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Abstract

Aspect-Oriented Programmin@OP) aims at modularising cross-
cutting concerns that show up in software. The success of AOP
has been almost viral and nearly all areas in Software Ergine
ing and Programming Languages have become “infected” by the
AOP bug in one way or another. Interestingly the functionap
gramming community (and, in particular, there functional pro-
gramming community) seems to be resistant to the panderhi. T
goal of this paper is to debate the possible causes of théiduat
programming community’s resistance and to raise awareseds
interest by showcasing the benefits that could be gained ffiarn

ing a functional AOP language. At the same time, we identify t
main challenges and explore the possible design-space.

Categories and Subject DescriptorsD.3.2 [Programming Lan-
guage§ Language Classifications—Applicative (functional) 1an
guages, Multiparadigm languages; D.3.Brdgramming Lan-
guage§ Language Constructs and Features—Control structures

General Terms Languages, Design

Keywords Functional Programming, Aspect-Oriented Program-
ming, Program Extensibility and Adaptability, SeparatafrCon-
cerns

1. Introduction

Aspect-Oriented ProgrammirgOP) [30] aims at improving mod-
ularity through the separation of orthogonal (also knowrasscut-
ting) concerns that show up in software. The success of AGP ha
been almost viral and nearly all areas in Software Engingeand
Programming Languages (SE&PLs) have become “infectediiby t
AOP bug in one way or another. In fact, the article descritihvey
original concept is currently rated the second most infiaéntork
in all of the SE&PLs areas [36], lagging only behind the sathin
‘Gang of Foui (GoF) design patterns book [18].

As observed by Steimann [47], a possible explanation for the
success of AOP is the conception that AOP improves both tlte mo
ularity and the structure of code, an ultimate appeal to fanog
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mers and software engineers. However, interestingly emotip
functional programming community (and, in particular, fhare
functional programming community) seems to be resistanhéo
pandemic, with only some sporadic outbreaks happening mce
a while. Notably, Aspectual Caml [39] makes a good attempt by
centring its design around a classic problem, namely theesxp
sion problem. The evaluator developed there allows opeanext
sion of new language expressions and new operations at ithe sa
time. This two-dimensional extensibility is known to be ¢hdo
achieve either in object-oriented languages or functitarajuages.

In another work, Washburn and Weirich demonstrated funatio
type-directed programming in AspectML [14], and showed tha
extensibility of AOP is important for extensible generiogram-
ming [54]. AspectFun [52, 7] is another proposal for a functional
AOP language, where static resolution of types and adviaecar
tions are emphasised.

It appears that one of the reasons for the lack of interestrio-f
tional AOP is the perceived lack of application domainseled the
majority of developments of AOP are based on an Object-@xien
(O0) environment; directly borrowing the results thereyally fea-
turing heavy use of run-time reflection and mutable stats, da
counter-effect when promoting AOP in functional programgni

Another notable reason for this lack of interest is the gseap-
ticism that many researchers have towards AOP. As argued by
Steimann [47], the (fairly well accepted) defining chardsties
of AOP, namelyobliviousnessand quantification[16], seem to be
fundamentally at odds with the stated goals of improving mod
larity and structure of code. When it comes to functionabpam-
ming, fuelled by the first reason above, many (including ttbars
themselves) very often deem AOP approaches as too invasive a
uncontrolled.

In particular, we identify the following main issues:

e Obliviousness AOP languages typicallweaveadditional code
into existing programs, potentially modifying the behawio
of the original base programs without warning, which hirsder
reasoning.

e Parametricity - Most AOP languages support implicit type-
directed programming using either dictionary translatiorun-
time type representations. This is known to break paraoistri
a highly regarded feature of pure functional languages.

o Explicit effects There is a close (perhaps even over-represented)
relationship between the concept of AOP and the use of ef-
fects as orthogonal concerns, which are challenging in pure
languages such as Haskell.

Given all these issues, is it possible to find an AOP-like rhode
that is useful for purely functional languages, withoutigiy up
many of the cherished properties of functional programriRer-



haps more importantly and pressingly, will the effort of fimgla
solution provide a payoff by bringing attractive benefitsfiiac-
tional languages?

The goal of this paper is to start the ball rolling by showcas-
ing the ability of AOP to improve many idiomatic applicatoof
functional programming that were previously thought to kfé-d
cult, while preserving the functional flavour of the soluiso The
hope is that we can raise awareness and interest in thednatti
programming community in exploring the design space of AOP
languages. We choose the langudgeectFun, which will be in-
troduced shortly, as the carrier of discussion in this papith the
understanding that none of the examples involved is deperuate
this choice.

We shall state upfront that this paper is not intended ta afifiy
definitive solution to the issues listed above. However, walid-
cuss the possibilities and trade-offs that one may face arcily
invite fellow functional programming researchers to veatinto
this great unknown!

Despite targeting the functional community generallys fha-
per is particularly relevant to generic programming, wHislabout
making programs more adaptable by making them more general”
[21], in two dimensions: (i) One of the main contributione¢s
tion 3) of AOP in functional programming is the improved exte
sibility and adaptability (Section 3) (ii) Specific genegmgram-
ming techniques in functional languages can directly befrefin
the additional power that AOP brings in (Section 3.3).

In the sequel of the paper, we firstly give a brief introductid
AspectFun (Section 2), followed by presenting in details the two
major strengths of functional AOP namely extensibility ¢&en 3)
and separation of concerns (Section 4). We then discussithaeai
characteristics of functional AOP and the design challsrgmme
with them (Section 5) before concluding.

2. An Overview of AspectFun

In this section, we introduce the functional AO languagjspect-
Fun [52, 7], which is the carrier of our discussion. We focus am th
Haskell-like syntax of the language and only present theasgics
informally with examples. We also choose to omit some of éme |
guage features that are language-specific or that we corisike
acceptable to functional programming, such as run-timectdin.

Programs 1 :=d

Declarations d :=dataTa@=KT
n@advice around{pc}(arg) = e|
fut—rt
fx=e

Arguments  arg:=pat| pat:: T

Pointcuts pc ::=ppc| pc+pc| pc—pc

Primitive PCs ppc:=f X| any | n | within (f)
Expressions e :i=c|x|proceed | Ax.e|ee|Ke

Patterns pat:=x| T pat| x@pat

Types T ==a|1t—T1|TT|Int|Bool|[a]
Predicates p :=(f:t)

Advised Typep :=p.p|t

Type Schemes :=Va.p

Figure 1. Syntax of theAspectFun Language

Figure 1 presents the language syntax. We writées an abbre-
viation for a sequence of metavariab®s..., on.

In AspectFun, top-level definitions include datatype and func-
tion definitions, as well as aspects. Aspectis an advice decla-
ration which includes a piece of advice and its tag@ntcuts A

piece ofadviceis a function-like expression that executes when any
of the functions designated at the pointcut are about toggethe

act of triggering a piece of advice during a function apglarais
calledweaving

Pointcuts are denoted Hyc}(arg), wherepc stands for either
a primitive pointcuf represented bppc, or acomposite pointcut
Pointcuts specify certaiin pointsin the program at which advice
is woven when program execution reaches there. Here, we fatu
join points at function invocations. Thus a primitive paiat, ppc,
specifies a functiof or advice name for the invocations that will
be advised. It is worth mentioning that a function pointcatynbe
curried (this is represented by the pattern of function application
to variables), which captures executions of partially &upfunc-
tions. A primitive pointcut can also be a catch-all keywait.
When used, the corresponding advice will be triggered wiame
function is invoked. The pointcwwithin (f) syntactically inspects
whether a call occurs within the definition of the function

Name-based primitive pointcuts can be composed to form com-
posite pointcuts by either adding to or subtracting fromgbeof
names that are captured. As one may well expeés,commutative
and associative, whereasis neither.

The argument variablarg is bound to the actual argument of
the named function call, if the pattern matching is sucegsahd
it may contain dype scopeA type scope introduces bounded scope
to the aspect. Specifically, when the function in the poinisu
polymorphic, it only matches executions with inputs of typleat
subsume the scope. As a result, it is safe to type check thedfod
the advice under the strengthened assumptioretiges of typert.

Advice may be executelefore after, or arounda join point.

An aroundadvice is executed in place of the indicated join point,
allowing the advised pointcut to be replaced. A special lagw
proceed may be used inside the body of around advice. It is bound
to the function that represents “the rest of the computatain
the advised pointcut. When there are multiple pieces of cadvi
applicable to a join point, their execution follows the nesex
textual order: the one declared or imported later gets ézddirst.

As both before advice andafter advice can be straightforwardly
simulated byaround advice that usegroceed, AspectFun only
considersaroundadvice.

AspectFun is a polymorphic and statically typed language, with
full type inference. It introduces the conceptaafvised typeshat
are augmented with type predicates of the faifmt). Advised
types are inspired by the type system of Haskell's type elss
and are used to capture the need of advice weaving based @n typ
context. As a resultAspectFun is able to statically resolve type
scopes on pointcut and weave aspects into the base program. |
contrast to from type classes, the type predicates are onlthé
purpose of semantics-preserving weaving and are not refléat
the base program, a direct result of the obliviousness piyppe
Like the host language Haskell thAtpectFun is compiled into,
AspectFun is a lazy language.

As a first example, consider the functiguicksort: [Int] —
[Int]. As the name suggests, quicksort is one of the fastest gortin
algorithms in practice. Perhaps ironically, many impletagans
of quicksort perform badly when the input list is (nearlyytsd.
Therefore, in some applications with predominantly neadyted
lists, we may want to supplement the standard definition avithse
that deals with already sorted inputs. We can achieve tliig) tise
following advice.

sort@advice around{ quicksort}(x) =
if sorted xthen x else proceed X

Advice sort checks ‘sortedness’ of inputs before execution of
quicksort (specified by the pointcut here) and resumes the exe-
cution if the check fails. Every call tguicksortis intercepted,



including recursive ones, which extends its applicabiidyearly
sorted lists. Note that the use moceed is important here, since a
naive call toquicksortwill trigger the same advice again and result
in non-termination.

3. Extensibility and Adaptability

One distinctive strength that AOP may bring into functioped-
gramming is modular overriding of existing definitions. histsec-
tion we demonstrate how it can help to improve the adaptglaitid
extensibility of functional programs in several differ@plication
domains.

3.1 AspectsYield Open Functions

In most functional languages, functions are usually defibgd
case analysis on the inputs. Once declared, there is no way of
introducing new cases without modifying the original defor.
Programming language extensions dpen function§38, 43] have
been proposed in the past to allow such extensions.

In the OO programming paradigm, this problem manifests it-
self as theTEMPLATE METHOD [18] design pattern, which typi-
cally involves defining an abstract class with implementatifor
most of its methods but leaving some methods abstract. Tee-in
tion is to defer some application specific steps to the ssbek
Adapting it to the functional setting, instead of definingadostract
class, we define a function by cases while leaving the apjgita
specific ones out. Despite being difficult with traditionah€tional
programming, AOP yields open functions naturally. Withiard
advice we can intercept the execution of partially definedfions
and direct the control to new cases defined in the advice body.

Consider the example of implementing an evaluator for alsmal
arithmetic language.

dataVal= N Int
| BBool
| Wrong

data Term= Add Term Term
| Minus Term Term
| 1sZ Term
| If Term Term Term

The evaluation strategy of most constructs in this langisgean-
dard, with the exception dff. We can choose either to evaluate
eagerly both arms or only evaluate the one that will be pidked
the boolean condition. A conventional implementation Ugusas

to make the choice upfront and commit to it. With open funuio
we can leave the option open and fill in the context specificimis
cases for the specific application domain later.

add:: Val — Val — M Val

add (N i) (N j) =return(N (i +j))

substr:: Val — Val — M Val

substr(N i) (N j) =return(N (i —j))

eval:: Term— M Val

eval(Addn1in2 =evalnls=(Aa—
eval n2s= (Ab—
addab)

eval(Minus n1 n2 = eval nI>>= (Aa —
eval n2== (Ab —
substr a )

eval(lsZ n) =evaln>= (AN a—
return (B (a=0)))
eval_ = error "Unknown Expression!"

We leave out the case fdrin the definition of the open function
above. Later, in different modules, we may easily switctwieen
the two evaluation strategies by plugging in one of the aspec

module Awhere
both@advice aroundeval}(If celel =
evalc == (Ab —
eval el>= (Avl—
eval e2s= (Av2—
applylf bv1v3))
applylf :: Val — Val — Val — M Val
applylf (B True) vl v2 = return vl
applylf (B False v1 v2= return v2
applylf _ = return Wrong

module Bwhere
one@advice aroundeval}(If celel =
eval c= (Ab — applylf bele2

applylf :: Val — Term— Term— M Val
applylf (B True) el e2 =eval el
applylf (B False el e2= eval e2
applylf _ = return Wrong

Without the aspects, we can still achieve a similar behanhgipa-
rameterisingeval with the functionality that would handle the case
for application. However, this is obviously heavy-weigimdan-
volves upfront preparation to account for the additionadifidity.

In a typical OO setting, template methods are usually imple-
mented as abstract; and it is statically enforced that ohjgats
with instantiated template methods can be constructed fakil-
ity does not exist in functional languages: as usual progrars
are responsible for making pattern matching exhaustive.

3.2 Typedirected Programming

In Haskell, an idiomatic way of achieving modular exteni#ipis
through type classes. Consider the evaluation of the smig-a
metic language we had before (we leave out the orthogonal er-
ror handling for a simplified presentation). All syntactanstructs
must be lifted to the type level so that the different caseslm
defined as instances of a class.

dataAdd ab=Add ab
data Minus a b= Minus ab
datalsZ a=1sZ a
datalf abc=Ifabc
data Val= Num Int

| B Bool

The functioneval now can be defined as an overloaded class
method.

classEval awhere
eval::a— Val

instance (Eval a Eval b) =~ Eval (Add a b where
eval(Add n1 n2 = let Num vl= eval nl1
Num v2= eval n2
in Num(vl+v2)

instance (Eval 8 = Eval(IsZ a) where
eval(IsZ n1) = let Num vl= eval nl
inif vi= Othen B Trueelse B False

This solution is much more involved than the one with opercfun
tions: a new operation on the language necessarily inteslaaew
class; and the types of terms become very complicated, fonple



Add (Minus2 3) 2::Add (Minus Int Int) Int. Given terms of differ-
ent types, it becomes very tricky to manipulate them, fonge,
putting them into an environment.

This kind of type-directed programming is also supported by
most AOP languages. For exampleAspectFun we can start with
a default case for the evaluation function and graduallycarthe
definition by introducing advice for different types of ament,
overriding the default behaviour.

eval::a— Val
eval= error "Unknown expression!"

add@advice aroundeval} (Add el e2:Add abh =
let Num vl=eval n1
Num v2= eval n2
in Num(vl+v2)

Given thatAspectFun performs static weaving in a similar man-
ner to the dictionary translation of type classes, the twwra@gches
have similar run-time performance. The advantage of the AQP
lution is the elimination of the complex class hierarchy,ehhal-
lows new operations to be more easily defined. This flexjbilists
us some static safety: without a type class context, thare isay
to guarantee that the recursive callset@l probably on different
input types, are actually defined.

Another benefit of type classes is the explicit qualificatodn
types of overloaded functions, which distinguish them froana-
metric polymorphism. As a result, the properties of paraicigt
are preserved and more precise typing can be achieved. We wil
discuss this in more detail in Section 5.

Other than typing, the more operational difference between
aspects and class instances is the possibility of multifdgering,
as we will see next.

3.3 Extensible Generic Programming

Generic programmind?7, 24, 31, 32, 23, 26] is another functional
idiom where the extensibility of aspects plays a centra.rol

Looking back to theeval function above, type-directed pro-
gramming allows us to specify a case for every datatype. iBhis
fine-grained, but not very general: structurally similat homi-
nally different types have unrelated implementations,civinesults
in large amount of “boiler-plate” code. Consider functistnings
that extracts all the strings from a structure. Witin@minal ap-
proach, we are required to define a case for every datatygehwh
are mostly non-productive inductive traversals.

In contrast, generic programming exploits structure imfar
tion of datatypes, and dispatches based on structure espees
tions. Given that overloading is necessary for supportiagegic
programming [26], type classes have been a popular choiagefo
alising the idea in Haskell [31, 32, 23]. For example, 8pénerep-
resentation of datatypes is defined as follows:

data Spine a= Con(Constr g
| ¥b.ToSpine b= App(Spine(b — a)) b

data Constr a= Descr a

If a constructor does not take any argument, it is encoded by
Con together with information about the constructor. Otheeyis

a constructor taking arguments is encoded by applpipgto the
representation of the constructor and to its argumentsfurion
toSpine which converts a datatype to its spine representation, is
type-directed, and defined as a type class method below.

class ToSpine avhere
toSpine:a — Spine a

instance ToSpine Inivhere
toSpine x= Con(Descr0)

instance ToSpine Chawhere
toSpine x= Con(Descr’a’)

instance ToSpine a= ToSpinda] where
toSpine[] = Con(Descr[])
toSpine(x: xs) = (App (App(Con(Descr(:))) X) Xs)

All datatypes are now mapped to a single dBpine We can easily
define functions that work on this representation.

strings::a — String
strings x= strings. (toSpine X

strings. :: Spine a— [String]
strings. (Con ¢ =[]
strings. (App f X = strings f -+ strings x

This version ofstrings behaves uniformly on all datatypes by
traversing the structures, but not producing any stringhatWve
need is a small exception to this generic behaviour thatrmstu
a string when the input is a string. Since this is a type-déec
operation, we could try to use type classes again.

class Strings awhere
strings:: ToSpine a= a — [String]

instance Strings Stringvhere
strings x= [X]

instance Strings awhere
strings X= strings. (toSpine X

The two instances above are overlapping. The intentionrnsaizh
on the more specific one when the input is a string and the gkner
one otherwise. However, this behaviour is not expresstatially:
there is no way of knowing the type of the existential compine
of constructorAppduring compilation, which makes it impossible
to decide the call tetringsinsidestrings’s body.

Since AspectFun performs aspect weaving statically, it also
suffers from the difficulty above. Thus, directly encodinighiype-
scoped advice as follows does not work.

n@advice aroundstrings}(x:: String) = [X]

Because the exact type is not available statically, thelwden of
overloading can only be made at run-time by dynamic type-cast
ing [31] or special dictionaries [32]. The use of dynamiceygast-
ing with type classes is counterproductive here since itlpdes
extensibility by forcing all relevant cases to be defined sirgyle
instance. The use of special dictionaries could reuse thstirgx
type class mechanism. But a working solution is necesseoily-
plicated and involves not-so-common language extensions.

We believe the fundamental difficulty here is that type aass
are designed for overloading, and provide complete funatity
for each type case. On the other hand, what is needed in éitgens
generic programming is the ability to refine or supplemem th
generic behaviour and AOP seems more suitable for this parpo

Instead of overloading the generic function, we can simply
define the generic behaviour and incrementally include iapec
cases by introducing individual aspects. For example,Stiing
case can be defined as the following.

n@advice aroundstrings}(x) =
case cast x: Maybe Stringof Just s— [X]
— proceed x



This advice intercepts all executions strings When the input
is dynamically verified to be a string, we return that stringhe
result; otherwise, control is passed backtiings(or to some other
intercepting advice). As we can see, ffreceedmechanism plays
a central role here: if it is replaced by a callinings advicen will
be triggered again, which results in an infinite loop.

In addition to the ability toproceed AOP offers extensibility.
Suppose we later implemented a datatype of ASCII-codedant ch
acters and would like to consider a list of ASCII as a stringvel.
Functionstringscan be easily extended with another special case
using advice.

nl@advice aroundstrings}(x) =
case cast x: Maybe[Ascii] of Just s— [X]
— proceed x

34

Recursion is the predominant technique in functional pogr
ming. For most problems, the recursive pattern is highlycstral.
This regularity has been well understood and exploited bypyma
to reduce the task of programming into filling in a few blanks.
functional languages, the idiomatic way of achieving suehse
is through higher-order functions that compose behaviddosv-
ever, if one chooses to define structural recursion exjylicgusing
the definitions reduces to merely “cut-and-paste”. Thibmm has
been discussed in [33], which compared this kind of codeerénis
the typical reuse in object-oriented languages and théovipat-
tern. Let’s consider an example on trees.

Inheritance and Overriding

dataTree a= Leaf a
| Branch(Tree g (Tree g

sum(Leaf @ =a
sum(Branch t1 t3 = sum t1+ sum t2

Functionsumsums all the leaf values of a tree. Now suppose that
we want to define a slight variant simby summing only the even
leaf values. Since this new function is very similaistan we may
consider reusing the original definition. A possible attemghe
following:

sumEver{Leaf @ = if isEven ahen aelse0
sumEven t=sumt

FunctionsumEverworks as desired for leaves but fails for more
complicated trees, since the recursive calls are still Hdorsum
There is no easy solution to this problem in existing funio
languages such as Haskell.

With the introduction of aspects, reusesoimbecomes straight-
forward.

ever@advice around sum}(Leaf X = if isEven xhen xelse0

Advice evenintercepts every execution afum with leaf input
and checks whether the value is even. Additional advice @n b
subsequently introduced to further change the originaition. For
example,

positive@advice around sum}(Leaf ¥ = if x> 0then xelse0

the advicepositive ensures that only positive leaves are added
up. Now, programmers can liberally choose different coratiams
of sum behaviours by bringing different aspects into scaffee
statically or dynamically, depending on the language’s viven
strategy.

The adaptations cfumabove are “in-place”: we lose the origi-
nal definition ofsumin the same scope. A solution to this problem
is to have another function pointing $oim such as

sumEven= sum

and then we can specify in the pointcuts that only invocatioh
sumbeforesumEveneturns will be advised. Through standard in
AORP, this kind ofcontrol-flow basegbointcut requires run-time re-
flection, which does not fit well with (pure) functional pregn-
ming. We choose to leave this feature out in this paper.

Many definitions share similar cases. We could try to extitaet
common elements into aspects. Let’s consider optimisiogretve
functions by using accumulator parameters. It is well-knda]
that by using an extra argument (the accumulator paramieter)
function, we can sometimes improve the run-time perforraaRor
example, consider the reverse function on lists.

reverse: [a] — [a]
reverse | =]
reverse(X:xs) = (reverse Xs+ X

This straightforward recursive definition has a quadratit-time
performance, due to the expensive operatiornthat is invoked on
every step of the recursion.

reversé::[a] — [a] — [a]
reversé[]acc  =acc
reversé (x: xs) acc= reverséxs(x:acc)

By using an accumulator parameter, we can replace-thepera-
tion by constant time list construction, which achievegéintime
performance.

Another example of using accumulator parameter is flatgenin
a binary tree. The straightforward definition has asymptogirfor-
mance of0(n?) whereas the accumulator version

flatter :: Btree a— [a] — [a]

flatted Empty acc = acc

flatterf (Leaf ¥ acc =x:acc

flatterf (Fork xt yt) acc= flatter xt (flatterf yt xs)

has linear time performance.
A very similar story applies for the flattening of rose trefes,
which we only show the accumulator definition here.

flatternRose: Rose a— [a]
flatternRose xt= dfcat|xt] []

dfcat[] acc =acc
dfcat(Node x xtsyts) xs= x: dfcat xts(dfcat yts x$

The list goes on to thehowsPrec: Int — a — String — String
function in Haskell's clas§how where the third parameter is an
accumulator parameter.

All the definitions in accumulator style have a common patter
the accumulator parameter is returned when the input isyeMfet
could try to capture this common base case with an aspect.

base@advice around reversé + flatterf +
dfcat+ showsPrec}(x) =
if isEmpty xhen id else proceed x

The testing functiomsEmptyhas to be a type-directed function that
works on multiple types. The way to define this function hasrbe
discussed in Section 3.2.

There is another correctness crosscutting concern on accum
lator style definitions: the accumulator parameter mustropte
when initially called.

empty@advice around
{ (reversé x — within (reversé)) +
(flatterr! x — within (flatterr)) +
(dfcat x— within (dfcat)) +
(showsPrec i x- within (showsPreg) } (acc) =



if isEmpty ace¢hen proceed acc
elseerror "NonEmpty accm"

The negativewithin pointcuts ensure that only the initial calls of
the functions are checked. UnfortunatelyAispectFun, there is no
smarter way of defining lengthy pointcuts like the above, sy
way to extend them easily. However, languages such as Adpect
or Aspectual Caml, where pointcuts are defined separatein fr
advices, offers better support for pointcut ‘programming’

This last aspe@mptyencodes an orthogonal concern other than
the core functionality of the respective programs, by d@figan ad-
ditional correctness check. This modular separation oteors is
another major feature that AOP may bring to functional paogr
ming, as discussed next.

4. Separation of Concerns

In this section we will see some classic applications of AGP t
the problem of separation of concerns in functional prognémy.

4.1 Contract Enforcement

Very often programmers want to insert assertions at vampoirsts

in the program to check the validity of values. As a resulthsu
checks are scattered and tangled with other code, whictetsnd
comprehension and complicates maintenance. To solve tthis p
lem, a concept ofontract(a set of pre- and post-conditions) was
developed, the value of which in building robust systemslbag
been recognised [42]. Most contract systems [4, 17, 25)dhice a
separate contract specification language into the hostiéaygg and
compilers are extended to allow interpretation of the djmations
either statically or dynamically so that the target progrean be
checked.

In this section, we show how aspects can be used conveniently

and effectively to specify contracts. The modularity of éipgroach
makes it straightforward to introduce contracts and rentbeen
when run-time performance is more critical.

Consider the popular RGB colour model for colour rendering
where three parameters representing red, green, blue ded &t
gether in various ways to produce a wide spectrum of col@up-
pose we encode the RGB colour in 24 bits per pixel, using three
8-bit unsigned integers (0 through 255) representing ttengities
of red, green and blue. Any number beyond this interval isizbn
ered an error and cannot be displayed. The following fundties
in a triple specifying a colour and displays it. We omit théuat
definition of the function.

display:: (Int,Int, Int) — Colour

As discusseddisplay can only handle inputs that fall into the
interval of [0..255. We can enforce this precondition by advice.

inrange x=x> 0 A x< 255

rgb@around advicg display}((r,g,b)) =
if (inrange ) A (inrange g A (inrange b
then proceed(r, g, b)
elseerror "Non-displayable Colour"

The advicagbh makes use of an auxiliary functidnrangeand only
proceeds when the input is valid.

The RGB model can be refined by introducing additional pa-
rameters to more accurately specify colours. One such myiste
HSV, which stands for hue, saturation and value. The HSVeslu
are derived from the RGB values. For example, the saturatibre
is computed by the following formula:

s max(r,g,b) —min(r,g,b)

max(.g.b) @)

data Exprwhere

Lit Int — Expr

Var :: String— Expr

Plus :: Expr— Expr— Expr
Minus ::Expr— Expr— Expr
Assign ::Expr— Expr— Expr

Sequence [Expr] — Expr
While ::Expr— Expr— Expr
type Env= [(String Int)]
type EvalM a= WriterT String(State Enya

Figure2. Datatype and environment type for expressions.

This operation involves division, which gives rise to theidié-by-
zero exception. Again, we can use an advice to rule it out.

divzerg@@around advicgdiv x}(y) =
if y=0then error "Division by Zero"
elseproceed y

Since functiondiv:: Float — Float — Float takes in two inputs in
curried form and has the second as the divisor, the aboveabas
acurried pointcut which intercepts partial application of function
divand captures its second input. This pointcut even matchea wh
the partially applied function is not immediately applied.

Postconditions can be specified by advice too. Consider the
square root functiorsqrt:: Float — Float. Given a non-negative
input, the output must be non-negative too.

sqr@around advicgsqrt}(x) =
if x> Othen let y = proceed x
inify>0theny
elseerror "Wrong result for sqrt"
elseerror "Invalid sqrt input"

Advice sgr checks both the precondition and postconditiosart.
Postconditions can bdependenbn the input values. For example,

sgri@around advicgsqrt}(x) =
let y = proceed x
inif abs(x—yx*y) <0.01theny
elseerror "Wrong result for sqrt"

This advice, in addition tsqr, checks the accuracy of the result by
comparing the square of it with the input.

Dynamic contract checking necessarily incurs run-timer-ove
head. If the functions above are part of a colour representat
the palette of painting software, it is vitally importantdisplay the
correct colour perceived by the user.

On the other hand, in some applications, preventing col@ur d
tortion caused by having an invalid representation is leg®rtant.
For example, if we are rendering the display of a LCD panel; ha
ing the colour of one pixel out of millions wrong is very urgily
to be observable. In this case, speed becomes more crudiaten
may choose to ignore the exceptions; contracts in the foradef
vice can be easily removed from the system since it is noteang
with the core functionality. Note that this removal does matke
the programs less correct; it only eliminates the dynamitreat
checking.

4.2 Monadic Interpreters

When it comes to orthogonal concerns in the form of sideetsfe
the conventional approach with pure functional languagégough
monads. In Figure 2 we present a datatype representing a sim-
ple imperative language that can be used to compute numeric



eval:: Expr — EvalM Int
eval exp= case expof
Lit x — return X
Var s — doe« get
case lookup s eof
Just x— return X
_  —errormsg

—dox«evall

y«—evalr

return (x+y)
—dox«evall

y«—evalr

return (x—y)
— doe« get

y«—evalr

put((xy):e)

returny
Sequencé] — return0
Sequencgx] —evalx
Sequencéx: xs) — eval x>> eval (Sequence ¥s
While cb —dox«evalc

if (x=0) then return0
else (eval b>> eval exp

where msg= "Variable not found!"

Plus|r

Minus | r

Assign(Var x) r

Figure 3. A classic monadic evaluator.

expressions—this example is based on an interpreter gessan
[11], which in turn is a Haskell translation of an interpretaple-
mented in ML [33]. Integer literals and variables can bethusing,
respectively, the.it and Var constructors. Simple primitive oper-
ations for addition and subtraction are available throughRlus
and Minus constructors. Mutable assignments to variables can be
defined usingAssignand sequential composition and while loops
can be constructed witBequenceand While A simple environ-
ment type for expressions is given Bywv. We also define a monad
EvalM, which is the combination of a writer and a state monad, for
use with the evaluator.

In Figure 3 we show a classic monadic evaluator for the expres
sions presented in Figure 2. The state monad transformesei$ u
to pass the environment around and it is also used in therassig
ment clause to update the value of the variable being agkigine
evaluator is quite standard. Evaluating integer literatsinns the
integer denoted by the literal. The evaluation of varialdess up
the variable from the environment and returns its valuepif/alue
is found, an error is raised. The primitive arithmetic opierss are
evaluated in a similar way: both arguments of the operatames
evaluated and the corresponding arithmetic operationawked
to the result of the evaluations. For assignments we needhta-e
ate the expression being assigned and update the variatbl¢hei
new value. Sequential composition of an empty list of exgices
returns 0, whereas the sequential composition of a list avitimgle
expression returns the value of that expression. For a ngotydist
of expressions we evaluate the expression in the head andHhbe
expressions in the tail. Finally, while loops are evaluatidilarly
to theC programming language, with integers playing the role of
booleans: we first evaluate the condition; if that conditi®@ we
stop and return 0, otherwise we evaluate the body of the Wdoie
and evaluate the original while loop expression again.

weval@advice around{ eval} (exp@Assign(Var X) r) =

if x="y" then
don « proceed exp
tell (Xx+" = " +-show - "\n")
return n

else proceed exp

Figure4. The watching variables aspect.

teval@advice around{ eval} (exp@While ch =
don<«evalc
if (n=0) then (tell "done\n" >> return0)
else (tell "repeating\n" >> eval b>> eval exp

Figure5. The tracing loops aspect.

presented in Figure 3, we would need to directly change tigeait
program and adapt it with the extra functionality. Moregwwren
if we use approaches such as the mixin-based solution siegges
in [11], we would still need to do a little bit of planning foatler
extensions by writing the base evaluator in a slightly défe way.

Modular Aspects of Interpreters In AspectFun, there is no need

to touch the base program or plan ahead for possible extensio
we can just write modular aspects that are woven into the base
program. In Figure 4 we show how we could modularly define a
watching aspect for assignments. This aspect watches gnaési
variable "y". For all cases other than assignment iweerit the
functionality by callingproceed. For the Assignconstructor we

do something different bgverridingthe functionality provided by
the base interpreter. Since we want to watch what happer®in t
assignments ofy" we have to comparey" with the variable being
assigned and, if they represent the same variable peadked to
execute the assignment code, as well as adding extra wgtchin
code using the writer monad. Ify" does not match the variable
being assigned, then the guard will fail and the executidhfall
through the default case, just executing the standard ramsigt
code provided byroceed.

In Figure 5 we show how we could modularly define the code
for the tracing while loops using aspects. The idea is thattte
While constructor, we make a recursive call directly, which has
the effect ofcompletely overridingll the code for handling while
loops. Consequently, we need to essentially repeat thethatiere
have ineval but this time decorated by some tracing code using the
writer monad.

As we have seen the modularity benefits of using aspects to
capture the tracing and watching variables aspects ardisan.

In order to add a new orthogonal piece of the functionalitydee
not need to alter the original program. Instead, we can sigrglate
new aspects that decorate the base program and overridéngust
functionality that needs to be changed.

5. Discussion

In this section we briefly compare functional AOP with the mor
established notion of AOP in OO, and discuss the issues tisat a
in the design of purely functional AOP languages togetheh wi
possible solutions for them.

5.1 Object-Oriented AOP vs Functional AOP

AOP was born as a programming paradigm that improves sep-
aration of concerns by offering another dimension of grogpi

Suppose that, for debugging reasons, we wanted to watch theother than the underlying support of encapsulation of a feost

assignments of some variable and trace the execution of tiile w
loops. Typically, in order to achieve this with the monadialeator

guage [30]. This idea quickly took a strong hold in OO program
ming, where encapsulation is predominant, and as a reshéiren



the problem of code dangling and scattering is most seveve. N

tably the success of Aspectd [29, 2], an AOP language based on

Java, is well recognised. Given the complicated contraksare of
Java, the pointcut language in AspectJ is very rich. A ty@spect

in AspectJcrosscutsseveral classes, very often through the use of
wildcards in certain fields of the pointcuts. Consequemntspite
being oblivious, it is obvious that base programs with atsm-

ing disciplines make the aspect development easier.

In most functional AOP languages, the pointcut model based
on function invocation is much simpler. In addition to thellwe
known applications of separation of concerns, such asnigaoi
contract checking, an AOP extension in a functional seisraple
to model OO style inheritance and overriding. This is notbei,
not surprising, since one of the main strengths of AOP lies in
facilitating extensibility and adaptability, which, hower, has been
shadowed by the powerful inheritance infrastructure in OO.

5.2 Parametricity

Most (if not all) functional AOP languages, including Aspét.,
Aspectual Caml and\spectFun, support type-directed program-
ming. In those languages, it is possible to define a funatiee,
like the one presented in Section 3.2, with the followingetyp

eval::vVa. a— Val

In languages like Haskell, properties arising from paraitigt
abound [50], but type-directed programming in the stylevabo
breaks these properties. In this example, because of paiame
ity, we would expect thagvalwould not be able to make any use
of its first argument, since nothing is known about the infarm
tion contained in values of the tyge Consequently, in a language
where parametricity is preserved, #nalfunction would necessar-
ily need to return a constant. However, with implicit typieedted
programming, we can perform a case analysis on the type and di
cover information abous, which allows us to return something
other than a constant. This breaks the parametricity ptiegehat
we would normally expect from a function of this type. Sineggp
metricity is highly valued in functional programming, itiimpor-
tant to consider possible design alternatives that can e tasre-
store (or at least partially restore) parametricity. A fetemative
designs are discussed next:

Type-safe cast One possible alternative design is to allow type-
safe casts [56, 31] as in, for example, the current versibrikeo
Glasgow Haskell Compiler (GHC) [22]. In this design, we wbul
be able to do a (limited) form of type-directed programming b
only through the use of ype-safe cadunction:

cast: (Typeable bTypeable 4= a — Maybe b

The advantage of this design is that parametricity progerire
preserved, since any functions involvingstwill necessarily give
rise to Typeableconstraints. For example, if we wanted to define
an evaluation function using type-directed programmingweuld
need to write

eval:: Typeable a= a — Val

In this design a function without arijypeableconstraints has the
usual parametricity properties. However, a disadvantageoap-
proach is that it typically relies on some built-in compiteachin-
ery (for example, in GHC, we need to rely on the compiler gener
ating the type-class instances fiypeablé.

Type RepresentationsAnother alternative way of doing type-
directed programming is through the use type representa-
tions[44], which are widely used in lightweight forms datatype-
generic programmingg, 23]. In this design the functioevalwould
have a type like:

eval::Rep a— a— Val
or, alternatively:
eval::Rep a= a— Val

In either case it is possible to discriminate the possibpe tsep-
resentations of. Like with the previous solution, we can tell if
a function uses type-directed programming because dRépar-
guments (or constraints) in the type. The main advantaggisf t
solution when compared to tig/peableapproach is that it is less
reliant on type-classes and some “magic” introduced by time-c
piler. Unfortunately, a typical disadvantage of this agmtois that
the type representations alesed(that is, itis hard to add new type
representations without modifying the origirRéptype). Some of
the latest work in this area has been focused on lifting fhig- |
tation [45, 57], giving us some hope that this alternativey rbe
useful in practice.

Type Labelling The restoration of parametricity in the presence
of run-time analysis has been studied before [53]. The Lidsi&

of the proposal is simple: distinguishing parametric typeables
that are analysable by labels. Applying to the case here,ouklc
mark the types of all overloaded functions, for examel@l in
Section 3.2, so that they are not confused with genuine petram
polymorphic functions. Despite the loss of some obliviesmn
we believe in practise this should cause little disturbareeause
programs only have to make a (usually clear) choice on whethe
a polymorphic function is intended to be extended with aduél
type cases.

5.3 Reasoning with Aspects

Equational reasoning is a distinctive feature of pure fiometl lan-
guages. Given the absence of (implicit) effects or, moresggly,
the existence ofeferential transparencya carefully designed lan-
guage can support local reasoning about program behawamars
allow replacing programs with equivalent ones without aingesv-
able differences in behaviour. The former is clearly berafior
program comprehension and the latter is important for @nogop-
timisation and parallisation. As a simple example, cornstide map
fusion law:

map fomap g= map(f o g)

The left-hand side of the equation above can be safely reglbg

the more efficient right-hand side by a compiler regardldshe
context it is used. This nice property is directly threatebg the
introduction of aspects, especially oblivious aspectaisiiter the
sumexample in Section 3.4; an advice sucheasnmay override

its behaviour. This gives us adaptability and reusability, at the

cost of sound reasoning: the semantics of other programmtiiee

use ofsumare changed silently. We suggest some possible designs
that can help restoring some (and perhaps all) forms of amst
reasoning next:

Noninterference To control the possible ‘damage’ that comes
with the use of aspects, a whole theory of non-interferemppear-
ing under different names, has been developdatervation[9],
orthogonal, independent and observatipf6], almost specta-
tive [28], strongly independeritl5] andharmless advic§l3], are
just some of the most relevant works in this area. The common
goal is to classify aspects and base programs with respeerio
tain interference properties that they may have. For exanwyith
harmless advice we can ensure that advice will only perfdfeces
and will not change the core functionality of the base prograhe
tracing aspect in Section 4.2 is an example of harmless eadvic
Unfortunately, this notion of noninterference is too weakfiuinc-
tional reasoning: two expressions are not equivalent efvémey
only differ in the effects performed. As a matter of fact indkell



all effects are cleanly abstracted into monads (or othehar@sms
such asapplicative functorg41] or comonadg49]) and two pro-
grams that only differ in their effects will have differeypes and
cannot be substituted for each other. It is perhaps moreimgfah
to argue whether certain aspects will be capable of breadirsg-
ing invariants of the base program instead. For instancesoutd

consider thesort aspect being harmless since it does not change

the invariant that any output will be sorted. On the otherchal-
vice of this kind may change the run-time performance or ¢kien
time complexity of the original program. This makes the adie
complex time complexity analysis of lazy languages eveddrar

Modular Aspects Instead of insisting on being completely obliv-

h::a—10a
h x=return x

The idea here is just that we anticipate the ud®©dfy any possible
advice. In this way, advice could freely introdui€® computations
and no problem would arise in the first place. One problem thith
solution is the loss of some obliviousness, since now thgrpra

h needs to make some preparation for advice. A more fundamenta
problem is that this still does not account for the introghrectof
other kinds of effects. If, for example, we wanted to use ptioas

we would fall back into the same problem. Alternatively, iéwy

to anticipate all possible kinds of effects, then we may dshese
used a language with implicit effects.

ious, proposals have been made to give the base program some\gyice can introduce implicit effects One very pragmatic solu-

control over the way it can be advised. Commonly hidden withi
certain module boundaries, base programs may choose tic-expl
itly export join points that are receptive to advising [37, Ap-
plied to the level of functions, it makes sense to syntaliyicaark
functions that are being advised, in the same spirit as &artrent

of monads. It is obvious that obliviousness will be affectddw-
ever, we believe that this is a reasonable trade-off for @ropa-
soning. With mixins [5] (which provide a simple model for &th
itance) it is possible to program in a style very similar to RO
but with less obliviousness [11]. In this style a functiorattlis
meant to be advised has to have a suitdbbein type. For exam-
ple, rather than defining an advisable sorting function \aitlype
sorty :: Ord a=- [a] — [a] (such as the function discussed in Sec-
tion 2), we would need to writsort, :: Ord a=- Mixin ([a] — [a]).
The advantage of being less oblivious is that it is clear ftom
types of functions that we can expexirt, to be more flexible and
general tharsort; ; andsort; to be easier to reason about (since it is
less parametrized).

5.4 TheChallenge of Effects

A primary goal of AOP is to capture orthogonal concerns thats

up in software. For example, we may be interested in cagurin
tracing or memoisatiorconcerns separately from the code that im-
plements the core functionality of a program. By their owitung,
orthogonal concerns tend to involve side-effects. Foraimsg, in
the following toy example,

trace@advice aroundh}(arg) =
proceed arg
printin "exiting from h"

hx=x

we can see how to separate tracing from the core functigrafia
functionh. The functionh (in this case just the identity function) is
advised bytrace, which prints a message to the console every time
that an execution df finishes.

While orthogonal concerns are one of the primary motivation
in traditional renderings of AOP, they pose a fundamentallehge
in pure functional languages because effects appear #hpiit
the types. In the example above we would expet have a type
a — a but, since the advice executes l@haction,h should really
have a typea — 10 a. In a language with implicit effects (such as
AspectML or Aspectual Caml) this would not be a problem bseau
this kind of side-effect would be transparent and would matnge
the original type. We can think of the following solutionsatidress
the challenge of effects in pure functional languages:

Anticipate possible effects One possible way out of the problem
would be to anticipate all possible effects that may occinisT
was the option we took in the example presented in Section 4.2
For example, instead of declarifigas above, we could have the
following definition:

tion for the problem would be to allow a language where thebas
programs are purely functional, but advice can introducglicit
side-effects. The original design 8kpectFun can be seen as an
example of this design. lAspectFun sequential composition is al-
lowed on advice and the expressions being composed caducio
10 computations. However, sequential composition is notadtbh

on the base programs. The tracing example above is an example
of a program written in this style. Nonetheless, even thooigly
advice can introduce side-effects we can still break progeethat
we would expect from a pure functional program (such as fer ex
ample parametricity properties). The advantage is thaeifgmore

all advice, we still have a pure functional program. As disad
earlier, one possible way to recover most (if not all) prépsrof
the original pure functional program, while still allowiraglvice to
introduce side-effect, may be through the use of somethimges

to Dantas and Walker's harmless advice [13].

Type refinement in advice A more sophisticated alternative
would be to allow advice to perform some form of type refine-
ment on the original type of the base program. The idea hevddvo
be that the base program could declare a type that specifiethth
program may involve some side-effect, but it is unknown \hic
specific effect that is. Although we do not know any AOP lan-
guage with this design, the library approach based on misxjns
Oliveira [11] allows the modular development of pure fuontl
programs in a similar way. For example, in the mixin approdoh
type of the base program for the interpreter presented itidhet. 2
would be:

eval:: Monad m=- Mixin (Expr — m Int)

and the code corresponding to the tracing aspect would résfate
type as follows:

teval:: MonadWriter String m= Mixin (Expr — m Int)

The important thing to note here is thatval is allowed to make
use of the monad writer operations in its definition; bualdoes

not need to prepare for that possibility in advance. Unlike t
mixin approach, with an AOP language we would not need to
to combine the programs explicitly, which would make it more
oblivious. However, we would still need to anticipate théstence

of someeffects and declare a type that can then be refined by the
advice. While this would, perhaps, make the approach a bit le
oblivious than usual AOP solutions, it would be much morerie |
with what is expected from a pure functional language.

55 Static Typing and Type Inference

All the existing functional AO languages are statically éyp but
the inference mechanisms are very differentAbpectFun, func-
tions and aspects are typed separately and then connectibe by
pointcut. The type of the advice is checked to be more getteaal
the type of each function in the pointcut to ensure soundhessl-
dition, the type system is supplemented with type preds;atien-



ilar to the ones found in qualified types to facilitate stataving
of advice. Similarly, in Aspectual Caml, functions and agpere
typed separately. However, there is no type compatibiligrok on
pointcuts. Instead, the weaver goes through the type aiealiotd-
stract syntax tree and silently drops advice with mismaighypes.
This missing connection allows aspects to be compiled iedep
dently of the functions it advises, at the cost of losing ereport-
ing. AspectML strives to give a concrete type to pointcusstreey
are first-class entities in the language. This proves to fiieut:
higher-order unification is needed when more than one foncti
appears in a pointcut. To regain decidability, mandatopg tgnno-
tations are required with certain constructs of the languag

6. Other Related Work
In this section we discuss some other related work.

6.1 Type-Directed Programming and Generic Programming

Type-directed programming is an important ideology in sty
typed functional languages. It is essentially about didpag pro-
gram behaviour based on the input type. In general, appegatich
type-directed programming can be divided into two grodEmi-
nal approaches, such as Haskell’s type classes [51], stipulse-
arate implementation of a type-directed function for eaglut type
of interest; structurally similar but nominally differetypes have
unrelated implementations. This is more refined — custainise
haviours can easily be provided for functions — but lessaieles

On the contrarystructuralapproaches like Generic Haskell [24]
map every type into a fixed finite structuralew, which allows
generic functions to be defined once for all types, even tlyese
to be conceived. This works nicely in most situations, but no
all. We need some means of overriding generic behaviourowtth
endangering modularity; this is not possible in most of therent
approaches to generic programming.

The line that separates the nominal and structural appesach
is not always clear cut. Type classes are a popular tool todenc
structural generic programming. There have been some®{&2,
45, 57], to reconcile genericity and extensibility with géyclass
based solution for generic programming.

the use site, which is separately compiled from functiomitédins.
Nevertheless, this concept of modularity is different friova tradi-
tional one. Since we do not require advanced planning onhehnet
a function will be advised or how many times it may be advised,
the behaviour of the function is always subject to changbsré-
fore, introduction of advice on this function affects alffidéions
that depend on it.

Extensible ML (EML) [43] is a much heavier-weight approach
to the problem of open extensibility, which basically costply
redesigns ML by proposing a very different syntax and serosint
Datatypes and variants are encoded as super- and subsclaate
are modularly extensible.

Polymorphic variants are a language and type system egtensi
implemented in OCaml [35] and proposed for Haskell [20, 34].
Polymorphic variants are declared independently to tyfieitiens
and types are formed as collections of such variants. Thews, n
variants can be added easily without affecting existinggams.
However, polymorphic variants do not induce open functidhs
would be interesting to explore how polymorphic variantslddoe
combined with our AOP approach.

Oliveira et al. [45] addressed the problemextensible generic
functionswith Haskell type classes and noted the connection to the
expression problem. In a more recent development, Olijé2zh
proposed a solution to the expression (families) problespined
by his earlier work and, more generally, showed how to encode
extensible datatypeim System Fk-like languages extended with
with record subtyping. Swierstra [48] has also proposedutisa
to the expression problem using extensible sums (or vajizinat
has some close similarities to Oliveira et al.’s technique.

The problem of open extensibility is also studied in object-
oriented frameworks. In [58], the authors added algebratiatgpes
and pattern matching into an objected-oriented language aa
gued that through the introduction of defaults they couleirse the
subtyping relationship and declare datatypes that extani@dnts
as subtypes of the original datatypes. As a result, stanoigedt-
oriented mechanisms such as subtyping extension and divneyri
can be deployed for extensibility of datatypes.

There is also a folklore encoding of open extensions in Haske
through type classes. Open functions can be declared aswckih-

Type-scoped advice is nominal. Compared to type classes, it ods, which overload on variants that have been lifted togyfece

is more flexible: we can conveniently combine it with struatu

each new open function requires a new class, code overhehid of

approaches and deploy it when needed as we see in Section 3.28Pproach is significant. As we have seen in Section 3.2, i

In [55], AspectML is used for type-directed programming and
extensible generic programming, which inspired our disimmsin
this paper.

6.2 Open Extensibility

Open extensibility, better known by the pun of tagression prob-
lem, is essentially about supporting modular extension oftypéa
variants and functions at the same time.

The design of Aspectual Caml is centred around the expmessio
problem. Its static introduction mechanism allows diregection
of new variants into existing datatypes. This solution isenoon-
venient than ours since different expressions have the $gmee
which makes the defining of certain functions (such as enviro
ment lookup) easier. However, it remains a challenge to demp
static introduction modularly, a core requirement for tixpres-
sion problem. A similar problem exists in the proposal ofiadd
open datatypes and open functions into Haskell [38]. Inwwak,
datatype variants as well as clauses of functions can barecl
separately and grouped together at link time. This is ndy tnod-
ular despite the fact that the impact of recompilation caredeced
by the techniques mentioned in the paper.

Our approach only deals with open functions, and lifts vétga
of datatypes to types for extensibility. The weaving of atpés at

exclusive approach makes it difficult to combine the apphnaaith

other programming methodologies. The power of pattern matc
ing is compromised and there is no easy way of encoding nested
patterns.

6.3 Inheritancein Functional Programming

Traditionally in functional languages, code reuse is aade
through higher-order functions as combinators, typicanegles

of which arefold, unfold, map etc. However, it is also possible
to achieve reuse using mechanisms akin to inheritance (edlys
found in most object-oriented languages). Cook was probidia
first to note that inheritance had uses other than objeetited
programming in his work on the denotational semantics oéiinh
itance [10]. In that work, he used several different vaoiasi of
mixinsto model different existing kinds of inheritance present at
the object-oriented programming languages of the time. déoA
shows how some effects can be simulated (without using n®nad
using mixins and he presents a type-inference algorithnrevtine
treatment of error messages is modularly defined [40]. Giaeri
employs open recursion to emuladgen functionsn his solu-
tion to the expression problem witholymorphic variantg19].
Laufer shows how to apply mixins to interpreters and howee d
fine mutually-recursive functions using mixins [33]. He aalar-



gues about the relation of his technique with the OGsIVOR
pattern [18]. A nice application of inheritance to a problehsep-

aration of concerns is given by Brown and Cook [6], who show

how to approach the problem of memoization in purely fun@lo
languages usingionadic memoization mixinsor many problems
involving separation of concerns it is possible to use mixin
heritance to provide solutions for these problems. In reaenk,
Oliveira has shown how to use mixins to solve many problems tr
ditionally solved using AOP-like techniques [11]. A drawekeof
solutions with mixins is that they are less oblivious thapicgl
AOP approaches and additional parametrization is required

7. Conclusion

As far as we are aware, this paper is the first extensive sur-

vey of the impact of AOP in (pure) functional programming. We
have identified the main strengths of AOP, namely exterisilaihd
adaptability; and separation of concerns. For each of tie e
demonstrated classical functional applications where uleoiy
was traditionally believed difficult to achieve. The AOPw@ns to
the problems are lightweight and blend in well in a functistgle.

At the same time, we also identified the major challenges afia-s
factory functional AOP language — sound reasoning, panacitgt
and effects — and discussed possible design options.

It is interesting to observe that, in contrast to the tradii
concept of crosscutting in the OO setting where aspectsdilpi
crosscut several classes, the majority of the applicatbaspects
in functional programming only involve a single function time
pointcut. We believe the realisation of this difference asatuded
by this paper is important to both the functional and AOP camm
nity. There is a pressing need to properly interpret and ldpvef
the concept of ‘crosscutting’ in the functional settingdreffunc-
tional AOP spreads its wings.
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