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Abstract—Search is a fundamental task for Wilderness Search
and Rescue that can greatly benefit from the use of a swarm of
autonomous UAVs to survey the environment. The benefits are
maximised if the UAVs coordinate their search activities with
one another. In this poster, we present our preliminary work
on developing coordination strategies for multiple UAVs. It is
based on a distributed, grid-based probabilistic environmental
model. We discuss the practicalities of the search task, present a
simplified mathematical model of the environment and sensors,
and present some preliminary simulation-based results. These
clearly illustrate, even in a highly simplified case, the great
benefits of coordinated search.

I. INTRODUCTION
Arguably the most important task in Wilderness Search and

Rescue (WiSAR) is search— until a missing person has been
found, they cannot be rescued or recovered. Key to the search
task is the collection and comprehension of evidence [1]. The
benefits of Unmanned Aerial Vehicles (UAVs) in evidence
collection are well-established: they can rapidly acquire aerial
imagery even in dangerous environments. Multiple UAVs
can collect data from multiple vantage points simultaneously,
greatly increasing these advantages.
Most systems are equipped with cameras and are controlled

by a UAV operator (who flies the UAV) and a sensor operator
(who controls the camera and interprets the data) [1]. When
multiple UAVs are used, the complexity of coordination means
that they are normally flown in a fixed formation relative to
one another at a fixed altitude above the ground.
Although UAV systems have been successfully deployed,

there are a number of difficulties with them. First, the use
of pre-planned trajectories means that the search strategies
are not necessarily optimal. Second, the sensor operators take
the burden of observing, assessing and integrating all the
information received from the sensors. This can be a difficult
and error-prone process. Finally, the human resources needed
to operate the UAVs can be prohibitively expensive.
One way to mitigate these difficulties is to automate the

operations of the UAVs. If the UAVs can perform in-flight
collaborative self-organisation, they can optimise their strate-
gies to sense the environment in the most efficient manner
possible. They can also be responsive to system and sensor
failures. If they perform in-flight object detection, the sensor
operator need only be informed of “critical” events.
In this poster, we discuss our preliminary work on develop-

ing coodinated search strategies. The next section describes the

Fig. 1. An AscTec Hummingbird quadrotor helicopter.

search task together with the platforms used. The mathematical
model is described in Section III. The coordination strategies
and data fusion algorithms are outlined in Section IV. Results
are presented and discussed in Section V, and conclusions and
future work in Section VI.

II. SEARCH TASK AND PLATFORMS USED

The initial search task we are conducting is to search for
at most a single object of interest (or target) in a planar
environment such as a field. Although this is a simplification of
our final problem domain (which will be a hilly environment),
it exposes many significant issues including problems of coor-
dination, navigation and planning in uncertain environments.
A key requirement for our project is that the UAVs should

be small, lightweight and manoeuverable. Therefore, we have
chosen to use the Ascending Technologies Hummingbird
quadrotor helicopters (illustrated in Fig. 1) [2]. These plat-
forms can carry up to 200g payload that can consist of addi-
tional sensing devices or processing boards. The UAVs have a
flight time of 23 minutes without payload and 12 minutes with
a payload of 200g. They are also highly stable in gusting wind.
The UAVs are equipped with two classes of sensors: navigation
sensors and surveillance sensors. The navigation sensors are
used by the quadrotor’s autopilot and GPS waypoint following
systems. Even without vision-based aiding, position can be
measured with an accuracy of 1.5–2.5m. The surveillance
sensors are used to detect the potential targets on the ground.
We are currently using a single, downward-pointing camera.
Two sample images, captured at different altitudes are shown
in Fig. 2.



(a) 10m (b) 20m

Fig. 2. Sample frames taken from a UAV. The large star-shape is a calibration
pattern which is being used to groundtruth the pose of the UAV.

The UAVs will wirelessly communicate with one another
via IEEE 802.11 wireless devices.

III. MATHEMATICAL DESCRIPTION OF SEARCH TASK
Following Chung [3], we model the problem as follows:
1) We are searching for a single, stationary target xT that
might lie in the search area A.

2) A is decomposed into a set of |A| grid cells. The target
(if present) occupies at most a single cell.

3) The UAV is equipped with navigation sensors (so that
it knows its position within the resolution of a cell) and
surveillance sensors (which provide a detect / no detect
event for the cell the UAV is flying over).

4) The surveillance sensor of the k th UAV covers Mhk

cells, where hk is the altitude of the UAV.
5) The control input is a waypoint which specifies which
cell the UAV will fly to next.

We adopt a Bayesian approach to keep track of the target
state probability density function. This approach is sensible
in our context, where non-Gaussian sensor measurements are
considered.
Each UAV maintains a grid-based probabilistic map (belief

map or occupancy grid) composed of |A| cells. Let xT = a
denote the event that the target lies in cell a. Each cell contains
the probability that the target is present in that cell [3], [4].
Let H be a binary random variable representing the event

that there is a target in the search area. The probability
Pr(H = 1) = δ represents the prior belief of the target in the
search area. The dimension of the sensing area increases with
the height of the UAVs. UAVs at high altitude have a greater
sensing coverage than UAVs at low altitude but they also have
lower sensing resolution (smaller detection probability). This
tradeoff will be investigated in future work in the evaluation
and design of search strategies.
The eventual implementation will have to segment the

sensing area and recognise individual objects. However, for
our preliminary experiments we assume a simple detection
model. Let dt

a be the detection measurement for cell a at time
t and xT = a represents the presence of the target in the ath

cell. We can formally express our sensing model at height h
by:

• Prh(dt
a = 1|xT = a) = 1 − βh
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(a) Anywhere.
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(b) Along a river.

Fig. 3. Different priors on target location.

• Prh(dt
a = 0|xT = a) = βh

• Prh(dt
a = 0|xT "= a) = 1 − αh

• Prh(dt
a = 1|xT "= a) = αh

αh (0 ≤ αh ≤ 1) and βh (0 ≤ βh ≤ 1) represent
the false alarm and missed detection probabilities at height
h. As Fig. 2 suggests, these detection probabilities will be
strongly dependent upon the altitude of the UAV. Developing
an empirical error model is a work in progress. However, here
we assume that both the false alarm and missed detection
probabilities increase with altitude.

IV. MAPS AND DATA FUSION
The search problem starts with the assumption of a prior

probability distribution function that describes the initial belief
of the target location. This can be a Gaussian distribution
or a coarse estimate of the target location depending on
environmental features such as river or mountains. If no prior
information is known, we assume a uniform distribution (Fig.
3). After each observation, the probability distribution function
of the target state is recomputed. We assume that observations
are independent and we consider cells inter-dependence in a
single stationary target scenario. The cell update mechanism
is described below for different cases.

A. Grid cell independence assumption
A commonly adopted approach is to assume that the grid

cells are independent of one another and the belief map is
updated only for the cell in which the observation occurs.
This assumption can be appropriate in scenarios where the
number of targets is unknown, the targets are moving or the
uncertainty about the target location evolves over time due to
external factors (e.g. addition/removal of landmarks). Let D t

be the set of measurements up to time t and Pr(xT = a) the
probability that a target is located in cell a. Given a cell a and
a measurement in a, the probability that the target is located
in a is updated as follows:

Pr(xT = a|Dt) =
Pr(dt

a|xT = a, Dt−1)Pr(xT = a|Dt−1)
Pr(dt

a|Dt−1)

B. Grid cells dependence assumption
If we assume the existence of only a single stationary target,

an observation in any given cell also affects the probability
that the target is located in other cells. To account for this
dependence, we update all the cells in the belief map after
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Fig. 4. Illustration of belief maps update mechanism with 2 UAVs. Each
UAV maintains measurement lists for all UAVs. When 2 UAVs come within
communication range, they update their measurement lists.

each observation in a similar way as described in [3] and
[5]. In addition, we also account for the fact that for each
measurement, the kth UAV can observe a set of Mhk cells
simultaneously, where hk is the altitude of the UAV. Let
D(t) = {dt

1, .., d
t
Mhk

} be the observations at time t. D(1 : t)
represents the history of all the observations from time 1 to t.
With assumption of independence in observations, we have:

Pr(xT = a|D(1 : t)) =
∏Mhk

i=1 Pr(dt
i |xT = a)Pr(xT = a|D(1 : t − 1))
Pr(D(t)|D(1 : t − 1))

C. Distributed Data Fusion
Since the UAVs have limited communication range, they

can only exchange data when they are within communication
range. Each UAV therefore maintains a local belief map
that can often differ from other UAVs’. Each UAV progres-
sively updates its belief map based on the measurement lists
(timestamped) it receives from other UAVs (Fig. 4). A UAV
always maintains an up-to-date list of its own measurements.
When two UAVs come within communication range, they
synchronize their measurement lists and recompute their local
belief map. Note that these belief maps might still differ from
the rest of the UAVs since only the local measurement lists of
the UAVs are guaranteed to be up-to-date. The measurement
lists they maintain for the rest of the UAVs can be stale.

V. SIMULATION RESULTS
We performed some simulations using MATLAB/Simulink

(with real-time control systems [6]) with two UAVs and a
single stationary target. The UAVs evolve in a 10x10 grid.
We do not assume any prior knowledge on the target location.
The initial probability of the presence of a target in the search
area is set to 0.5. Some preliminary results are shown in Fig.
5. The figure shows the evolution of the belief probability
of the presence of a target in the search area over time. A
UAV decides on the next cell to visit using a steepest gradient
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Fig. 5. Performance in simulation trials with 2 UAVs in cooperative and non-
cooperative modes. UAVs in cooperative modes converge faster to a decision
(on the presence of a target) than UAVs in non-cooperative mode.

ascent method applied to its belief map. Cooperative and non-
cooperative strategies have been considered. The probabilities
of missed detection and false alarm have been set to 1/4 and
1/5 respectively. As we can see and as expected, sharing mea-
surements among UAVs (cooperative strategy) leads to super-
linear speed up in the decision time. Considering that UAVs
can be deployed at different heights consequently covering
areas of different sizes with different sensing accuracies, one
research challenge is to determine the optimal tradeoff in order
to achieve the defined goal in the most effective manner.
Since UAVs have limited communication range, they might
not be able to share their measurements if appropriate meeting
strategies are not implemented.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented our preliminary results on
how information on a target location can be maintained and
exchanged in a distributed manner between a swarm of heli-
copters. We described the update mechanisms of grid-based
probabilistic maps based on recursive bayesian processes. We
also showed some observations obtained with our UAVs in
outdoor environments with embedded downward-facing cam-
eras. The results of these observations will be used as inputs
for the design and tests of search strategies. Of interest is the
assessment of the impact of the sensing resolution (with UAVs
deployed at different heights) on cooperation/coordination
strategies.
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