d. S. Oliveira

trait NegEval
1

extends neg [Int ] {
def neg (e : Int) = −e

}

and later mix it in with those definitions:
trait NumAddNegEval extends BaseEval with NegEval

1

Alternatively, we could directly extend BaseEval :
trait NegEval

2
extends BaseEval with neg [Int ] {

def neg (e : Int) = −e

}

4.4 Subtyping Between Components for Scalability and Reuse

Interestingly, while we may think that the trait NegEval
1

is more reusable than
NegEval

2
(since it has no references to BaseEval ) this is, in fact, not the case!

Indeed the two variants are equally reusable and there is no advantage of one
against the other in that respect. Because visitor extension usually follows the
standard subtyping relation (although there are some exceptions, as shown in
Section 4.5), a concrete visitor supporting num, add and neg can be passed when
a visitor just supporting num and add is expected. For example, we could have
alternatively defined evalNumAdd in the client code as:

def evalNumAdd (e : Expr [numadd ]) : Int = e.accept (new NegEval
2

() {})

The point here is that we do not need to carefully design visitor components
for operations like this one independently of each other, which is helpful for
scalability: we can pack many cases together (like in the trait BaseEval ) and
avoid code scattering and redundancy.

Another interesting point that is worthwhile noting is that, because of the
subtyping relationships between different types of expressions we can apply op-
erations defined over some type of expressions to expressions with strictly fewer
variants. For example,

def evalNumAddNeg (e : Expr [numaddneg ]) = e.accept (new NegEval
2

() {})

val test2 = evalNumAddNeg (exp)

the function evalNumAddNeg takes an expression that supports numeric, addi-
tion and negation variants, but exp (defined above) is a different type of ex-
pressions that supports numeric and addition variants only. However, because
Expr [numadd ] <: Expr [numaddneg ] we can pass exp to evalNumAddNeg.

4.5 Narrowing Operation

As we pointed out in Section 2 a solution to the EFP should allow the in-
cremental definition of a narrow operation, so that it can be reused by any pair
of expression types. With our solution we can achieve this by creating a visitor
component that is itself parametrized by the type of another visitor component
(which is the shape of the target expression type). We show the code for the



Modular Visitor Components 11

trait NumNarrow [V [X ] <: num [X ] ] extends num [Expr [V ] ] {
def num (x : Int) = Num [V ] (x )

}

trait AddNarrow [V [X ] <: add [X ] ] extends add [Expr [V ] ] {
def add (e1 : Expr [V ], e2 : Expr [V ]) = Add [V ] (e1 , e2 )

}

trait NegNarrow [V [X ] <: neg [X ] ] extends neg [Expr [V ] ] {
def neg (e : Expr [V ]) = Neg [V ] (e)

}

trait NMNarrow [V [X ] <: num [X ] with minus [X ] ] extends neg [Expr [V ] ] {
def neg (e : Expr [V ]) = Minus [V ] (Num [V ] (0), e)

}

Fig. 5. Components for the narrow operation.

narrow components in Figure 5. We expect that, for the most part, the major-
ity of the variants are shared between the two expression types involved in the
narrow operation and that the conversion between those variants will essentially
be a matter of decomposing the variant of the input expression, narrowing re-
cursively and rebuilding the same variant on the output expression. The visitors
NumNarrow , AddNarrow and NegArrow do exactly this. However, when the tar-
get type of the expression does not have the variant that we are interested in,
we need to convert the expression using some other variants. The NMNarrow

visitor shows how we could provide an alternative translation from an expres-
sion with negation into an expression without that variant, by using numeric
and subtraction variants (we assume the existence of the visitor minus and the
Minus variant here). Note that the following definition for neg

def neg (e : Expr [V ]) = Neg [V ] (e)

would be a static type error in the NMNarrow trait. By using mixin composition,
we are free to assemble a narrow operation in very flexible ways and there may
be multiple alternatives to pick from for the same case. For example, the object

object myNarrow extends NumNarrow [num ] with NMNarrow [numminus ]

provides a concrete narrow visitor that converts between expressions with Num

and Neg variants into expressions with Num and Minus variants. Unlike the
visitor for evaluation, with the narrow operation visitors we need to be careful
when grouping the different cases together since we can create dependencies on
variants because of the constraints imposed by the visitor type argument.

5 Modular External Visitor Components

In this section we explore a solution to the expression families problem using
modular external visitors, inspired by Parigot encodings of datatypes.



12 Bruno C. d. S. Oliveira

object Components {

//The base component for expression families

trait Expr [−V [− , ] ] {
def accept [a ] (vis : V [Expr [V ], a ]) : a

}

//The components for the Num variant

trait num [−R,A ] {
def num (x : Int) : A

}

case class Num [V [−R,A ] <: num [R,A ] ] (x : Int) extends Expr [V ] {
def accept [a ] (vis : V [Expr [V ], a ]) : a = vis .num (x )

}

//The components for the Add variant

trait add [−R,A ] {
def add (e1 : R, e2 : R) : A

}

case class Add [V [−R,A ] <: add [R,A ] ] (e1 : Expr [V ], e2 : Expr [V ])
extends Expr [V ] {

def accept [a ] (vis : V [Expr [V ], a ]) : a = vis .add (e1 , e2 )
}

//The components for the Neg variant

trait neg [−R,A ] {
def neg (e : R) : A

}

case class Neg [−V [−R,A ] <: neg [R,A ] ] (e : Expr [V ]) extends Expr [V ] {
def accept [a ] (vis : V [Expr [V ], a ]) : a = vis .neg (e)

}

//An evaluation component

trait EvalVisitor [V [−R,A ] ] extends

num [Expr [V ], Int ] with add [Expr [V ], Int ] with neg [Expr [V ], Int ] {
self : V [Expr [V ], Int ] ⇒

def num (x : Int) = x

def add (e1 : Expr [V ], e2 : Expr [V ]) = e1 .accept (this) + e2 .accept (this)
def neg (e : Expr [V ]) = −e.accept (this)

}

//Some components for the narrow operation

trait NumNarrow [V1 [− , ],V2 [−R,X ] <: num [R,X ] ]
extends num [Expr [V1 ],Expr [V2 ] ] {

def num (x : Int) = Num [V2 ] (x )
}

trait AddNarrow [V1 [− , ],V2 [−R,X ] <: add [R,X ] ]
extends add [Expr [V1 ],Expr [V2 ] ] {self : V1 [Expr [V1 ],Expr [V2 ] ] ⇒

def add (e1 : Expr [V1 ], e2 : Expr [V1 ]) =
Add [V2 ] (e1 .accept (this), e2 .accept (this))

}
}

Fig. 6. The library code for expression components.



Modular Visitor Components 13

5.1 Modular External Visitors in Scala

In Figure 6 we show the Scala code necessary to implement a small library of
expression components using modular external visitors. The trait Expr defines
the base component for our expression families; all constructors extend this trait.
Like with the internal visitor solution, we need a contravariance annotation for
the visitor type parameter V [− , ]. However, we also need an extra contravari-
ance annotation for the first type argument of V . As before, these variance
annotations are required to ensure that the following subtyping relation holds:

Expr [V ] <: Expr [U ] if U <: V
but, if we did not want to preserve this relation, then the contravariance an-
notation would not be required. Visitors take two type arguments instead of a
single one (when compared to the internal visitor solution) because we need to
distinguish the types of the recursive arguments from the result type.

We provide three variants in the library for numeric, addition and nega-
tion expressions. The constructors define accept methods that do not recur on
the expressions, delegating that responsibility to the visitors, and following the
Parigot encoding of datatypes presented in Figure 2. Two sets of components for
operations are provided: the first one evaluates expressions; and the second one
provides some definitions for the narrow operation. For operations with recursive
calls we need a self-type annotation because, without the annotation, it would
not be safe to assume that all the cases present in the expressions being recur-
sively traversed would be handled. This is the same issue that was encountered,
for example, by Torgersen [18] in his second solution for the expression problem.

In this section, we do not provide a step-by-step explanation of how indepen-
dent extensibility of components can be achieved, because this can be done in
essentially the same way as the solution presented in Section 4. We focus instead
on discussing some practical concerns when assembling components and also on
the extra expressiveness provided by external visitors over internal visitors.

5.2 Ad-hoc Assembling of Components

The code presented in Figure 6 captures the code involved in a family of expres-
sions, but it does not define any member of that family in particular. We need to
combine (some of the) expression components if we want to obtain a particular
type of expressions. The combination of components is not a responsibility of
the library writer, because he cannot predict which combinations are interesting.
Obviously, he cannot enumerate all possible combinations too, since the number
of combinations rises very fast in respect to the number of components. So, the

assembling of components should be delegated to the clients of the library.
In Figure 7 we present the code for a client of the component library, which

supports expressions with numeric and addition variants and evaluation. The
value C is used as a shortcut to the Components object (note that, in Scala,
objects also play the role of modules). The type ExprShape defines a concrete
visitor shape that combines several smaller visitors using mixin composition;
and then we use that shape to define the type of expressions Expr . We also



14 Bruno C. d. S. Oliveira

trait Client {
protected val C = Components

//Defining the members of the datatype

protected type ExprShape [−R,A ] = C .num [R,A ] with C .add [R,A ]
type Expr = C .Expr [ExprShape ]

//Shorthand for Expression Visitors

trait ExprVisitor [A ] extends C .num [Expr ,A ] with C .add [Expr ,A ]

//Shorthands for the constructors

def Num (x : Int) = C .Num [ExprShape ] (x )
def Add (e1 : Expr , e2 : Expr ) = C .Add [ExprShape ] (e1 , e2 )

//The operations

def eval (e : Expr) : Int =
e.accept [Int ] (new C .EvalVisitor [ExprShape ] () {})

}

Fig. 7. Ad-hoc assemblage of components for expressions.

define an ExprVisitor trait that can be used to easily create new visitors for
our expressions. Next we define some useful shorthands for the constructors,
which avoid parametrization over the visitor type. Finally, operations like eval

are defined by calling the accept method on the corresponding visitor.
The nice thing about this client is that it provides an abstraction on top of the

component library. This is important because the components of the library use
some advanced Scala features and extra parametrization that would not normally
be needed if the program had been defined conventionally. If those components
had been used directly, then some familiarity with the Scala features used in
the library would probably be needed and difficult to interpret error messages
arising from the misuse of these features would almost certainly occur. Happily,
any code that uses Client does not need to be aware of the components in the
expression library: all that is visible is a fairly conventional interface. However,
the definition of clients like this one is somewhat ad-hoc, and similar preparation
code is needed for other clients. In Section 6, we show how we can define these
client interfaces in a more compositional and less ad-hoc way.

5.3 Extensible Modular Components with Multiple Dispatching

As the reader may notice, external visitors are more complicated to use than in-
ternal visitors because they require extra typing and the responsibility of traver-
sal is delegated to the programmer. So, an obvious question is why should we
bother with external visitors in the first place. Ignoring the extensibility issue
for a moment, the main reason to use external visitors is when the recursion
pattern of the operations we are defining does not follow a simple structural re-

cursion, which is what internal visitors excel at. External visitors are essentially
equivalent to case analysis [8] and, in a language like Scala, they can be used



Modular Visitor Components 15

to define operations that do not follow standard recursion patterns. In partic-
ular, with external visitors it is possible to define operations that dynamically

dispatch over multiple arguments or perform nested case analysis over some of
the arguments.

The interesting question to ask is whether the ability to define these non-
standard recursive schemes translates into our modular external visitors. This
would imply a modular and statically type-safe solution for extensible multiple
dispatching, without the need for any special purpose language extensions. As
we shall see, this is indeed possible, but it is not simple. The good news is that
there is a fairly mechanical scheme that can be used to define operations with
such recursion patterns, which hints at a possible higher-level notation similar
to multi-methods [28, 19] or pattern matching as a language extension.

We use structural equality between expressions (which is a binary method)
as our working example. When working with non-extensible visitors, the trick
to achieve multiple dispatching is to use a series of visitors to handle each dis-
patching (the reader may look at [8] for an example of equality defined in this
way). The strategy that we will use to define extensible equality is similar. It
is helpful to look at a definition of equality by pattern matching to understand
what happens when we define the modular components for structural equality:

eq :: (Expr ,Expr) → Expr

eq (Num n1 ,Num n2 ) = n1 .equals (n2 )
eq (Add e1 e2 ,Add e3 e4 ) = eq (e1 , e3 ) ∧ eq (e2 , e4 )
eq (Neg e1 ,Neg e2 ) = eq (e1 , e2 )
eq ( , ) = false

There is some modularity in a definition like this. In order to add a new clause,
we do not need to touch the code of other clauses. We explore exactly the
same form of modularity in our components for equality shown in Figure 8.
The BaseHandleDefault visitor, handles the default cases that return false. This
can be seen as the code corresponding to the last clause in the definition of
eq . In order to handle one of the other clauses we need three visitors: one for
extending the default visitor with the new case, another for handling the first
matched pattern and a third one to handle the second matched pattern. For
the eq (Num n1 ,Num n2 ) clause, the NumHandleDefault visitor extends the
default visitor with a num visit case. The NumEquals visitor defines the case for
the first matched pattern and calls an instance of the visitor than handles the
second match, which is handled by the third visitor HandleNum . Providing code
for other clauses proceeds in a similar fashion. We show the code that handles
the eq (Neg e1 ,Neg e2 ), but skip the code for eq (Add e1 e2 ,Add e3 e4 ) for
space reasons.

6 Feature-Oriented Programming

In this section, inspired by ideas from feature-oriented programming (FOP) [29],
we show how to organize components into features that can be used to easily
and compositionally assemble customized expressions datatypes and operations.



16 Bruno C. d. S. Oliveira

object ExtendedComponents {
//Default case for equality : eq ( , ) = false

trait BaseHandleDefault [V [− , ],A ] {
self : V [Expr [V ],A ⇒ Boolean ] ⇒

//recursive call reference

def eqVis : V [Expr [V ],Expr [V ] ⇒ Boolean ]

//default value

val default = ( : A) ⇒ false

}

//Components for handling : eq (Num n1 ,Num n2 ) = n1 .equals (n2 )
trait NumHandleDefault [V [− , ],A ] extends BaseHandleDefault [V ,A ]

with num [Expr [V ],A ⇒ Boolean ] {
self : V [Expr [V ],A ⇒ Boolean ] ⇒

def num (n2 : Int) = default

}

trait NumEquals [V [− , ] ] extends num [Expr [V ],Expr [V ] ⇒ Boolean ] {
self : V [Expr [V ],Expr [V ] ⇒ Boolean ] ⇒

def eqNum : V [Expr [V ], Int ⇒ Boolean ]

def num (n : Int) = e ⇒ e.accept (eqNum) (n)
}

trait HandleNum [V [−R,A ] ] extends NumHandleDefault [V , Int ] {
self : V [Expr [V ], Int ⇒ Boolean ] ⇒

override def num (n2 : Int) = n1 ⇒ n1 .equals (n2 )
}

//Components for handling : eq (Neg e1 ,Neg e2 ) = eq (e1 , e2 )
trait NegHandleDefault [V [− , ],A ] extends BaseHandleDefault [V ,A ]

with neg [Expr [V ],A ⇒ Boolean ] {
self : V [Expr [V ],A ⇒ Boolean ] ⇒

def neg (e : Expr [V ]) = default

}

trait NegEquals [V [−R,A ] ] extends neg [Expr [V ],Expr [V ] ⇒ Boolean ] {
self : V [Expr [V ],Expr [V ] ⇒ Boolean ] ⇒

val eqNeg : V [Expr [V ],Expr [V ] ⇒ Boolean ]

def neg (e2 : Expr [V ]) = e1 ⇒ e1 .accept (eqNeg) (e2 )
}

trait HandleNeg [V [−R,A ] ] extends NegHandleDefault [V ,Expr [V ] ] {
self : V [Expr [V ],Expr [V ] ⇒ Boolean ] ⇒

override def neg (e2 : Expr [V ]) = e1 ⇒ e1 .accept (eqVis) (e2 )
}

}

Fig. 8. Extensible components for equality.



Modular Visitor Components 17

6.1 Organizing Components into Features

In Section 5.2 we have already seen how we can fairly easily assemble visitor
components in an ad-hoc, non-compositional way. However, some overhead is
still required. Ideally, assembling a final system should be as easy as composing
a few smaller subsystems together. The comments in Figure 6 identify what
components are needed for numeric, addition and negation variants and which
components are needed for evaluation and narrowing. Each of these groups of
components can be seen as what in FOP is called a feature.

In Scala it is possible to more precisely capture these features by grouping the
required functionality for each feature in a trait. We illustrate this in Figure 9.
The Base feature (on which all other features depend) abstracts over the con-
crete visitor shape using a virtual type ExprVisitor , and a type Expr defines the
type of expressions with that shape. Note that we could also have parametrized
Base by the visitor instead of using an abstract type, but we feel that an abstract
type captures the nature of the abstraction better here. The Numeric feature
imposes a constraint on the shape in order to support the num visit method,
and defines a method Num that can be used to construct numeric expressions
with the particular shape required by ExprVisitor . The features for Addition

and Negation are defined in a similar way to Numeric, imposing corresponding
constraints on the visitor shape and defining a constructor method. The Eval

feature defines a type EvalVisitor that specifies the expected type for evalua-
tion visitors for the particular ExprVisitor shape. A method eval that supports
evaluation of expressions is also specified in the trait by using an instance of
EvalVisitor . However, this instance reference is abstract (because it cannot be
created without knowing the final shape) and is expected to be provided in the
object implementing the trait. The narrowing feature requires a second abstract
visitor, which defines the shape of the output expression type for the narrowing
operation. The NumNarrow and NegNarrow traits are examples of composite

features (that is, they are built on top of more basic features). Each of these two
features constrains the output visitor type of the narrowing operation.

Figure 10 shows how we could assemble a client by combining some of the
features using mixin composition. The first line of the object declaration for
Client expresses what we may expect from a FOP language, defining a client
to be the composition of three features that will provide support for numeric
and subtraction variants together with evaluation and a narrowing operation. In
Scala we still need to do a little bit more work because we need to instantiate
the visitor shapes and the visitors required for the operations, but this is fairly
trivial code and certainly shorter than the code that needs to be provided for a
client like the one in Figure 7.

7 Related Work

In this section we discuss related work. We also assess existing solutions to the
extensibility problem against the requirements of the EFP.



18 Bruno C. d. S. Oliveira

trait Base {//Base feature

protected val C = Components

protected type ExprVisitor [−R,A ]
type Expr = C .Expr [ExprVisitor ]

}

trait Numeric extends Base {//Numeric Feature

type ExprVisitor [−R,A ] <: C .num [R,A ]//feature constraints

def Num (x : Int) = C .Num [ExprVisitor ] (x )
}

trait Addition extends Base {//Addition Feature

type ExprVisitor [−R,A ] <: C .add [R,A ]//feature constraints

def Add (e1 : Expr , e2 : Expr ) = C .Add [ExprVisitor ] (e1 , e2 )
}

trait Negation extends Base {//Negation Feature

type ExprVisitor [−R,A ] <: C .neg [R,A ]//feature constraints

def Neg (e : Expr) = C .Neg [ExprVisitor ] (e)
}

trait Eval extends Base {//Evaluation Feature

protected type BaseEval = C .BaseEval [ExprVisitor ]
protected type EvalVisitor = BaseEval with ExprVisitor [Expr , Int ]

protected val evalVisitor : EvalVisitor//abstract

def eval (e : Expr) : Int = e.accept [Int ] (evalVisitor )
}

trait Narrow extends Base {//Narrowing Feature

type TExpr = C .Expr [TExprVisitor ]
protected type TExprVisitor [−R,A ]

protected type NarrowVisitor = ExprVisitor [Expr ,TExpr ]

protected val narrowVisitor : NarrowVisitor//abstract

def narrow (e : Expr ) : TExpr = e.accept [TExpr ] (narrowVisitor )
}

trait NumNarrow extends Numeric with Narrow {//Narrowing for numbers

protected type TExprVisitor [−R,A ] <: C .num [R,A ]
protected type NumNarrow = C .NumNarrow [ExprVisitor ,TExprVisitor ]

}

trait NegNarrow extends Negation with Narrow {//Narrowing for negation

protected type TExprVisitor [−R,A ] <: C .num [R,A ] with C .minus [R,A ]
protected type NMNarrow = C .NMNarrow [ExprVisitor ,TExprVisitor ]

}

Fig. 9. Expression features.



Modular Visitor Components 19

object Client extends NumNarrow with NegNarrow with Eval {
type TExprVisitor [−R,A ] = C .num [R,A ] with C .minus [R,A ]
type ExprVisitor [−R,A ] = C .num [R,A ] with C .neg [R,A ]

protected val evalVisitor = new BaseEval {}
protected val narrowVisitor = new NumNarrow with NMNarrow

}

Fig. 10. A client with numeric, negation, narrowing and evaluation features.

7.1 Extensible Visitors and Algebraic Datatypes

There have been several proposals to make visitors more flexible and extensi-
ble in the past [30–32]. Like our solution, an important motivation for most
of these approaches is to remove the dependencies between visitors and con-
crete subclasses of the object structure. As Vlissides [32] observes, the Visitor

pattern (in its classic form) is unsuitable to be used in frameworks because of
the references to concrete subclasses, violating the dependency inversion princi-
ple [33] and endangering modularity. However, the flexibility and extensibility
in those approaches comes at a price: the solutions are not statically type-safe;
casts or reflection are used and run-time type errors can occur if a visitor (or
visit method) is called on a variant it does not handle. Both Krishnamurthi et
al. [30] and Vlissides [32] describe variations of the Visitor pattern that follow
a structure similar to ours. The former solution can avoid run-time errors if all
existing visitors are subclassed and some factory methods are overriden when
a new variant is added; while the later solution can use catch-all cases for the
same purpose. In both approaches the correct usage of the pattern (so that it
does not incur of run-time type errors) is quite complex and error-prone.

Zenger and Odersky [20] propose extensible algebraic datatypes with defaults

(EADDs) as a possible solution for the expression problem. They observe that
the subtyping relationship between a datatype and its extension is inverted (the
extension is a supertype of the original datatype), which leads to the idea of
adding a default variant to every algebraic datatype. This has the effect of sub-
suming all variants defined in future extensions. Unlike our datatypes, in their
approach the extension is a subtype of the original datatype. Because of this
static type-safety is guaranteed even when a new, unforeseen, variant is added.
However, this solution is subject to single inheritance and only linear extensions
are possible. Moreover, it assumes that sensible default cases exist for all func-
tions, which may not necessarily be the case. Case classes in Scala [27] and the
open datatypes and functions proposal for Haskell [21] can be seen as close rela-
tives of EADDs as they allow easy introduction of new variants and it is possible
to provide a default case in a function, which ensures that the function will not
fail with a run-time type error. Still, the use of a default case is not enforced,
which provides some extra flexibility but also means that run-time type errors
can occur.



20 Bruno C. d. S. Oliveira

One important requirement of the expression families problem (but not of
the expression problem) is that expressions used in different domains should

have distinct types. While most of the solutions above do solve the extensibility
problem (even if at the cost of static type-safety), they do not easily allow
us to have distinct types with reuse because we normally have single, simple
types like Expr , Num or Add which are impossible to distinguish when used
in different domains. Our solution allows the two distinct numeric expressions
to have distinct types, while reusing most of the common, domain-independent
functionality because we have types parametrized by visitors: Expr [V ], Num [V ]
or Add [V ]. In a sense, the visitor parameter can be seen as the different domain
of expressions. So, by using two different visitor types we can distinguish between
expressions used in different domains while achieving reuse.

7.2 Multiple Dispatch and Open Classes

Mainstream object-oriented languages, like C++, C# and Java, all use a single

dispatching mechanism, where a single argument (the self object) is dynami-

cally dispatched and all other dispatching is static. A problem arises, however,
when a method requires dynamic dispatching on two or more arguments. The
Visitor pattern can be seen as a way to emulate double-dispatching in a single
dispatching language [34, 11]. By using nested visitors, we can also emulate a
limited, non-extensible form of multiple dispatching. Modular visitors overcome
the extensibility limitation and can be used to develop extensible and modular
operations that dynamically dispatch over more than one argument. However,
the use of visitors to emulate multiple dispatching is not trivial and, admit-
tedly, it is much less practical to use than programming language extensions like
multi-methods [28, 19, 35].

In a language with multiple dispatching the need for the classic Visitor

pattern is greatly reduced as most multiple dispatching languages support the
notion of open classes [19], since multi-methods are normally defined indepen-
dently of the classes. Consequently, we can use multi-methods to add a new
operation to an object structure modularly. However, this does not solve the
problem of reuse across similar object structures while allowing distinct type
identities (see the discussion at the end of Section 7.1). We believe that the two
lines of work are essentially complementary. On the one hand, modular visitors
could benefit from a mechanism similar to multi-methods or pattern matching
to better express reusable, extensible and modular operations that dynamically
dispatch over multiple arguments. There is an extensive amount of work around
multi-methods covering syntax, type checking and ambiguities between differ-
ent clauses; this could be very useful for such a hypothetical extension. On the
other hand, our work could potentially provide an alternative compilation model
for multi-methods targeting conventional single dispatching languages without
using any form of run-time type analysis and while supporting modularity and
extensibility. It would be interesting to explore this in the future.



Modular Visitor Components 21

7.3 Generics

Wadler proposed a solution using generics to solve the expression problem [5],
but he later found a subtle typing problem. Kim Bruce [36] proposed a solution
to the expression problem using generics and self-types. He also made an attempt
to solve the expression problem using an instance of the Visitor pattern (again
with generics and self-types). However, he failed to obtain a fully statically type-
safe visitor solution. Nevertheless, he observed that type constructors (that we
use in our solution) could be useful. Torgersen’s second and third solutions to
the expression problem [18] addressed the typing problems of Bruce’s solution
and showed fully statically type-safe solutions just using conventional generics
and an instance of the Visitor pattern. The idea is simple: use imperative
instead of functional style visitors. Consequently, visitors do not need to be
parametrized types and type constructors can be avoided. Self-types are also
avoided by parametrizing the visit methods with an extra visitor parameter
provided by the concrete elements. These solutions are a close relative to the
modular external visitors presented in Section 5. However, by avoiding type-
constructors some expressiveness is lost. For example, it is no longer possible
to apply the same technique to datatypes that are themselves parametrized by
types (that is, types like Vector〈A〉) as this would require visitors themselves to
be parametrized by types. Furthermore, these solutions only work in languages
with mutable-state, while functional-style visitors do not have such requirement.
Torgersen also presented two other solutions for the problem: the first one works
in both Java and C#, while the fourth relies on dynamic reification of type
parameters that is only present in C#.

All of the generics solutions have an important characteristic in common with
our solution: they are parametrized by the family of expressions or the family of
visitors (or both). This means that, like our solution, it is possible to distinguish
between different types of expressions. The third solution by Torgerson has an-
other thing in common with our solution: the subtyping relationships between
different expressions are preserved. An important limitation of these techniques
is their lack of support for independent extensibility [6].

7.4 Type Classes and Polymorphic Variants

Oliveira et al. [37] addressed the problem of extensible generic functions in
Haskell using records in the form of constructor type classes (that is, type
classes parametrized by a type constructor) and noted the connection to the
expression problem. This solution is essentially an instance of internal visitors in
disguise [38] and inspired the solution presented in Section 4. Swierstra [39] pro-
posed a solution to the expression problem using extensible sums (or variants)
that has some close similarities to Oliveira’s et. all technique and the solution
proposed here. However, this approach relies on variant subtyping, which needs
to be encoded in Haskell. From an OO perspective, Swierstra’s technique seems
less appealing than a solution that uses records because while nearly all OO
languages natively support some form of record subtyping, most (if not all) do



22 Bruno C. d. S. Oliveira

not support variant subtyping and a manual implementation of the subtyping
machinery for variants would also be required.

Garrigue [40] shows how polymorphic variants can be used to solve the ex-
pression problem. With polymorphic variants, different datatypes can share the
same constructor. When a definition using pattern matching is written every
usage of a polymorphic variant will raise a type constraint which ensures that
only a datatypes containing all of those constraints will be used in the definition.
An important drawback of this approach is that functions are not extensible and
open recursion has to be used manually to emulate extensible functions.

Both the Haskell solutions and polymorphic variants have very good support
for type inference. This can be seen as an advantage because it allows us to
program without ever closing extensions. In our approach this is also possible
but, because support for type inference in Scala is weaker, this becomes more
cumbersome (see, for example, the client code in Section 4.2). However, by pro-
gramming in this open style, the client will also be exposed to the complexity of
the advanced language features to achieve extensibility, which can lead, for ex-
ample, to difficult error messages to interpret. With our solution we can provide
an abstraction on top of the reusable infrastructure that hides that complexity
away. We believe that in practice having this abstraction is preferable as this
keeps the interfaces very simple and familiar to most programmers. Also, in all
these approaches there are important limitations when the functions we want to
write do not follow a simple structurally recursive scheme.

7.5 Virtual Types

Odersky and Zenger [6] present two solutions for the expression problem us-
ing a combination of virtual types and nested classes. In the top-level classes,
some operations and variants are initially added and the hard references that
would preclude extensibility are replaced with virtual types. In the subclasses,
new operations and/or variants can be added by suitably extending the top-level
class and refining the virtual types. Their solution has, somehow, the flavour of
virtual classes, which provide a more direct way to solve the problem as Ernst
demonstrates in GBeta [41]. Ernst’s solution also benefits from a special form
of composition that can compose two classes and all of their inner classes au-
tomatically. In Scala we have to perform this operation manually. Nystrom et
al. propose Java extensions similar to virtual classes that support nested inher-

itance [42] and nested intersection [43]; and present a solution for the EP that
is very similar to the virtual classes solution by Ernst. More recently, Qi and
Myers [44] have proposed class sharing as a new language mechanism that aims
at allowing objects of one family to be used as members of another family. Our
use of variance annotations to allow subtyping relations across components of
different families also achieves this kind of interchange of objects in different
families. Nonetheless, class sharing does not induce subtyping relations and can
be used to make adaptations that are not possible with our approach. However,
class sharing requires significant annotations, which places an additional burden
on the programmer.



Modular Visitor Components 23

Solutions that use some form of virtual types (or classes) are generally very
readable and easy to understand because the reusable code is very similar to the
code that would be written if we would not be aiming at extensibility. In solutions
like ours, or the ones discussed in Sections 7.3 and 7.4, the reusable code has to
be written in a slightly different style and genericity becomes explicitly visible
due to some extra typing effort involved. We believe that virtual types provide
a particularly good solution to problems where a relatively small amount of
customization is expected and a small, interesting set of composable functionality
is identified. However, we think that when the expected degree of customization
is higher and potentially all valid combination of features should be allowed,
then virtual types do have some drawbacks. If we want to use virtual types to
allow the degree of compositionality and decoupling required by the EFP, we
basically need to have a class with the corresponding nested virtual types for
each feature. Furthermore, we need to scatter the reusable code for the operations
very finely across those classes so that entanglement between features is not
created. Therefore, although it would be possible to achieve a similar degree
of customization and compositionality, the readability advantage would be lost
and a considerable amount of boilerplate code to set up each feature would
be required. Moreover, if the language that we use supports virtual types, but
not nested inheritance (like, for example, Scala) then the amount of effort to
compose features can be quite overwhelming. Our solution on the other hand,
allows small features to be created with very little boilerplate code and, for most
operations, we do not need to scatter code around since, as we have discussed in
Section 4.4, we can exploit the subtyping relationship between visitors to group
many cases together without entangling features.

8 Conclusions

We have shown how to solve the EFP using two alternative variations of modular
visitors. One very simple and practical alternative is to use internal visitors.
Another alternative is to use external visitors, which are slighty more complex
to use but allow additional expressiveness. Inspired by some ideas of FOP, we
have also shown how to organize the visitor components into features that can be
easily composed to provide customized systems of datatypes and operations. We
believe that our techniques can be very helpful for the development of software
in a FOP style without requiring any special tool or language extension and
using only generic language constructs.

While in most situations internal visitors are preferable, there are a few situ-
ations where external visitors may be more suitable, which seems to force us into
a design decision. In earlier work [8] we have presented a reusable, generic and
type-safe visitor library (VisLib) that is parametrizable over the traversal strat-
egy. Internal and External visitors can be recovered by suitably parametrizing
the concrete visitors with the corresponding traversal strategy. As it happens,
extensibility is orthogonal to VisLib and we can in fact easily use the original
VisLib to develop extensible visitor components using techniques similar to the



24 Bruno C. d. S. Oliveira

ones in this paper, without having to commit to internal or external visitors in
advance. Although we have not presented such solution here, in the companion
code for this paper a solution using VisLib is also presented and documented.

Acknowledgements

We are very thankful to the anonymous reviewers for their excellent reviews,
which have greatly helped to improve the presentation of this paper. Jeremy
Gibbons provided valuable feedback on an earlier draft. This work is supported
by the EPSRC grant Generic and Indexed Programming (EP/E02128X).

References

1. McIlroy, D.: Mass produced software components. [2] 138–155
2. Naur, P., Randell, B., eds.: Software Engineering: Report of a Conference Spon-

sored by the NATO Science Committee, Garmisch, Germany. (1969)
3. Reynolds, J.C.: User-defined types and procedural data structures as complemen-

tary approaches to type abstraction. In Schuman, S.A., ed.: New Directions in
Algorithmic Languages, Rocquencourt (1975) 157–168

4. Cook, W.R.: Object-oriented programming versus abstract data types. In: REX
Workshop/School on the Foundations of Object-Oriented Languages. LNCS 173,
Springer-Verlag (1990) 151–178

5. Wadler, P.: The expression problem. Java Genericity Mailing list (November 1998)
6. Odersky, M., Zenger, M.: Independently extensible solutions to the expression

problem. In: FOOL ’05. (2005)
7. Buchlovsky, P., Thielecke, H.: A type-theoretic reconstruction of the visitor pat-

tern. In: MFPS XXI. Electronic Notes in Theoretical Computer Science (ENTCS)
(2005)

8. Oliveira, B.C.d.S., Wang, M., Gibbons, J.: The visitor pattern as a reusable,
generic, type-safe component. In: OOPSLA ’08. (2008)

9. Böhm, C., Berarducci, A.: Automatic synthesis of typed lambda-programs on term
algebras. Theoretical Computer Science 39 (1985) 135–153

10. Parigot, M.: Recursive programming with proofs. Theor. Comput. Sci. 94(2)
(1992) 335–356

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

12. Girard, J.Y., Taylor, P., Lafont, Y.: Proofs and types. Cambridge University Press
(1989)

13. Moors, A., Piessens, F., Odersky, M.: Generics of a higher kind. In: OOPSLA ’08.
(2008)

14. Bracha, G., Cook, W.: Mixin-based inheritance. In: OOPSLA ’90, ACM Press
(1990) 303–311

15. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits: Composable units of
behavior. In: ECOOP ’03. Volume 2743., Springer-Verlag (2003) 248–274

16. Bruce, K., Schuett, A., van Gent, R., Fiech, A.: Polytoil: A type-safe polymorphic
object-oriented language. ACM Trans. Program. Lang. Syst. 25(2) (2003) 225–290

17. Igarashi, A., Viroli, M.: Variant parametric types: A flexible subtyping scheme for
generics. ACM Trans. Program. Lang. Syst. 28(5) (2006) 795–847



Modular Visitor Components 25

18. Torgersen, M.: The expression problem revisited. In: ECOOP ’04. (2004)
19. Clifton, C., Leavens, G.T., Chambers, C., Millstein, T.: MultiJava: Modular open

classes and symmetric multiple dispatch for Java. In: OOPSLA ’00. (2000) 130–145
20. Zenger, M., Odersky, M.: Extensible algebraic datatypes with defaults. In: ICFP

’01. (2001) 241–252
21. Löh, A., Hinze, R.: Open data types and open functions. In: PPDP ’06. (2006)

133–144
22. Poll, E.: Subtyping and inheritance for inductive types. In: Informal proceedings

of the 1994 TYPES Workshop. (1997)
23. Lopez-Herrejon, R.E., Batory, D.S., Cook, W.R.: Evaluating support for features

in advanced modularization technologies. In: ECOOP ’05. (2005) 169–194
24. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)
25. Cardelli, L.: Extensible records in a pure calculus of subtyping. In: Theoretical

Aspects of Object-Oriented Programming, MIT Press (1994) 373–425
26. Cremet, V., Altherr, P.: Adding type constructor parameterization to Java. Journal

of Object Technology 7(5) (2008) 25–65
27. Odersky, M., al.: An overview of the Scala programming language (second edition).

Technical Report IC/2006/001, EPFL Lausanne, Switzerland (2006)
28. Chambers, C., Leavens, G.T.: Typechecking and modules for multimethods. ACM

Transactions on Programming Languages and Systems 17(6) (1995) 805–843
29. Prehofer, C.: Feature-oriented programming: A fresh look at objects. In: ECOOP

’97, Springer-Verlag (1997) 419–443
30. Krishnamurthi, S., Felleisen, M., Friedman, D.P.: Synthesizing object-oriented and

functional design to promote re-use. In: ECOOP ’98, Springer-Verlag (1998) 91–
113

31. Palsberg, J., Jay, C.B.: The essence of the visitor pattern. In: Proc. 22nd IEEE
Int. Computer Software and Applications Conf., COMPSAC. (19–21 1998) 9–15

32. Vlissides, J.: Pattern hatching - visitor in frameworks (1999)
33. Martin, R.C.: The Dependency Inversion Principle. The C++ Report (May 1996)
34. Ingalls, D.H.H.: A simple technique for handling multiple polymorphism. In:

OOPSLA ’86. (1986) 347–349
35. Ernst, M., Kaplan, C., Chambers, C.: Predicate dispatching: A unified theory of

dispatch. In: ECOOP ’98, London, UK, Springer-Verlag (1998) 186–211
36. Bruce, K.B.: Some challenging typing issues in object-oriented languages. Electr.

Notes Theor. Comput. Sci. 82(7) (2003)
37. Oliveira, B.C.d.S., Hinze, R., Löh, A.: Extensible and modular generics for the

masses. In: TFP ’06. (2006) 109–138
38. Oliveira, B.C.d.S.: Genericity, Extensibility and Type-Safety in the Visitor Pat-

tern. PhD thesis, University of Oxford (2007)
39. Swierstra, W.: Data types à la carte. Journal of Functional Programming 18(4)

(2008) 423–436
40. Garrigue, J.: Code reuse through polymorphic variants. In: Workshop on Founda-

tions of Software Engineering. (2000) 93–100
41. Ernst, E.: The expression problem, Scandinavian style. In Lahire, P., al., e., eds.:

MASPEGHI 2004. (2004)
42. Nystrom, N., Chong, S., Myers, A.C.: Scalable extensibility via nested inheritance.

In: OOPSLA ’04, ACM Press (2004) 99–115
43. Nystrom, N., Qi, X., Myers, A.C.: J&: nested intersection for scalable software

composition. In: OOPSLA ’06, ACM (2006) 21–36
44. Qi, X., Myers, A.C.: Sharing classes between families. In: PLDI ’09. (June 2009)


