
Translucent Abstraction:
Safe Views through Invertible Programming

Meng Wang and Jeremy Gibbons
Computing Laboratory

Oxford University
Wolfson Building, Parks Road,

Oxford OX1 3QD, UK
{menw,jg}@comlab.ox.ac.uk

Kazutaka Matsuda
JSPS Research Fellow
University of Tokyo

Dept of Mathematical Informatics
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

kztk@ipl.t.u-tokyo.ac.jp

Zhenjiang Hu
GRACE Center

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo 101-8430, Japan
hu@nii.ac.jp

Abstract
Despite the distinctive advantages of pattern matching in program
understanding and reasoning, the tight coupling of interface and
implementation has hampered its wider acceptance. Since the first
proposal of views two decades ago, significant effort has been
invested in tackling this non-modularity; the obvious target has
been to decouple datatype implementations from separate inter-
faces used for pattern matching. However, having this decoupling
to coexist with soundness of reasoning has been a challenge. In-
spired by the development of invertible (bidirectional) program-
ming, we propose a design of views based on a right-invertible
language. The language is sufficiently expressive to program many
of the existing and some novel view applications, with simple and
sound reasoning properties: views can be manipulated as if they
were datatypes and equivalent programs with respect to reasoning
are guaranteed to exhibit identical operational behaviours.

1. Introduction
Algebraic datatypes and pattern matching are probably two of the
best loved features of functional programming languages, thanks to
their elegant and convenient syntax for both program development
and reasoning. Consider a simple example of encoding binary num-
bers as lists of digits.

data Bin = Zero | One
type Num = [Bin]

With pattern matching, we can concisely analyse and bind input
values in a function definition. For example, consider a function
that normalises binary numbers into their sparse representations (i.e
elides leading zeros). In this case, it is advantageous to position the
most significant bit as the head of the list.

type MSB = Num
sparse :: MSB→MSB
sparse [] = error "invalid number"

sparse [Zero] = [Zero]

[Copyright notice will appear here once ’preprint’ option is removed.]

sparse (One : num) = One : num
sparse (Zero : num) = sparse num

An equivalent definition without pattern matching is significantly
harder to read.

sparse :: MSB→MSB
sparse num = if nonempty num then

if zero (head num)
then if nonempty (tail num) then sparse num

else num
else num

else error "invalid number"

When it comes to equational reasoning, the benefit of pattern
matching becomes even more evident. For example, based on
the first definition of sparse, we can easily conduct the following
derivation.

sparse [Zero,One,Zero] = sparse [One,Zero] = [One,Zero]

Readers unconvinced of the benefits are encouraged to work out a
similar derivation with the non-pattern-matching definition above.

Given the distinct advantages, pattern matching is supported as
a standard feature in most modern functional languages. More re-
cently, it has started gaining recognition from the object-oriented
community [5, 16, 18] too, although not without opposition. The
predominant criticism is the breaking of abstraction and encapsula-
tion, fundamental pillars of modern software engineering. Function
definitions are tightly coupled to a particular implementation, in
this case binary numbers as lists: changes of the representation (for
example, using non-empty lists to prevent invalid numbers) have a
global effect.

In addition to the need to support evolution of data representa-
tion, it is often beneficial to allow multiple interfaces to the same
data. For sparse, we chose to position the most significant bit as the
head. For the function incr that increments a number, a list with the
least significant bit as the head is better.

type LSB = Num
incr :: LSB→ LSB
incr [One] = [Zero,One]
incr (Zero : num) = One : num
incr (One : num) = One : (incr num)

These problems of pattern matching have been recognised for two
decades, starting from Wadler’s proposal of views [24], addressing
the conflict between pattern matching and data abstraction; and is
still a hot research topic [4, 6, 7, 13, 14, 20–23]. The primary goal
of all these works is to provide a pattern matching facility for

1 June 3, 2009

abstract types, by which we mean algebraic datatypes with hidden
representations. (Do not confuse our concept of abstract types with
the well-known notion of abstract datatypes [15], which need not
have algebraic datatypes as implementations, and are necessarily
completely characterised by a fixed set of operations and their
derived properties.)

All these existing proposals successfully disconnect pattern
matching from datatype implementation, achieving a kind of ab-
straction. However, they throw the baby out with the bath water:
none of these proposals supports local understanding and reason-
ing. That is to say, one can no longer understand the semantics
of sparse nor derive any properties of it as we have done, just by
looking at its definition. This is clearly unsatisfactory; convenient
program understanding and equational reasoning, the main thrust
of pattern matching, is lost.

In this paper, we aim to tackle the longstanding problem of
equational reasoning with abstract types.

• We propose a variant of the view mechanism that supports
sound and easy equational reasoning with abstract types. The
same view constructors can be used both in patterns and in ex-
pressions, and can be manipulated as if they were datatype con-
structors. Two expressions proven equal by equational reason-
ing are guaranteed to exhibit an identical operational behaviour
in any programming context.

• We design a small yet powerful combinator-based language
that automatically generates a total right-inverse of the function
being defined. As a result, designers of views are only required
to write and maintain one of the two conversion functions.
This language is independently useful in the broader area of
bidirectional programming [3, 9, 11, 17, 19].

In the rest of the paper, we firstly review the related literature
on views (Section 2) before presenting our proposal (Section 3) to
tackle the limitations of existing approaches. We then introduce the
right-inverse language (Section 4) on which our design is based,
followed by an evaluation of our approach (Section 5). We discuss
other related work in the field of invertible (bidirectional) languages
(Section 6), before concluding in Section 7.

2. Previous Work
Wadler’s views [24] provide different ways of viewing data than
their actual implementations. With a pair of conversion functions,
data can be converted to and from a view.

Consider the forward and backward representations of lists:

data List a = Nil | Cons a (List a)
view List a = Lin | Snoc (List a) a

to Nil = Lin
to (Cons x Nil) = Snoc Nil x
to (Cons x (Snoc xs y)) = Snoc (Cons x xs) y
from Lin = Nil
from (Snoc Nil x) = Cons x Nil
from (Snoc (Cons x xs) y) = Cons x (Snoc xs y)

The view clause introduces two new constructors, namely Lin and
Snoc, which may appear in both terms and patterns. The first ar-
gument to the view construction Snoc refers to the datatype List a,
so a snoclist actually has a conslist as its child. The to and from
clauses (highlighted with a special font as to and from throughout
the paper) are similar to function definitions. The to clause converts
a conslist value to a snoclist value, and is used when Lin or Snoc
appear as the outermost constructor in a pattern on the left-hand
side of an equation. Conversely, the from clause converts a snoclist
into a conslist, when Lin or Snoc appear in an expression. Note that
we are already making use of views in the definition above; for ex-

ample, Snoc appears on the left-hand side of the third to clause,
matching against which will trigger a recursive invocation of to.

Functions can now pattern match on and construct values in a
view of the original datatype.

last (Snoc xs x) = x
rotLeft (Cons x xs) = Snoc xs x
rotRight (Snoc xs x) = Cons x xs
rev Nil = Lin
rev (Cons x xs) = Snoc (rev xs) x

Upon invocation, an argument is converted into the view by the
to function; after completion of the computation, the result is con-
verted back to the underlying datatype representation.

This semantics can be elaborated by a straightforward transla-
tion into ordinary Haskell. First of all, view declarations are trans-
lated into data declarations.

data Snoc a = Lin | Snoc (List a) a

Note that the child of Snoc refers to the underlying datatype: view
data is typically heterogeneous. Now the only task is to insert the
conversion functions into the appropriate places in the program.

last xs = case to xs of Snoc xs x→ x
rotRight xs = case to xs of Snoc xs x→ Cons x xs
rotLeft xs = case xs of Cons x xs→ from (Snoc xs x)
rev xs = case xs of

Nil → from Lin
(Cons x xs)→ from (Snoc (rev xs) x)

The design of views aims at a kind of abstraction whereby pro-
grammers program to the views, which are decoupled from the ac-
tual representations; yet they may expect to be able to reason about
their programs correctly, supported by the underlying representa-
tions. For example, we can evaluate an expression:

last (Cons 1 (Cons 2 Nil))
≡ {Cons x Nil = Snoc Nil x}

last (Cons 1 (Snoc Nil 2))
≡ {Cons x (Snoc xs y) = Snoc (Cons x xs) y}

last (Snoc (Cons 1 Nil) 2)
≡ {definition of last }

2

or calculate with functions:

rotRight (rotLeft (Cons x xs))
≡ {definition of rotLeft }

rotRight (Snoc xs x)
≡ {definition of rotRight }

Cons x xs

This is a pretty picture, but it is flawed. Wadler expects a view type
to be isomorphic to its underlying datatype, and the pair of user-
defined total conversions between the values of the two types to
be each other’s inverses. Unfortunately, neither of these conditions
comes easily in practice. Indeed, the majority of views in reality
are not isomorphic to their datatypes: views are often abstractions
for simplified presentation, or enrichments with derived informa-
tion. As a matter of fact, out of Wadler’s seven examples [24],
only two of them faithfully follow the isomorphism requirement
between views and datatypes. The conversion functions are defined
by pattern matching and are recursive in general. There is no check
of their totality. Perhaps more difficult still, the condition that con-
versions are each other’s inverses is very subtle to enforce, even
when the view and datatype are isomorphic structures. A diversion
from it may result unexpected behaviour of programs making use
of views. Consider the join representation of lists.

2 June 3, 2009

view List a = Empty | Unit a | Join (List a) (List a)
to Nil = Empty
to (Cons x xs) = Join (Unit x) xs
from Empty = Nil
from (Unit x) = Cons x Nil
from (Join Nil xs) = from xs
from (Join (Unit x) ys) = Cons x ys
from (Join (Join xs ys) zs) = from (Join xs (Join ys zs))

Surprisingly, evaluating the expression

let Join Empty (Unit x) = Join Empty (Unit 1) in x

results in a pattern matching error! This seems bizarre on the view
level, and can only be explained by investigating the translated
code:

let Join Empty (Unit x) =
to (from (Join (from Empty) (from (Unit 1))))

in x

The joinlist expression Join Empty (Unit 1) is implicitly converted
to the conslist implementation Cons 1 Nil; when pattern-matched,
it is converted back to a joinlist representation Join (Unit 1) Empty,
which does not match the pattern.

‘Safe’ variants of views have been proposed many times [4,20].
To circumvent the problem of equational reasoning, one typically
restricts the use of view constructors to patterns, and does not al-
low them to appear on the right-hand side of a definition. As a re-
sult, expressions like Join Empty (Unit 1) become syntactically in-
valid. Instead, values are only constructed by ‘smart constructors’,
as in join empty (unit 1). Given the same conversion strategy, this
version of the program may produce identical result as the previ-
ous one; however, we cannot take for granted equalities such as
join empty (unit 1)≡ Join Empty (Unit 1), which are at the heart of
equational reasoning. Instead of the obvious

Join Empty (Unit 1)≡ Join Empty (Unit 1)

one has to work on the level of the translated code, and carry out
explicitly the non-trivial proof of

to (join empty (unit 1))≡ Join Empty (Unit 1)

In another words, perhaps ironically, safe equational reasoning of
views is achieved by prohibiting reasoning with views completely,
which defeats the purpose of having pattern matching in the first
place. Throughout this paper, we refer to the latter kind of explicit
low-level reasoning as on the datatype level, in contrast to reason-
ing on the view level which abstracts away the conversion details.

More recently, language designers have started looking into
more expressive pattern mechanisms. Active patterns [6, 21] and
many of their variants [7, 13, 14, 22, 23] go a step further, by
proposing languages that embed computational content into pattern
constructions. All the above proposals either explicitly recognize
the benefit of using constructors in expressions, or use examples
that involve construction of view values on the right-hand sides of
function definitions. Nevertheless, none of them are able to support
pattern constructors in expressions, due to the inability to reason
safely. Knowing that there is an absence of good solutions for
supporting constructors in expressions, some works focus only on
examples that are primarily data consumers. This escape is limited
and short lived. For example, in one motivating example in [6], a
non-linear pattern can be used to conveniently define the member
and delete functions for an implementation of sets based on the
list datatype. However, the same problem of equational reasoning
quickly arises on the third function, insert, that was defined.

3. Our Approach
Our proposed design of views follows the same spirit as Wadler’s,
with two important differences: (i) views can be abstractions or en-
richments of their underlying datatypes, and (ii) simple and sound
equational reasoning on the view level is supported, without the
need for any additional proof obligations.

Following the above two principles, our approach differs from
Wadler’s in a number of design details, which will be illustrated by
example.

3.1 First Example: FIFO Queue
Suppose we have an implementation of queue structures.

type Queue a = ([a], [a])

The second list of the pair, representing the latter part of a queue,
is reversed, so that enqueuing simply prefixes an element onto it.

emptyQ = ([], [])
enQ a (fq,bq) = (fq,a : bq)
deQ ([],bq) = (deQ (reverse bq, []))
deQ ((a : q),bq) = (q,bq)

Other than the standard queue operations, there are others that can
be conveniently defined based on this representation. For example,
reversing a queue is simply a matter of swapping the two lists.

revQ (fq,bq) = (bq, fq)

At the same time, this queue implementation is not ideal for opera-
tions such as printing or indexing, and prohibits us from inheriting
existing library functions on linear structures. Changing the imple-
mentation is not an option, since it incurs the cost of losing all ex-
isting code involving the queue structure. Instead, we make list a
view of the queue datatype, which doesn’t have to be isomorphic to
the underlying representation.

view Queue a @ List a = Nil | Cons a (List a)
to :: Queue a→ Queue a @ List a
to = app◦ (id× reverse)

Throughout this paper, we use the constructors (:) and [] to repre-
sent list datatype and Cons and Nil for the list view. We also use the
pseudo-type notation Queue a @List a to distinguish a queue value
in the List view from a queue value in the underlying datatype, de-
noted by Queue a. It is worth mentioning that there is not (yet) any
static system that checks the annotations; they are added for the
sake of presentation clarity. The user-defined function to converts
the datatype to the view, as discussed in detail in Section 4. Read-
ers may safely skip them for the time being. As an example, we can
now define a prioritisation function on the list view.

prioritise :: Ord a⇒ a→ Queue a @ List a→ Queue a @ List a
prioritise Nil = Nil
prioritise (Cons x xs) = insert x (prioritise xs)
insert :: Ord a⇒ a→ Queue a @ List a→ Queue a @ List a
insert y Nil = Cons y Nil
insert y (Cons x xs) = if y< x then Cons y (Cons x xs)

else Cons x (insert y xs)

Function prioritise is essentially a stable sort based on the ele-
ments’ weights.

In contrast to Wadler’s, our views are named, and the recursive
elements refer to the view structure instead of the datatype. Thus,
the above view definition is translated into

data List a = Nil | Cons a (List a)

instead of

data List a = Nil | Cons a ([a], [a])

3 June 3, 2009

This choice makes the definition of conversions closer to conven-
tional recursively defined functions and more readily lending them-
selves to the existing studies of program properties. The advantage
of our approach is the modular separation of interface (view) from
implementation (datatype). In the event where the implementation
is changed, no functions defined on the view will be recompiled.
Following the same spirit, in our design the underlying datatype is
hidden from the view user; if access is really needed, we can supply
an identity view to the datatype.

view Queue a @ Pair a = Pr ([a], [a])
to = pr

Since this view directly reuses an existing type ([a], [a]), we mark
it with a constructor, just like newtype in Haskell. The to func-
tion simply does the wrapping through a lower case construction
function, discussed in detail in Section 4.

In this setting, changes in datatypes only require the recompila-
tion of the to/from function pair and relinking them to the rest of
the program. To avoid namespace pollution, we treat to and from
as overloaded. Their behaviour should be clear from the context.
When necessary, we use subscripts to make the choice explicit.
Without special mention, when used together, we assume to and
from are the conversion functions for the same view.

The most fundamental difference between our view to Wadler’s
is that we don’t require user-defined from functions. Instead, they
are automatically generated from the definition of to functions,
which are the right inverses of the corresponding to functions—
that is, to◦ from≡ id for any finitely defined input. The technique
used to generate from functions is discussed in Section 4.

Now with the list view, we merrily inherit library functions on
lists. For example, we can cut a queue off after a certain number of
elements with take, update elements in a queue with map, remove
selectively with filter, and so on.

Translating the view declarations and functions defined on
views into Haskell follows from a rather straightforward scheme
similar to the one in [24]: all patterns are converted into case state-
ments that match with views produced by function to; and view
constructions on the right-hand side are converted back to the un-
derlying datatypes by from. Effectively, all the translated functions
and constructors take datatypes as inputs and produce datatypes as
outputs. Views are only constructed as intermediate structures.

First of all, view declarations are translated into data (or
newtype if appropriate) declarations.

data List a = Nil | Cons a (List a)
newtype Pair a = Pr ([a], [a])

The data constructors above construct view values and need to be
converted into the underlying datatypes. As a result, we introduce
a smart constructor for each of the constructors.

cNil :: Queue a
cNil = from Nil
cCons :: a→ Queue a→ Queue a
cCons a l = from (Cons a (to l))
cPr :: ([a], [a])→ Queue a
cPr p = from (Pr p)

Note that since the list value consumed by Cons is expected to
be in its underlying datatype, we need to convert it into the list
view. In cPr, a Pair is firstly constructed from the input pair before
being converted to the underlying datatype. We can now translate
functions making use of views.

emptyQ :: Queue a
emptyQ = cPr ([], [])
enQ :: a→ Queue a→ Queue a

enQ a q = case to q of Pr (fq,bq)→ cPr (fq,a : bq)
deQ :: Queue a→ Queue a
deQ q =

case to q of Pr ([],bq) → (deQ (cPr (reverse bq, [])))
Pr ((a : q),bq)→ cPr (q,bq)

revQ :: Queue a→ Queue a
revQ q = case to q of Pr (fq,bq)→ cPr (bq, fq)
prioritise :: Ord a⇒ a→ Queue a→ Queue a
prioritise q =

case to q of Nil→ cNil
(Cons x xs)→ let xs = from xs

in insert x (prioritise xs)
insert :: Ord a⇒ a→ Queue a→ Queue a
insert y q =

case to q of
Nil → cCons y cNil
(Cons x xs)→ let xs = from xs

in if y< x then cCons y (cCons x xs)
else cCons x (insert y xs)

Patterns on views are translated to case expressions, so that func-
tion to can be applied prior to pattern matching on the translated
datatypes. For recursive view datatypes, variable bindings to their
children are then converted back to the underlying datatypes for
use in function body. The view constructors in expressions are con-
verted to construction functions, produceing values in underlying
datatypes. Effectively, data flow in the form of underlying datatypes
and are only converted to view datatypes for pattern matching.

This straightforward translation aggressively inserts conversion
functions, which is suboptimal despite that inlining and fusion may
eliminate some of them. An optimised translation may choose to
not to insert the redundant conversions in the first place, which we
will look into towards the end of this section.

List library functions can be written as if List a were a datatype,
and specialised to deal with queue values. Since we know that the
library only makes use of a single view List a, but not Pair a,
adapting them can be simplified to precomposing with to and
postcomposing with from:

map :: (a→ b)→ Queue a→ Queue b
map = λf → from◦ (List.map f)◦ to

where List.map :: (a → b) → List a → List b is the original non-
specialised library function. To avoid ambiguity, in a single scope,
a view can be associated with only one underlying datatype.

Equational reasoning can be performed on the view level as if
views were datatypes. For example, we are able to conclude the
following.

revQ◦ revQ≡ λ(Pr (fq,bq))→ Pr (fq,bq)
(deQ◦ (enQ a)) emptyQ≡ emptyQ
map f ◦map g≡ map (f ◦g)
take 1 (Cons 1 (Cons 2 Nil))≡ Cons 1 Nil

The derivations of the above equalities are able to take full advan-
tage of pattern matching, which simplifies the calculation. We write
down each derivation step for the first equation above as follows;
the interested reader is referred to Appendix A for the other three.

(revQ◦ revQ) (Pr (fq,bq))
≡ { composition}

revQ (revQ (Pr (fq,bq)))
≡ {definition of revQ}

revQ (Pr (bq, fq))
≡ {definition of revQ}

(fq,bq)

4 June 3, 2009

We can prove the correctness of view level reasoning in our system
by reasoning on the datatype level, which is considerably more
complicated.

(revQ◦ revQ) (cPr (q,q′))
≡ { composition}

revQ (revQ (cPr (q,q′)))
≡ {definition of revQ}

revQ (case to (cPr (q,q′)) of Pr (fq,bq) → cPr (bq, fq))
≡ {definition of cPr }

revQ (case to (from (Pr (q,q′))) of Pr (fq,bq)
→ cPr (bq, fq))

≡ { composition}
revQ (case (to◦ from) (Pr (q,q′)) of Pr (fq,bq)

→ cPr (bq, fq))
≡ { to◦ from≡ id }

revQ (case Pr (q,q′) of Pr (fq,bq)→ cPr (bq, fq))
≡ { case}

revQ (cPr (q′,q))
≡ {definition of revQ}

case to (cPr (q′,q)) of Pr (fq,bq) → cPr (bq, fq)
≡ {definition of cPr }

case to (from (Pr (q′,q))) of Pr (fq,bq)→ cPr (bq, fq)
≡ { composition}

case (to◦ from) (Pr (q′,q)) of Pr (fq,bq)→ cPr (bq, fq)
≡ { to◦ from≡ id }

case Pr (q′,q) of Pr (fq,bq)→ cPr (bq, fq)
≡ { case}

cPr (q,q′)

The soundness of view level reasoning holds in general.

THEOREM 1 (Soundness of Reasoning). Given two view level ex-
pressions ev and ev′ and their translations on datatype level ed
and ed′. If ev≡ ev′ is derivable through equational reasoning, then
ed ≡ ed′ holds.

In an evaluation of the translated code, a to-call is always preceded
by a from-call because data only flow in the underlying datatypes:
any view value is firstly converted into the underlying datatype be-
fore being converted to a view value for pattern matching. Consider
an expression on view level of the form f v where f pattern match
on a certain view and v is a value. On datatype level, the evaluation
of f ′ v′, where f ′ and v′ are the translations of f and v respectively,
always involves applying function from to the view value v and
then applying function to prior to the application of f . If the equa-
tional reasoning of f v on view level ever proceeds, it necessarily
implies that v is in the same view as f ’s pattern, which give rise to
to ◦ from ≡ id. A very similar argument applies to view construc-
tors. As a result, for each successful step of view level equational
reasoning, the execution of to/from pair on the datatype level is
equal to the identity and can be eliminated, which validate the cor-
rectness of the reasoning on view level.

In all other works on abstract datatypes where there is no auto-
matic guarantee of the right-inverse property to◦ from≡ id, the re-
quired derivation blows up even more than the explicit proof above,
both in size and intricacy. This ability to support elegant reasoning
is one of the main thrusts of our proposal. It is clearly important in
promoting program comprehension.

We shall admit up front that, although sound, our system is
not complete for reasoning on the view level: such reasoning does
not transcend from one view to another in general. For example,
we cannot derive ([1,2], []) ≡ Cons 1 (Cons 2 Nil) or filter p ◦
revQ ≡ revQ ◦ filter p. This complies with the expected reasoning
behaviour; as on the view level, these two equations obviously do
not hold. Very similar to the case of abstract datatypes, when used

together, filter p now takes the result of revQ as a black box and the
behaviour of it can only be understood by considering explicit to
and from functions, as proposed in [4]. We will discuss reasoning
power in more detail in Section 5.

As mentioned briefly before, this naive translation tends to
insert an excess of conversions: in particular an argument to a
recursive call is converted into the underlying datatype and then
immediately converted back to the same view by the recursive call.
This is wasted effort, given that to ◦ from ≡ id. A simple but very
useful optimisation is to lift the conversion out of the recursion,
so that it is done only once for the function. For example, similar
to our treatment of library functions for lists, an optimised enQ
translation is to simply precompose to and postcompose from with
the original definition.

deQ = from◦deQ′ ◦ to

deQ′ ([],bq) = (deQ′ (reverse bq, []))
deQ′ ((a : q),bq) = (q,bq)

Similarly for value constructions

x = from (Cons 1 (Cons 2 Nil))

We can easily prove the equivalence of the translations by unfold-
ing the recursive call and removing the intermediate conversions
using to◦ from≡ id.

This optimisation is applicable when the consumption of the
result of a recursive call is in the same view as the result. Most
practical functions fall into this category, including those involving
more than one view in their definitions. For example, in the rev
function we saw in Section 1, the consumption of the recursive call
by constructor Snoc is in the same view produced by rev.

3.2 Second Example: Binary Numbers
Another advantage of our choice of naming views is the possibility
of having ‘semantic’ views that are not distinguishable by structure.
Recall the binary example given in the introduction, where both
views (most significant bit first and least significant bit first) share
the same structure and differ only in their semantics. In our system,
this can be implemented as follows:

view Num @ MSB = M [Bin]
to = m

view Num @ LSB = L [Bin]
to = l◦ reverse

We omit the obvious translations for space reasons.

3.3 Third Example: Sized Trees
Views are not restricted to be an abstraction of the underly-
ing datatype; additional information (usually derived from the
datatype) can be added to a view to make subsequent computa-
tion easier. Consider an internally labelled binary tree.

data Tree a = Leaf a | Fork (Tree a) (Tree a)

We can enrich the structure by adding size information.

view Tree a @ STree a = SLeaf a
| SFork Int (STree a) (STree a)

to :: Tree a→ Tree a @ STree a
to = fold (sleaf O (sfork ◦dupF getsize))

Now, retrieving the size of a tree becomes trivial.

size :: Tree a @ STree a→ Int
size (SLeaf) = 1
size (SFork s) = s

More interestingly, we can prune a search using the size informa-
tion.

5 June 3, 2009

index :: Int → Tree a @ STree a→ a
index i (SLeaf a) | i == 0 = a

| otherwise = error "out of bound"

index i (SFork s t1 t2) | i > s = error "out of bound"

| i > s1 = index (i− s1) t2
| otherwise = index i t1

where s1 = size t1

The effort of annotating trees with sizes pays off when we need to
perform repeated indexing of the same tree.

trail :: Int → Tree Int @ STree Int → Int
trail i t | i == 0 = 0

| otherwise = trail (index i t) t

Function trail jumps to the next position in a tree based on the
current leaf value and terminates successfully when the value is
0. The translation of the above code follows the same technique
discussed before.

size = size′ ◦ to

size′ (SLeaf) = 1
size′ (SFork s) = s
index i = index′ i◦ to

index′ i (SLeaf a) | i == 0 = a
| otherwise = error "out of bound"

index′ i (SFork s t1 t2) | i > s = error "out of bound"

| i > s1 = index′ (i− s1) t2
| otherwise = index′ i t1

where s1 = size′ t1
trail i = trail′ i◦ to

trail′ i t | i == 0 = 0
| otherwise = trail′ (index′ i t) t

From this translation, we can see clearly that, by the fusion law
from ◦ f ◦ to ◦ from ◦ g ◦ to ≡ from ◦ f ◦ g ◦ to, the conversions can
be pushed outside a chain of function compositions, as long as just a
single view is being used. As a result, instead of trying to fuse step
by step translated code with all conversions inserted, a compiler
can perform a straightforward view usage check and immediately
remove many intermediate conversions.

It is interesting to note that all the functions we have in the STree
view are consumers, which do not use any of the view constructors
in expressions. This is no coincidence: having derived information
provides convenience in consuming the data; but less so if it has
to be maintained explicitly. Indeed, direct construction of sized
trees are cumbersome and error-prone. In our design, a much better
way is to construct a binary tree in a different view and having the
viewing mechanism to derive the size automatically.

Since there is no view value constructions in expressions, a
from function is actually not needed here. Indeed, the semantic
connection between a tree and its size makes it tricky to derive
a total right-inverse. As a result, dupF, used in the definition of
to, is not included in the strictly total language RINV that will
be introduced shortly. Instead, we postpone a discussion of it to
Section 5.3 where non-surjective to functions are looked into.

4. The Right-Inverse Language
In this section, we show the right-inverse language in which the
to functions are defined. Note that in this section, we are working
on the datatype level: the to functions simply map one datatype to
another, and views play no part.

The syntax of the language is as below. (Non-terminals are
indicated in small capitals.)

Language RINV ::= CSTR | PRIM | COMB
Constructors CSTR ::=nil | cons | snoc
Primitives PRIM ::=app | id | assocr | assocl | swap
Combinators COMB ::= RINV ◦ RINV | fold RINV |

RINV O RINV | RINV× RINV

The language is similar in flavour to the pointfree style of program-
ming [2]. There is an extensible set of constructor functions that
grows with the introduction of new datatypes. We use lowercase
constructor functions as the uncurried versions of constructors. In
addition to the left-biased list constructor cons, we find its right-
biased counterpart snoc particularly useful; it can be defined in
Haskell as

snoc = λ(x,xs)→ append (xs (Cons x Nil))

The set of primitive functions is also extensible. It defines the
basic non-terminal building blocks of the language. Any surjective
functions can be defined as primitives in RINV; we present a small
but representative collection. As we will show in the sequel, with
just the handful of primitives shown above we can define many
interesting examples of views. In RINV, all primitive functions are
uncurried; this fits better with the invertible framework, where a
clear distinction between input and output is required. Functions
swap, assocl, and assocr distribute the components of an input
pair. Function id is the identity operation, while function app is
the uncurried append function on lists.

Combinator fold f is the unique homomorphism from the (im-
plicit) initial algebra of a datatype to algebra f ; we do not explicitly
mention the datatype itself, as it is understood from context. Com-
binator ◦ is standard function composition. Combinator O joins two
functions, dispatching according to the result of matching on a sum;
combinator × is the cartesian product of two functions. They are
defined as follows:

[[f Og]] = λx→ case x of {Inl x→ f x ; Inr x→ g x}
[[f ×g]] = λ(x,y)→ (f x,g y)

In combination with swap, assocl and assocr,× is able to define all
functions that rearrange the components of a pair, while O is useful
in constructing the algebra for a fold. We don’t include M, the dual
of O, in RINV because of surjectivity, as will be explained shortly.
The combinators in RINV preserve totality: given total primitive
functions, all functions in the language are total.

The language RINV is right-invertible: given pre-defined right-
inverses for the primitives, every function has a right-inverse by
construction. As a result, a function f :: s ¿ t in RINV actually
represents a pair of functions: the forwards function [[f]] :: s→ t and
its right-inverse [[f]]◦ :: t → s. However, for convenience when clear
from context, we don’t distinguish f and its forwards function [[f]].
Note that RINV is not closed under inversion: [[f]]◦ may not itself be
in RINV with [[[[f]]◦]]◦ defined.

The generated right-inverses are expected to be total, with the
exception of those of constructors, because the latter are not case-
exhaustive. For this reason, there are a couple of straightforward
restrictions on composing constructors with the combinators ◦ and
O in RINV, as we will see later when the combinators are discussed
in more detail. Another note of caution concerns the termination of
the right-inverses of recursive functions constructed by fold (which
are constructed by unfold). We ensure well-founded recursion in
the unfold; practically, this reduces to a simple position-wise check
of descending values in recursive calls. The details can be found in
Section 4.3.3.

With the language RINV, we can state the following property.

THEOREM 2. Given a non-constructor function f in RINV, for any
finitely defined well-typed input x, ([[f]]◦ [[f]]◦) x≡ x.

6 June 3, 2009

The correctness of this theorem should become evident by the end
of this section, as we discuss in detail the various components of
RINV and their properties. Throughout this paper, unless otherwise
mentioned, we always assume finitely defined values.

4.1 The Constructors
The semantics of the constructor functions are simple: they fol-
low directly from the corresponding constructors introduced by
datatype declarations, except for being uncurried. For example,

[[nil]] = λ()→ Nil
[[cons]] = λ(x,xs)→ Cons x xs

Constructor Snoc is not primitive in Haskell, but can be encoded:

[[snoc]] = λ(xs,x)→ append xs (Cons x Nil)

Inverses of the primitive constructor functions are obtained simply
by swapping the right- and left-hand sides of the definitions. For
example, we have

[[nil]]◦ = λNil→ ()
[[cons]]◦= λ(Cons x xs)→ (x,xs)

They are effectively partial ‘guard’ functions, succeeding when the
input value matches the pattern. The right-inverse of snoc is

[[snoc]]◦= λxs→ (init xs, last xs)

The inverses of constructor functions are generally not case-
exhaustive. For example, [[cons]]◦ only accepts non-empty lists,
while [[nil]]◦ only accepts the empty list. This is the only case in
RINV in which the right-inverses are not total. As a result, in con-
trast to primitive functions, constructor functions cannot be com-
posed arbitrarily, as we will see shortly.

4.2 The Primitive Functions
The primitive functions and their right-inverses are hard-wired in
RINV, but are subject to extension. It is worth mentioning that
surjectivity of the primitives is a necessary condition of the totality
of their inverses. The function id is the identity function; functions
assocr, assocl and swap manipulate pair data.

assocr :: ((a,b),c) ¿ (a,(b,c))
assocl :: (a,(b,c)) ¿ ((a,b),c)
swap :: (a,b) ¿ (b,a)

As mentioned above, together with the combinator ×, these are
sufficient to define all functions on pairs. For example,

subr :: (b,(a,c)) ¿ (a,(b,c))
subr = assocr ◦ (swap× id)◦assocl
trans :: ((a,b1),(b2,c)) ¿ ((a,b2),(b1,c))
trans = assocl◦ (id× subr)◦assocr

Function app is the uncurried append function, which is not in-
jective. The ability to admit non-injective functions is one of the
most important distinctions between RINV and other invertible lan-
guages [11, 19].

There are many possible right-inverses for app. We pick one:

[[app]]◦= λxs→ splitAt ((length xs+1) ‘div‘ 2) xs

We require the right-inverses of all primitive functions to be affine:
they should not duplicate input data values (values of non-container
types) in the output. That is to say, the right-inverses may rearrange
input data values, or create structures to hold them, but not invent
or duplicate them. (In fact, they will not discard data either.) This
condition is not new in the invertible (bidirectional) programming
literature [17]; it makes sense, since such right-inverses only create
data in the datatypes (sources), which is neither visible in the views

nor usable by programmers. This restriction is also related to well-
founded recursion in the right-inverse of folds, as we will see later.

4.3 The Combinators
The combinators in RINV are familiar to Haskell programmers too.

4.3.1 Sum and Product
Combinators × and O compose functions in parallel. The former
applies a pair of functions component-wise to its input, and is
defined as

(×) :: (a ¿ b)→ (c ¿ d)→ ((a,c) ¿ (b,d))
[[f ×g]] = λ(x,y)→ ([[f]] x, [[g]] y)

Its right-inverse is:

[[f ×g]]◦= λ(x,y)→ ([[f]]◦ x, [[g]]◦ y)

It is well known that × can be defined in term of a more primitive
combinator M, which executes both of its input functions on a single
datum:

(M) :: (a ¿ b)→ (a ¿ c)→ (a ¿ (b,c))
[[f Mg]] = λx→ ([[f]] x, [[g]] x)

However, in the backwards direction, [[f]]◦ x and [[g]]◦ y must con-
verge, which is difficult to enforce. Indeed, functions constructed
by M are generally not surjective, and so do not have total right-
inverses (see Section 5.3); For this reason, we exclude M from
RINV.

The combinator O consumes an element of a sum type.

(O) :: (a ¿ c)→ (b ¿ c)→ (Sum a b ¿ c)
[[f Og]] = λx→ case x of {Inl x→ [[f]] x ; Inr x→ [[g]] x}

In the backwards direction, if both f and g are total, it doesn’t
matter which branch is chosen. However, the use of constructor
functions deserves some attention. In order to guarantee the totality
of [[f Og]]◦, functions f and g must be jointly surjective (that is,
the union of their ranges should cover the whole of type c). As a
result, in the event that [[f]]◦ fails on certain inputs, [[g]]◦ should be
applicable. To model this failure handling, we lift functions in RINV
into the Maybe monad, and handle a failure with the first function
by invoking the second.

[[f Og]]◦= λx→ ([[f]]◦ x) ‘mplus‘ ([[g]]◦ x)

Note that for the sake of presentation, in the sequel of the paper,
we still use the non-monadic types for f Og, with the understanding
that all functions in RINV are lifted to the Maybe monad in the
implementation.

In general, it is not an easy task to check (joint) surjectivity
of functions. However, in RINV, this is straightforward. The only
possibility that f O g is not jointly surjective is that both f and
g are constructor functions; in this case, it is clear that we need
the complete set of constructors to satisfy the condition of joint
surjectivity.

4.3.2 Composition
Combinator ◦ sequentially composes two functions:

[[f ◦g]] = [[f]]◦ [[g]]

Its inverse is the reverse composition of the inverses of the two
functions.

[[f ◦g]]◦= [[g]]◦◦ [[f]]◦

The more intricate part is to analyse the surjectivity of the compo-
sition (and hence the totality of its inverse). It is clear that if one of
the functions in a chain of compositions is not surjective, the com-
posed function may also be non-surjective. However, there is no

7 June 3, 2009

easy way of determining the range of such a composition if the non-
surjective function is not the leftmost one in the chain, which makes
it unsuitable for constructing jointly surjective functions through
combinator O as discussed above. Therefore, in RINV, we disallow
constructor functions on the right of a composition.

4.3.3 Fold
With the ground prepared, we are now ready to discuss recursive
combinators. We define

[[fold f]] = foldX [[f]]
[[fold f]]◦= unfoldX [[f]]◦

In what follows, we call the f in fold f the ‘body’ of the fold. The
forward semantics of fold f is defined in term of a definition of
fold in Haskell for a certain datatype X, whereas the right-inverse
semantics of it is defined by a corresponding definition of unfold in
Haskell.

Note that unfold is not in RINV, but is used to define right-
inverses. In this paper, we overload fold, unfold when the datatype
is understood. Intuitively, fold disassembles a structure and replaces
the constructors with applications of the body, effectively collaps-
ing the structure. Function unfold on the other hand, takes a seed,
splitting it with the body into building blocks of a structure and new
seeds, which are themselves recursively unfolded. In short, fold col-
lapses a structure whereas unfold grows one. A function that grows
a structure by unfold and then consumes it by fold is called a hy-
lomorphism; in this paper, we are interested in hylomorphisms that
are the identity.

When an algebraic datatype X is given, Haskell definitions of
foldX and unfoldX can be generated. For example, consider the
datatype of lists:

foldL :: (Sum () (a,b)→ b)→ (List a→ b)
foldL f = λxs→ case xs of

Nil → f (Inl ())
(Cons x xs)→ f (Inr (x,(foldL f xs)))

unfoldL :: (b→ Sum () (a,b))→ (b→ List a)
unfoldL f = λb→ case f b of Inl () → Nil

Inr (a,b)→ Cons a (unfoldL f b)

It is worth mentioning that our definition of foldL and unfoldL is
slightly different from the standard Haskell library functions foldr
and unfoldr, as we use one body on the sum type to better reflect
the duality between the two operations. In RINV, we require the
body f of fold to map the Inl branch to a value constructed by a
non-recursive constructor of the result type. Practically, this is a
reasonable restriction: most uses of fold follow this pattern.

Another example is leaf-labelled binary trees.

data LTree a = Leaf a
| Fork (LTree a,LTree a)

foldT :: (Sum a (b,b)→ b)→ LTree a→ b
foldT f = λt → case t of

Leaf a → f (Inl a)
Fork (t1, t2)→ f (Inr (foldT f t1, foldT f t2))

unfoldT :: (a→ Sum a (b,b))→ b→ LTree a
unfoldT f = λb→ case f b of

Inl a → Leaf a
Inr (b,b′)→ Fork (unfoldT f b,unfoldT f b′)

We use unfold to construct the right-inverse of fold. From [8],
we have the following lemma.

LEMMA 1. fold [[f]]◦unfold [[f]]◦ v id.

Since both fold and unfold are case-exhaustive when their bodies
are case-exhaustive, the only reason for not having an equality in

the conclusion above is that unfold is potentially non-terminating:
when a body does not split a seed into ‘smaller’ ones, unfolding
it creates an infinite structure. This behaviour is useful in certain
applications, but it is undesirable here.

The termination of a function constructed by unfold can be
guaranteed by careful design of its body. A body of type b →
Sum c (...,b, ...) can be seen as a combination of two partially de-
fined functions f :: b→ c and g :: b→ (...,b, ...), where f (called the
termination function) is the terminating condition of unfold, and
g (called the splitting function) splits out new seeds for recursive
calls and possibly other data for the structure construction. From
the discussion of inverting O, we know that g is only attempted af-
ter f fails. Intuitively, function f is a partially defined function that
stops unfolding when its pattern matches. Theoretically, this ter-
mination pattern could be any valid one. However, practically, as
mentioned above, we restrict it to a non-recursive case of type b.
The splitting function g should decrease seeds according to some
well-founded ordering (that is, there should be no infinite descend-
ing chain of seeds). Since we are only dealing with structured data,
it suffices to use the total preorder given by the number of payload
data items (i.e values of non-container types) carried by structural
values.

DEFINITION 1 (Structure Size Ordering). Given two values v1
and v2, we define a total ordering v1 - v2 iff size v1 6 size v2.

The function size is defined over all values as follows:

size (s1,s2) = size s1 + size s2
size (C s1 ... sn) = size s1 + ...+ size sn
size t = 1

The size of a pair or a container-type data constructor is the sum
of its components’ sizes. Anything else, namely a non-container-
type value, has size 1. Basically, function size counts the number of
non-container-type values in a structured value.

With this ordering, we have, for example, Nil - (Cons 1 Nil)-
(Fork (Leaf ’a’) (Fork (Leaf ’b’) (Leaf ’a’))). Note that the ex-
act data carried by and the types of the structures are not important
in the ordering.

Now, having the splitting functions produce smaller seeds is
a sufficient condition for termination of functions constructed by
unfold.

The down-side of this technique is that the programmer must
check this condition every time fold is used. A much better solu-
tion would be to make this property compositional, reducing the
termination check to the primitive functions only. The difficulty is
that since a primitive function can be used to construct bodies for
different unfolds, it becomes unclear which parts of the output are
the new seeds and should be decreasing. As an example, consider
the function [[app]]◦.

[[app]]◦= λxs→ splitAt ((length xs+1) ‘div‘ 2) xs

For example, applying it to a singleton list gives [[app]]◦ (Cons 1 Nil)≡
(Cons 1 Nil,Nil). The second component of the output is strictly de-
creasing, whereas the first one is not. (It is worth to reiterate here
that we don’t have to consider the case [[app]]◦ Nil because non-
recursive cases are never handled by the splitting function.) In this
case, it is important to know which component is used as the new
seed. In the case of

flatten :: List (List a) ¿ List a
flatten = fold (nilOapp)

where the second component is the new seed, [[app]]◦ works
fine. However, the same function is not suitable for flattenSnoc ::
(Snoc (List a)) ¿ List a, since unfold for snoclists uses the first
component as the new seed. As a result, assuming the knowledge

8 June 3, 2009

of which output component of a splitting function is decreasing, it
has to be matched with the seed-generation pattern of the unfold,
which determines the generation of new seeds, when used. We call
a body compatible if its decreasing output components include the
newly generated seeds for the unfold. In the above example, [[app]]◦
is compatible with respect to flatten but not to flatternSnoc.

The information about decreasing outputs is preserved through
chains of composed functions, because all right-inverse functions
of RINV are affine (that is, there is no creation or duplication of
data c.f Section 4.2). Any output component originated solely from
a decreasing output component is decreasing.

LEMMA 2. Given a compatible body f , unfold f is terminating.

Together with Lemma 1, we conclude the following.

LEMMA 3. Given f in RINV, (fold [[f]])◦ (unfold [[f]]◦) = id.

4.4 Programming in RINV

With the knowledge of RINV, we are now ready to study the con-
version functions defined in Section 3, which we skiied through.

To start with, let’s firstly look at a very useful derived combina-
tor map that can be defined in term of fold. For example, map on
list, mapL, is defined as follows.

mapL :: (a ¿ b)→ (List a ¿ List b)
mapL f = foldL ◦ (nilO (cons◦ (f × id)))

Function mapL f applies body f uniformly to all the elements
of a list without modifying the list structure. Since nil and snoc
forms a complete set of constructors for list. We know they are
joint surjective. It is straightforward to know that ([[f]]◦× [[id]]◦) ◦
[[cons]]◦ is compatible to the unfold of list since the right-inverses of
constructors are decreasing on each components of the output and
this property is preserved by composition to affine functions (all
right-inverses in RINV are affine) to the left.

Similarly, map on leaf-labeled tree, mapT , is defined as the
following.

mapT :: (a ¿ b)→ (Tree a ¿ Tree b)
mapT f = foldT ◦ ((leaf ◦ f)O fork)

The right-inverses of maps can be easily defined as

[[map f]]◦= mapX [[f]]◦

with respect to certain datatype X.
A function reverse is used in the example of binary number

encoding, which can be defined as a fold on list.

reverse = fold (nilO snoc)

On the forward direction, a list is taken apart and the first element is
appended to the rear of the output list by snoc. This process is ter-
minated by reaching an empty list and an empty list is returned as
the result. Since nil and snoc forms a complete set of constructors
for list, which are joint surjective. It is trivial to know that [[snoc]]◦
is compatible to the unfold of list since the right-inverses of con-
structors are decreasing on each components of the output. On the
backward direction,

[[reverse]]◦= unfold [[nilO snoc]]◦

Function [[snoc]]◦ extracts the last element in a list and is added to
the front of the result list by unfold, which terminates when [[nil]]◦
can be successfully applied (i.e when the input is the empty list).

The toSnoc function of Wadler’s example of backward repre-
sentation of lists can be defined in a very similar manner. Given

data SnocList a = Lin | Snoc (SnocList a) a
[[lin]] = λ()→ Lin
[[lin]]◦= λLin→ ()

[[snoc′]] = λ(xs,x)→ Snoc xs x
[[snoc′]]◦= λ(Snoc xs x)→ (xs,x)

we have

toSnoc = fold (linO snoc′)

Constructor function snoc′ constructs a proper snoclist instead of
appending an element to the end and Lin is used to replace Nil.

Function reverse is used to construct the to function for the list
view of our queue structure.

to :: Queue a→ List a
to = app◦ (id× reverse)

Function to preprocesses a queue by reversing the latter half before
appending the two halves into a list. For example, we have:

to ([1,2], [3,4,5,6,7]) = [1,2,7,6,5,4,3]

(For the sake of presentation, we overload Haskell list notations for
List a.) The companion from function is

from :: List a→ Queue a
from = [[app◦ (id× reverse)]]◦= ([[id]]◦× [[reverse]]◦)◦ [[app]]◦

In the from direction, a list is firstly split into two and functions
[[id]]◦ and [[reverse]]◦ applied to their respective parts. For example,
we have

from ([1,2,7,6,5,4,3])≡ ([1,2,7,6], [3,4,5])

Since from is a right-inverse of to, we have

to (from ([1,2,7,6,5,4,3]))≡ to ([1,2,7,6], [3,4,5])
≡ [1,2,7,6,5,4,3]

Our last example is the traversal of node-labelled binary trees.

data BinTree a = BLeaf | BNode a (BinTree a,BinTree a)

The fold/unfold functions for binary trees are as follows.

foldB :: (Sum () (a,(b,b))→ b)→ (BinTree b→ b)
foldB f = λx→ case x of

BLeaf → f (Inl ())
BNode a (l,r)→ f (Inr (a,(foldB f l, foldB f r)))

unfoldB :: (b→ Sum () (a,(b,b)))→ (b→ BinTree b)
unfoldB f =

λx→ case f x of
Inl () → BLeaf
Inr (a,(l,r))→ BNode a (unfoldB f l,unfoldB f r)

Using the foldB combinator, the pre-order traversal of a binary tree
can be defined as follows.

preOrd = foldB (nilO (cons◦ (id×app)))

Similarly for the post-order traversal, we have

postOrd = foldB (nilO (snoc◦ swap◦ (id×app)))

In the forwards direction, foldB adds the node value either at the
front or the end of the concatenation of its two subtrees’ traver-
sals. In the backwards direction, a node value is extracted from the
input list, and the rest of the list is divided and grown into indi-
vidual trees. For termination, we can easily conclude that [[cons]]◦
is decreasing at each of its output components, and [[id×app]]◦
preserves this property. Thus, [[cons◦ (id×app)]]◦ is compatible
with the unfold of BinTree a. A very similar argument applies to
[[snoc◦ swap◦ (id×app)]]◦.

5. Evaluation
Up to now, we have shown our proposed design of a view system
and the right-inverse language RINV, on which it is based. We have

9 June 3, 2009

implemented our proposal as a preprocessor for GHC; it translates
source syntax with views into native Haskell code.The conversion
functions are defined in RINV, which is embedded as a Haskell
library. Our system can be invoked directly from GHC with a
command such as

ShellPrompt> ghc -F -pgmF viewpp YourCodeWithView.hs

where viewpp is the name of the preprocessor. The implementation
is available from http://www.ipl.t.u-tokyo.ac.jp/~kztk/
viewpp/, together with sample programs.

At the moment, we are still in the process of implementing the
termination/surjectivity check for RINV and more optimisations for
the translation. Nevertheless, in order to have a more meaningful
evaluation of the design, we assume optimised translation in Sec-
tion 5.2.

The distinctive advantage of our proposal is the support for
sound reasoning on the view level. As one usually expects, addi-
tional properties may come with certain trade-offs. In this section,
we evaluate the performance of our system in various aspects, and
make comparison with other related works, in particular Wadler’s
views, which the closest piece of related work.

5.1 Reasoning Power
Our view system is the only one that reconciles sound equational
reasoning with view pattern matching. The limitation of our system
is also clear: we don’t achieve completeness. View level reasoning
does not work between views.

Despite not being able to claim any soundness guarantee,
Wadler’s proposal is known for supporting reasoning in the pres-
ence of views. It is nevertheless interesting to compare its reason-
ing expressiveness with that of ours, to see how much the pursuit
of soundness has costed us.

In Wadler’s proposal, the user-defined conversions bridge across
different views. Given the heterogeneous view types, the one-step
conversions are expected to specify isomorphism of structures.
Taking backward lists as an example, Cons x (Snoc xs y) is equiva-
lent to Snoc (Cons x xs) y and Cons x Nil is equivalent to Snoc Nil x.
This kind of equation is useful in calculating in a bottom-up man-
ner when a fixed value is given. For example, it is possible (though
awkward) to derive Cons 1 (Cons 2 Nil) ≡ Snoc (Snoc Lin 1) 2 as
follows, which cannot be done in our approach.

Cons 1 (Cons 2 Nil)
≡ {Nil≡ Lin}

Cons 1 (Cons 2 Lin)
≡ {Cons x Lin≡ Snoc Nil x}

Cons 1 (Snoc Nil 2)
≡ {Cons x (Snoc xs y)≡ Snoc (Cons x xs) y}

Snoc (Cons 1 Nil) 2
≡ {Nil≡ Lin}

Snoc (Cons 1 Lin) 2
≡ {Cons x Lin≡ Snoc Nil x}

Snoc (Snoc Nil 1) 2
≡ {Nil≡ Lin}

Snoc (Snoc Lin 1) 2

However, this style of reasoning is of limited interest, because
proofs are usually conducted by top-down inductive means. As
Wadler [24] says, “of course, the main value of equational rea-
soning is not in calculating values but in performing proofs.” For
example, the explicit conversions are not useful in proving rotLeft◦
rotRight≡ id. (Wadler’s claim [24] that this is provable is a mistake.
What was proved was that rotRight ◦ rotLeft ≡ id, which did not
use any of the conversions.) This is due to the fact that in Wadler’s
setting, inputs are always constructed in the underlying datatype in-
stead of in a view. Given rotLeft (rotRight (Cons x xs)) there is no

way of converting Cons x xs to a Snoc view, which would allow the
calculation of rotRight to proceed.

This problem is universal in Wadler’s approach. Consider an-
other example in [24], which views a list of pairs as a pair of lists
(also known as the Zip view). The conversions are

Nil = Zip (Nil,Nil)
Cons (a,b) (Zip (as,bs)) = Zip (Cons a as,Cons b bs)

Given a simple function that swaps the two elements in the pairs:

f (Zip xs ys) = Zip ys xs

we cannot state anything about f ◦ f , for the same reason: the
conversions do not help us to proceed from f (f (Cons (a,b) xs)).

In our case, one cannot derive rotLeft (rotRight (Cons x xs))
≡ Cons x xs either. However, since both conslists and snoclists are
views with equal status, we can prove properties of functions in
their respective views. For example, we can prove an equally useful
property rotLeft (rotRight (Snoc xs x)) ≡ Snoc xs x; this gives us
a partially defined identity function. Given an input in the Snoc
view, it is the identity. Otherwise, we know rotLeft ◦ rotRight and
λ(Snoc xs x) → Snoc xs x have the same behaviour; and they can
be substituted for each other by a compiler. However, our views do
not offer advantages in understanding this programmer behaviour;
calculations have to be conducted considering explicit to and from
conversions, just like the case of abstract datatypes [4].

In conclusion, the use of explicit axioms for equational reason-
ing in Wadler’s views supports fiddling of values into their inter-
mediate view representations, which is useful in reasoning about
computations. However, for more important uses of equational rea-
soning, namely performing proofs, our approach allows more prop-
erties to be expressed.

5.1.1 Parametricity of Views
Inspired by and based on parametricity of datatypes [25], we can
conclude an interesting parametricity result of views.

THEOREM 3. Given two parametric views V a and W a with their
corresponding map functions mapV and mapW , let f be a function
pattern matching on view V a and let w be a value in view W a.
Then we have f (mapV g w) = f (mapW g w) for any g.

This theorem basically states that given a value constructed in one
view but consumed in a different view, using a map function on
either view before the consumption gives identical results. A proof
can be done on the translated program, making use of parametric-
ity. Assuming that f is translated into fromV ◦ f ′ ◦ toV , mapV is
translated into fromV ◦map′V ◦ toV , and mapW is translated into
fromW ◦map′W ◦ toW , we have:

(fromV ◦ f ′ ◦ toV) ((fromV ◦map′V g◦ toV) (fromW w))
≡ { composition}

(fromV ◦ f ′ ◦ toV) ((fromV ◦map′V g◦ (toV ◦ fromW)) w)
≡ {parametricity}

(fromV ◦ f ′ ◦ toV) ((fromV ◦ (toV ◦ fromW)◦map′W g) w)
≡ { composition}

(fromV ◦ f ′ ◦ toV ◦ fromV ◦ toV ◦ fromW ◦map′W g) w
≡ { composition}

(fromV ◦ f ′ ◦ (toV ◦ fromV)◦ toV ◦ fromW ◦map′W g) w
≡ { toV ◦ fromV ≡ id }

(fromV ◦ f ′ ◦ toV ◦ fromW ◦map′W g) w
≡ { composition}

(fromV ◦ f ′ ◦ toV) (fromW (map′W g w))

Note that this theorem does not hold if f pattern matches on the
view in which w is constructed. However, this is of less practical
interest anyway, since trying to use a different map introduces extra
conversions.

10 June 3, 2009

5.2 Efficiency
The design of views aims at supporting modular programming with
reasoning in mind. With improved modularity, it should be ex-
pected that operations defined on high-level data interfaces nec-
essarily incur run-time overhead. In this case, the price to pay is
the conversions from datatypes to views. Haskell’s lazy seman-
tics helps in certain cases, and fusion optimisations eliminate many
intermediate conversions. Compared to Wadler’s design, our ap-
proach is superior when there is no frequent change of view during
an evaluation, which we believe covers the majority of programs.
Consider nested pattern matching as a case study, using the function
that sums elements of a list of integers pair-wise [22]. We program
in the Snoc view for illustrative purposes.

pairSum (Snoc (Snoc ys y) x) = Snoc (pairSum ys) (x+ y)
pairSum (Snoc Lin x) = Snoc Lin x
pairSum Lin = Lin

Assume the underlying datatype is conslists; since only one view is
used in the above code, our technique only requires the conversion
into the Snoc view once, whereas in Wadler’s case, nested pattern
matching means repeated conversions as shown in the following.

pairSum l = case to l of Snoc xs x→
case to xs of (Snoc ys y)→

from (Snoc (pairSum ys) (x+ y))
...

Moreover, due to the fact that homogeneous snoclists do not exist in
Wadler’s setting, the intermediate conversions in a recursion cannot
be removed. As a result, linear time conversions are performed on
every iteration, which gives quadratic performance for the program
above.

In our case, since the consumptions of view values by Snoc are
in the same view as the productions of view values by pairSum, the
optimised translation produces the following program.

pairSum = from◦pairSum′ ◦ to

where pairSum′ is the original pairSum. In this version, there are
no double conversions for the nested pattern, and the intermediate
conversions inside the recursion are removed, producing a linear-
time program.

On the other hand, heterogeneous view structures are beneficial
in some scenarios.

f (Snoc (Cons x xs) y) = ...

Given that the nested pattern above is identical to the snoclist het-
erogeneous construction pattern, Wadler’s design fits just as well.
However, we believe that in practical programming, the former is
far more common than the latter.

Perhaps a bigger controversy in the design of view mechanisms
is the datatype-like syntax. We think this is positive, since it pre-
serves the elegant syntax of Haskell. On the other hand, there is
the concern that this similar look and feel may cause program-
mers to overlook the possibility of non-constant run-time cost of
pattern matching on views. This is certainly a valid concern. How-
ever, at the same time, it is worth pointing out that programmers do
have some warning. First of all, views are clearly declared by sep-
arate keywords. Secondly, when a calculation is performed to try
to understand the behaviour of programs, such as (λ(Snoc xs x)→
Snoc xs x) (Cons 1 Nil), there is a clear signal that some sort of
conversion is going on to make this possible.

5.3 Expressiveness of View Definition
In our system, the set of definable views is determined by the exis-
tence of to functions in RINV that map to them. RINV is designed
to be extensible: new primitives (and even new combinators) can

be added to the language if needed. The real limitation of RINV we
face here is that all functions must be surjective, in order to ensure
totality of the right-inverses.

This is certainly desirable if the functions are used as conver-
sions for views. At the same time, we inherit the weakness of al-
gebraic datatypes: they perform poorly in expressing semantic in-
variants on data representations. An algebraic datatype often repre-
sents a larger set of values than is used in a program. With a more
elaborate type system or some other language extensions (such as
contracts), more refined specifications may be placed on datatypes.
Despite advances in technology, most mainstream programming
languages both in the functional and other paradigms have very
limited support for such a feature. It is generally accepted that pro-
grammers are entrusted with the responsibility not to create values
outside certain specified boundaries. In the study of invertible (bidi-
rectional) languages [9], it is common practice to admit a weaker
version of totality, namely totality with respect to the actual range
of conversion functions.

In the case of views, the valid view values are bound by the ac-
tual range of the user-defined to function; invertibility is not guar-
anteed for view values outside this range. In the current proposal,
the to functions in RINV are always surjective, which rules out
some useful programs. An example already mentioned is the com-
binator M. Since f M g is generally not surjective, it doesn’t have a
total right-inverse, despite the fact that we can easily guard against
inconsistent input in the reverse direction as follows.

[[f Mg]]◦= λ(a,b)→ if x == y then x else error "violation"
where x = [[f]]◦ a ; y = [[g]]◦ b

The primary use of M is to define the function dupF that duplicates
a value and transforms one copy by the input function.

dupF :: Eq a⇒ (a→ b)→ (a ¿ (b,a))
dupF f = f M id

As we have seen in the sized tree example (Section 3.3), function
dupF is particularly useful when we would like to preprocess an
input in some way while keeping the original.

Another very useful function is unzip, which can be defined as
a fold.

unzip = foldL ((nilMnil)O ((cons× cons)◦ trans))

This definition will be rejected in RINV, since cons× cons and
nilMnil are not jointly surjective. Indeed, unzip only produces pairs
of lists of equal length. This is also the very reason that we exclude
unfold as a combinator in RINV, as it in general only constructs
structures of a particular shape, decided by the splitting strategy of
its operation.

If a view value outside the range is constructed, the integrity
of view level equational reasoning is corrupted. It remains an open
question whether we should allow programmers to take some rea-
sonable responsibilities or should insist on holding control.

6. Invertible (Bidirectional) Languages
The language RINV presented in Section 4 is directly inspired by
the rich literature of invertible and bidirectional languages [1, 3,
9, 11, 17, 19]. Invertible languages [11, 19] aim at automatically
deriving inverses of functions. The language proposed in [19] is
based on the pointfree style of programming, and has a similar
look and feel to RINV. Due to the strong condition of existence
of inverses, functions in invertible languages are generally required
to be injective; totality of the inverses is not discussed. Alimarine
et al. [1] express bidirectional combinators as arrows [12]; they also
discuss combinators to obtain right inverses, but the totality of the
result is not guaranteed in their framework.

11 June 3, 2009

Bidirectional languages [3,9,11,17] have a more flexible frame-
work than that of invertible languages. Typically, a function get ::
s→ a maps a source value of type s into an abstract value of type a;
a backward function put :: (s,a) → s takes a possibly updated ab-
stract value and the original source to produce a new source that
‘properly’ reflects the updates. The additional information avail-
able to the backward function relaxes the injectivity requirement in
invertible languages, and allows more programs to be defined.

Despite the rich results in bidirectional transformations, the
technique does not apply directly to our application: views always
start from the abstract level and don’t have an ‘original’ source
value. For example, if we construct a queue value in the list view
Cons 1 Nil, a put function doesn’t apply because there is no concept
of the ‘original source’ queue value.

It is interesting to observe that in the bidirectional framework, it
is often difficult or impossible to merge the inputs to the put func-
tions, namely the original source and the updated abstract value,
to produce an updated source. As a result, the idea of a function
create :: a → s has emerged [3, 9] to tackle the problem of miss-
ing or update-invalidated original sources. This create function is
exactly the right-inverse in RINV. However, prior studies of create
functions focus on creating missing data fields through user-defined
default values; on the other hand, RINV focuses on the construction
of structures and assumes no data-loosing on the forward direction.

Total backward transformations has been attempted before [3,
9]. The main difference from our work is the use of semantic
types [10] instead of the more common syntactic types. As a re-
sult, their types are closer to specifications of the functions defined,
which allows the development of a concept of totality of backward
transformations with respect to the precise ranges of the forward
transformations. This is certainly useful (c.f. Section 5.3), but pre-
cludes checking the types with traditional type-checking mecha-
nisms, such as the Haskell type checker.

Another notable bidirectional system [17] is based on the con-
stant complement approach. The idea is to keep histories (comple-
ments) of the computation in the forward direction, and to use this
information to reconstruct properly updated sources. The system
described in that paper is capable of handling user-defined alge-
braic datatypes and automatically generating put functions. Due to
the fact that the complements must be kept constant at all times,
not all updates are permissible on views. In order to have a decid-
able check on permissible updates, the bidirectional language has
to be restricted. It will be interesting to see whether create functions
(right-inverses) constructed in RINV can be used to supplement put
functions to create total backward transformations that work on all
updates and are freed from many of these restrictions.

7. Conclusion
We tackle the reputation of views as being unsound and the
long-standing problem of equational reasoning with views in the
broader literature. We see our work as a conservative (sound and
backwards-compatible) and serious (not compromising any mod-
ularity benefit of views) step towards supporting pattern matching
with abstract types. The view system we present is built on an
extensible combinator-based invertible language that derives a to-
tal right-inverse for each of the functions defined. At this stage,
we do not admit any pattern extensions (such as non-linear pat-
terns) that are not defined in Haskell; however, there is no technical
reason why our approach cannot be used to support pattern exten-
sions as proposed in many pattern languages. Nevertheless, we are
likely to stumble across the lack of contract checking for algebraic
datatypes; it is definitely a promising direction to investigate the
application of stronger invariants to views.

References
[1] A. Alimarine, S. Smetsers, A. van Weelden, M. van Eekelen,

and R. Plasmeijer. There and back again: Arrows for invertible
programming. In Haskell Workshop, 2005.

[2] R. S. Bird. A calculus of functions for program derivation. In
Research Topics in Functional Programming, pages 287–307.
Addison-Wesley, 1990.

[3] A. Bohannon, J. N. Foster, B. C. Pierce, A. Pilkiewicz, and
A. Schmitt. Boomerang: Resourceful lenses for string data. In
POPL, Jan. 2008.

[4] F. W. Burton and R. D. Cameron. Pattern matching with abstract data
types. J. Funct. Program., 3(2):171–190, 1993.

[5] B. Emir, M. Odersky, and J. Williams. Matching objects with patterns.
In ECOOP, 2007.

[6] M. Erwig. Active patterns. In IFL, 1996.

[7] M. Erwig and S. Peyton Jones. Pattern guards and transformational
patterns. In Haskell Workshop, 2000.

[8] M. Fokkinga and E. Meijer. Program calculation properties of
continuous algebras. Technical Report CS-R9104, CWI, Amsterdam,
Netherlands, 1991.

[9] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bidirectional tree transformations:
A linguistic approach to the view update problem. ACM Trans.
Program. Lang. Syst., 29(3), 2007.

[10] A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping:
Dealing set-theoretically with function, union, intersection, and
negation types. J. ACM, 55(4), 2008.

[11] Z. Hu, S. Mu, and M. Takeichi. A programmable editor for developing
structured documents based on bidirectional transformations. In
PEPM, 2004.

[12] J. Hughes. Generalising monads to arrows. Sci. Comput. Program.,
37(1-3):67–111, 2000.

[13] C. B. Jay. The pattern calculus. ACM Trans. Program. Lang. Syst.,
26(6), 2004.

[14] D. Licata and S. Peyton Jones. View patterns: lightweight views for
Haskell, 2007. Haskell Café mailing list.

[15] B. Liskov and S. Zilles. Programming with abstract data types. In
ACM Symposium on Very High Level Languages, 1974.

[16] J. Liu and A. C. Myers. JMatch: Iterable abstract pattern matching
for Java. In PADL, 2003.

[17] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi.
Bidirectionalization transformation based on automatic derivation
of view complement functions. In ICFP, 2007.

[18] P. Moreau, C. Ringeissen, and M. Vittek. A pattern matching compiler
for multiple target languages. In CC, 2003.

[19] S. Mu, Z. Hu, and M. Takeichi. An algebraic approach to bi-
directional updating. In APLAS, 2004.

[20] C. Okasaki. Views for Standard ML. In ACM Workshop on ML, 1998.

[21] P. Palao Gostanza, R. Peña, and M. Núñez. A new look at pattern
matching in abstract data types. In ICFP, pages 110–121, 1996.

[22] D. Syme, G. Neverov, and J. Margetson. Extensible pattern matching
via a lightweight language extension. In ICFP, 2007.

[23] M. Tullsen. First class patterns. In PADL, 2000.

[24] P. Wadler. Views: a way for pattern matching to cohabit with data
abstraction. In POPL, 1987.

[25] P. Wadler. Theorems for free! In FPCA, 1989.

12 June 3, 2009

A. Additional Examples of Reasoning
A.1 Enqueuing then Dequeuing
First we consider the property

(deQ◦ enQ a) emptyQ≡ emptyQ
Reasoning on the view level:

(deQ◦ (enQ a)) emptyQ
≡ { composition}

deQ (enQ a emptyQ)
≡ { emptyQ definition}

deQ (enQ a (Pr ([], [])))
≡ { enQ definition}

deQ (Pr ([], [a]))
≡ {deQ definition}

(deQ (Pr (reverse [a], []))
≡ { reverse definition}

(deQ (Pr ([a], [])))
≡ {deQ definition}

cPr ([], [])
≡ { emptyQ definition}

emptyQ
Reasoning on the datatype level:

(deQ◦ (enQ a)) emptyQ
≡ { composition}

deQ (enQ a emptyQ)
≡ { enQ definition}

deQ (case to emptyQ of Pr (fq,bq)→ cPr (fq,a : bq))
≡ { emptyQ definition}

deQ (case to (cPr ([], [])) of Pr (fq,bq)→ cPr (fq,a : bq))
≡ { cPr definition}

deQ (case (to (from (Pr ([], [])))) of
Pr (fq,bq) → cPr (fq,a : bq))

≡ { to◦ from≡ id }
deQ (case (Pr ([], [])) of Pr (fq,bq)→ cPr (fq,a : bq))

≡ { case statement}
deQ (cPr ([], [a]))

≡ {deQ definition}
case to (cPr ([], [a])) of

Pr ([],bq) → deQ (cPr (reverse bq, []))
Pr ((a : q),bq)→ cPr (q,bq)

≡ { cPr definition}
case to (from (Pr ([], [a]))) of

Pr ([],bq) → deQ (cPr (reverse bq, []))
Pr ((a : q),bq)→ cPr (q,bq)

≡ { composition}
case (to◦ from) (Pr ([], [a])) of

Pr ([],bq) → deQ (cPr (reverse bq, []))
Pr ((a : q),bq)→ cPr (q,bq)

≡ { to◦ from≡ id }
case Pr ([], [a]) of

Pr ([],bq) → deQ (cPr (reverse bq, []))
Pr ((a : q),bq)→ cPr (q,bq)

≡ { case statement}
deQ (cPr ([a], []))

≡ {deQ definition}
case to (cPr ([a], [])) of

Pr ([],bq) → deQ (cPr (reverse bq, []))
Pr ((a : q),bq)→ cPr (q,bq)

≡ { cPr definition}
case to (from (Pr ([a], []))) of

Pr ([],bq) → deQ (cPr (reverse bq, []))
Pr ((a : q),bq)→ cPr (q,bq)

≡ { composition}

case (to◦ from) (Pr ([a], [])) of
Pr ([],bq) → deQ (cPr (reverse bq, []))
Pr ((a : q),bq)→ cPr (q,bq)

≡ { to◦ from≡ id }
case Pr ([a], []) of

Pr ([],bq) → deQ (cPr (reverse bq, []))
Pr ((a : q),bq)→ cPr (q,bq)

≡ { case statement}
cPr ([], [])

≡ { emptyQ definition}
emptyQ

A.2 Map Fusion
For map fusion

map f ◦map g≡ map (f ◦g)
reasoning on the view level just uses map fusion on the view as if
it were a datatype. For reasoning on the datatype level:

(from◦map f ◦ to)◦ (from◦map g◦ to)
≡ { to◦ from≡ id }

from◦map f ◦map g◦ to
≡ {map fusion}

from◦ (map (f ◦g))◦ to

A.3 Take
Now we consider the property

take 1 (Cons 1 (Cons 2 Nil))≡ Cons 1 Nil
Reasoning on the view level:

take 1 (Cons 1 (Cons 2 Nil))
≡ { take definition}

Cons 1 Nil
Reasoning on the datatype level:

(from◦ take 1◦ to) (cons 1 (cons 2 nil))
≡ {nil definition}

(from◦ take 1◦ to) (cons 1 (cons 2 (from Nil)))
≡ { cons definition}

(from◦ take 1◦ to)
(from (Cons 1 (to (from (Cons 2 (to (from Nil)))))))

≡ { associativity}
(from◦ take 1◦ to◦ from)

(Cons 1 ((to◦ from) (Cons 2 ((to◦ from) Nil))))
≡ { to◦ from≡ id }

(from◦ take 1) (Cons 1 (Cons 2 Nil))
≡ { composition}

from (take 1 (Cons 1 (Cons 2 Nil)))
≡ { take definition}

from (Cons 1 Nil)

13 June 3, 2009

