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This paper describes various techniques for enriching unification-based gram-
matical formalisms with notational devices that are compiled into categories and
rules of a standard unification grammar. This enables grammarians to avail
themselves of apparently richer notations which allow for the succinct and rel-
atively elegant expression of grammatical facts, while still allowing for efficient
processing for the analysis or synthesis of sentences using such grammars.

1 Introduction

Formalisms equivalent to, or based on, unification grammars of the type exem-
plified by PATR ([27]) are very widely used in computational linguistics. (e.g.
[6],[18], [8],[7] etc). A unification-based formalism has many well-known virtues:
it is declarative, monotonic, reversible (in principle at least); it has a well un-
derstood formal interpretation ([26], [30], [14]); and there exist well understood
and relatively efficient parsing and generation algorithms for grammars using
such a formalism (e.g. [29],[13],[6],[28]).

However, a pure unification formalism is often thought to be a somewhat
restricted grammatical formalism, especially when compared with the rich de-
vices advocated by many grammarians. The recent literature (e.g. [21], [22]
etc.) uses many devices which go beyond pure unification: set valued features;
negation and disjunction; tests for membership; list operations like ‘append’
and ‘reverse’; multiple inheritance hierarchies; as well as Kleene operators like *
or +1 which are familiar from linguistics textbooks although they have no direct
equivalent in a unification grammar.

Unfortunately, there is a price to pay for this increase in expressive power:
a decrease in efficiency. Whereas there exist several relatively efficient imple-
mented systems for parsing and generating with wide coverage ‘pure’ unification
grammars (e.g. [6], [8]), more complex formalisms have not so far led to systems
of comparable efficiency. At the present time, I am not aware of any practical
implementations using these more complex descriptive devices which are re-
motely comparable to the (relative) efficiency of pure unification based systems
when used with wide coverage grammars and large lexica. This is not a claim
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that the efficiency problem is solved even for pure unification grammars, but it
is at least less of a problem than for these richer formalisms.

It would therefore be desirable to combine the efficiency of pure unifica-
tion based systems with the availability of richer grammatical formalisms. One
route to this happy state of affairs would be to to develop efficient processing
mechanisms for the richer devices directly. However, this route involves a re-
search program of uncertain length and outcome, given the known complexity
properties of many of the richer descriptive devices.

This paper describes an alternative approach towards such a combination,
via the compilation of apparently richer grammatical notations into expressions
whose satisfaction can be checked by unification alone. Compilation of these
apparently richer devices into expressions which can be processed just using
unification will generally allow the grammarian to use them freely, without nec-
essarily sacrificing the advantages of efficiency that pure unification systems
offer. I say ‘without necessarily sacrificing’ efficiency, because some compilation
strategies may actually make matters worse. For example, a naive compilation
of disjunction into many alternative rules and lexical entries, combined with an
equally naive parsing algorithm, may produce worse behaviour than an imple-
mentation which interprets the disjunctions directly.

The paper describes a variety of apparently richer descriptive devices which
can be compiled into unification grammars in ways which under normal circum-
stances will result in efficient processing. Some I believe to be original; others
have been described elsewhere in the literature in some form, although often in
a way which makes it difficult for computational linguists to appreciate their
significance. Still others are known mostly by word of mouth, in the unification
grammar community. The intention of the present paper is to describe them
all in an accessible form (hence the more tutorial tone than is usually found
in this journal) and thus attempt to narrow the gap between rich grammatical
formalisms and efficient practical implementations.

Of course, you don’t get anything for nothing in this game. There will still
be cases where the full power of the richer formalisms is necessary. The vari-
ous techniques described here are often limited in their applicability, and will
often apply to only a subset of the problems that one would like to solve. It
is also the case that some of the techniques described can lead in the worst
case to overwhelmingly large structures and consequent processing inefficiency.
Nevertheless, practical experience has shown that (with care and some experi-
mentation) it is possible to develop linguistic descriptions that are succinct and
relatively elegant, while still lending themselves to efficient (and most impor-
tantly, bidirectional) processing.

2 A unification formalism

To begin with, we will define a basic unification grammar formalism. For con-
venience we will use many of the notational conventions of Prolog.

A category consists of a set of feature equations, written:
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{f1=v1,f2=v2,...,fN=vN}

Feature names are atoms; feature values can be variables (beginning with
an upper case character), atoms (beginning with a number or a lower case
character) or categories: e.g.

{f1=X,f2=yes,f3={f4=1,f5=X}}

Coreference is indicated by shared variables: in the preceding example, f1 and
f5 are constrained to have the same value. We often use underscore _ as a
variable if we are not interested in its value.

For convenience and readability, we shall also allow as feature values lists
of values, n-tuples of values, and Prolog-like terms:

{f1=[{f2=a},{f3=b}],f4=(c,d,e),f5=foo(X,Y,Z)}

These constructs can be regarded as ‘syntactic sugar’ for categories: for example,
a term foo(X,Y,Z) could be represented as a category {functor=foo,arg1=X,arg2=Y,arg3=Z}.
Tuples can be thought of as fixed length lists, and lists can be defined as cate-
gories with features head and tail, as in [26]. We will use the Prolog notation
for lists: thus [bar|X] stands for the list whose head is bar and whose tail (a
list) is X.

A lexical item can be represented by a category: e.g.

{cat=n,count=y,number=sing,lex=dog}
{cat=det,number=sing,lex=a}
{cat=verb,number=sing,person=3,subcat=[],lex=snores}

A rule consists of a mother category and a list of zero or more daughter
categories, e.g.:

{cat=s} ==> [{cat=np,number=N,person=P},
{cat=vp,number=N,person=P}]

A rule could equivalently be represented as a category, with distinguished
features mother and daughters:

{mother={cat=s},
daughters=[{cat=np,number=N,person=P},

{cat=vp,number=N,person=P}]}

However, we will stay with the more traditional notation here.
Various simple kinds of ‘typing’ can be superimposed on this formalism. We

can distinguish a particular feature (say cat) as individuating different ‘types’
and associate with each different value of the cat feature a set of other dependent
features. This will only be a sensible thing to do if we know that the value of
the cat feature will always be instantiated when types are checked. We will
write such declarations as:

category(np,{person,number}).
category(verb,{person,number,subcat}).
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The intent of declarations like this is to ensure that an NP or a Verb always has
these and only these feature specifications. One of the practical advantages of
such a regime is that different categories can now be compiled into terms whose
functor is the value of the cat feature, and whose other feature values can be
identified positionally: e.g. {cat=np,number=sing,person=3} would compile
to np(3,sing). And in turn the advantage of this is that ordinary first order
term unification (i.e. of the type (almost) provided by Prolog implementations)
can be used in processing, guaranteeing almost linear performance in category
matching.

It is often convenient to use a slightly different notation when adopting such
a regime, to make clear that one particular feature value has a privileged status.
Thus we will frequently write:

np:{person=3,number=sing}
to mean:

{cat=np,person=3,number=sing}.
We can also provide type declarations for features. We will assume a set of

primitive types like ‘atom’ or ‘category’, and allow for complex types also:

feature(person, atom({1,2,3})). % value must be an atom in declared set
feature(lex, atom). % value must be any atom
feature(subcat, list(category)). % value must be a list of categories

We can also, if required, use a simple type of feature default to make the cate-
gories written by a grammarian more succinct:

default(person,3).
default(number, noun, sing).

The effect of the first statement would be to ensure that at compile time,
the feature person will be instantiated to 3 if it does not already have a value
(of any kind). The second statement restricts the application of the default to
members of the category ‘noun’. We will often assume that such defaults have
been declared to make the various example rules and entries more succinct.

It is also very often convenient to allow for macros, expanded at compile
time, to represent in a readable form commonly occurring combinations of fea-
tures and values. We will assume that such macros are defined in ways suggested
by the following examples, and that at compile time, the arguments (if any) of
the defined macro are unified with the arguments of the instance of it in a rule
or lexical item. In some cases, the results of macro evaluation may need to
be spliced in to a category: for example, when the result is a set of feature
specifications.

macro(transitive_verb(Stem),
v:{lex=Stem,subcat=[np:{}]}).

macro(phrasal_verb(Stem,Particle),
v:{lex=Stem,subcat=[np:{},p:{lex=Particle}]})
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macro(thread_gaps(Mother,LeftDaughter,RightDaughter)) :-
Mother = {gapin=In,gapout=Out},
LeftDaughter = {gapin=In,gapout=Nxt},
RightDaughter = {gapin=Nxt,gapout=Out}.

Thus the grammarian might now write:

transitive_verb(kick).
phrasal_verb(switch,off).

s:{A,f1=v1,...} ==> [np:{B,f2=v2,..}, vp:{C,f3=v3,...}]
where thread_gaps(A,B,C).

and these will be expanded to:

v:{lex=kick,subcat=[np:{}]}
v:{lex=switch,subcat=[np:{},p:{lex=off}]}

s:{gapin=I,gapout=O,f1=v1,...} ==>
[np:{gapin=I,gapout=N,f2=v2,...},
vp:{gapin=N,gapout=O,f3=v3,...}]

Notice that the values of variables in categories like s:{A,...} need to be spliced
in when the macro is evaluated at compile time.

Finally we will point out that multiple equations for the same feature on a
category are permitted (where they are consistent). Thus a rule like:

a:{f=V} ==> [b:{},c:{f=V,f=d:{f1=a}}]

is valid, and means that the value on ‘c’ of ‘f’, which may be only partly specified,
will be the same on category ‘a’.

This completes our definition of a basic unification grammar formalism.
While the notational details vary, the basic properties of such formalisms will
be very familiar. We turn now to descriptive devices which are not present in
the formalism as so far defined, and to ways of making them available.

3 Kleene operators

Kleene operators like ‘*’ (zero or more) or ‘+’ (1 or more) are frequently used in
semi-formal linguistic descriptions. In a context-free based formalism they must
actually be interpreted as a notation for a rule schema, rather than as part of
the formalism itself: something like A -> B C* D is a shorthand for the infinite
set of rules:

A -> B D, A -> B C D, A -> B C C D, etc.
While not essentially changing the weak generative capacity of a CFG, the use of
Kleene operators does change the set of trees that can be assigned to sentences:
N-ary branching trees can be generated directly.

5



In some unification based formalisms (e.g. [8], [5]) Kleene operators have
been included. However, in the context of a typed unification formalism like
ours, the exact interpretation of Kleene operators is not completely straightfor-
ward. Some examples will illustrate the problem. In a formalism like that in
[5], grammarians write rules like the following, with the intent of capturing the
fact that an Nbar can be preceded by an indefinite number of Adjective phrases
provided that (in French, e.g.) they agree in gender etc. with the Nbar:

np:{agr=A} ==>
[...,adjp:{agr=A}*, nbar:{agr=A}]

This is presumably intended to mean that if an Adjp is present, with agr instan-
tiated to some value, then succeeding instances of Adjp must have agr bound
to the same value, as must the Nbar. But a rule like this does not make clear
what is intended for the values of any features on an Adjp not mentioned on the
rule. Presumably it is not intended that all such values are shared, for otherwise
such a rule would parse the first two of the following combinations, but not the
third, which simply contains the concatenation of the adjectives appearing in
the first two:

adjp:{agr=m, foo=a} nbar:{agr=m}
adjp:{agr=m, foo=b} nbar:{agr=m}
adjp:{agr=m, foo=a} adjp:{agr=m, foo=b} nbar:{agr=m}

Alternatively, the intention might be that only features explicitly mentioned
on the rule are to be taken account of when ‘copying’ the kleene constituent.
But this is still not an interpretation that is likely to be of much practical use.
Unification formalisms like ours are intended to be capable of encoding semantic
as well as syntactic descriptions. In order to properly combine the meaning of
the Adjp* with that of the Nbar (as a conjunction, say), to give the meaning
of the mother NP, some feature on the Adjp* like sem= ... will at least have
to be mentioned in building the NP meaning. But this very fact will mean
that the interpretation of all the Adjp encountered will be constrained to have
whatever value sem has on the first one processed. This is clearly not what
the grammarian would have intended. The grammarian presumably wanted the
value of the sem feature to depend on what Adjp was actually present, while
wanting the value of the agr feature to be set ultimately by the Nbar. But it is
not possible to combine these conflicting requirements.

At this point the reader might well wonder why Kleene operators were
wanted in the first place. In most grammars, Kleene ‘*’ is used for two dif-
ferent reasons. In the first type of case, like that just illustrated, it is used when
it is not known how many instances of a category will be encountered. (PP or
adverbial modification of VP is a similar case.) Under these circumstances, it is
in fact very often the case that a recursive analysis is empirically superior. For
example, an English NP rule like:

np:{}==> [det:{}, adjp:{}*, nbar:{}]
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actually makes it impossible to capture Nbar coordination (unless it is treated
as ellipsis). In phrases like:

there is no alternative analysis or clever trick

in order to get the correct syntax and interpretation, ‘alternative analysis or
clever trick’ has to be treated as a conjunction of premodified Nbars. On an
analysis which treats the construction recursively, this is no problem.

The second reason for which Kleene * is used is to get a ‘flat’ structure,
where there is no evidence for recursion. Examples of this might be, on some
analyses, the German ‘middle field’; and some types of coordination. For these
cases, it is genuinely important to have some way of achieving the effect of
Kleene operators.

In our formalism, there are several ways of achieving an equivalent effect.
The easiest and most obvious way is to turn the iteration into recursion, with
the ‘flat’ structure needed being built up as the value of a feature on the highest
instance of the recursive expansion. The following schematic rules show how
this can be done:

kleene:{kcat=C,kval=[]} ==> []
% terminate the recursion

kleene:{kcat=C,kval=[C|T]} ==> [C, kleene:{kcat=C,kval=T}]
% find a C, followed by C*

For the other kleene operators (+,+2, etc.), instead of the first Kleene rule
terminating the recursion with an empty category, it terminates with one, two
or however many instances of the category are required. With a suitable macro
definition for ‘*’, a grammarian can now write rule 1 in the form of rule 2, which
will be expanded to 3:

1. a:{} ==> [b:{}, c:{}*, d:{}]

2. a:{} ==> [b:{}, *(c:{},C), d:{}]

3. a:{} ==> [b:{}, kleene:{kcat=c:{},kval=C}, d:{}]

A sequence of three ‘c’s will be parsed with a structure:

k
/ \
c k

/ \
c k

/ \
c k

|
[]
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This structure is, of course, recursive. However, a ‘flat’ list of the occurrences
of ‘c’ is built up as the value of kval on the topmost kleene category. Anything
that the flat constituent structure was originally needed for can be done with
this list, the extra levels introduced by the recursion being ignored.

It is however possible to get a flatter tree structure more directly, and also
to overcome the problem with features used for semantic composition. In order
to do this we take advantage of the fact that our formalism allows us to write
rules with variables over lists of daughters. 3 We assume a category ‘kleene’
with three category valued features: ‘finish’, ‘kcat’ (kleene category) and ‘next’.
We enrich the grammatical notation with a ‘*’ which can appear as a suffix on a
daughter category in a rule. Thus our grammarian might write something like:

np:{agr=A} ==> [det:{agr=A}, adj:{agr=A}*, n:{agr=A}]

This is then compiled into a set of rules as follows:

1. np:{agr=A} ==>
[det:{agr=A},
kleene:{finish=[n:{agr=A}],kcat=adj:{agr=A},next=N}
| N]

The original category appears as the value of the ‘kcat’ feature, and the
categories that followed this one in the original rule appear as the value of the
‘finish’ feature. The value of the feature ‘next’ is a variable over the tail of the
daughters list, in a way reminiscent of many treatments of subcategorisation.

2. kleene:{finish=F,kcat=adj:{agr=A,f1=V1,....},
next=[kleene:{finish=F,kcat=adj:{agr=A},next=N}|N]}

==>
[adj:{agr=A,f1=V1,....}]

In rule 2, the kleene category is rewritten as an adj, which will share all
its features with the value of kcat. The value of ‘next’ is another instance of
the kleene category, which shares the value of the ‘finish’ feature, and where
the value of the ‘kcat’ feature is the adj category as it appeared on the original
rule. That ensures that only the features mentioned on the kleene category will
be identically instantiated across all occurrences, enabling the semantic problem
mentioned earlier to be solved (at least in principle: the current illustration does
not do so). Clearly when the mother of this rule is unified with the corresponding
daughter of rule 1, the effect will be to extend the list of daughters of rule 1
by adding the value of ‘next’. Since this value is itself a list, now consisting
of a kleene category and a variable tail, the resulting structure can again be
combined with a following kleene category having the appropriate values. This
process can continue ad infinitum.

3A referee has pointed out that this is akin to the metavariable facility of some Prolog
systems ([10]), and that a somewhat similar technique, in the context of DCGs, is described
by [1]).
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3. kleene:{finish=F,next=F} ==> []

The third rule (which is general and so only need occur once in the compiled
grammar) terminates the iteration by extending the daughters of rule 1 by the
sequence of categories that appeared in the original rule.

Now a sequence ‘det adj1 adj2 adj3 n’ will be parsed having the following
structure:

np
|

------------------
| | | | | |
det k k k k n

| | | |
a1 a2 a3 0

The values of the ‘adj’ daughters to ‘kleene’ will be present as the value of ‘kcat’,
and so for all practical purposes this tree captures the kind of iterative structure
that was wanted.

In some cases, the extra level of embedding that this method gives might ac-
tually be linguistically motivated. In this case the idea behind the compilation
just described can be incorporated into the analysis directly. To give an illus-
tration, the following grammar generates indefinitely long flat NP conjunctions
of the ‘John, Mary, Bill, ..... and Fred’ type.

1. np:{flatconj=y}
==>
[np:{flatconj=n,next=MoreNPs} | MoreNPs]

2. np:{flatconj=n,next=[np:{flatconj=n,next=MoreNPs} | MoreNPs]}
==>
[np:{...}, comma:{}]

3. np:{flatconj=n, next=[]}
==>
[conj:{}, np:{}]

These rules will give a structure:

[NP [NP ,][NP ,][NP ,] ..... [and/or NP]]

The trick is again in the unification of the value of the feature ‘next’ on
the daughter of rule (1) and the mother of rule (2). This unification extends
the number of daughters that rule (1) is looking for. Rule (3) terminates the
recursion. The feature ‘flatconj’ stops spurious nestings, if they are not wanted.

In English, at least, this type of conjunction is the only construction for
which a Kleene analysis is convincing, and they can all be described satisfactorily
in this manner.
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4 Boolean combinations of feature values

Our formalism does not so far include boolean combinations of feature values.
The full range of such combinations, as is well known, can lead to very bad time
and space behaviour in processing. Ramsay ([25]) shows how some instances of
disjunction can be avoided, but there are nevertheless many occasions on which
the natural analysis of some phenomenon is in terms of boolean combinations
of values.

One extremely useful technique, although restricted to boolean combinations
of atomic values, is described by [17]. He gives an encoding of boolean combina-
tions of feature values (originally attributed to Colmerauer) in such a way that
satisfiability is checked via unification. This technique is used in several systems
(e.g. [6], the European Community’s ALEP (Advanced Linguistic Engineering
Platform) system, [4]). We describe it again here because we will need to know
how it works in detail later on.

Given a feature with values in some set of atoms, or product of sets of atoms,
any boolean combination of these can be represented by a term. The encoding
proceeds as follows, for a feature ‘f’ with values in {1,2} * {a,b,c}. We want to
write feature equations like:

f=1
f=b
f=1&b ; 1 and b
f=(a;b)&2 ; either a or b, and 2
f=~2 ; not 2
f=(1->b)&(~1->c) ; if 1 then b, else c
f=2<->c ; 2 if and only if c

To encode these values we build a term with a functor, say ‘bv’ (for ‘boolean
vector’) with N+1 variable arguments, where N is the size of the product of the
sets from which ‘f’ takes its values. In the example above, N=6, so ‘bv’ will
have 7 arguments. Intuitively, we identify each possible value for ‘f’ with the
position between arguments in ‘bv’:

bv(_ , _ , _ , _ , _ , _ , _).
1 1 1 2 2 2
a b c a b c

In building the term representing a particular boolean combination of values,
what we do is work out, for each of these positions, whether or not it is excluded
by the boolean expression. The simple way to do this is to build the models as
sets of atoms, and then test the expression to see if it holds of each one. For
example, take f=(a;b)&2. The models are

{{1,a},{1,b},{1,c},{2,a},{2,b},{2,c}}.
An atomic expression like ‘a’ holds of a model if it is a member, and fails

otherwise: ‘a’ here only therefore holds of the two models containing ‘a’. Truth
functions of atoms can be interpreted in the obvious way. The feature value
of ‘f’ above holds only of {2,a} and {2,b}. Thus all other combinations are
excluded.
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For each position representing an excluded combination we unify the variable
arguments on each side of it. In our example this gives us:

bv(A , A , A , A , B , C , C).
1 1 1 2 2 2
a b c a b c

Finally, we instantiate the first and last argument to different constants, say 0
and 1. Because of the shared variables, this will give us:

bv(0 , 0 , 0 , 0 , B , 1 , 1).
1 1 1 2 2 2
a b c a b c

The reasoning behind this last step is that if all the possibilities are excluded,
then all the variables will be linked. But if all the possibilities are excluded, then
we have an impossible structure and we want this to be reflected by a unification
failure. If we know that the first and last arguments are always incompatible
then an attempt to link up all the positions will result in something that will
be trying to unify 0 and 1, and this will fail, as required.

Notice that the number of arguments in the term that we build for one
of these boolean expressions depends on the size of the sets of atomic values
involved. This can grow rather big, of course.

Sometimes, it happens that although the set of possible values for a feature
is very large, we only want to write boolean conditions on small subsets of those
values. A typical case might be a feature encoding the identifier of a particular
lexical item: in English, for example, the various forms of ‘be’ often require
extra constraints (or relaxation of constraints) which do not apply to other
verbs. However, we would not want to build a term with N+1 arguments where
N is the number of verbs in English.

Under these circumstances there is a simple extension of this encoding. As-
sume the feature is called ‘stem’. We encode the set of values as something like:
{be,have,do,anon}, where anon is some distinguished atomic value standing
for any other verb. Then we can write things like:

stem=be
stem=~(be;have)
stem=have;do
etc

However, to express the constraints we need to express, the encoding has to
be a little more complex. We could build a term of N+1 arguments, as before,
where N=4. But now all the items that fall under anon will be encoded as the
same term. This means that we are losing information: we cannot now use the
stem feature to distinguish these verbs. What we have to do is to give the ‘bv’
functor another argument, whose values are those of the original feature: in our
example, all the different verb stems of English. In other respects we encode the
values of the stem feature as before, but with the extra argument the encodings
now look like:
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be: stem=bv(be, O , 1 , 1 , 1 , 1)
b h d anon

have: stem=bv(have, O , 0 , 1 , 1 , 1)
b h d anon

expect: stem=bv(expect, O , 0 , 0 , 0 , 1)
b h d anon

decide: stem=bv(decide, O , 0 , 0 , 0 , 1)
b h d anon

The extra argument can now distinguish between the anon verbs. Everything
else works just as before.

This extension can also be generalised to products of large sets. For example,
we might want a feature whose value was in the product of the set of letters
of the alphabet, and positive whole numbers. It just happens that we want to
exclude some particular combinations of these, say. The particular constraints
we need to write might figure in the grammar as:

id=~(c&(12;13))

i.e. everything except c&12 and c&13. At compile time, when we have ex-
amined the whole grammar and lexicon then we know which values are ac-
tually mentioned, and we can represent the value space of this feature as:
{c,anon1} * {12,13,anon2}, where anon1 and anon2 are again atoms stand-
ing in for all the other values. We need two extra arguments this time, and then
expressions like g&444, c&13, and (c&(12;13)) will be coded as:

f2=bv(g,444,0 , 0 , 0 , 0 , 0 , 0 , 1)
c c c a1 a1 a1
12 13 a2 12 13 a2

f2=bv(c,13,0 , 0 , 1 , 1 , 1 , 1 , 1)
c c c a1 a1 a1
12 13 a2 12 13 a2

f2=bv(c, _ ,0 , A , B , 1 , 1 , 1 , 1)
c c c a1 a1 a1
12 13 a2 12 13 a2

Notice that for the original boolean expressions we may not be able to fill in all
the extra argument places.

4.1 Implementation
Implementation of this technique requires the grammar writer to declare a par-
ticular feature as being able to take values in some boolean combination of
atoms, e.g. something like:

bool_comb_feature(agr,[[1,2,3],[sing,plur]]).
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Lists of lists of atoms represent the subsets whose product forms the space of
values.

To compile the value of a particular bool_comb_feature when in the gram-
mar, first, using the declarations, precompute the set of models (i.e. the space
of values). Assume this set has N members. Then, for each ‘feature=value’
equation, construct for the value an N+1 vector whose first member is 1 and
whose last is 0, and where all the other members are initially distinct variables.
Now encode the feature value into this vector as follows:

for i = 1 to N-1,
if feature value does not hold of the i’th model in the set
then unify vector positions i and i+1.

If the models in the set are lists of atoms, then a single atom holds of the list if
it is a member, a conjunction holds if both conjuncts hold, etc.

To implement the extensions just described requires only the addition of
the right number of extra argument places to hold the original atoms, where
relevant.

5 Type hierarchies and inheritance

Type hierarchies are becoming as ubiquitous in computational linguistics as they
have been in knowledge representation. There are several techniques for compil-
ing certain kinds of hierarchy into terms checkable by unification: [17] describes
them. The version presented here derives from a more general approach to the
implementation of lattice operations by [3] which shows how to implement not
only efficient unification of terms (greatest lower bound, ‘glb’) in a type lattice
but also of generalisation (least upper bound, ‘lub’) and complement.

We will restrict our attention to hierarchies of the type described by [9]
(Chapter 1), i.e. bounded complete partial orders, (but using the terminology
of [2]. Carpenter’s lattices are upside down, and so for him unification is ‘least
upper bound’ and so on.) We further restrict our attention to hierarchies of
atomic types. (While in principle the encoding below would extend to non-
atomic (but still finite) types, in practice the resulting structures are likely to
be unmanageably large.)

In our presentation, we make these hierarchies into lattices: they always have
a top and bottom element and every pair of types has a glb and lub. Having a
glb of ‘btm’ is read as failure of unification. Having a lub of ‘top’ means that
the two types do not share any information.

One example of such a lattice is [2], p223):

top
/ | \

person witch monarch
/ \ \ |

adult child \ queen
\ / \ |

teenager wicked_queen
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\ /
btm

A teenager is both an adult and a child; a queen is a monarch, etc. etc. The
glb of adult and child is teenager; the lub is person.

The lattice that we will use for illustration is:

thing
/ | \ \

/ | \ \
/ | \ \____

/ | \ \
living agent nonliving export
| \ / \ | \ /|
| X \___|___\_/ |
| / \ /\ | \ |
person plant inst’n computer
\ | / /
\ | / __/
\_ | / __/

\ | / /
btm

Notice how easy it is to get a lattice that does not obey our constraints. By
adding a line from ‘exports’ to ‘person’ (either the slave trade or the brain drain)
we get a situation where ‘exports’ and ‘living’ no longer has a greatest lower
bound, although this would be a perfectly natural inheritance link to want to
add.

To encode the information in this lattice in a form where glb and lub can be
computed via unification we first make an array which represents the reflexive
transitive closure of the ‘immediately dominates’ relation which is pictured in
the diagram above by lines.

[b,t,a,i,l,n,p,p,c,e]
[1,0,0,0,0,0,0,0,0,0]btm
[1,1,1,1,1,1,1,1,1,1]thing
[1,0,1,1,0,0,1,0,0,0]agent
[1,0,0,1,0,0,0,0,0,0]institution
[1,0,0,0,1,0,1,1,0,0]living
[1,0,0,1,0,1,0,0,1,0]non_living
[1,0,0,0,0,0,1,0,0,0]person
[1,0,0,0,0,0,0,1,0,0]plant
[1,0,0,0,0,0,0,0,1,0]computer
[1,0,0,0,0,0,0,1,1,1]exports

In each row we put a 1 if the row element dominates the column element, (i.e.
column is a subtype of row) and a zero otherwise. Since everything as a subtype
of itself, and ‘btm’ is a subtype of everything, there is a 1 in each of the diagonal
cells, and in the cell for ‘btm’ on each row. Taking the agent row, we also have
a 1 for the ‘institution’ column and a 1 for the ‘person’ column. We will refer
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to such a row as a ‘bitstring’, although as we have represented it, it is a list
rather than a string. (The sharp-eyed reader will see various other list and
term representations of things which are logically bitstrings in what follows. I
apologise for this abuse of terminology, but have got into the habit of calling
them bitstrings).

This is the first step of the encoding technique described by [3]. They point
out that what the rows of this array represent is the set of lower bounds of the
row element, via a bitstring encoding of sets. Thus the ‘and’ of two rows will
represent the set of lower bounds they have in common. This will in fact be the
case whether or not the lattice has the properties we are assuming. If it does
not, then it will be possible for the bitstring representing the lower bounds of
the two types to be distinct from any row. In our case, however, the bitstring
will always coincide with one row exactly. This row will represent the glb of the
two types.

Unfortunately, however, AND-ing of bitstrings is not the kind of operation
that is directly available within the unification formalism we are compiling into.
So we have to in turn encode that into a unification operation. For this we can
turn again to the Colmerauer encoding of boolean combinations of values.

Informally, we regard a bitstring like those in the rows of the array above as
a representation of the disjunction of the members of the set of lower bounds of
the type. So the row for ‘agent’:

[b,t,a,i,l,n,p,p,c,e]
[1,0,1,1,0,0,1,0,0,0]agent

is regarded as meaning ‘btm or agent or institution or person’. Then we can
encode the bitstring directly into a boolean vector term of the kind we dis-
cussed earlier. The term will have N+1 arguments, where N is the length of
the bitstring, and adjacent arguments will be linked if their corresponding bit-
string position is zero, and otherwise not linked. The term corresponding to the
bitstring for ‘agent’ will then be:

bv(A,B,B,C,D,D,D,C,C,C,C)
bv(0,B,B,C,D,D,D,1,1,1,1)

b t a i l n p p c e

before and after instantiation of the first and final arguments to 0 and 1, re-
spectively, respectively.

The term corresponding to the ‘living’ bitstring will be:

bv(A,B,B,B,B,C,C,D,E,E,E)
bv(0,B,B,B,B,C,C,D,1,1,1)

b t a i l n p p c e

Unifying the two terms together:

bv(0,B,B,C,D,D,D,1,1,1,1)
bv(0,E,E,E,E,F,F,G,1,1,1)
=
bv(0,B,B,B,B,B,B,1,1,1,1)
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When we decode this, by the reverse translation (identical adjacent arguments
means 0), we get:

bv(0,B,B,B,B,B,B,1,1,1,1)
= [1,0,0,0,0,0,1,0,0,0]

which is the bitstring for ‘person’, the greatest lower bound of the two types
‘agent’ and ‘living’, as required.

With this encoding, unification will never fail, since every pair of types has a
glb, even if this is ‘btm’. However, since having a glb of ‘btm’ is usually meant
to signal that two types are incomparable and thus do not have a glb, it would
be more useful if we could contrive that unification would fail for such cases. In
the usual Colmerauer encoding, an impossible boolean combination is signalled
by all the arguments being shared. This will cause an attempt to unify the first
and last arguments of the term, which, being 0 and 1, will cause the unification
to fail. Such a failure will never happen in our encoding thus far: since the entry
for ‘btm’ in each bitstring is 1, there will always be one adjacent argument pair
unlinked, and so unification will always succeed.

If, on the other hand, we simply omit ‘btm’ from the list of types, then when
two types have no lower bound, the result of ANDing together their correspond-
ing bitstring will be a bitstring consisting entirely of zeros. Thus unifying any
two boolean vector terms which result in the term encoding such a bitstring will
fail: if all the elements are zero, then all the arguments will be linked, and we
will be trying to unify 0 and 1. Everything else will work just as before.

We have been dealing with type hierarchies that have the property of being
‘bounded complete partial orders’, except that we have added a ‘btm’ element
to ensure that every pair of types has a glb. Hierarchies of this sort, when
they have a top element, have the defining property of lattices that every pair
of types has both a glb and lub. Being complete lattices, they also have the
property that they can be inverted, by just taking ‘immediately dominates’ to
be ‘immediately dominated by’. Furthermore, what in the original lattice was
the glb of two types is now the lub and vice versa. Hence by computing an
array based on the inverse relation one can use exactly the same technique for
computing least upper bounds, or the generalisation of two types.

The array generated for the inverted lattice is:

[b,t,a,i,l,n,p,p,c,e]
[1,1,1,1,1,1,1,1,1,1]btm
[0,1,0,0,0,0,0,0,0,0]thing
[0,1,1,0,0,0,0,0,0,0]agent
[0,1,1,1,0,1,0,0,0,0]institution
[0,1,0,0,1,0,0,0,0,0]living
[0,1,0,0,0,1,0,0,0,0]non_living
[0,1,1,0,1,0,1,0,0,0]person
[0,1,0,0,1,0,0,1,0,1]plant
[0,1,0,0,0,1,0,0,1,1]computer
[0,1,0,0,0,0,0,0,0,1]exports

The glb of, say, ‘person’ and ‘plant’ is:
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[0,1,1,0,1,0,1,0,0,0]person
AND
[0,1,0,0,1,0,0,1,0,1]plant
=
[0,1,0,0,1,0,0,0,0,0]living

which corresponds to the lub in the original lattice.
However, the notion of generalisation captured in this way is not distributive

(because the lattice is not). If it were, then we should expect the following
combinations to yield the same result, where ‘g’ and ‘u’ represent generalisation
and unification:

g(u(A,B),C) = u(g(A,C),g(B,C))

Whereas in the lattice we are using for illustration, some choices for A, B and
C, do have this property (e.g. A=agent,B=person,C=living), other choices (e.g.
A=person,B=plant,C=computer) do not.

g(u(agent,person),living) = u(g(agent,living),g(person,living))
person thing living

living living

g(u(person,plant),computer) = u(g(person,computer),g(plant,computer))
btm thing exports

computer exports

We would do well to require distributivity, for otherwise, operations on lattices
will become order dependent. In order to do this we have to make our original
lattice a distributive one, making new disjunctive types. We can achieve this
effect by instead taking our original lattice (the right way up) and using bitwise
disjunction of elements to represent generalisations.

[1,0,0,0,0,0,1,0,0,0]person
OR
[1,0,0,0,0,0,0,1,0,0]plant
=
[1,0,0,0,0,0,1,1,0,0]

However, notice that this bitstring does not correspond to any existing row in the
original array. It corresponds instead to the disjunctive object {person;plant}.
This object is extensionally identical to the type ‘living’: in decoding we can
recover this fact by finding a bitstring which has a 1 in (at least) every position
that the bitstring describing the disjunctive object has a 1, and as few as possible
1s other than this. This bitstring will be the description of ‘living’. In general, to
identify the equivalent object for some ‘virtual’ type we take the type description
X and find the least object Y such that the generalisation of X and Y equals Y.

Unfortunately, for these lattices I have not been able to find a way of encod-
ing generalisation as disjunction of bitstrings in such a way that the resulting
encoding will interact with the previous encoding of unification as conjunction
of bitstrings. So it is possible to have either generalisation or unification, but
not both within the same feature system, at least with this encoding.
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5.1 Implementation

In the context of linguistic descriptions the types concerned are often categories,
i.e. non-atomic entities. The compilation technique given here assumes that the
types are atomic. Of course, where the ranges of feature values are finite, hier-
archies of non-atomic types can always be expanded into hierarchies of atoms.
It is likely that the resulting encodings would be rather large (although [3] de-
scribe some compaction techniques). It is thus unlikely that the compilation
technique would be able to completely compile away the complex non-atomic
type hierarchies used in, say, HPSG.

However, a useful compromise is to add to our formalism a new type of
feature, whose values are members of an implicit lattice of atomic types. We
will illustrate with a partial analysis of agreement in NPs in English along
these lines. Traditionally, agreement in NPs is taken to be governed by at least
three features: person and number (often combined in a feature ‘agr’) and and
something like ‘mass/count’. The person feature is only relevant for subject-
verb agreement, but at least number and mass/count are necessary to get the
right combinations of determiner (or no determiner) and noun in the following:

the/a/some man
the/*a/some men
the/*a/some furniture
*the/*a/*some furnitures
*man
men
furniture
*furnitures

We can express the appropriate generalisations quite succinctly by defining a
feature whose values are arranged in a hierarchy:

any
/ | \

count optdet sing
/ \ / \ / \
sg pl mass |
\_________________|

From the basic traditional types of count (sg and pl) and mass nouns we con-
struct two supertypes: sing(ular) and ‘opt(ional)det(erminer)’.

The grammarian needs to add a declaration describing the set of types and
the partial order, expressed as immediate dominance, on them.

partial_order_feature(agr,
[any:[count,optdet,sing],
count:[sg,pl],
optdet:[pl,mass],
sing:[mass,sg]]).

From this declaration it is easy to compute the array representing the reflexive
transitive closure of ‘immediately dominates’:
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[a,m,c,s,p,s,o]
[1,1,1,1,1,1,1]any
[0,1,0,0,0,0,0]mass
[0,0,1,1,1,0,0]count
[0,0,0,1,0,0,0]sg
[0,0,0,0,1,0,0]pl
[0,1,0,1,0,1,0]sing
[0,1,0,0,1,0,1]optdet

Now it is easy to precompute for each atomic type, represented by a row of
the array, a vector like that for bool_comb_feature. In this case, each vector
will have 9 elements, and adjacent positions will be linked if the corresponding
column element is 0.

Given such a feature, the following rules and lexical entries are sufficient to
account for the data above, where in a more traditional feature-based approach
we would have had multiple entries for the determiners, and two rules for the
determiner-less NPs: one for the case of a mass noun, the other for the plurals.

np:{agr=A} ==> [n:{agr=optdet,agr=A}]
np:{agr=A} ==> [det:{agr=A},n:{agr=A}]

the: det:{agr=any}
a: det:{agr=sg}
some: det:{agr=sing}

Of course, we could achieve a similar result by using the boolean feature combi-
nations described earlier. We could define a feature with values in {sing,plur}*{mass,count}
and provide rules and entries with the appropriate boolean combinations of
these. This will always be possible, and so strictly speaking the encodings we
have described are not necessary. However, there are two reasons for maintaining
the type inheritance encoding separately from the boolean feature combination.
Firstly, although in many cases the boolean encoding might, as here, seem to
have a size advantage, in general this need not be the case, especially when the
techniques for compaction of bit arrays described by [3] are used. Secondly,
and perhaps more importantly for the grammarian, in many cases using the
boolean combination would be a linguistically inaccurate solution. Having a
definition like that just given implies that it is just an accident that there are
no mass&plur NPs, since they are a linguistically valid combination of features
according to the declaration. In this case, and similar ones, the description in
terms of type inheritance would be regarded as capturing the facts in a more
natural and linguistically motivated way.

6 Threading and defaults

The technique of ‘gap threading’ is by now well known in the unification gram-
mar literature. It originates with [19] and has been used to implement wh-
movement and other unbounded dependencies in several large grammars of En-
glish. ([7],[23]).
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The purpose of this section is to point to another use of the threading tech-
nique, which is to implement a rather simple, but very useful, notion of default:
a notion which is, however, completely monotonic!

Consider the following problem as an illustration. In an analysis of the
English passive we might want to treat the semantics in something like the
following way:

Joe was seen
= exists(e,see(e,something,joe))
Joe was seen by Fred
= exists(e,see(e,fred,joe))
Joe was seen on Friday by Fred
= exists(e,see(e,fred,joe) & on(e,friday))

Joe was seen on Friday in Cambridge by Fred
= exists(e,see(e,fred,joe) & in(e,cambridge) & on(e,friday))

Joe was seen on Friday by Fred in Cambridge
= exists(e,see(e,fred,joe) & on(e,friday)) & in(e,cambridge)

Whether we assume a flat structure for the VP modifiers:
[vp pp pp ...]

or a recursive one:
[[[vp pp] pp] pp]

the problem for the grammarian writing a compositional semantic rule for sen-
tences like this is:

(i) where the verb meaning is encountered, we do not know whether
there is an explicit agent phrase

(ii) if there is no agent, we need to put in an existential quantifier
of some sort (‘something’).

(iii) if there is an agent phrase, we need to put in the meaning of
the NP concerned in subject position

(iv) if there is an agent phrase, it may come at any distance from the
verb: in particular, we cannot be guaranteed that it will be either
the lowest of the highest of the VP modifiers in such sentences. (If
we could, then the problem could be solved either at the lowest VP
level, or at the point where the the VP is incorporated into the S).

We can formulate this generalisation in terms of defaults: the default subject
for a passive is ‘something’, unless an explicit agent is present, in which case it
is that agent. We can encode this analysis literally in terms of threading. The
basic idea is that we thread an ‘agent=(In,Out)’ feature throughout the VP. On
the passive verb itself, the features will look like this:

v:{lf=see(Subj,Obj),agent=(Subj,something),subj=Obj,...}
The surface subject is the semantic object (passed down via the feature ‘subj’.
The semantic subject is the value of the ‘In’ part of the ‘agent’ feature. This
feature sends the default value ‘something’ as the ‘Out’ value. We arrange things
so that this value is threaded throughout the VP and returns as the value of
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the ‘In’ part if no agent phrase is present. In other words, any PP which is not
an agent phrase simply threads the value of this feature unchanged. If an agent
phrase is present, the logical form of the NP in it replaces the ‘something’ and
becomes the ‘Out’ value. The topmost VP, which is a constituent of the S, will
unify the ‘In’ and ‘Out’ values so that either the default agent meaning, or an
actual agent meaning is therefore transmitted eventually back to the verb. (If
we require the ‘In’ value of the agent phrase to be the default value for an agent
i.e. a meaning like ‘something’, then this threading analysis has the incidental
advantage that only one agent phrase can be present.)

Some schematic rules to achieve this might be:

s:{lf=Vsem} ==> [np:{lf=S}, vp:{lf=Vsem,subj=S,agent=(A,A)}]

The sentence semantics is taken from VP. The NP subj meaning is sent down to
the head V to be put in its first argument position. The Agent thread is passed
on by unifying In and Out values.

vp:{lf=PPsem,subj=S,agent=(In,N2)}
==>

[vp:{lf=Vsem,subj=S,agent=(In,N1)},
pp:{agent=(N1,N2),lf=PPsem,vlf=Vsem}]

The mother VP meaning is taken from the PP, which will simply conjoin its
own meaning to that of the daughter VP if the PP is a modifier. If it is an agent
it will pass up the daughter VP meaning. PP meanings are functions from VP
meanings to VP meanings (or more generally, from predicates to predicates).

pp:{agent=(A,A),lf=and(Vsem,...), vlf=Vsem}
==>
[p:{}, np:{}]

Nonagentive PP conjoins its meaning to that of the VP, and passes the agent
thread unchanged.

pp:{agent=(something,NPsem),lf=Vsem, vlf=Vsem}
==>

[p:{}, np:{lf=NPsem}]

An agentive PP replaces the ‘default’ agent value with that of the agentive NP
and passes up the daughter VP meaning.

vp:{lf=Vsem,subj=S,agent=(In,something)}
==>
[v_be:{}, v_passive:{lf=Vsem, subj=In,obj=S}]

This rule introduces a passive form of V as complement to ‘be’, and sends up
the default agent meaning.

I described this technique as expressing a limited notion of default. There
are several linguistic concepts which seem amenable to an analysis in terms of
such a technique. A notable example might be the LFG concepts of functional
completeness and coherence. In all implementations of LFG parsers that I am
aware of, such checks are built into the parsing algorithm. However, it should
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instead be possible to achieve the same effect by compiling the unification part
of an LFG grammar in such a way that completeness and coherence are checked
via unifiability of two features: one going ‘up’, saying what a verb is looking
for by way of arguments, and one coming ‘down’ saying what has actually been
found.

6.1 Implementation

The easiest way to implement this use of threading is by defining and using
macros such as those given earlier for illustration. Some implementations (e.g.
[15]) build threading into the grammar compiler directly, but this can lead to
inefficiency if features are threaded where they are never used.

7 Threading and Linear Precedence

Threading can also be used as an efficient way of encoding linear precedence
constraints. This has been most recently illustrated within the HPSG formalism
by [11]. Given a set of some partial ordering constraints and a domain within
which they are to be enforced, the implementation of this as threading proceeds
as follows.

Firstly, given a set of constraints of the form a < c, b < d, etc., where each
of a, b, c, d is some kind of category description, then add to each instance
of the category that can appear within the relevant domains some extra features
encoding what is not permitted to appear to the left or right on each category
within that domain. How this is done depends entirely on what features and
categories are involved: we could use boolean combinations of atomic values,
category valued features, or, as in the example, below, a pair of term-valued
features, ‘left’ and ‘right’.

Secondly, for each relevant rule introducing these categories in the given do-
mains, we need to identify among the daughters some kind of head-complement
or governor-governed relation. Exactly what this is does not matter: if there
is no intuitively available notion it can be decided on an ad-hoc basis. The
purpose of this division is simply to identify one daughter whose responsibility
it is to enforce ordering relations among its sisters and to transmit constraints
on ordering elsewhere within the domain, both downwards to relevant subcon-
stituents, and upwards to constituents containing this one but still within the
domain within which the ordering must be enforced. On each relevant rule we
need a feature on the mother and the distinguished daughter, here called ‘store’,
following the terminology of [11], and threading features, ‘in’ and ‘out’ or their
equivalent, on the relevant sister constituents.

To illustrate the technique in the simplest possible form, here is a small
grammar for an artificial language. The language consists of any sequence of
four ys from the set {a,b,c,d} within a constituent labelled x, provided that
the LP constraints a < c, b < d are observed.
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First we encode the categories in question with the LP constraints in terms of
what can precede and follow them. We represent this as a tuple, with a position
for each of the relevant categories: (a,b,c,d). The feature ‘left’ encodes what
can precede, and ‘right’ what may follow a category. If a member of the tuple
cannot precede or follow the current category we put a ‘no’ in that position of
the tuple, otherwise we leave it uninstantiated.

Next we thread a similar tuple through each category to record which cat-
egory it is. Thus the position in the tuple for a ‘b’ must have a ‘b’ in that
position in the ‘out’ value. All the other positions are simply linked by shared
variables.

/* lexical entries: LP = a < c, b < d */

y:{lex=a,in=(_,B,C,D),out=(a,B,C,D),left=(_,_,no,_)}
y:{lex=b,in=(A,_,C,D),out=(A,b,C,D),left=(_,_,_,no)}
y:{lex=c,in=(A,B,_,D),out=(A,B,c,D),right=(no,_,_,_)}
y:{lex=d,in=(A,B,C,_),out=(A,B,C,d),right=(_,no,_,_)}

/* rules: */

sigma:{} ==> [x:{}]

This rule just says that an x is a valid parse.

x:{store=S} ==> [y:{out=S}]

An x can consist of just a y. The store of the x is the ‘out’ value of the y. In
the other rules, x acts as the distinguished daughter, and y as the subsidiary
daughter.

x:{store=A} ==>
[y:{out=A,in=B,right=B}, x:{store=B}]

When the distinguished daughter follows the subsidiary, the ‘right’ value of the
subsidiary must be unified with its ‘in’ value and the ‘store’ of the distinguished.
This means that any y categories which follow this one will be recorded in the
store of the x daughter, and will have to be consistent with the constraints
recorded on this y daughter’s ‘right’ feature.

The ‘out’ value of the subsidiary daughter is passed to the mother category’s
store. Thus the mother contains a record both of the distinguished daughter’s
store, and what has been added to it by the subsidiary daughter.

x:{store=A} ==>
[x:{store=B}, y:{out=A,in=B,left=B}]

This rule illustrates what to do when the distinguished daughter precedes the
subsidiary one. Otherwise, things are exactly analogous. Of course, if both of
these rules are used, there will be a lot of ambiguity in these ‘sentences’: they
are just to illustrate the different possibilities.
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7.1 Implementation

This approach to partial ordering can be implemented by requiring the gram-
marian to make ‘linear precedence’ declarations encoding the partial orderings.
(If grammars obey the ‘Exhaustive Constant Partial Ordering’ property ([12],
p49) one global statement will be sufficient). Then, for each domain, the rele-
vant rules have to be annotated with an indication of the daughter that is to be
treated as the distinguished one.

We define (for each domain) five features (earlier called ‘store’, ‘left’, ‘right’,
‘in’, and ‘out’) whose values will be tuples of length N, where there are N dif-
ferent categories figuring in the partial order declaration. The members of the
tuple will be categories, each associated with a fixed position, or a ‘negative’
element (here represented as ‘no’) which will not unify with any of these cat-
egories. Intuitively, ‘left’ and ‘right’ encode what can precede or follow the
category they appear on; ‘in’ and ‘out’ encode what actually does precede or
follow; and ‘store’ encodes the information to be ‘passed up’ the tree.

Now when compiling the grammar (and lexicon), for each category figuring
in a linear precedence statement Ca < Cb, do the following:
1. add to Ca the feature specification

left=(...,no,...)
where ‘no’ is in the position associated with Cb and all other positions have an
anonymous variable;
2. add to Cb the feature specification

right=(...,no,...)
where ‘no’ is in the position associated with Ca and all other positions have an
anonymous variable;
3. add to Ca/b the feature specifications

in = (X1,..., ,...,Xn)
out= (X1,...,Ca/b,...,Xn) where ‘ ’ and Ca/b are in the positions associated

with Ca/b and the other positions in these two features are linked by shared
variables X1...Xn as indicated.

Finally, for each annotated rule with distinguished daughter D, mother M,
and subsidiary daughter S:

1. put ‘store=X’ on M and ‘out=X’ on S
2. put ‘store=Y’ on D
3. if D < S put ‘in=Y,left=Y’ on S; if S < D put ‘in=Y,right=Y’ on S.
Macros, perhaps automatically generated by the compiler in response to the

declaration, can be used to effect these feature constraints economically.

8 Threading and set valued features

The threading technique can also be used to implement some of the effect of set
valued features. We represent a set as a tuple of values, e.g. (a,b,c,d). Each
member of the set encodes its presence by changes to this tuple on an ‘in’ and
‘out’ feature: thus ‘a’ would have (no,B,C,D) as its ‘in’ value and (a,B,C,D)
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as its ‘out’ value. Then on the category which represents the domain within
which all the members of the set are to be found, we give (no,no,no,no) as the
value of ‘in’, and (a,b,c,d) as the value of ‘out’. These values will be satisfied
if and only if all the members of the set have been encountered, in any order.

Here is a small grammar which implements a kind of set-valued subcategori-
sation analysis. The language consists of sequences of a ‘verb’ (‘vabcd’, ‘vbcd’,
or ‘vbd’) followed by the things it is subcategorised for, in any order: e.g.

vabcd a b c d
vabcd b a d c, etc.
*vabcd a b c % d missing
*vabcd a b d c d % too many ds

Here are the categories (for simplicity regarded as lexical) which can appear on
subcat lists:

y:{lex=a,in=(no,B,C,D),out=(a,B,C,D)}
y:{lex=b,in=(A,no,C,D),out=(A,b,C,D)}
y:{lex=c,in=(A,B,no,D),out=(A,B,c,D)}
y:{lex=d,in=(A,B,C,no),out=(A,B,C,d)}

Here are the ‘verbs’,

x:{lex=vabcd,in=(a,b,c,d),out=(no,no,no,no)}
x:{lex=vbcd,in=(no,b,c,d),out=(no,no,no,no)}
x:{lex=vbd,in=(no,b,no,d),out=(no,no,no,no)}

Notice that by putting the negative element in the relevant position on both the
‘in’ and ‘out’ tuple we require that that member of the set should not be found
at all.

And now the rules:

sigma:{} ==>
[x:{in=A,out=A}]

This rule unifies the ‘in’ and ‘out’ values to make sure that what was found
was what was being sought. ‘x’ might typically be a VP, for example, and this
identification of feature values would take place on the s==>[np,vp] rule.

x:{in=In,out=Out} ==>
[x:{in=In,out=Nxt},y:{in=Nxt,out=Out}]

This is a like a subcat schema which combines an x-projection with a y-complement,
threading the appropriate information.

This simple technique can be used to implement many of the kinds of analysis
that might be thought to require set valued features, although at a small cost of
adding some extra features and values to a grammar. It can also be combined
with the preceding treatment of linear precedence to enforce a partial ordering
on members of the set.

Set valued features are often used in conjunction with a membership test. It
is usually possible to achieve the same effect by inventing a new bool_comb_value
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feature and using disjunction. For example, if our original features involved
sets whose possible members were {a b c d e f} and had feature specifica-
tions of the form f=X, where member(X,{b c d e}), then the same effect can
be achieved by declaring f to be a bool_comb_value feature with values in
{a,b,c,d,e,f} and writing f=(b;c;d;e). In the case that the members of the
set in question are categories, then some new atomic feature values have to be
invented to represent these, as is often necessary in other contexts also (e.g.
[11]).

9 Reducing lexical disjunction

This section describes two techniques for eliminating multiple lexical entries for
the same word. Having multiple lexical entries for the same word is a form of
disjunction, and all forms of disjunction entail increased non-determinism lead-
ing to inefficiency in analysis. It is therefore a good idea to eliminate multiple
entries as far as is possible.

9.1 Selectors

A frequently occurring case is the following: a particular word, W, has multiple
possible realisations of some property, P1...Pn. Which particular realisation is
found will depend on the context: in context C1 we find P1, and, more generally,
in Ci we will find Pi.

A simple though rather artificial illustration of this phenomenon might be a
treatment of the semantics of prepositions which regarded them as ambiguous
between different senses, depending on which type of NP they combined with.
For example, we might regard ‘for’ as having these meanings:

‘for benefactive’ with animate NP: ‘The book is for John’
‘for time period’ with temporal NPs: ‘He stayed for an hour’
‘for directional’ with locative NPs: ‘They changed direction for the coast’

Here the Pi are the different meanings, and the Ci are the different types of NP.
The simplest way to achieve the desired result is to have multiple entries

for the preposition, one for each sense. We then treat the correlation of the
properties with the contexts as a kind of agreement, between some feature on
the preposition and one on the NP. Some sample lexical entries, and a rule for
combining a P and an NP to make a PP might look like this:

p:{lex=for, sem=for_benefactive, type=animate}
p:{lex=for, sem=for_time_period, type=temporal}
p:{lex=for, sem=for_directional, type=locative}

pp:{sem=lambda(X,[S,X,NP])} ==> [p:{sem=S,type=T},np:{type=T,sem=NP}]

Unfortunately, such a treatment can lead to large numbers of lexical entries
which, especially if they are phrasal heads, as in this case, can each generate a
separate parsing hypothesis for any occurrence of ‘for’ in the input.
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A better treatment can be obtained by using the fact that it is the NP that
determines the P semantics, and encoding this dependency directly. What we
need to do is to make the NP select the appropriate prepositional semantics,
representing all the choices within a single lexical entry. We can do this in the
following way:
1. Encode the set of possible semantic values for the preposition as a list or a
tuple, where each position in the tuple is going to correspond systematically to
a particular type of NP.

p:{lex=for,semvalues=(for_benefactive,for_time_period...) ...}

2. Use the original ‘sem’ feature to represent the semantic value that will be
chosen when the P is combined with an NP:

p:{lex=for,sem=Chosen,
semvalues=(for_benefactive,for_time_period,for_directional) ...

3. Associate with each different type of NP and other relevant categories a
‘selector’ feature whose value will pick the appropriate member of the tuple on
the P. Some illustrative rules and entries are:

np:{type=T,selector=S,...} ==> [det:{...},n:{type=T,selector=S,...}]

n:{lex=john,type=animate,selector=(X,(X,_,_))}
n:{lex=week,type=temporal,selector=(X,(_,X,_))}
n:{lex=coast,type=locative,selector=(X,(_,_,X))}

4. Now on the rule that combines a P and an NP to form a PP, use the selector
feature to choose the appropriate semantics for the P:

pp:{sem=lambda(X,[Chosen,X,NP])} ==>
[p:{sem=Chosen,semvalues=Tuple},
np:{sem=NP,selector=(Chosen,Tuple)}]

The value of the ‘sem’ feature on the P will be the first, second, or third member
of Tuple, depending on the type of the NP. This will arise because the selector on
the NP will unify the ‘Chosen’ variable with the position on the Tuple identified
by its shared variable, X.

This simple device enables us to have a single entry for each preposition,
while still allowing for it to have multiple senses conditional upon the type of
NP it combines with. The technique has a wide variety of applications and can
be astonishingly effective in reducing the number of explicit alternative entries
or rules that need to be written, at the cost of a few extra features that cost
nothing in terms of processing time.

9.2 Implementation

As with many of the techniques described here, implementation by way of a
compiled out notation can be complex if the features involved interact with
other aspects of linguistic description. If we assume that they do not (which
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can usually be enforced by defining a new ‘shadow’ feature which simply dupli-
cates the information where it is needed) then an attractive and clean way of
implementing this technique is as a ‘conditional constraint’ on feature values.

There are various notations one could employ: one possibility for the above
example is the following, where ‘psem’ and ‘type’ are assumed not to figure
in any other such statement, and where their total range of values is given by
the conditionals (such restrictions could be relaxed to some extent given agreed
conventions or extra declarations):

pp:{sem=lambda(X,[PSem,X,NP])} ==>
[p:{psem=PSem},
np:{sem=NP,type=Type)}]

where
if Type = animate then PSem = for_benefactive
if Type = temporal then PSem = for_time_period
if Type = locative then PSem = for_directional

Now the compiler has enough information to be able to proceed automatically:
1. construct a ‘values’ feature whose value will be a tuple of the values of

‘psem’ in a canonical order. Put this feature specification on the P category.
More generally, put this specification on that category of the rule introducing
the conditional constraints which contains the feature specification figuring in
the consequents of the conditional constraints.

2. construct a ‘selector’ feature whose values will be of the form (X,(...,X,...))
where the second member of the tuple is a tuple of the same length as that in
the ‘values’ feature. On each category where a ‘type’ feature specification is
present, add the selector feature also. If the ‘type’ feature is instantiated, then
the selector feature will be of the form indicated by the conditional constraint:
that is, the X in the second component of the tuple will be in the position
corresponding to the value of the ‘psem’ feature given by the conditional, and
all other positions will be anonymous variables. If the ‘type’ feature is sim-
ply passed from one category to another, as it is for example on the NP rule
given earlier, then the selector feature must likewise be coindexed on the two
categories.

3. On the categories of the rule introducing the constraint, coindex the
feature specifications as follows:

values = Values
selector = (Selected,Values)
psem = Selected

Again, macros can be used to make it possible to express all this economically.

9.3 Subcategorisation
Perhaps the most obvious source of lexical disjunction is subcategorisation.
Most verbs can appear with several different types of complement, and some
verbs appear with many. For example, the verb ‘send’ in English can occur in
at least the following configurations (there is some dialect variation here, but
please bear with me for the sake of the example):
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John sent a letter.
John sent a letter to Mary.
John sent Mary a letter.
John sent out a letter.
John sent a letter out.
John sent out a letter to Mary.
John sent a letter out to Mary
John sent Mary out a letter.
John sent out Mary a letter.

There are nine distinct configurations here. Let us ignore the fact that some
alternations might be capturable by rule, and let us also ignore the fact that
different semantic properties might be involved. Given this, it would be nice to
be able to have a single entry for the verb ‘send’ which encapsulated all these
alternatives, rather than listing them all as separate lexical entries, as is done
in all grammatical formalisms I am familiar with (except of course those that
allow explicit disjunction).

In a GPSG-like approach to subcategorisation [12], each distinct type of
complement has a separate rule. Thus we will have rules, schematically, like:

vp -> v[1] np
vp -> v[2] np pp
vp -> v[3] np np
etc.

Using the technique described earlier for encoding boolean combinations of
feature values, we could achieve the desired single entry for ‘send’ very simply.
Rather than use numbers to represent the different subcategorisation possibili-
ties, we will have an atom with some mnemonic content: {np,np_pp,np_np,np_pnp, ....}.
Then we define a feature that can take as values boolean combinations from this
set, subcat, and write:

v:{lex=send,subcat=(np;np_pp;np_np;.....)....}

The various VP rules are recast using the mnemonic symbols:

vp:{} ==> [v:{subcat=np},np:{}]
vp:{} ==> [v:{subcat=np_pp},np:{},pp:{}]
etc.

Now one entry for each verb will subsume all the possible subcategorisation
combinations for it.

This technique certainly reduces the number of items in the lexicon. Unfor-
tunately, it does not necessarily reduce the amount of non-determinism during
analysis. Although there is only a single entry for ‘send’, it will, on either a
left-corner or head-driven approach to parsing, initiate parsing hypotheses for
each distinct VP rule whose head unifies with it. That will be exactly the same
number of parsing hypotheses as we would have had with the original GPSG
treatment, and so there is no obvious direct advantage here.

However, this technique shouldn’t be scorned, for in other cases, there will be
some advantage gained. For example, in derivational morphology the presence
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of multiple entries for verbs like ‘send’ can cause unwanted ambiguity. The word
‘sender’, for example, would be nine ways ambiguous, given a rule like:

n:{} ==> [v:{}, affix:{lex=er}]

With just one entry for ‘send’ this problem goes away. (Note that one cannot
get round the ambiguity problem by just restricting the agent nominalisation
rule to one or two types of subcategorisation: many different types of verbal
complement may be involved: ‘sleeper’, ‘designer’, ‘thinker’, etc.)

As we have seen, the GPSG treatment of subcategorisation involves many
VP rules. A currently more favoured approach is to use a single VP rule or
schema or subcat principle, and a list of categories subcategorised for by a verb:

vp:{subcat=Rest} ==> [vp:{subcat=[Next|Rest]},Next]

vp:{lex=send,subcat=[{cat=np},{cat=p},{cat=pp}]}
etc.

Multiple applications of this schema use up subcategorised elements one at a
time, with a requirement that when the VP is combined with a subject to form
a sentence the subcat list is empty (or contains just one category unifiable with
the subject, depending on the approach taken). The tree for a VP will look like:

vp
/ \
vp pp

/ \
vp p
/ \

vp np

This approach requires multiple entries for verbs, but has the advantage that it
eliminates the need for different VP rules for each type of complement.

It would be nice to find some way of combining this single-schema approach
with a single subcategorisation entry subsuming multiple possibilities. This
would eliminate non-determinism completely even for verbs capable of appear-
ing with many different types of complement. Although the details are rather
complex, it turns out that it is possible to achieve this by combining the boolean
encoding technique in conjunction with the use of ‘selectors’ as previously de-
scribed. Unfortunately, there are some limitations on the amount of subcat-
egorisation information that can be expressed by the resulting technique: in
particular, categories have to be represented by atoms, which is an inconvenient
limitation. Nevertheless, for many purposes where efficiency of processing is at
a premium, it could be worth living with this limitation.

First of all, consider how to represent the various subcategorisation possibil-
ities of a verb like ‘send’, using boolean combinations of atoms. (I have omitted
as many parentheses as possible in the interests of readability. Assume that ;
takes precedence over & unless parentheses indicate otherwise.) It might seem
that something like:
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{cat=vp,lex=send,
subcat=(np;

np & pp;
np & np;
p & np;
np & p;
p & np & pp;
np & p & pp;
np & p & np;
p & np & np)

}

would accurately describe the possibilities. (This boolean expression can of
course be written more compactly by using a few more disjunctions).

The VP schema that we need will then have to be of the following form. Note
that since we need to be able to generalise over categories, we are reverting to
the basic (‘untyped’) category notation.

schema:
{cat=vp,subcat=S} ==> [{cat=vp,subcat=S]},{cat=S}]

sample entry:
{cat=vp,lex=send,subcat=(np; np & pp; np & np; ...)}

(Note that this makes ‘cat’ a boolean combination feature. Given the important
of the ‘cat’ feature for efficient indexing and lookup this might be, for practical
purposes, unwise. A better implementation would use a new feature).

However, a moment’s reflection should reveal that this first attempt will not
give the correct results, for two reasons. Firstly, the various different orderings
are not properly encoded here (because p & q is logically equivalent to q & p).
Secondly, there is no encoding of the requirement to find the correct number
of subcategorised entities (because p & p is logically equivalent to p). Thus
nothing would prevent us from successfully analysing a sentence like ‘John sent
Mary out Mary a letter to Mary a letter’, with too many complements, or ‘John
sent out’, with too few.

Let us tackle the ordering problem first. We can solve this by adding new
symbols representing the product of the set of relevant categories np,p,pp and
the set of positions 1,2,3 after the verb in which they occur. We then define a
boolean feature value type for the feature ‘subcat’ as follows:

{np1,p1,pp1}*{np2,p2,pp2}*{np3,p3,pp3}

We encode the subcategorisation possibilities in the obvious way, using these new
symbols. (This time I have used disjunction to give a more compact encoding.)

{lex=send,cat=vp,
subcat=(np1;

np1 & (pp2 ; np2) ;
p1 & np2;
np1 & p2;
np1 & p2 & (pp3 ; np3);
p1 & np2 & (pp3 ; np3))

}
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We will define a new feature that appears on every category that can be sub-
categorised for, say ‘scat’, whose values are tuples. An NP, for example, will
have scat=(np1,np2,np3). Notice that the components of the tuple are values
that can appear in boolean combinations, for they must be of the same type as
the subcat feature. In order to pick the correct value for the position in ques-
tion we associate with the verb a feature whose value is a list of the constructs
called ‘selectors’ that we used earlier. Each selector picks out a position in the
complement corresponding to the position of the selector in the list: the first
selector on the list will pick out np1 for an NP, pp1 for a PP; the second will
pick out np2 for an NP, pp2 for a PP, and so on. The feature and value will be
of the form: selectors=[(A,(A,_,_)),(B,(_,B,_)),(C,(_,_,C))].

The VP rule schema now uses the current selector to choose the appropriate
symbol from the complement it is combining with. It pops selectors off the list
each time it applies so that the correct positional encoding is available for the
next application.

{cat=vp,subcat=S,selectors=Rest} ==>
[{cat=vp,subcat=S,selectors=[(S,X)|Rest]},
{cat=_,scat=X}]

{cat=np,scat=(np1,np2,np3),...}
{cat=pp,scat=(pp1,pp2,pp3),...}
etc.
{lex=send,cat=vp,subcat=(np1; np1 & pp2; np1 & np2; etc.),

selectors=[(A,(A,_,_)),(B,(_,B,_)),(C,(_,_,C))]}

Since the selector list guarantees that the symbols np1 etc. are only found in
the correct position after the verb, this solves the ordering problem. Although
np1 & np2 is logically equivalent to np2 & np1, the selector list will not allow
the second ordering to be found, because this would involve an attempt to unify
np1 with np2. The use of selectors to encode position also solves some cases
of the problem that our first attempt suffered from, of allowing more than the
correct number of complements. The selector list will not allow more than three
complements to ‘send’ to be found. Unfortunately, the treatment so far will still
allow fewer than three complements to be found even where another is needed
for the sequence to be grammatical. For example, the sentence ‘John sent out’
will be parsed successfully (as indeed will ‘John sent’) because no conflict with
any of the subcategorisation possibilities has been encountered. The way the
boolean encoding works has to allow for elements to be conjoined one at a time,
but it cannot require that all the elements are present simultaneously, for this
very reason.

The way to solve this problem is to expand our boolean combination of
subcat feature values to include some special ‘finish’ symbols.

{np1,p1,pp1}*{np2,p2,pp2}*{np3,p3,pp3}*{f1,f2,f3,f4}

There is one symbol for each possible subcat position, plus an extra one to mark
the end of the list. We have to extend our various selectors and the lists they
appear in to accommodate this fourth position.
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The intuitive motivation behind this move is to regard the completion of a
subcat requirement as being signalled by a special ‘finish’ category. However,
that category need not actually be present: its marker can instead be intro-
duced by the rule that combines a completed VP with a subject to make a
sentence. (This is analogous with the treatment described earlier in which this
rule required a subcat list to be empty at this point).

To implement this analysis, we enter into the various subcategorisation pos-
sibilities the information about which position marks their completion:

{lex=send,cat=vp,
selectors=[(A,(A,_,_,_)), % each selector now has 4 positions

(B,(_,B,_,_)),
(C,(_,_,C,_)),
(D,(_,_,_,D))], % and there are 4 selectors in the list

subcat=(np1 & f2;
np1 & (pp2 ; np2) & f3;
p1 & np2 & f3;
np1 & p2 & f3;
np1 & p2 & (pp3 ; np3) & f4;
p1 & np2 & (pp3 ; np3) & f4)

}

An intransitive verb would of course just be subcat=f1.
Our VP rule schema is exactly as before. For the right results to be obtained,

however, we now need to assume the presence of some rule like the following to
‘close off’ the subcategorisation:

{cat=s} ==> [{cat=np},
{cat=vp,subcat=S,selectors=[(S,(f1,f2,f3,f4))|_]}]

This will add the finish marker of the appropriate position to the subcat value of
the VP. This unification will only succeed if the verb is subcategorised to finish at
that point, and we will not have reached this point unless all the other elements
subcategorised for have been found in the correct order. So, using selectors and
boolean combinations of feature values together we have developed an analysis
which completely eliminates disjunction and hence non-determinism. It will of
course generalise to any other area having the same structural properties.

9.4 Implementation

The general features of the implementation of this technique are as follows.
1. we need to know the subcategorised-for categories, the symbols which

will be used to identify them, and the maximum number that can occur in a
single verb-complement construction. This might conveniently be stated by a
declaration something like:

subcategorisation_feature(Name,Categories,Mnemonics,MaximumLength).
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This will allow us to automatically construct the ‘selector’ list. For a maximum
number of four, this will take the form:

[(A,(A,_,_,_)),(B,(_,B,_,_)),(C,(_,_,C,_)),(D,(_,_,_,D))]
The declaration will also allow us to work out the mnemonic values (np1,f1, etc)
needed for the ‘scat’ and ‘subcat’ features (types of bool_comb_value feature).
Rules or lexical entries that build a member of Categories must have the ‘scat’
feature added with tuple values like (np1,np2,np3) etc.

On lexical entries for subcategorisers, the ‘subcat’ value can be stated as a
simple list of possibilities:

subcat= [[np],
[np,pp],
etc.

or some convenient abbreviatory notation could be devised. These values should
then be compiled to boolean combinations of the corresponding mnemonic
atoms. The tuple-valued ‘selectors’ feature needs to be added to these entries
with the value already illustrated: this can be done automatically, given the
declaration.

2. The rule that encodes the combination of subcategoriser and subcat-
egorised has to be identified, and feature specifications of the following form
added:

{... subcat=S, selectors=Rest,...} ==>
[{(subcategoriser) subcat=S, selectors=[(S,X)|Rest]...},
{(subcategorised) cat=X}]

3. The rule that closes off the subcategorisation needs to have the relevant
‘selectors’ value added, as in the example above.

With suitable generation of macros by the compiler, our example might then
be written by the grammarian as:

% declaration:
subcategorisation_feature(subcat,[{cat=np},{cat=p},{cat=pp}],[np,p,pp],4).
% subcat schema rule:
{cat=vp, Mother} ==>

[{cat=vp, Subcategoriser]},
{Subcategorised}]

where
subcat_schema_macro(Mother,Subcategoriser,Subcategorised).

% rule terminating subcat:
{cat=s} ==> [{cat=np},

{cat=vp,CloseSubcat}]
where
subcat_close_macro(CloseSubcat).

% sample entries:
{lex=send,cat=vp,subcat=[[np], [np,pp], [np,np] etc.]}
{lex=give, cat=vp, subcat=[[np,np],[np,pp], etc.]}
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9.5 Limitations

As mentioned earlier, there are some limitations associated with this technique.
Because of the type of boolean mechanism we are using, we are restricted to
atomic symbols to represent the subcategorised-for elements. Putting the kind
of refined subcategorisation information that we often do using features is not
possible, or at least not possible without expanding the vocabulary of symbols
like ‘np1’, ‘pp2’, etc. to induce a finer partition among instances of the categories
in question. This is of course a serious limitation, especially for theories of
grammar that are largely lexically based. However, where all the categories
that figure in subcategorisation will have some of the same features (e.g. those
used for threading gaps) then these can be incorporated directly into, in our
case, the VP subcategorisation schema rule.

Another problem is that since we need to be able to generalise over whole
categories, we cannot as things stand use compilation into terms for feature
structures. One way round this is to change the VP schema so that comple-
ments are characterised not just by a variable but by an explicit new category,
say ‘xcomp’, with a bool_comb_value feature on it that can serve to identify
categories. We then introduce rules expanding ‘xcomp’ as the ‘real’ category
corresponding to that feature. This may in turn re-introduce some inefficiency,
since there will be an extra level of structure that is not linguistically motivated.

A final limitation, which is perhaps more theoretically defensible, is that
we are forced to be absolutely and strictly compositional in assembling the
semantics of verb phrases grouped under the same subcategorisation treatment.
Since we have only one entry for a verb, then any semantic differences that
are associated with variant subcategorisations will have to be built from the
complement constituents in a completely compositional way.

Alternatively, as is done in many large coverage systems for efficiency rea-
sons, syntactic and semantic analysis can be separated into consecutive stages.
This can have a further advantage in that now the same technique can be used
to eliminate disjunction for words where there is sense ambiguity but no syn-
tactic ambiguity. If different lexical entries are assigned to the content words
in the following sentence because they differ semantically but not syntactically,
then the sentence will have 16 parses (8 * 2 for the attachment ambiguity) to
be disambiguated.

They saw the ball near the bank.

(saw = see, or cut wood;
ball = round thing, or dance
bank = edge of river, or financial institution).

If sense selection is instead performed when syntactic processing is completed,
on the assumption that the words involved do not differ syntactically, then
there will only be 2 parses and 3 lexical disambiguation decisions. In general
we will only be dealing with the sum and not the product of the syntactic and
semantic ambiguity. Under such a processing regime the appropriate sense entry
for a verb on a particular subcategorisation can be simply and cheaply selected
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(since the complete complement will be there), and the benefits of the preceding
analysis for syntactic processing will be retained.
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[2] Aït-Kaci, Hassan, 1986, ’An al-
gebraic semantics approach to
the effective resolution of type
equations’, Theoretical Com-
puter Science, 45:293-351.
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