
Basic Parsing Techniques: an introductory survey

Stephen G. Pulman
University of Cambridge Computer Laboratory,

and SRI International, Cambridge

April 1991: To appear in Encyclopedia of Linguistics, Pergamon
Press and Aberdeen University Press

‘Parsing’ is the term used to describe the process of automatically building syntac-
tic analyses of a sentence in terms of a given grammar and lexicon. The resulting
syntactic analyses may be used as input to a process of semantic interpretation,
(or perhaps phonological interpretation, where aspects of this, like prosody, are
sensitive to syntactic structure). Occasionally, ‘parsing’ is also used to include
both syntactic and semantic analysis. We use it in the more conservative sense
here, however.

In most contemporary grammatical formalisms, the output of parsing is some-
thing logically equivalent to a tree, displaying dominance and precedence relations
between constituents of a sentence, perhaps with further annotations in the form
of attribute-value equations (‘features’) capturing other aspects of linguistic de-
scription. However, there are many different possible linguistic formalisms, and
many ways of representing each of them, and hence many different ways of repre-
senting the results of parsing. We shall assume here a simple tree representation,
and an underlying context-free grammatical (CFG) formalism. However, all of
the algorithms decribed here can usually be used for more powerful unification
based formalisms, provided these retain a context-free ‘backbone’, although in
these cases their complexity and termination properties may be different.

Parsing algorithms are usually designed for classes of grammar rather than tai-
lored towards individual grammars. There are several important properties that
a parsing algorithm should have if it is to be practically useful. It should be
‘sound’ with respect to a given grammar and lexicon; that is, it should not assign
to an input sentence analyses which cannot arise from the grammar in question.
It should also be ‘complete’; that it, it should assign to an input sentence all the
analyses it can have with respect to the current grammar and lexicon. Ideally,
the algorithm should also be ‘efficient’, entailing the minimum of computational
work consistent with fulfilling the first two requirements, and ‘robust’: behaving
in a reasonably sensible way when presented with a sentence that it is unable to
fully analyse successfully. In this discussion we generaly ignore the latter two re-
quirements: to some extent, they are covered by the companion section on ‘chart
parsing’.
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There are several other dimensions on which is useful to characterise the be-
haviour of parsing algorithms. One can characterise their search strategy in terms
of the characteristic alternatives of depth first or breadth first (q.v.). Orthogo-
nally, one can characterise them in terms of the direction in which a structure is
built: from the words upwards (‘bottom up’), or from the root node downwards
(‘top down’). A third dimension is in terms of the sequential processing of input
words: usually this is left-to-right, but right-to-left or ‘middle-out’ strategies are
also feasible and may be preferable in some applications (e.g. parsing the output
of a speech recogniser).

Top down parsing

We can illustrate a simple top down algorithm for a CFG as follows. Let the
grammar contain the following rules (which for simplicity also introduce lexical
entries instead of presupposing a separate component for this):

S --> NP VP
NP --> they | fish
VP --> Aux VP
VP --> Vi
VP --> Vt NP
Aux --> can
Vi --> fish
Vt --> can

This will assign to the sentence ‘they can fish’ two distinct analyses corresponding
to two interpretations ‘they are able/permitted to fish’ and ‘they put fish in cans’.
(It will also generate several other good sentences and lots of odd ones).

The top down algorithm is very simple. We begin with the start symbol, in this
case, S, and see what rules it figures in as the mother. Then we look at the
daughters of these rules and see whether the first one matches the next word in
the input. If it does, we do the same for the remaining daughters. If not, we
go through the same loop again, this time matching the daughters of the rules
already found with mothers of other rules.

The algorithm is easily illustrated on the input sentence ‘they fish’: the ‘dot’
precedes the daughter of the rule we are currently looking at, and the level of
indentation indicates which rule has invoked the current action.

Rule Input
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S -> .NP VP they fish
NP -> .they they fish
NP -> they. fish

S -> NP .VP fish
VP -> .Vi fish
Vi -> .fish fish
Vi -> fish.

VP -> Vi.
S -> NP VP.

Of course, in parsing this sentence we have magically chosen the correct rule
at each point, and ignored choices which would not lead to a successful parse.
To fully specify the algorithm we would need to eliminate all this magic and
provide an exhaustive mechanism for trying out all possibilities. We can do this
by non-deterministically trying out all alternatives at each point as they arise,
or, more flexibly, by casting our algorithm in the form of a set of operations
on representations that encode the state of a parse. Each parsing step takes an
‘item’, as we shall call them, and produces a set of new items. These alternatives
can be pursued in whatever order is convenient. Parsing proceeds from an initial
seed item and ends when no more steps are possible. Each remaining item, if
there are any, will then represent a successful parse of the input.

An item consists of a list of ‘dotted trees’ with the most recent to the right, and
a list of unconsumed words. ‘Dotted trees’ are derived from dotted rules in an
obvious way (a rule like S -¿ NP .VP is represented [S NP .VP]) and represent
the partial analyses built so far. The list of words is the input remaining to be
parsed. There are three basic operations that can be performed on an item:

(i) if there is a word after a dot in the most recent tree that matches the next
word in the input, make a new item like the current one except that the dot
follows the word, and the next word is removed from the input. For example, an
item of the form

< ... [NP .they], [they can fish]>

will yield a new item:

< ... [NP they.] , [can fish] >

(ii) if the most recent tree has the dot at the end of its daughters, integrate it
with the tree to its left, if there is one. So an item like:

<[S .NP VP], [NP they.], [can fish]>
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yields a new one:

<[S [NP they] .VP], [can fish]>

(iii) if there is a rule whose left hand side matches the category following the dot
in the most recent tree, make a new item like the old one with the addition of a
new tree derived from the rules, with the dot preceding its daughters.

An item like

<[S .NP VP], [they can fish]>

yields one like:

<[S .NP VP], [NP .they], [they can fish]>

The sequence of items corresponding to the sample parse of ‘they fish’ above
begins:

0. <[.S], [they fish]>

1. < [S .NP VP], [they fish]>
2. < [S .NP VP], [NP .they], [they fish]>
3. < [S .NP VP], [NP .fish], [they fish]>
4. < [S .NP VP], [NP they.], [ fish]>
5. < [S [NP they] .VP], [ fish]>
6. < [S [NP they] .VP], [VP .Vi], [ fish]>
7. < [S [NP they] .VP], [VP .Vt NP], [ fish]>

etc.

Notice that both 2 and 3 were produced from 1, but that 3 was discarded because
none of the actions applied to it.

The order in which new items are processed can be varied in order to give depth
first or breadth first search behaviour.

Depending on the search strategy followed, the top down algorithm may go into
a loop when certain types of rule are found in the grammar. For example, if we
added rules for more complex types of NP, we would encounter ‘left recursion’ of
the category NP:

NP -> NP ’s N :possessive NPs like [[John] ’s sister]
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Now from an item like:

< S -> .NP VP ....>

we would produce one like

< NP -> .NP ’s N ....>

and this would in turn produce another

< NP -> .NP ’s N ....>

and so on. There are two solutions: either rewrite the grammar to eliminate
left recursion, which is always possible in principle, or add an extra step to the
algorithm to check for repeated items.

Some grammars will potentially send any sound and complete parsing algorithm
into a loop: namely, those that contain cycles of the form A -> ...... -> A,
where some symbol exhaustively dominates itself. This is not necessarily a bug in
the parsing algorithms: such grammars will assign an infinite set of parse trees to
any structure containing an A. Under these circumstances, the parser is merely
trying to do what it is supposed to do and find all possible parses.

Bottom up parsing

The operation of a bottom up algorithm for CFG can be illustrated by the fol-
lowing sequence of operations for ‘they fish’:

Structure Input
so far remaining

[they fish]
[NP they] [fish]
[NP they][Vi fish] []
[NP they][Vp [Vi fish]] []
[S [NP they][Vp [Vi fish]]] []

We proceed by matching words to the right hand sides of rules, and then matching
the resulting symbols, or sequences of symbols, to the right hand sides of rules
until we have an S covering the whole sentence. Again, we have magically made
the right choices at each point.
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We can provide a complete algorithm for one type of left-to-right, bottom up
parsing procedure in terms of operations on items like those used in the top
down parser. (Since we shall only be dealing with completely parsed constituents
we can dispense with the dots.)

(i) if there is a rule whose right hand side matches the next word in the input,
create a new item with a new tree made from that rule on the end of the tree
list, and the remainder of the input.

For example:

<[], [they fish]>

becomes:

<[NP they], [fish] >

(ii) if there is a rule with n daughters matching the n most recent trees on the
list, in order, create a new item which combines those daughters into an instance
of the mother:

< [NP they], [VP [Vi fish]], []>

becomes:

< [S [NP they][VP [Vi fish]]], []>

A successful parse is represented by an item with no more input and a single S
rooted tree on the list.

The sequence of items produced by this method in parsing ‘they fish’ is:

1. [] [they fish]
2. [NP they], [fish]
3. [NP they], [NP fish] []
4. [NP they], [Vi fish] []
5. [NP they], [VP [Vi fish]] []
6. [S [NP they] [VP [Vi fish]]] []

Nothing can happen to item 3 and it is discarded.

This particular type of bottom up algorithm is known as a ‘shift-reduce’ parser.
Operation (i) shifts a word from the input on to the list of trees, which is operating
like a ‘stack’ (a last-in-first-out store) insofar as it is only possible to get at the
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most recent items. Operation (ii) ‘reduces’ the list of trees by combining several
of them from the top of the stack into one constituent.

A generalisation of this type of algorithm is familiar from computer science:
the LR(k) family can be seen as shift-reduce algorithms with a certain amount
(‘k’ words) of lookahead to determine, for a set of possible states of the parser,
which action to take. The sequence of actions from a given grammar can be
precomputed to give a ‘parsing table’ saying whether a shift or reduce is to be
performed, and which state to go to next. The use of this technique for natural
language parsing has been promoted by Tomita (1987), among others.

While in general, bottom up algorithms are more efficient than top down algo-
rithms, one particular phenomenon that they deal with only clumsily are ‘empty
rules’: rules in which the right hand side is the empty string. Such rules are the-
oretically dispensible in a context free framework (any grammar containing them
can in principle be converted to one, usually much larger, recognising the same
language which does not) but they are practically very useful in describing, for
example, movement phenomena, in a reasonably concise way. Bottom up parsers
find instances of such rules applying at every possible point in the input, which
can lead to much wasted effort following parsing hypotheses that lead nowhere.

Bottom up with top-down filtering

A better parsing algorithm than either pure top down or pure bottom up can
be got by combining features of both. Operating bottom up means that the
process is guided by what is actually in the input, rather than what the grammar
predicts might be there (which will give a very large number of possibilities for a
realistic grammar and lexicon). But imposing some top down constraints means
that we can use what we have already found, with our knowledge about possible
grammatical structures, to guide the search for what follows.

One such combined algorithm is the following. It is a member of the family of
‘left-corner’ parsing algorithms, since it begins at the left corner of the constituent
it is trying to build, when viewed pictorially:

Mother
/ \

/ \
‘Left Corner’ ......

It is also a ‘predictive’ parser, in that it uses grammatical knowledge to predict
what should come next, given what it has found already.

To describe this left-corner predictive parsing algorithm we extend our notion of
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an ‘item’ to be:

<CurrentConstituent, RemainingInput, MotherCatSought,
DaughtersFound, DaughtersSought, StackOfIncompleteConstituents>

There are 4 operations creating new items from old:

‘Shift’ is as before, taking the next word from RemainingInput and making it
(suitably labelled) the CurrentConstituent.

‘Predict’ finds a rule whose leftmost daughter matches the CurrentConstituent,
and then fills the MotherCatSought, DaughtersFound, and DaughtersSought fields
of the new item as appropriate, copying these parts of the old item onto the Stack-
OfIncompleteConstituents.

‘Match’ applies when the CurrentConstituent is the next item in DaughtersSought:
the new item has a null CurrentConstituent, and undergoes appropriate changes
to the two Daughters fields.

‘Reduce’ applies when there are no more DaughtersSought and creates an item
with a new CurrentConstituent built from the MotherCatSought and the Daugh-
tersFound, popping the most recent StackOfIncompleteConstituents entry to
form the new Mother and Daughters fields.

With the Predict operation defined as above the algorithm will be sound and
complete. However, it will derive no benefit from the top down information it
carries, for that is not yet being used to constrain parsing hypotheses. What we
need to do is to check that the mother categories on the rules found by Predict
can be a ‘left corner’ of the current MotherCatSought, i.e. can be the leftmost
daughter of some tree dominated by the MotherCat. This information can be
calculated from the grammar fairly easily: we will not show how to do this here
but for the grammar given above the ‘left-corner-of’ relation is:

<NP,S>
<Aux,VP>
<Vi,VP>
<Vt,VP>

We illustrate with the more complex and ambiguous sentence ‘they can fish’,
assuming that Predict uses a left-corner check to filter candidate rules. For pur-
poses of illustration we will expand the grammar with an extra rule Sigma -> S,
where Sigma, by convention, is the start symbol. Thus the full left-corner-of
relation is:

<NP,Sigma>
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<NP,S>
<Aux,VP>
<Vi,VP>
<Vt,VP>

The initial item is based on the rule expanding the start category Sigma:

Operation Current Input Mother Found Sought Stack
- they can fish Sigma [] [S] -

------------------------------------------------------------------------------------------------
1. Shift: [NP they] can fish Sigma [] [S] -
------------------------------------------------------------------------------------------------
2. Predict 1: - can fish S [NP they] [VP] <Sigma, [], [S]>
------------------------------------------------------------------------------------------------
3. Shift 2: [Vt can] fish S [NP they] [VP] <Sigma, [], [S]>
------------------------------------------------------------------------------------------------
4. Shift 2: [Aux can] fish S [NP they] [VP] <Sigma, [], [S]>
------------------------------------------------------------------------------------------------
5. Predict 3: - fish VP [Vt can] [NP] <S,[NP they],[VP]>

<Sigma, [], [S]>
------------------------------------------------------------------------------------------------
6. Predict 4: - fish VP [Aux can] [VP] <S,[NP they],[VP]>

<Sigma, [], [S]>
------------------------------------------------------------------------------------------------
7. Shift 6: [NP fish] - VP [Aux can] [VP] <S,[NP they],[VP]> *

<Sigma, [], [S]>
------------------------------------------------------------------------------------------------
8. Shift 6: [Vi fish] - VP [Aux can] [VP] <S,[NP they],[VP]>

<Sigma, [], [S]>
------------------------------------------------------------------------------------------------
9. Shift 5: [NP fish] - VP [Vt can] [NP] <S,[NP they],[VP]>

<Sigma, [], [S]>
------------------------------------------------------------------------------------------------
10. Shift 5: [Vi fish] - VP [Vt can] [NP] <S,[NP they],[VP]> *

<Sigma, [], [S]>
------------------------------------------------------------------------------------------------
11. Predict 8: - - VP [Vi fish] [] <VP,[Aux can],[VP]>

<S,[NP they],[VP]>
<Sigma, [], [S]>

------------------------------------------------------------------------------------------------
12. Reduce 11: [VP [Vi fish]] - VP [Aux can] [VP] <S,[NP they],[VP]>

<Sigma, [], [S]>
------------------------------------------------------------------------------------------------
13. Match 12: - VP [Aux can], [] <S,[NP they],[VP]>

[VP [Vi fish]] <Sigma, [], [S]>
------------------------------------------------------------------------------------------------
14. Reduce 13: [VP can [VP fish]] S [NP they] [VP] <Sigma, [], [S]>
------------------------------------------------------------------------------------------------
15. Match 14: - S [NP they], [] <Sigma, [], [S]>

[VP can [VP fish]]
------------------------------------------------------------------------------------------------
16. Reduce 15: [S they can fish] Sigma [] [S] -
------------------------------------------------------------------------------------------------
17. Match 16: - Sigma [S they can fish] [] -
------------------------------------------------------------------------------------------------
18. Reduce 17 [Sigma [S they can fish]] - - - -
------------------------------------------------------------------------------------------------
19. Match 9: - VP [Vt can], [] <S,[NP they],[VP]>

[NP fish] <Sigma, [], [S]>
------------------------------------------------------------------------------------------------
20. Reduce 19: [VP can [NP fish]] S [NP they] [VP] <Sigma, [], [S]>
------------------------------------------------------------------------------------------------
21. Match 20: - S [NP they], [] <Sigma, [], [S]>

[VP can [NP fish]
------------------------------------------------------------------------------------------------
22. Reduce 21: [S they can fish] Sigma [] [S] -
------------------------------------------------------------------------------------------------
23. Match 22: - Sigma [S they can fish] [] -
------------------------------------------------------------------------------------------------
24. Reduce 23: [Sigma [S they can fish]] - - - -
------------------------------------------------------------------------------------------------

Notice that the filtering done by Predict eliminates several possible items based
on the S -> NP VP rule at the point where the NP ‘fish’ is the current constituent
(items 7 and 9), because S is not a left corner of VP, which is the current Mother-
CatSought. Items marked * lead to parsing paths that do not go anywhere: these
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too could be ruled out by doing a left corner check when Shifting: if the category
of the item shifted is not a left corner of the first item in DaughtersSought, then
no parse will result.

Determinism

A parsing procedure which, in a particular state, is faced with a choice as to what
to do next, is called ‘non-deterministic’. It has been argued (Marcus 1980) that
natural languages are almost deterministic, given the ability to look ahead a few
constituents: i.e., that in general if there is not sufficient information to make
a decision based on the input so far, there usually will be within the next few
words. Such a property would have obvious functional advantages for the effi-
cient processing of language using minimal short term memory resources. This
claim, although hotly contested, has been used to try to explain certain types
of preferred interpretation or otherwise mysterious difficulties in interpreting lin-
guistic constructs. For example, it is argued, if the human parsing system is
deterministic, and making decisions based on limited lookahead, we would have
an explanation for the fact that sentences like:

The horse raced past the barn fell

are perceived as rather difficult to understand. Under normal circumstances, the
tendency is to be ‘led down the garden path’, assembling ‘the horse raced past
the barn’ into a sentence, then finding an apparently superfluous verb at the end.
However, there are many other factors involved in the comprehension of sentences,
and when all of these are taken into account, the determinism hypothesis is by
no means completely satisfactory as an explanation. (For a survey and further
discussion, see Pulman 1987; Briscoe, 1987)

Parsing strategies

Determinism has been offered as an account of one type of parsing preference.
Other types of preferred interpretation have been claimed to be the result of
specific strategies that are characteristic of the human parsing process (Kimball,
1973; Frazier and Fodor, 1978; etc.). For example, in the following sentences the
tendency is to interpret the adverbial as modifying the most deeply embedded
clause, even though linguistically, it is possible to interpret it as modifying the
main clause:

He spoke to the man you saw on Friday. She said that he was here at some time
yesterday

These particular judgements are held to be the result of a preference for an
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analysis on which a modifier is attached as far ‘down’ the tree as is possible.
Other preferences might be to incorporate constituents as arguments rather than
modifiers where possible, or to build trees that are as ‘flat’ as possible consistent
with the input.

In general, discussion of parsing preferences takes place in the context of hy-
potheses about human performance rather than explicit computationally imple-
mentable algorithms. However, many of the parsing preferences that have been
discussed in the literature can be naturally modelled within a shift-reduce based
parser, by recasting them as strategies to be followed when there is a choice as to
which action to perform next (Pereira, 1985). For example, if whenever there is a
choice between shifting and reducing then shifting is preferred, constituent final
modifiers will always be attached as ‘low’ as possible. This is because reductions
only take place on the topmost elements of the stack, and thus a sequence like

NP V NP V NP PP

will be assembled into constituents from the right hand end, leading to ‘low’
attachment. Since the algorithm is actually non-deterministic, ‘preference’ is
most naturally interpreted as meaning that analyses are found in a preferred
order rather than that one is found to the exclusion of others.

While the status of parsing preferences as a source of evidence for the workings of
the human sentence processing mechanism is still unresolved, to the extent that
they are real, it is of great practical importance to be able to include them in
computational parsing systems, if for no better reason than that when faced with
the multiplicity of parse trees that a complete algorithm yields for most sentences
when operating on realistically sized grammars, anything is better than making
a random decision as to which one represents the intended interpretation of the
input sentence.

Chart Parsing and WFSSTs.

For efficiency, most practical parsing algorithms are implemented using a ‘well
formed substring table’ (wfsst) to record parses of complete subconstituents. This
means that duplicate paths through the search space defined by the grammar are
avoided. Since there may be many such paths, use of such a table can sometimes
mean the difference between processing times of seconds, as opposed to minutes
or even hours.

To illustrate, consider the process of parsing a sequence analysable as

... (1) V (2) NP (3) PP (4)
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(e.g. ‘... saw the man in the park’) given rules in the grammar like

VP -> V NP
VP -> VP PP
NP -> NP PP

In a top down parsing regime, there will be two points at which the first of these
rules will be used to predict an NP beginning at position 2. Let us assume that
the algorithm first finds the nonrecursive NP from 2 to 3. Now, via the third rule,
it will again look for an NP, this time followed by a PP. If we are not careful, the
naive algorithm will repeat the same sequence of actions it has just performed in
recognising the original NP from 2 to 3.

However, if we assume that whenever a complete constituent is recognised, it
is recorded in a table, then we can change our algorithm to consult this table
whenever it is looking for a constituent of a particular type at a given point. In
this instance we will immediately find that we already have an NP from 2 to 3,
and can therefore proceed directly to look for a PP beginning at position 3.

Having found this PP, we can now assemble two VPs: one from 1 to 3, of the
form [VP [V NP]], and one from 1 to 4 of the form [VP [V [NP NP PP]]].

Now we will be in the state where the second rule predicts a PP beginning at
position 3. On the naive algorithm, again we will just go ahead and recompute
the sequence of actions leading to the recognition of the PP. But using our wfsst,
we have already recorded the fact that there is a PP from 3 to 4 and instead we
simply use that information to build a VP from 1 to 4 of the form [VP [VP PP]].
Thus we have saved ourselves at least two recomputations. If this does not sound
very impressive, the reader is invited to work through the steps involved in parsing
a sequence like:

V NP P NP P NP P NP

(e.g. ‘saw the man in the park with a telescope on Friday’) given the above rules,
along with P -> P NP, and to check how many times the same constituents are
reparsed when a wfsst is not being used. For constructions like this, the numbers
can grow very rapidly indeed. Use of a wfsst here is essential if parsing algorithms
are to be implented in a practically usable form.

A further technique is to keep a record of subconstituents that have NOT been
found beginning at a particular point in the input. For example, in the earlier ‘saw
the man in the park’ example, when the VP of the form [VP V [NP [NP PP]]]
is found, it will, via the second rule, cause a prediction of a PP beginning at
position 4. This prediction fails, because we are at the end of a sentence. When
the VP of the form [VP [VP [V NP]] PP] is found, it too will cause the same
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prediction, via the same rule. While in this case discovering that we have no
more PPs is fairly trivial, this will not always be so, and a lot of recomputation
can be saved by also checking that, when looking for a constituent C at position
P, we have not already tried and failed to find C at P.

Basic chart parsing

A ‘chart’ is a generalisation of a wfsst in which incomplete constituents are also
represented. Charts are the basis on which many parsing algorithms are imple-
mented, and they provide a flexible framework within which different types of
processing regime and different types of grammatical formalism can be handled.

A chart consists of a set of ‘edges’ and ‘vertices’. Vertices represent the positions
between words in an input sentence, and edges represent partial or complete
analyses. An edge, at least when context free rules or related formalisms are
involved, can be thought of as something derived from a rule and having the
following structure:

edge(Id,LeftVertex,RightVertex,MotherCat,DaughtersFound,DaughtersSought)

(In describing charts it is convenient to use a Prolog like notation: words in lower
case are constants, words beginning with upper case are variables, an underscore
is a variable whose value we are not interested in, and a list of items is enclosed
in square brackets, with the convention that an expression like [Head|Tail]
represents a list whose first member is Head and whose remaining members (a
list) are Tail). An edge has an identifier and connects vertices. DaughtersFound
will usually be represented in terms of a list of other edges representing the
analysis of those daughters. DaughtersSought is a list of categories. An edge is
complete if DaughtersSought is empty.

To specify a particular instantiation of a chart framework, we need to state:

(i) a regime for creating new edges
(ii) a way of combining two old edges to form new edge
(iii) access to an ‘agenda’ of edges created by (i) or (ii) that are waiting
for further processing when they are entered into the chart.

A bottom up chart parser

One particular chart based algorithm can be specified as follows: it proceeds
bottom up, one word at a time.
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New edges:
whenever there is a complete edge put in the chart of form
edge(Id,From,To,Category,_,_)
then for each rule in the grammar of form Lhs -> Rhs
where Category is the first member of Rhs,

put a new edge on the agenda of form
edge(NewId,From,From,Lhs,[],Rhs)

(Not all rules in the grammar meeting this criterion will lead to a complete parse.
This step of the procedure can be made sensitive to information precomputed
from the grammar so as to only select rules which are, say, compatible with the
next word in the input, or alternatively, compatible with the next category sought
of at least one incomplete edge ending at the point where the current word starts.
See Aho and Ullman 1977 for various types of relevant grammar relations).

Combine Edges:
Whenever a new edge is put into the chart of the form:
edge(Id1,B,C,Cat1,Found1,[])

then for each edge in the chart of form:
edge(Id2,A,B,Cat2,Found2,[Cat1|OtherDaughtersSought])

create a new edge
edge(Id3,A,C,Cat2,Found2+Id1,OtherDaughtersSought)

Whenever a new edge is put into the chart of the form:
edge(Id1,A,B,Cat1,Found1,[Cat2|RestSought])

then for each edge in the chart of form:
edge(Id2,B,C,Cat2,Found2,[])

create a new edge
edge(Id3,A,C,Cat1,Found1+Id2,RestSought)

The first part of Combine Edges is triggered by the addition of a complete edge
to the chart, and produces a new edge for each incomplete edge ending where
the complete edge begins which can combine with it. These incomplete edges are
already in the chart. The new edges are put on the agenda.

The second part is triggered by the addition of an incomplete edge to the chart,
and produces a new edge for each complete edge beginning where the incomplete
edge ends. These new edges are put on the agenda.

Looking at things from the point of view of a complete edge, the first part of
Combine Edges ensures that it is combined with whatever is already in the chart
that it can be combined with, whereas the second part ensures that it will be com-
bined with any future incomplete edges entering the chart. Thus no opportunity
for combination will be missed, at whatever stage of parsing it arises.
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All we have to do now to specify a complete chart parsing procedure is to define
access to the agenda: we can choose to treat the agenda as a stack (last in, first
out) in which case the general search strategy will be depth first; or as a queue
(first in, first out) in which case we will search hypotheses breadth first. We
could also have more complex heuristics ordering edges on the agenda according
to some weighting function: this would mean that the highest scoring hypotheses
were explored first, independently of the order in which they were generated.

We also have to embed the procedure in some kind of top level driver, so as to
start off the process, and check for complete analyses when the process is ended.
The final program, then, might have the following structure:

Until no more words:
create new edges for next word
do New Edges for these edges.
Until agenda is empty:
pop next edge off agenda and put in chart
do New Edges
do Combine Edges

Check for complete edges of desired category spanning start to finish

Given the following grammar the algorithm would proceed as follows on the input
sentence ‘they can fish’

S --> NP VP
NP --> they | fish
VP --> Aux VP
VP --> Vi
VP --> Vt NP
Aux --> can
Vi --> fish
Vt --> can

Operation Chart Agenda
new word edge e1(1,2,NP,[they],[])
pop e1
new edge e2(1,1,S,[],[NP,VP])
pop +e2
combine e1 e2 e3(1,2,S,[e1],[VP])
pop +e3
new word edges e4(2,3,Aux,[can],[]),

e5(2,3,Vt,[can],[])
pop +e4
new edge e6(2,2,VP,[],[Aux,VP]),

e5
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pop +e6
combine e4 e6 e7(2,3,VP,[e4],[VP]),

e5
pop +e7 e5
pop +e5
new edge e8(2,2,VP,[],[Vt,NP])
pop +e8
combine e5 e8 e9(2,3,VP,[e5],[NP])
pop +e9
new word edges e10(3,4,Vi,[fish],[])

e11(3,4,NP,[fish],[])
pop +e10 e11
new edge e12(3,3,VP,[],[Vi]),

e11
pop +e12 e11
combine e12 e10 e13(3,4,VP,[e10],[]),

e11
pop +e13 e11
combine e7 e13 e14(2,4,VP,[e4,e13],[]),

e11
pop +e14 e11
combine e3 e14 e15(1,4,S,[e1,e14],[]),

e11
pop +e15 e11
pop +e11
new edge e16(3,3,S,[],[NP,VP])
combine e9 e11 e17(2,4,VP,[e5,e11],[])

e16
pop +e17 e16
combine e3 e17 e18(1,4,S,[e1,e17],[])

e16
pop +e18 e16
pop +e16
combine e16 e11 e19(3,4,S,[e11],[VP])
pop +e19

At this point no more processing can take place. Inspecting the chart we find
that we have two complete edges spanning the input, of the desired category, S.
By recursively tracing through their contained edges we can recover the syntactic
structure of the analyses implicit in the chart. Notice that as well as sharing
some complete subconstituents (edge 1), the final analyses were built up using
some of the same partial constituents (edge 3).
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Other chart based parsing algorithms

It is easy to formulate different processing regimes within the chart framework.
By redefining the New Edges routine to operate on incomplete edges one can im-
plement a top down, ‘Earley’ style of algorithm (Thompson and Ritchie, 1984).
Alternatively, it is possible to define New Edges so that any arbitrary constituent,
rather than the first, is used to build new edges, and with corresponding changes
to Combine Edges constituents can be built right to left as well as left to right
(Steel and de Roeck, 1987) This can be useful for practical efficiency when some
construction is ‘keyed’ by an item which is not the leftmost one, for example, con-
junctions in English, or verbal complements in subordinate clauses in languages
like German. A left to right strategy would have to allow for the possibility of
many types of constituent before there was any evidence for them, possibly lead-
ing to a lot of wasted computation most of the time. This strategy can also be
generalised to ‘head driven’ parsing, using information from the head of a phrase
to guide the search for its sister constituents to left or right (Kay 1990).

For all of these different types of parsing algorithm, appropriate search strategies
can be imposed by different methods of manipulating the agenda, as mentioned
earlier.

Chart parsing also offers a degree of robustness in the case of failure to find a
complete parse, either because the input is ungrammatical or (what amounts to
the same thing from the point of view of the parser) is not within the coverage of
the grammar. Even if the overall parse fails, an algorithm like the one above will
result in all well formed subconstituents that are present in the input being found.
From these, different types of heuristic strategy can be used to do something
useful with them. Mellish (1989) describes one such technique, which attempts
to massage an ill-formed input into a well-formed one by inserting or deleting
constituents after the ordinary parsing process has failed.

It is also worth pointing out that many of the virtues of charts as a basis for
parsing are also desiderata for the reverse process of generation. In generation
as well as parsing it is important to avoid unnecessary recomputation. Shieber
(1988) describes a chart-based framework which is intended to accommodate a
variety of generation as well as parsing algorithms.

Packing

While charts, as so far described, offer considerable economy of representation and
processing, they still take exponential time and space when there is an exponential
number of parse trees to be assigned to a sentence. We can in fact improve on
this. Notice that in the example above, we built two VP constituents spanning 2
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to 4, and that these in turn gave rise to two S constituents, each containing the
same NP. This has the advantage that all analyses of the sentence are explicitly
represented: there is an S edge for each one. But it has the disadvantage that we
are doing the combination redundantly on the second and any further occasions.
(This is where the exponential behaviour arises). If an NP can combine with one
VP from 2 to 4 to form a sentence, then it is obvious that it can also combine
with any other VP from 2 to 4. At the point at which this move is made the fact
that the two VPs have different internal structure is irrelevant.

If we are prepared to do extra work in spelling out explicit parse trees when
other processing has been completed, we can eliminate this redundancy. In the
chart framework as we have developed it here, this is most easily achieved by
generalising the representation of complete edges so that the ‘constituents’ or
‘daughters found’ field is a disjunction of lists of edge identifiers, rather a single
list. Then we add the extra step, whenever we are building a complete edge, of
checking to see whether there is already in the chart a complete edge of the same
category and with the same From and To labels. If there is, we simply make a
disjunction of the constituents field of the edge we are building with that of the
existing edge and we need not create the new edge at all, or do anything further.
Any analyses that the existing edge already takes part in will also involve the
new edge, and the new edge will be included in any further analyses involving the
existing edge. Thus in the case of our second VP edge, at the point where we can
combine edge 9 with edge 11 to form edge 17, we would instead have extended
edge 14 to look like:

e14(2,4,VP,[[e4,e13],[e5,e11]],[])

Then the combination of edge 3 with edge 14 to make a sentence would represent
both analyses, without needing to repeat the combination explicitly. In this case,
only one set of operations is saved, but it is easy to see that in cases like the
multiple PP sentence encountered earlier, the savings can be considerable.

This extension is essentially the notion of ‘packing’, as described in, for example,
Tomita 1987. If explicit parse trees are required, then there is an extra cost in
a post processing phase, for each disjunction will need to be unpacked into a
separate analysis. This step may be exponential even where parsing time was
polynomial: the complexity is moved, not eliminated. However, the number
of constituents created and the number of computational operations performed
while actually parsing will usually be far smaller if packing is used than if the
simple chart scheme is used. Moreover, in many practical NLP systems, parse
trees do not need to be enumerated explicitly, except perhaps for debugging
purposes, as they are merely a preliminary to semantic interpretation. In some
of these systems (e.g. that described in Alshawi et al. 1988), many aspects of
semantic interpretation can be done on packed structures directly, saving yet
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more computational work.
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