
CSP is expressive enough for π

A.W. Roscoe

Oxford University Computing Laboratory
{Bill.Roscoe@comlab.ox.ac.uk}

Abstract. Recent results show that Hoare’s CSP, augmented by one additional operator,
can express every operator whose operational semantics are expressible in a new notation
and are therefore “CSP-like”. In this paper we show that π-calculus fits into this framework
and therefore has CSP semantics. Rather than rely on the machinery of the earlier result we
develop a much simpler version from scratch that avoids the extra operator and is sufficient for
π-calculus: a much generalised relabelling operator that is expressed in terms of the others. We
present a number of different options for the semantics of fresh variables, showing how they
give semantics that are largely congruent to each other. Finally, we begin the investigation of
how these new semantics might be analysed and exploited.

1 Introduction

This paper is dedicated to Sir Tony Hoare on the occasion of his 75th birthday.

When I contributed [15] to the volume celebrating Tony’s 60th birthday, CSP was just
half as old as it is now. I wrote then how remarkable it was that it should have stood the
test of so many challenges unimagined by Tony when he created it, and of how frustrating it
was to work academically on something that was so “right first time”, since one was denied
the usual joys of refining and changing it. I have continued to be surprised by its ability to
capture new concepts in modelling concurrency and interaction. The present paper recalls
recent work quantifying this expressive power and shows that CSP can both represent the
π-calculus and provide the vehicle for a wide range of new semantics for that notation.

I can report, however, that my previous frustration has been reduced, since I have finally
found an operator to be missing from Tony’s original CSP: this will be described below.

When I first described my new expressibility results to Tony, part of his response
was “Which operators of CCS satisfy your definition? Which ones don’t? What about π-
calculus?” This paper answers these questions.

While other languages for concurrent systems are often defined in terms of their oper-
ational semantics, the CSP approach [6, 16] has always been to regard behavioural mod-
els such as traces T , stable failures F , failures-divergences N and infinite traces-failures-
divergences U as equally important means of expression. Thus any operator must make sense
over these behavioural models in which details of individual linear runs of the processes are
recorded by an observer who cannot, of course, see the internal action τ .

Nevertheless CSP has a well-established operational semantics, and congruence with
that is perhaps the main criterion for the acceptability of any new model that is proposed.

Operational semantic definitions of languages have the advantage that they are direct,
understandable, and of themselves carry no particular obligation to prove congruence results
such as those alluded to above. On the other hand definitions in abstract models, intended
to capture the extensional meaning of a program in some sense, have the advantage of
“cleanliness” and allow us to reason about programs in the more abstract models. The most

immediate benefit of CSP models in this respect is that they bring a theory of refinement,
which in turn gives refinement checking (with low complexity at the implementation end,
as in FDR) as a natural vehicle for specification and verification.

The author has recently [20] defined what it means for an operational semantics to be
CSP-like, in the sense that it does not require any basic powers beyond what the semantics
of the various CSP operators already have. In this paper we will show that the π-calculus
(the version presented in [23]) is CSP-like.

The main result of [20] is that every CSP-like operator can be simulated up to strong
bisimulation in CSP extended by one more operator. The proof there constructs a very
general but complex “machine” for simulating any such operator. In the present paper we
will give significantly more straightforward CSP representations (not needing the additional
operator) of the constructs we need to give π-calculus a semantics.

In the next section we recall the definitions of a CSP-like operational semantics and the
new operator ΘA needed to complete the general simulation result, as well as summarising
the techniques used in that proof. In the following section we will, since it is needed for
π-calculus, show how the usual CSP renaming operator can be extended into a much gen-
eralised relabelling operator that can nevertheless be expressed in terms of standard CSP
operators.

There are three significant issues that arise when attempting to give a CSP semantics
to π-calculus. These are choices such as τ.P + x (y).Q that are resolved by τ , the fact
that the CCS parallel operator used in π-calculus is very different to that in CSP, and the
requirement that names in π-calculus are generated freshly, without collisions. Since the
first two of these arise in CCS, we examine the problem of translating CCS into CSP in
Section 4. The third problem is handled using generalised relabelling in Section 5, where
the translation into CSP of π-calculus is presented.

There seems to be quite a bit of choice in how one handles freshness in the CSP model,
and we present a number of options that give (at least for the best-known CSP models) the
same equivalence between π-calculus terms.

Throughout this paper, when talking primarily about CSP, Σ0 will denote the alphabet
that our underlying language of processes uses to communicate with each other and with
the external environment. We will frequently need to extend this alphabet to allow us to
build CSP models of operators not directly contained in CSP. This extended alphabet will be
termed Σ. We will later define a corresponding alphabet Σπ for the embedding of π-calculus
into CSP.

Our main references for CSP and π-calculus are respectively [16] and [23]. Our notation
is drawn largely from these.

Acknowledgements

Peter Welch [26] originally persuaded me to look at mobility in CSP. The fact that I managed
to create a mobile parallel operator for him was one of the main spurs towards looking for
a general expressivity result. My initial work on CCS was inspired by the title of [5]. I
had useful conversations with many people about this work, notably Tony Hoare, Michael
Goldsmith, Samson Abramsky, Rob van Glabbeek, Gavin Lowe and Michael Mislove. This
work has benefited from funding by EPSRC and US ONR.

2 CSP is very expressive

Though originally given semantics in behavioural models such as traces T and failures-
divergences N , CSP has long had a congruent operational semantics [2, 4]. By congruent
here, we mean that the sets of behaviours obtained by observing the LTS created by a
process’s operational semantics are the same as those calculated in the corresponding be-
havioural model by a denotational semantics. The operational semantics of CSP and some
congruence proofs can be found in [16].

There is a lengthy discussion of what makes an operationally-defined operator CSP-like
in [20]. The first part of the conclusion is that a CSP-like operator has a two-part arity
(m, I), where m is the finite number of process arguments that are turned on at the start
of execution, and I indexes a possibly infinite family of arguments that are initially off.
(Infinite nondeterministic choice and ?x : A → P(x) for infinite A both have I infinite and
m = 0. The first action of either of these constructs selects a single one of these off operands
to turn on, and the rest are discarded.)

When defining a family of operators {OPλ | λ ∈ Λ}, the actions of OPλ(P1, . . . ,Pm(λ),Q)
are determined by λ and the initial actions of the on arguments Pλ: they are all the actions
deducible under a set of rules determined by λ. There are two sorts of rule:

– A rule promoting a τ action for each on argument: these take the form:

Pi
τ−→ P ′

i

OP(P1, . . . ,Pi , . . . ,Pm ,Q) τ−→ OP(P1, . . . ,P ′
i , . . . ,Pm ,Q)

First suggested for CSP in [13], these are termed patience rules by van Glabbeek [25]
when giving a set of operational rules that respect weak bisimulation.

– An arbitrary collection of rules based on the visible actions of the Pi . Each such rule is
represented as a tuple (φ, x , β, f , ψ, χ) where
• φ is a partial function from {1, . . . ,m(α)} to Σ0 (the alphabet of the underlying

processes). Its meaning is that, in order for this transition to fire, each argument Pj

such that j ∈ dom(φ) must be able to perform the action φ(j) and become some
P ′

j . Note that this imposes no condition if dom(φ) is empty: this corresponds to an
action that the operator can perform without reference to an on argument, like the
initial a in a → P .

• x is the action in Σ0∪{τ} that OPα(P,Q) performs as a consequence of the condition
expressed in φ being satisfied.

• β is the index of the operator that forms the result state of this action.
• f is a total function from {1, . . . , k} for some k = k(α) ≥ 0 to I (α) that represents,

in some chosen order, the indexes of the components of Q (the off arguments), that
are started up when the rule fires.

• ψ : {1, . . . ,m(β)} → {1, . . . ,m(α) + k(α)} is the (total) function that selects each
of the resulting state’s on arguments. It must be include the whole of {m(α) +
1, . . . ,m(α) + k(α)} in its range.

• χ : I (β) → I (α) is the total function that selects the off arguments of OPβ.

These rules give us all the information we need to form the state that results after the
action it generates once we state the following. Whenever an on argument Pi is present in
the result state, then it is in its original state if i 6∈ dom(φ) and, if φ(i) = a then Pi is in
state P ′

i such that Pi
a−→ P ′

i in the result.

To illustrate this way of representing operators, we will show how some CSP+ opera-
tors fit into this framework. None of them, in fact, need to be defined together with any
other operator apart from the identity id whose arity is (1, ∅) and which has the rules
{({(1, a)}, a, id, ∅, {(1, 1)}, ∅) | a ∈ Σ0}. Here and below we represent the some functions
and partial functions as sets of pairs.

– a → · has arity (0, {−1}) and the single rule (∅, a, id, {(1,−1)}, {(1, 1)}, ∅). We have
used a negative number to index the off argument since it is convenient way of making
sure they are disjoint from the on indices. id is (the index of) the identity operator.
Thus here k = 1 (the number of off arguments turned on) and the resulting operator
id has no off arguments.

– � has arity (2, ∅) and rules ({(1, a)}, a, id, ∅, {(1, 1)}, ∅) and ({(2, a)}, a, id, ∅, {(1, 2)}, ∅)
for each a ∈ Σ0.

– \ X has arity (1, ∅) and the rules ({(1, a)}, τ, \ X , ∅, {(1, 1)}, ∅) for all a ∈ X and
({(1, a)}, a, \ X , ∅, {(1, 1)}, ∅) for all a ∈ Σ0 −X .

– ‖
X

has arity (2, ∅) and rules ({(1, a), (2, a)}, a, ‖
X
, ∅, {(1, 1), (2, 2)}, ∅) for all a ∈ X and

both ({(1, a)}, a, ‖
X
, ∅, {(1, 1), (2, 2)}, ∅) and ({(2, a)}, a, ‖

X
, ∅, {(1, 1), (2, 2)}, ∅) for all a 6∈

X .
– 4 has arity (2, ∅) and, for each a ∈ Σ0, the rules ({(1, a), a,4, ∅, {(1, 1), (2, 2)}, ∅) and

({(2, a), a, id, ∅, {(1, 2)}, ∅). This is the interrupt operator.

The reader might like to compare these with the conventional (SOS) descriptions of the
operational semantics of CSP given in Chapter 7 of [16]. Both express exactly the same
semantics when combined with the principle of promoting τs from on arguments. In fact,
the CSP-like operators are precisely those that can be presented in this way. It is, however,
possible to describe many operators in the SOS style which cannot be translated in to the
above form: those that are not CSP-like.

Consider the following CSP-like operator: ΘA, which we will read P throw Q . It has
arity (1, {−1}) and the rule ({(1, a)}, a, id, {(1,−1)}, {(1, 1)}, ∅) for each a ∈ A as well as
({(1, b)}, b, ΘA, ∅, {(1, 1)}, {(−1,−1)}) for each b ∈ Σ0 −A.

P ΘA Q runs the process P until it communicates an event in A – which you might think
of as a set of exceptions – at which point it hands control over directly to Q . It has much
in common with the interrupt operator 4, except that here it is an event of P rather than
one of Q that triggers the hand-over.

In [19], the author showed that ΘA adds strictly to the expressive power of the CSP
language and that 4 can be expressed in terms of ΘA and the rest of CSP.

In [20], the author showed that CSP+ (CSP augmented by ΘA) is capable of simulating
any operator with CSP-like operational semantics: for any such operator OP(P1, . . . ,Pm ,Q)
we can define a CSP+ context COP (P1, . . . ,Pm ,Q) that is strongly bisimilar to it. This is
done by building a complex “machine” that can interpret any rule of the form outlined
above appropriately, and always have the right set of argument processes turned on so that
the right τs are promoted by CSP.

One of the most important consequences of this result is the following: every language
whose operators are all CSP-like has a denotational semantics in every denotational model
of CSP. Thus, by showing that a language is CSP-like in this way one simultaneously equips
it with many different new semantics.

The established denotational models of CSP take the form of recording one or more sorts
of behaviour that an observer might see on a single run of the process: these are linear as

opposed to branching behaviours. In [18, 17], the author defined what a behavioural model
of CSP is in the cases of finite observation models and divergence-strict models. These are
congruences that are relational images of two specific models. In the finite observation case
this is the model FL that observes sequences of the form

〈A0, b1,A1, b2, . . . ,An−1, bn ,An〉

where the bi are the visible events performed by the process, and Ai is either the stable
acceptance set offered by the process in the state from which bi+1 occurs, or • meaning that
stability was not observed. The final acceptance set can be ∅, meaning that the process is
deadlocked.

In the strict divergence case two further components are added to get a model FL⇓ω:
infinite sequences of the same sort, and finite sequences with the final An replaced by
⇑, meaning that the process divergences (performs an infinite sequence of τ actions). By
strict divergence we mean that all extensions of any divergence are also considered to be
behaviours of the process: no attempt is made to distinguish two processes on the basis of
what they can or cannot do after their first possibility to diverge.

The infinite sequence case is necessary to get a congruence for CSP if unboundedly
nondeterministic constructs are used. We will find that π-calculus is an exception to this
rule.

In the original draft of [20], the π-calculus was used as an example to show how general
the concept of a CSP-like operational semantics is. We there demonstrated the existence of a
CSP semantics for it as a consequence of the above result. The complexity of our simulation
machine means, however, that the translation into CSP+ is scarcely clear, and the fact that
ΘA is not actually required becomes obscured.

The present paper therefore refines these techniques so that the translation into stan-
dard CSP, and hence the structure of the resulting semantics in CSP’s models, become
significantly clearer.

3 Generalised relabelling

The main challenge we will have to meet in giving a CSP semantics to π-calculus is dealing
with the concept of fresh names. We will find ourselves needing to change names on-the-fly
as a process progresses, in a way that is much more flexible than the usual CSP renaming
operator P [[R]]. Therefore, in this section, we introduce a generalised relabelling operator
P〈〈G〉〉 and show that it can be expressed using a combination of standard CSP operators.

CSP has two operators that work by changing the labels on a process’s actions: hiding
and renaming. The first changes a selection of labels to τ and the second maps each action
of a process P to a selection from one or more. In each case the mapping on labels does not
change as the process progresses, and no action is blocked from occurring.

We can regard both these operators as instances of relabelling: replacing each visible
action of P with an action (or perhaps a choice of actions). We call this “relabelling” rather
than “renaming” because x may be τ and so invisible to the environment1. As hiding shows,
there is no reason why a visible action should not be replaced by τ . It would, however, not
be CSP-like even to let the operator notice τ ’s performed by P : these must always be
promoted. In generalised relabelling, we will allow two features not seen in either renaming
or hiding:
1 The uses of relabelling we make later only map visible actions to other visible actions.

– We will allow the replacement mapping to vary as the process progresses.
– We will allow the replacement mapping to forbid certain visible actions by P : such

actions will map to empty choices of options. So for example P ‖
A

STOP equivalent to

the generalised relabelling that maps every event not in A to itself, and has no image
for events in A.

The second of these points is clear cut. The first leaves it open as to what can influ-
ence the variation of the mapping. It might be the sequence of visible events that P has
performed; it might be the sequence of events that these have been mapped to; or it might
be nondeterministic. Or, of course, it might be any combination of these. We will initially
consider the first of these, which covers the case of the first generalised renaming HDT used
in this paper.

Suppose G is a relation on Σ0, Σ∗
0 and Στ

0 , where (a, t , x) ∈ G says that whenever
process P can perform the event a after trace t , the relabelled process P〈〈G〉〉 can perform
x . We can give this operator a natural, CSP-like, operational semantics in SOS style as
follows:

P τ−→ P ′

P〈〈G〉〉 τ−→ P ′〈〈G〉〉
P a−→ P ′, (a, 〈〉, x) ∈ G

P〈〈G〉〉 x−→ P ′〈〈G/〈a〉〉〉

where G/t = {(a, s, x) | (s, t ŝ, x) ∈ G}.
In our new style of presenting operational semantics, this translates to 〈〈G〉〉 having the

rule ({(1, a)}, x , 〈〈G/〈a〉〉〉, ∅, {(1, 1)}, ∅) for each (a, 〈〉, x) ∈ G .
Adapting the techniques developed for the most straightforward case of the main the-

orem of [20], we can re-cast the above operator using two conventional renamings (one
one-to-many and one many-to-one), parallel composition with a regulator process, and the
hiding of a single event.

We extend the alphabet Σ to include all pairs of the form (a, x) for a ∈ Σ0 and x ∈
Σ0 ∪ {τ} = Στ

0 as well as the alphabet Σ0 of the original processes and the special event
tau.

We can define two renamings:

E = {(a, (a, x)) | a ∈ Σ0 ∧ x ∈ Στ
0} C = {((a, x), x) | a ∈ Σ0 ∧ x ∈ Στ

0}

where a = a for a ∈ Σ0, and τ = tau.
Clearly P [[E]][[C]] maps every event of P to all events in Σ0 ∪{tau}, but we can be a lot

more selective by running P [[E]] in parallel with a regulator process. Define

Reg(G) = �{(a, x) → Reg(G/〈a〉) | (a, 〈〉, x) ∈ G}

It should be clear that

(P [[E]] ‖
Σ

Reg(G))[[C]] \ {tau} (∗)

has precisely the same actions as P〈〈G〉〉, and that these two processes are strongly bisimilar
on the assumption that the guarded recursion defining Reg(G) does not introduce any τ
actions (as discussed in [20], there are two alternative operational semantics for recursion
in CSP, one of which introduces a τ for each unfolding and one of which does not).

It is obviously important for practical purposes whether G is, or is not, finitary (respec-
tively finitary relative to P) in the sense that G/s has only finitely many values as s varies

(or varies over the traces of P). For we will be able to simulate Q〈〈G〉〉 for general Q (or
P〈〈G〉〉 for specific P) using a finite-state regulator just when these apply.

This implementation illustrates how the concept of one-to-many renaming in CSP, as
introduced by Hoare, is enormously powerful in allowing us to express a wide variety of
constructs that seem at first sight to be beyond what CSP can express. Even more elaborate
one-to-many renamings are used in creating the machine in [20].

As well as conventional renaming and hiding (both history-independent in the sense
that the relabelling does not depend on what actions have occurred before), the following
operations on processes are instances of finitary relabellings:

– Hide every second visible event performed by P .
– Hide all visible events equal to the preceding one.
– Rename all odd-numbered tock events to tick.
– Prevent all a actions not immediately preceded by member of A.

Rather than deriving the regulator process from G , we can gain maximum freedom in
allowing the mapping to vary by instead allowing Reg to be any divergence-free process
whose alphabet is Σ0 ×Στ

0 . The relabelling will be said to be deterministic just when Reg
is.

We will use this format for presenting most of the relabellings in this paper, even when
they could have been given in terms of relations.

4 CCS

Since π-calculus is built on top of CCS [9, 10], it is useful to consider that language before
proceeding to our ultimate goal.

There is a CCS operator, namely +, that stands out as not being CSP-like, since this
can be resolved by a τ action performed by either of its operands. Apart from that, the
constant Nil is equivalent to the CSP STOP ; the operational semantics of α.P for α 6= τ
are identical to those of CSP prefix or prefix-choice. The semantics of recursion in CCS is
essentially2 identical to the non-τ version in CSP, and the CCS relabelling operation is a
case of CSP renaming. Let us consider the rest of the language: parallel composition |, and
restriction \ α.

The structure of Σ0 (as we again call the set of visible action names used in creating
processes) with an operator α (with α = α and α 6= α) causes no difficulties CSP, al-
though naturally CSP does not understand the relationship between α and α unless it is
programmed into CSP (as it is in the CSP model of | below).

The CCS restriction operator has semantics

P x−→ P ′

P \ α x−→ P ′ \ α
(x 6∈ {α, α})

Since α is not τ , this is trivially CSP-like, and indeed is equivalent to the CSP construct
P ‖

{α,α}
STOP as well as being a generalised relabelling of the sort seen in the last section.

2 The only difference is that CCS allows this definition to be used unconditionally, even on under-defined
terms such as µ p.p. The translations from CCS to CSP in this section are therefore restricted to the case
where all recursions add at least one initial action.

The CCS parallel operator is much more interesting. It has semantics

P x−→ P ′

P | Q x−→ P ′ | Q
Q x−→ Q ′

P | Q x−→ P | Q ′

P α−→ P ′ ∧Q α−→ Q ′

P | Q τ−→ P ′ | Q ′

This is CSP-like, with arity (2, ∅) and one set of transition rules corresponding to each of
these three clauses: the first two have ({(1, α)}, α, |, ∅, {(1, 1), (2, 2)}, ∅) and ({(2, α)}, α, |
, ∅, {(1, 1), (2, 2)}, ∅) for all α ∈ Σ0, and the final clause is modelled by ({(1, α), (2, α)}, τ, |
, ∅, {(1, 1), (2, 2)}, ∅) for all α ∈ Σ0.

Note how similar these are to the rules for ‖
X

quoted earlier. The main structural differ-

ence is that both sorts of rule apply to all visible events, rather than being partitioned by
X .

The following presentation of | in CSP is much simpler than the simulation produced by
the [20] machine. Extend Σ0 by a separate copy Σ1 = {α′ | α ∈ Σ0}. Let IP (Identity plus
Prime) be the renaming that maps α ∈ Σ0 to both α and α′, and let IDP (Identity plus
Dual Prime) map each such α to α and α′. Then P | Q is equivalent to the CSP construct
defined

P |ccs Q = (IP(P) ‖
Σ1

IDP(Q)) \ Σ1

in the sense that the two processes are strongly bisimilar.
We can therefore conclude that, except for +, CCS is CSP-like.
It is possible to simulate the whole of CCS in CSP, but in a slightly more complex way

that does not imply full compositionality over CSP models or a straightforward theory of
refinement. An elementary way of doing this is to replace the event τ by a visible analogue
(say tau as we have seen elsewhere in this paper), and produce models of CCS operators
that model the syntax τ.P by tau → P . Finally, at the outermost level (in common with
the implementation of generalised relabelling given in the previous section) we would hide
tau. Thus the model of a closed piece P of CCS syntax would be the CSP term P ′ \ {tau},
where P ′ is the syntax of P with all operators replaced by their CSP analogues. In this
model the analogue of + would be �, since tau does resolve �, and the model of parallel
would be as above (noting that tau is not synchronised) except that the outer hiding \ Σ1

would be replaced by the renaming that sends all members of Σ1 to tau.
This provides a way of calculating the operational semantics of a CCS term using those

of CSP, and also an easy method for using CSP tools such as FDR on such terms.
It is not, in fact, necessary to leave all the tau actions visible as we build up a term,

only those that might resolve a + operator for which our present process becomes (directly
or indirectly) an argument. A little structural analysis shows that the only relevant taus
are those that are the first action that our process performs. It follows that if we apply
the following generalised relabelling (standing for “Hide Delayed Taus”), and presented in
the relational form discussed earlier, to any term as we build up P ′, the final result is not
affected:

HDT = {(a, s, f (s, a)) | a ∈ Σ0 ∧ s ∈ Σ∗
0}

where f (tau, 〈〉) = τ ; f (a, s) = a otherwise.

This operator might well be useful if one wants to apply CSP model compressions such as
those of FDR [22] in a hierarchical way to CCS constructs, as might the simpler observation
that it is always safe to hide any tau at a level in the syntax above any +.

This translation will allow any finite-state CCS process to be checked on FDR against
the types of specification that FDR supports.

An obvious question then arises: can one model CSP in CCS? The immediate answer to
this is “no” since CCS cannot model the multi-way synchronisations permitted by CCS: as
soon as two events are synchronised in CCS they are hidden. Another consequence of this
is that it is seemingly impossible, in CCS, to implement the style of generalised relabelling
discussed in the previous section for the same reason: synchronising P and Reg would hide
the event. Of course there may be further interesting questions to ask here about subsets
of CSP or extensions of CCS.

5 The π-calculus

The π-calculus [12, 11, 23] builds on the notation of CCS by adding the concepts of name
binding and name passing into the language. Like CCS, it does not need process alphabets
to define parallel, and therefore the way it expresses mobility is more implicit than one in
which passing a label along a channel explicitly changes the alphabets at the two ends, as
seems natural for a direct mobile extension of CSP.

The following syntax for the π-calculus is taken from [23]:
prefixes π ::= xy | x (z) | τ | [x = y]π
processes P ::= S | P |P | νz P | !P
summations S ::= 0 | π.P | S + S ′

Here, xy represents the sending of the name y via x (akin to the CSP action x !y) and
x (z) is a construct binding z that represents the receipt of z over x (akin to x?z). Like CCS
and unlike CSP it has a construct representing the explicit introduction of τ , and one can
guard actions with the assertion that pairs of names are the same.

The process constructs are the same as in CCS except that the infinite replication !P
(equivalent to P | !P) takes the place of recursion. The effect of having summations in
a separate syntactic class is to allow + only to appear in restricted contexts (similar to
the “guarded choice” construct introduced as a precursor to � in CSP in both of [6, 16]).
Some presentations of the π-calculus omit +. Others generalise replication to full recursion
µ p.P , and we shall follow this latter school. We therefore add µ p.P and p to the syntax of
processes, where p represents a process identifier.

The restriction on the use of + imposed by this syntax is crucial in allowing us to give
π-calculus semantics in CSP. When giving semantics to summations we will still need to
leave τ visible as tau; but for the main semantics (of processes) this is not necessary. We
will therefore find that this version of π-calculus fits more smoothly and compositionally
into the world of CSP than does the standard CCS language where the use of τ guards and
+ is not restricted to the confined syntax of summations.

In our treatment of π-calculus we assume unless stated otherwise that the set Names
is countably infinite with a fixed enumeration {n0,n1, . . .}. If N is a nonempty subset of
names then µ(N) is the name of least index in N , and when Names − N is nonempty
γ(N) denotes µ(Names − N). The visible events communicated by π-calculus processes,
and making up Σπ (which plays the role of Σ0 for our treatment of π-calculus) are of two
forms: x .y represents the input of name y over the channel represented by name x , and x .y
represents the corresponding output of y over x .

The theory of the π-calculus is complex. This is less because processes can pass names
around and use them as channels as it is because of the way new names are “created” fresh

and distinct from all others. In other words, when two names appear in either nested or
separate scopes they are assumed to be different. One has to emphasise the latter because
it is possible for a label to be exported by communication outside its original scope and
therefore visible to the outside world: νv P creates a fresh name, say n, to bind to v , while
restricting this name from being used illegitimately by P for communicating with the outside
world. n cannot be used as a channel into or out of P until it has been extruded from this
scope by output along another channel.

Our goal is to find a way of dealing with this in CSP in a way that implements the
above policy successfully and does not create any artificial distinctions between processes
on the basis of exactly which fresh names they extrude.

We now identify two choices that have to be made when constructing our π-calculus
semantics.

(1) We can ensure that no artificial distinctions arise thanks to the precise choice of names
in two ways.

• The first is to create processes such that, whenever a name is extruded, it is picked
nondeterministically from all permitted ones. We will call this the nondeterministic
approach.

• The second is to ensure that each fresh name that emerges from a process is com-
pletely predictable based on knowledge of the preceding trace. We will implement
this by ensuring that the name is always the one of least index that might legitimately
appear, and call this the standardised approach.

(2) One of the trickiest problems in giving the semantics is to ensure that names input by a
process from the environment do not get confused with a name that may already exist
in the process’s scope without having been extruded. It is a basic assumption that these
names are different, so how do we achieve this?

• One approach is to allow the environment, at any time, to output any name at all to
the process. The semantics then has to perform an operation related to α conversion
on any fresh and unextruded name it holds that clashes. We will call this the unified
approach.

• The opposite of this, which we will call the bipartite approach, is to split the fresh
name space into two infinite parts and allocate one to the process and the other to
the environment. In other words the process will simply assume at all times that the
environment will not output any name to it that is in that part of the process’s fresh
name space unless that name has previously been extruded by the process.

In this paper we will first consider the unified name space approach, providing an initial
translation into CSP followed by constructs that respectively map this into the nondeter-
ministic and standardised approaches. We then summarise the differences in how these steps
are taken in the bipartite approach.

We would expect any semantics for π-calculus to have complete symmetry in those names
that the environment generates as fresh (though in the unified approach the symmetries
will be more complex since they will need to factor in the fact that the names chosen by the
environment affect the values of the names chosen subsequently by the process). We would
expect any nondeterministic semantics to have complete symmetry in the names chosen by
the process.

5.1 Preserving inequality

The π-calculus is fairly straightforward to translate into our CSP extended by |ccs , with the
exception of its handling of freshness. We first show how to translate summations. If S is
a summation then csp[S]+ will be a CSP term in which τ actions remain visible as tau.
The corresponding semantics for a process P is written csp[P].

– csp[0]+ = STOP
– csp[[x = y]π.P]+ = csp[π.P]<I x = y>I STOP
– csp[τ.P]+ = tau → csp[P]
– csp[x (y).P]+ = x?z → csp[P [z/y]]
– csp[xy .P]+ = x .y → csp[P]
– csp[P + Q]+ = csp[P]+ � csp[Q]+

Here P<I b>I Q is Hoare’s infix representation conditional choice: it equals P if b it true
and Q if b is false.

We can interpret a summation as a process via hiding, and both process identifiers and
recursion translate directly into CSP:

– csp[P] = csp[P]+ \ {tau}
– csp[p] = p
– csp[µ p.P] = µ p.csp[P]

The remaining constructs are parallel P | Q and restriction νz P . These are more
difficult because of the way they handle fresh names. The effects we want to achieve are set
out below.

– νz P creates a fresh name z ′ for the placeholder z that is used within P . This is different
from all other names known to P at the point of creation and all names that P sees
subsequently that cannot result from other processes reflecting z ′ back to P .

– νz P may extrude this z ′ from this scope by means of output xz ′ on some other channel
(i.e. x 6= z ′).

– After this extrusion, νz P may use the name z ′ as a channel name, output it again, etc.
However before the extrusion any of P ’s communications that use it as a channel name
are blocked. This by analogy with CCS restriction, explains why this operator is called
“restriction”.

– In the parallel composition P | Q , the processes P and Q never extrude the same fresh
name.

– Because of the way in which interactions between P and Q are hidden, P may extrude
a fresh name z to Q or vice-versa, without the external environment seeing z . This
expansion of the scope of z is restricted as above: it may not use the name z in a visible
way until z has been extruded from the parallel composition via output on a different
channel.

– Each fresh name extruded from P | Q must be different from all names either P or Q
knew originally or subsequently input.

The above must hold for any strategy for assigning and managing the fresh names
created within a term P . We use the term “managing” here because there is no sensible
way, within the unified approach to name choice, of ensuring that once a fresh value z has
been created but not yet extruded, the external environment does not independently invent

the same name (we will call this a name collision). If this happened it would cause confusion
both in the environment and the process P .

This is why we need to use relabelling. In the instance above, one thing we could do
would be to pick a further fresh name z ′ not known to P , and apply the renaming [[z , z ′

/z ′, z]]
(transposing the two names) to P from the point where the environment communicates z
to it. Thus P will see z as z ′ (correctly, a value that is fresh to it and distinct from the z it
already knows about) and the environment will, if and when P ultimately extrudes z the
outside world will see it as z ′ (correctly, a value it has not seen before). Since neither z not
z ′ has appeared in the trace before this point, each of these names only has a single role in
the whole trace. We will use relabellings such as this to avoid collisions both for νz P and
P | Q , the latter because of the scope expansion issues discussed above.

We will introduce a relabelling called OF (N ,K ,P) (“output first”) which, given a set
of names that the process P might extrude, and a set that it knows initially, introduces a
transposition of the above form each time the process inputs from the environment a name
that clashes with a member of N . The set N may diminish as the process evolves since
some of the names in it may be extruded; and K may increase as P learns more names.

In order to keep track of the transpositions that are introduced as the system evolves,
we need to introduce a parameter ξ that is a bijection on the process alphabet Σπ. At any
time, ξ will be the the function that maps names as seen on the inside of the relabelling to
the corresponding names seen by the environment. While this function will evolve as the
system progresses, as soon as a name has been seen in a trace of P its image remains fixed
thereafter. It follows that at the end of a trace ξ is a permutation on Names that translates
P ’s view to the environment’s view of every member in the trace. Initially, ξ is the identity
function.

The most straightforward way of presenting OF is by defining a RegOF process that
creates the relabelling using the construction (∗).

In the following we assume that K (the set of names representing “common knowledge”3

between process and environment) and N (the set of potentially fresh names yet to emerge
from the process) are disjoint. RegOF (K ,N , ξ) takes the form

�{(a, b) → RegOF (K ′,N ′, ξ′) | (a, b,K ′,N ′, ξ′) ∈ C}

where a is the process P ’s event, b is the environment’s view of the same event, and C is
a set of clauses that we will describe below, each representing a different sort of event that
the relabelling allows.

We consider the cases of output x .y and input x .y events separately, splitting these
depending on which of K and N y belongs to. In both cases we restrict x to be K : it is part
of the role of OF to prevent P from using names in N before these have been extruded from
scope; and if our semantics are sensible P could never use a channel name that is outside
K ∪N .

We now enumerate the various clauses of RegOF (K ,N , ξ):

– If both the channel and data are part of common knowledge, then an input does not
change the parameters:

{(x .y , ξ(x).ξ(y)) → RegOF (K ,N , ξ) | x , y ∈ K}

3 K is the set of names that P sees as known by both itself and its environment; ξ(K) is the environment’s
view of this set.

– If both the channel and data are part of common knowledge, then an output does not
change the parameters:

{(x .y , ξ(x).ξ(y)) → RegOF (K ,N , ξ) | x , y ∈ K}

– If P outputs a name in N , then this is removed from N and added to K

{(x .y , ξ(x).ξ(y)) → RegOF (K ∪ {x},N − {x}, ξ) | x ∈ K , y ∈ N }

– If P inputs a name outside K ∪N , then this is equivalent to the environment extruding
a name to P , so it is added to the common knowledge:

{(x .y , ξ(x).ξ(y)) → RegOF (K ∪ {x},N , ξ) | x ∈ K , y 6∈ N ∪K}

– Finally, if P were to input a name y in N , then this is a name collision, since the
environment has yet to be told of N by P . However, in the unified approach, there is
nothing to stop the environment inventing such a name independently. Therefore the
mapping ξ is changed so that the new name maps outside K ∪N under ξ−1. The simplest
way to do this is to transpose x and the name γ(K ∪ N), which we recall is the one of
least index not in this set. We write this transposition (which maps all other names to
themselves) as xp(x , γ(K ∪N)). The clauses of this type are thus

{(x .n, ξ(x).ξ(y)) → RegOF (K ∪ {n},N , ξ ◦ xp(x ,n)) | x ∈ K , y ∈ N ,n = γ(K ∪N)}

Notice that all of the above English descriptions are formulated from the point of view of
P , with the already established permutation ξ assumed.

It is these transpositions in OF that represent the analogy of α-conversion that we
discussed earlier. Both of these things have the role of avoiding clashes between external
and bound identifiers. Whereas traditional α-conversion does not change the semantics of a
term, our transpositions do, but this is only because “bound” identifiers in π-calculus can,
unusually, be seen from the outside.

This relabelling is deterministic since there is only one way RegOF (K ,N , ξ) can perform
any given action, and clearly it has no τ -generated nondeterminism. Indeed, since there is
only one action that RegOF (K ,N , ξ) can perform for any given action seen by the environ-
ment, OF (N ,K , ·) could be presented as a relabelling generated by a relation between P ’s
visible actions, the environment’s visible actions and the environment’s traces. But since it
does evolve naturally a step at a time, the above presentation is probably the best.

We are now very close to being able to give a semantics to νz P , but before we do that
we need to establish what the right values are to use for K and N when we come to use OF .
We will also need a semantic mechanism to keep the fresh names invented by two parallel
processes distinct.

The best way to do these things is to add parameters κ and σ to the semantics so they
become csp[S]+κσ and csp[P]κσ. κ will represent the initial common knowledge of names
by P and its environment or context: a finite set of names that includes all free names in P . σ
will be an infinite set of names, disjoint from κ, that are available to be used as fresh. So for
example we will now have csp[P +Q]+κσ = csp[P]+κσ � csp[Q]+κσ and (the only clause
given to date with a significant change) csp[x (y).P]+κσ = x?y → csp[P]+(κ∪{y})(σ−{y}).

We can then write

csp[νz P]κσ = OF ({γ(σ)}, κ, csp[P [γ(σ)/z]](κ ∪ {γ(σ)})(σ − {y}))

In other words, the name of least index not in κ is chosen to bind to z , and this name is
then “protected” by the OF operator, which also prevents it from being used as a channel
by P until it has been output.

The interactions between P and Q in P | Q are calculated in the same way as in CCS.
It follows that the same CSP construction we used in the last section can be used here
provided we sort out what happens to the sets of names that P and Q use and generate,
and provided we ensure that P | Q obeys the rules discussed above for it being an expanded
scope for some of these generated names.

The parameter σ gives us the ability to keep the names that P and Q generate distinct
from each other. To do this we assume that we have functions Π1 for i = 1, 2, 3 such that,
for any infinite set σ of names, {Π1(σ),Π2(σ),Π3(σ)} partitions σ into three infinite sets.
[One such triple of functions would allocate the names of increasing index in σ to the three
sets in a round robin fashion.] In evaluating csp[P | Q]κσ these three sets will respectively
represent the sets of fresh names that might be generated by P , by Q , and outside this
system.

We can then define

csp[P | Q]κσ = OF (Π1(σ) ∪Π2(σ), κ, csp[P]κ(Π1(σ)) |ccs csp[Q]κ(Π2(σ)))

The role of OF here is to protect any fresh names extruded from P or Q into P | Q but
not yet to the environment. Since it does not know exactly which fresh names have been
extruded in this way, it protects the whole of the set Π1(σ) ∪Π2(σ). Here, of course |ccs is
the CSP translation given earlier of the CCS operator |.

Note that as far as P ’s and Q ’s choices of names is concerned, we have used what
amounts to the bipartite approach by ensuring that they choose from disjoint sets.

5.2 Nondeterministic fresh names: a lesson on CSP models

We might say that the above clauses give a provisional semantics, since they suffer from the
lack of abstraction discussed above caused by specific choices of fresh names.

In many ways the most elegant approach to this problem is to apply a mapping that
in effect maps each assignment of fresh names to a representation of its symmetry class:
the processes that might have been obtained under a different strategy for assigning fresh
names.

We can attempt to do this by identifying each semantic value csp[P]κσ with the non-
deterministic composition of the set of its values under renamings that change the choices
of fresh names it picks from σ. The following operator is perhaps the most natural way to
do this

NFN (P , σ) = u{P [[ξ ∪ id(Names−σ)]] | ξ : σ → σ, ξ bijection} (†)

One can gain much insight into CSP models and the way to use them correctly for
π-calculus by analysing whether this approach works or not.

We will now show that there are pairs of processes P and Q that we would like to regard
as semantically equivalent for which there is no such ξ with csp[P]κσ[[ξ]] = csp[Q]κσ.

If we have a process that has two different behaviours on which it extrudes a free name, it
should not matter whether these two names are the same or different. Consider, for example,
P = τ.(νz xz .0)+τ.(νz yz .0) (where the above semantics will always output the same fresh
name via whichever of x and y the environment chooses) and Q = τ.(νz xz .0) + τ.(0 |

(νz yz .0)) (where, depending on Π2, it may not). No renaming of the above form can map
P to Q . For similar reasons the CSP operational semantics of P and Q with construct (†)
applied to them are not bisimilar, since no bijection ξ can map the state P to the state Q .

Thus the initial choice of a single permutation does not characterise semantic equivalence
in a model where processes are represented as tree structures.

One of the main differences in CSP-style models based on linear observations of processes
is that they deliberately obscure when choices are made: hence the CSP distributivity law
a → (R u S) = (a → R) u (a → S), for example. A CSP-style semantics of the processes
P and Q above will only let you look at things that occur down a linear observation: it
will not let you examine the consequences of outputting on channels x and y in the same
observation; only in two separate ones. It should not therefore not matter, in this style of
model, if the choice of a permutation ξ is made initially or in stages as long as every name
that actually appears is mapped to the same place as in ξ.

We would expect such a model of csp[P]κσ still to output the same name along these
two channels and csp[Q]κσ probably to output different ones, so the provisional semantics
of P and Q will still be different even if we only record process traces. However, when we
look at the effect on their traces of the (†) construct, these two values are mapped to the
same value. The point is that any trace of csp[P]κσ will be the result of some ξ being
applied to a trace of csp[Q]κσ, and vice-versa. The fact that different ξ may be needed for
different traces is immaterial: every trace of csp[P]κσ will be a trace of NFN (csp[Q]κσ, σ)
and vice-versa.

We can conclude that, at least for the finite traces semantics of CSP, construction (†)
gives the provisional CSP semantics the necessary abstraction. There are subtle problems,
however, when we come to study types of behaviour that appear in other CSP models. These
are, on the one hand, refusal and acceptance sets and, on the other, behaviours recording
infinite traces. To avoid this second sort of difficulty, let us assume for the time being that
we are interpreting CSP over a model that does not have infinite traces.

Most CSP models have refusal or acceptance sets to enable us to detect things like
deadlock. These can lead to undesirable semantic differences between π-calculus terms in
two related ways. As an example, consider the processes

νy xy .νz .xz .0 (νy xy .0) | (νz xz .0)

Each of then simply extrudes two fresh names in succession along x , and they ought to be
regarded as equivalent.

With conventional failures-based models, in which refusal sets are sets of events, these
two processes are not equivalent under the NFN mapping. For the left-hand process will
have failures of the form (〈〉, Σ − {x .n}), while the largest refusal sets on 〈〉 of the right-
hand process will omit x .n and x .m for two different names n and m: in effect the parallel
structure gives the environment a “choice” of two different names.

A further difficulty arises in more elaborate CSP models such as refusal testing where
it is possible to see the refusal or acceptance of an event that extrudes a name several
steps before it actually appears in the trace. Such a name might or might not get relabelled
between these two appearances, which can again lead to undesired inequivalences as well as
some confusing-looking observed behaviours.

There is a simple solution to both these problems: in languages such as π-calculus where
all communication between processes happens over point-to-point channels, and processes
inputting on a channel always do so non-selectively – they cannot accept some communi-
cations on it but refuse others – we get a better model of refusal sets and acceptance sets

by constructing them solely of channel names, not events. This was recognised for occam
in [14].

It will therefore be impossible to tell, in any “channel-based” CSP-style model, between
the sequential and parallel processes above that extrude fresh names, to see any fresh
name in a recorded behaviour before it is extruded, or indeed to make the same sort of
distinctions based on non-fresh names. Thus, for example, xy .P + xz .Q and τ.xy .P + xz .Q
will be identified as processes (though not as summations) in any such model.

Given any of these channel-based CSP models M we can therefore give a proper se-
mantics to the π-calculus. The semantics for a summation and a process will be written
M1

u[[S]]+κσ and M1
u[[P]]κσ which are defined to be the respective CSP interpretations over

M of the terms:

NFN (csp[S]+κσ, σ) and NFN (csp[P]κσ, σ)

The superscript 1 here means that this is a semantics using a single (unified) name space,
and u means that this is the nondeterministic semantics. The alternatives for these are 2
(bipartite) and µ (standardised).

These can readily be turned into denotational semantics. The preliminary semantics
csp[P]κσ can already be interpreted in this way if we add an extra parameter ρ: an en-
vironment that maps process identifiers to functions from common knowledge sets κ and
fresh-variable sets σ to M.4 They will thus be written M1

u[[P]]ρκσ. Thus the semantics of
a process variable is given by ρ(p)κσ. The semantics of each non-recursive operator is then
just the interpretation over M of the CSP syntax into which we have already translated it,
applied to sub-terms as appropriate. The semantics of recursion is just the same fixed-point
calculation that is appropriate for M: sometimes a refinement-least fixed point, sometimes
a subset-least fixed point, and sometimes something more complex as in [17].

The full denotational semantics is then obtained in the same way except that for some
syntactic forms (parallel, restriction) it is necessary to apply the operator NFN (·, σ) (inter-
preted as an operator over M) to the result.

NFN (·, σ) was presented above as the nondeterministic choice of a set of renamings. It
is easy to reformulate it as a nondeterministic relabelling, if desired.

Since no name other than a member of fn(P) means anything special to a π-calculus
term, we must expect that, for any permutation η of Names − fn(P), the processes P and
P [[η]] are equivalent. Since we give meaning to members of κ − fn(P) and σ, we cannot
expect that M1

u[[P]]κσ = M1
u[[P]]κσ[[η]] in general, but we can expect that

M1
u[[P]]ρκσ = M1

u[[P]]ρ(η−1(κ))(η−1(σ))[[η]]

The infinite nondeterministic choice used in NFN actually goes beyond the CSP syntax
that some of the standard models can handle, specifically those which, like the failures-
divergences model N , have representations of divergence but not other infinite behaviours
such as infinite traces. The reason for this limitation is that when a process has unbounded
nondeterminism it is not possible to infer whether P \ X can diverge from its finite traces

4 These parameters are required because both the common knowledge and availability of fresh names may
well have changed at the point of call, and it seems to be correct to evaluate the recursive call in that new
world, just as is done by the textual substitution of term re-writing. In the spirit of a pure denotational
semantics, fully espousing the traditions of [24], we might well wish to discriminate between Names and
the identifiers Ide that denote them: this would allow definitions of input and restriction without syntactic
substitution.

alone. Hiding appears in our CSP translation of π-calculus as part of the definition of |ccs .
Fortunately, however, the symmetry of π-calculus semantics under permutations on names
means that whenever there are arbitrarily long finite traces of terms P and Q that combine
under | to give prefixes of a fixed finite trace, then there is also a pair of infinite traces
with the same property.5 It follows that whenever there are arbitrarily long finite traces
created by the part of the CSP construction of |csp other than hiding, that the hiding maps
to prefixes of a given trace s, then (i) there is an infinite trace of the same process that
hides to a prefix of s and (ii) s is itself recorded as a divergence by divergence strictness.

It is therefore not necessary to use CSP models involving infinite traces if one wishes
to handle strict divergence accurately in π-calculus. If, however, we want to calculate the
infinite traces for other reasons or to handle non-strict divergence using the techniques
developed in [17], we need to use a model that represents them explicitly. As we said above,
this brings with it the danger of distinguishing processes that we would naturally hope to
be equivalent: consider the following pair of processes:

µ p.νz xz .p and µ p.νy νz xz .p

These both output an infinite supply of fresh names over channel x . There is every reason
for wanting to identify them, and indeed the terms P and νy P when y is not free in P . A
little thought, however, will reveal that our csp[·] semantics will have µ p.νz xz .p output
all the enumerated fresh names one by one, whereas µ p.νy νz xz .p will only output every
other one.

For finite traces, this problem is easily remedied by an appropriate permutation η: any
injective finite partial function from a set to itself can be extended to a permutation. This
does not work for infinite traces: once we map the single infinite trace of the right-hand
process to the single infinite trace of the left-hand one, there is nowhere left to map all
the names that the right-hand process has missed out. We must therefore conclude that
the semantics we have built to date, if interpreted over a model with infinite traces, makes
undesirable distinctions between processes.

We can also conclude that the semantic values it creates are not always closed, in the
sense that if every prefix of an infinite trace is present then so it the infinite trace itself. This
is not in itself worrying, but it means that the nondeterministic interpretation of π-calculus
provides the only example known to the author of a semantics involving hiding in which
models like N work accurately despite the processes not being closed!

5 We can deduce this as follows. Consider the operational semantics of P and Q derived from csp[P]κσP

and csp[Q]κσQ (without any application of NFN , where σP and σQ are the sets assigned to them by
the csp[·]κσ semantics of |). These are finite branching, in the sense that every finite sequence of visible
events and τs can only lead to finitely many distinct states. This depends on the fact that no single state
of P or Q can have more than a finite number of distinct output x .y actions available, for otherwise |ccs
might introduce infinite branching on τ .

The existence of arbitrarily long pairs of finite traces of P and Q such that P | Q , under perhaps
different ξs, can give rise to prefixes of a given finite trace s means that csp[P | Q]κσ can itself behave
in the same way except that the names of the fresh names extruded might be different. So if we examine
that part of the operational semantic tree of csp[P | Q]κσ in which the visible trace is a prefix of s with
modifications to the names of extruded fresh names permitted, it is infinite and therefore, by König’s
lemma, has an infinite path that necessarily ends (as viewed from the outside) in an infinite sequence
of τs. It follows that csp[P | Q]σκ has a divergence that is a prefix of s except that the finitely many
extruded names might be different. Since there is certainly a permutation η that maps these names to
the ones seen in s, it follows that the corresponding exact prefix of s, and hence s itself from divergence
strictness, are divergences of NFN (csp[P | Q]κσ, σ).

An easy, if perhaps extreme, way of solving this problem is to move to having an un-
countable set of Names; the point being that such a set can never be used up, even in an
infinite trace. It is difficult to see how we can otherwise solve it in the nondeterministic
spirit of NFN , at least in the unified case, when one considers how the environment is also
allowed to pick an infinity of fresh names in some infinite traces.

To avoid these difficulties and more complex arguments later in this paper, in this
paper’s initial treatment of π-calculus via CSP we will only consider CSP models where
each recorded behaviour only involves a finite number of names in each trace: ones that
are relational images of either FL (as described earlier) or FL⇓ (with strict divergence but
without infinite behaviours), in their channel-based versions where all the acceptance sets
consist only of channel names.

The fact that a π-calculus term only “knows” a finite set of names immediately, coupled
with the way in which we are using channel-based models, means that all these acceptance
sets are themselves finite. It follows that only finitely many members of Names appear in
any behaviour recorded in FL or FL⇓. We will use this fact repeatedly. We will refer to
these as finite behaviour models.

This restriction allows one immediate simplification. The nondeterministic choice in the
definition of NFN is over an uncountable set of functions. Over a model in which only
finitely many names appear in a trace it is equivalent to additionally restrict the set of
bijections to those which, except for a finite set of names, are equivalent to the identity.
This is now a countable choice.

5.3 Standardised names

The CSP semantics that emerges from the nondeterministic approach given above has much
to recommend it, not least the symmetry. It can, however, be viewed as unnecessarily
infinitary, depending as it does on infinite nondeterministic choice.

We can solve this problem by removing from the process all opportunity to choose the
fresh names it extrudes. We ensure that each name to appear in this way is always the least
allowed: the member of σ with least index that has not already appeared in the trace. We
can achieve this with a relabelling SFN (P ,K ,S) (standardised fresh names) presented in a
similar style to OF , namely via its regulator process RegSFN (K ,S , ξ). This is, like RegOF ,
formed by composing a sets of clauses with �. The parameters are similar to those used
for RegOF , except that this time the parameters are based mainly on the external view of
the system since it is that which we standardising.

K (initially κ) is the external view of the current common knowledge.
S (initially σ) is the external view of the set of free names that are available to be extruded

by the system.
ξ is a partial function, with domain K , that maps the external view of common knowledge

to the internal one. Initially this is the identity function on κ.

The clauses forming RegSFN are:

– If both the channel and data are part of common knowledge, then an input does not
change the parameters:

{(ξ(x).ξ(y), x .y) → RegSFN (K ,N , ξ) | x , y ∈ K}

– If both the channel and data are part of common knowledge, then an output does not
change the parameters:

{(ξ(x).ξ(y), x .y) → RegSFN (K ,N , ξ) | x , y ∈ K}

– If P outputs a fresh name x (one not in range(ξ) = ξ(K)), then this is seen on the
outside as the least index member of S .

{(ξ(x).y , x . µ(S)) → RegSFN (K ∪ {µ(S)},S − {µ(S)}, ξ + [µ(S) 7→ y] | x ∈ K , y 6∈ ξ(K)}

– If P inputs a fresh name, then we standardise this so that it is always the one of least
index not in K .

{(ξ(x).γ(ξ(K)), x .y) → RegSFN (K ∪ {y}},S − {y}, ξ + [y 7→ γ(ξ(K))] | x ∈ K , y 6∈ K}

The way we formulated this last clause means that we have not only standardised the way
in which fresh names are extruded from P , but also the names that P inputs as fresh from
the environment. The latter is not strictly necessary to achieve the standardised external
view of our process, but (i) it has a pleasing symmetry and (ii) might well make for more
efficient automated verification.

As with NFN , we can add this new operator to the CSP translation

S[[P]] = (csp[P](fn(P))(Names − fn(P)))〈〈SFN (fn(P),Names − (fn(P)))〉〉

where fn(P) is the set of free names in P , or construct a denotational semantics based on
any channel-based CSP model if we add an environment of the same form as used in the
nondeterministic semantics.

We have the following interesting property of the relabellings used in our two semantics:

Lemma 1. This result is about CSP processes defined over the alphabet Σπ which respect
the π-calculus discipline that no name not in the initial set K is used as a channel before it
is input or output over another channel, and such that the names it thus “creates” through
output are confined to the infinite set S disjoint from K.

For any such process:

(i) For any permutation ξ of names that is the identity on Names − S, P〈〈SFN (K ,S)〉〉 =
P [[ξ]]〈〈SFN (K ,S)〉〉 holds up to strong bisimulation.

(ii) P〈〈SFN (K ,S 〉〉) = NFN (P ,S)〈〈SFN (K ,S)〉〉 holds in every finite-behaviour CSP model.

The first part simply says that it does not matter how the fresh names generated by P
are permuted if they are to be renamed into standard order. The second part then follows
because in any such model the 〈〈SFN (K ,S)〉〉 operator is distributive over nondeterministic
choice.

This lemma implies that the equivalence induced by the nondeterministic semantics is
at least as fine as that induced by the standardised one.

If we were to allow CSP models recording behaviours with an infinity of names in
individual traces, part (ii) of this lemma would not hold in reverse (i.e. with the roles of
NFN and SFS transposed). This is because applying 〈〈SFN (K ,S)〉〉 to a behaviour b that
extrudes an infinity of Names from S always maps it to one in which the whole of S appears.
This means that 〈〈SFN (K ,S)〉〉 will identify pairs of behaviours that no permutation on S

can. This is the same issue we saw when discovering undesirable inequivalences created by
the nondeterministic semantics with infinite traces.

If, however, a behaviour b only involves a finite number of names, then the result of
applying 〈〈SFN (K ,S)〉〉 to it is certain to leave an infinite set of names unrecorded in b. As
in the earlier example, it is then possible to extend the finite injective mapping from S to
itself, created by RegSFN by the time it has communicated all the names used in b, to a
bijection. This proves the following inverse of the lemma above.

Lemma 2. Under the same conditions as Lemma 1,

NFN (P ,S) = NFN (P〈〈SFN (K ,S)〉〉,S)

holds in any channel-based, finite-behaviour CSP model.

We can collect these two results into the following theorem:

Theorem 1. In any such model channel-based, finite-behaviour model of CSP the stan-
dardised and nondeterministic semantics for π-calculus represent the same equivalence over
process terms.

The author believes that in cases, beyond the scope of this paper of CSP, of models
including infinite-name behaviours, the standardised semantics will give the correct equiv-
alences. In future discussions in this paper we will concentrate on the standardised form.

The parameters κ ⊇ fn(P) and infinite σ disjoint to κ are structurally important to the
semantics, but however they are chosen within these constraints they do not change the
equivalence induced by the semantics, as is demonstrated by Lemma 4 below. The crucial
result needed to establish this is Lemma 3: the role it plays is that it allows us to disentangle
the fresh names picked by process and environment.

If b is any finite-name behaviour from a channel-based CSP model, M let enames(b,K)
be the (necessarily finite) set of names first input from the environment that are not in the
common knowledge set K . We then have the following:

Lemma 3. If P is a π-calculus process with fn(P) ⊆ κ, and σ (disjoint from κ) is infinite,
then

b ∈M1
µ[[P]]κσ ⇔ b ∈M1

µ[[P]]κ(σ − enames(b,K))

Lemma 4. If P and Q are π-calculus processes with fn(P)∪fn(Q) ⊆ κ∩κ′, and σ (disjoint
from κ) and σ′ (disjoint from κ′) are infinite, then over any finite-behaviour channel-based
CSP model M we have

M1
µ[[P]]κσ = M1

µ[[Q]]κσ ⇔M1
µ[[P]]κ′σ′ = M1

µ[[Q]]κ′σ′

It follows that we can talk about the congruence on π-calculus induced by a given CSP
model of this type, rather than needing to calculate it relative to a particular κ and σ.
In deciding the equivalence of two processes we can compare their semantics with κ =
fn(P) ∪ fn(Q) and σ = Names − κ. The above lemma demonstrates, inter alia that this is
an equivalence relation.

5.4 Bipartite semantics

In the above semantics we ensured that a pair of parallel processes P | Q never create
names that collide with each other. Our main reason for doing this was to ensure that two
fresh names output directly to the environment respectively by P and Q do not collide. It
has the side-effect, however of meaning that when P inputs a fresh name created by Q or
vice-versa they never need to call upon the transpositions of OF to avoid collisions.

The only entity that we have not been able to control enough to prevent collisions is the
external environment because we have always allowed it to output any name to the process
we are observing. It is this that characterises the unified approach.

In the bipartite approach, the set σ or S of names that the process can choose from is
not only infinite, but its complement (the names either initially known or available to be
created fresh by the environment) is also infinite. We replace the parameter κ, which we will
not need with the bipartite treatment of freshness, with a different set, ζ. This represents
the set of names which it is legitimate to receive as inputs over channels. Before the process
has started to run ζ is always the complement of σ, but at some points in the semantics it
is a proper subset of the complement, the difference being the fresh names that the process
has created (and so are no longer in σ) but not yet extruded.

Rather than give this alternative semantics in detail, we summarise the differences below.
The translations of the input and output constructs are now as follows, noting we are
defining a second translation csp2[· · ·]:

csp2[x (y).P]+ζσ = x?y : (Names − ζ) → csp2[P]+(ζ)σ
csp2[xy]+ζσ = x .y → csp2[P]+(ζ ∪ {y})σ

We get a considerable simplification by being able to drop the most complicated part
of the OF relabelling. OF can in fact be replaced by parallel composition with a process
BOF (ζ) (bipartite output first) that enforces the discipline that no name not in ζ can be
used as a channel before being output by the process:

BOF (Z) = �{x?y : Z → BOF (Z) | x ∈ Z}
�
�{x?y : Names → BOF (Z ∪ {y}) | x ∈ Z}

The translation of νz P thus becomes

csp2[νz P]ζσ = BOF (ζ) ‖
Σπ

csp2[P [µ(σ)/z]]ζ(σ − {µ(σ)})

There is not no need to have the function Π3 in the semantics of |: all we need are
functions Π ′

1 and Π ′
2 that partition σ into two disjoint infinite sets, which each process

having the other’s σ incorporated into its ζ, as are any names in Names − (ζ ∪ σ) since
these have already been declared at the point the parallel composition is started and we
could easily have given the output end of such a channel to P and the input end to Q .
csp2[P | Q]ζσ is defined to be

BOF (ζ) ‖
Σπ

(csp2[P](Names −Π ′
1(σ))(Π ′

1(σ)) |ccs csp2[Q](Names −Π ′
2(σ))(Π ′

2(σ)))

There is one important respect in which things get more involved. The reasons for
needing to use channel-based CSP models are equally valid in this bipartite model, but the

use of these models are not quite as easy to justify since processes no longer have the “no
selective input” property. Just as with the argument earlier that demonstrated that the N
semantics of divergence is correct despite the fact that processes are not closed, we need
to move outside CSP’s established “comfort zone”. In order for the channel-based models
to be valid, we need to ensure that whenever two processes are running in parallel, one
inputting and one outputting a value v on a given channel c, if the inputting process is in a
state where it can accept any input on c then it can also accept v , even though there may
be values that it does not accept.

This is always true of our CSP models of the π-calculus. This is because the only inputs
that csp2[x (y).P]ζσ cannot make are names that have been reserved for P to generate
freshly, or has already generated but not output yet. These are different from (i) the names
created by the external environment by the bipartite structure, (ii) names created by other
parallel processes, because of the way we use Π ′

1 and Π ′
2, and (iii) names previously output

by P , by construction.
csp2[P] suffers from the same failures of abstraction due to exact choices of fresh names

as the unified version csp[P]. We have the same two choices of how to fix these, using
the same operators NFN (P , σ) and 〈〈SFN (κ, σ)〉〉. The first of these can be used without
alteration, as can the second if it is only used at the outside of the semantics. We cannot
incorporate this version into a denotational semantics M2

µ[[P]]ρζσ since it requires the pa-
rameter κ. There are two choices: either to incorporate this parameter into the semantics,
or to use a modified SFN ′(σ) that does not standardise how external names appear to the
process P , something that is not necessary semantically.

It is interesting to note that one of our four CSP semantics, namely M2
u[[P]]ζσ, is defined

without any use of generalised renaming, though it does use both elaborate renamings and
parallel composition with processes that limit traces.

We have already seen that the two unified semantics give the same equivalence, and the
equivalence they give is independent of reasonable choices for κ and σ. A simpler arguments
of the same type work for the bipartite ones semantics. Therefore we will know that all four
agree if we can prove that the two nondeterministic semantics agree.

Theorem 2. For a finite-behaviour channel-based CSP model M and π-calculus process P,
we have

(i) M2
u[[P]](Names − σ)σ = {b ∈ M1

u[[P]](fn(P))σ | enames(b) ∩ σ = ∅} whenever σ ∩
fn(P) = ∅ and both σ and Names − σ are infinite.

(ii) M1
u[[P]]fn(P)σ = u{MNBP(Names − σ′)σ′ | σ′ ⊆ σ,Names − σ′ is infinite for any

infinite σ disjoint from fn(σ).
– Consequently, the congruences induced by M1

u[[·]] and M2
u[[·]] are the same.

Part (i) of this result says that behaviours b of P in a bipartite name space are just those
that happen in the unified name space where the environment did not choose to inject any
names that it would have been banned from doing so under bipartite rules. The fact that
we are in a channel-based model is vital here.

Part (ii) essentially observes that for any finite behaviour b of the unified semantics,
there is an infinite subset σ′ of σ left when we remove enames(b), and b will belong to
MNBP(Names − σ′)σ′.

It follows that the choice of which semantics to adopt is largely down to personal taste.
For the author, the unified nondeterministic semantics has much to recommend it because
it removes the arbitrary choices implicit in the choice of an enumeration for Names –

the semantic value generated by NFN is independent of which enumeration is used in
constructing csp[·] – and a partition of that set into process and environment names. On
the other hand it seems likely that the bipartite standardised approach is best suited to
most automatic verification methods.

6 Properties and future work

We have simultaneously introduced a large number of new semantics for π-calculus, simply
because there is one6 for every CSP model that does not give a representation to infinite
traces. We cannot hope to explore all their properties here. In this section, therefore, we
restrict ourselves to establishing a few basic properties and setting out a research programme
to explore further possibilities.

Throughout this section, the M semantics of a π-calculus process P will be understood
to mean the standardised (SFN) semantics calculated over the channel-based CSP model
M over a unified name space with parameters fn(P) and Names − fn(P)

6.1 Refinement and refinement checking

The most obvious consequence of having a CSP semantics is that it gives a language a
natural notion of refinement. We define refinement, relative to a given model M, by

P vM Q ≡M1
µ[[P]]κσ vM1

µ[[Q]]κσ

for any κ containing fn(P) ∪ fn(Q), which is the same as the M-equivalence, as processes,
of P and τ.P + τ.Q (simply a translation of the CSP construct P u Q). This equational
characterisation means that the definitions of refinement do not depend on which of the
four options is chosen.

Our constructions, Lemma 4, and the properties of refinement in CSP imply that vM

has the compositionality properties one would want, namely

P vM Q ⇒ C [P] vM C [Q]

for any context C .
As in CSP, one process refines another if its behaviours are a subset of those of the second

process. Thus one process trace refines another if all its traces are ones of the second, and
so on.

In CSP models that record only finitely observable behaviours (a category that does not
include divergence), there is a refinement-maximal process, always equivalent to the simply
divergent term µ p.τ.p. There is a refinement-minimal member of the CSP model, but no
π-calculus process represents it since the minimal member has the capability of using every
name on the first step as an output channel. No π-calculus term can do that. It is possible
to construct a minimal process in the traces model subject to knowing the set of names K
initially: imagine a system constructed using the replication !C and !D of two sorts of cell.
A C is initialised with one name x and can then endlessly either input x (y) or output a
fresh name xz where z is introduced by νz (and in either case it initialises a further C with
name y or z) or initialise a D with value x .

C = c(x). µ p.νz .(x (y).cy .p + xz .cy .p + dx .p)

6 We say “one” here, because the four options given for presenting it are almost certainly congruent to each
other.

D is initialised with two names and then endlessly outputs one over the other.

D = d(x).d(y). µ p.xy .p

The process is then defined νc νd !C |!D | C ′[k1/x] | . . . | C ′[kn/x] where C ′ is an
initialised copy of C .

The !C = µ p.C | τ.p construction could not be used in the same way in building
refinement-minimal elements of other finite-behaviour models such as stable failures F be-
cause it is never itself stable. It is, nevertheless, possible to adapt the above construction
to build a refinement-minimal element for F for a given initial knowledge K . This is left as
an exercise to the ingenious reader!

In FDR, the main mode of verifying processes is to show that they refine other CSP
processes representing their specifications. Since our constructions have, in effect, embedded
π-calculus within CSP, we have considerable freedom in how to formulate refinement checks
using a mixture of the two languages.7 A reasonably general model is provided by checks
of the form

Spec vM C [Imp]

where Spec is either a CSP or π-calculus process and C is a possibly null CSP context.
So, for example deadlock freedom is equivalent to the refinement check

µ p.τ.p vF Imp \ Events

and we can use the lazy abstraction construction from CSP, as in the following fault tolerance
check from Chapter 12 of [16] that goes a little beyond the model above:

Imp ‖
E

STOP vF (Imp ‖
E

CHAOS (E)) \ E

where E is a set of events that trigger erroneous behaviour within Imp. This specification
says that whatever externally visible behaviour appears with these error events allowed also
happens when they are banned.

6.2 Prospects for using FDR

Having formulated specifications as refinement checks, it is interesting to ask whether they
can be run on FDR, since this might provide a powerful additional tool to apply to systems
designed in π-calculus.

FDR achieves its considerable speed by concentrating on finite-state systems, allowing
most checks to be performed in time linear (or sub-linear if compressions are used) in the
number of states of the implementation. It concentrates on what it the central case of CSP,
namely of a number of finite-state processes connected by a static harness built of parallel,
hiding and renaming operators.

This is challenged by two aspects of π-calculus. Firstly, π-calculus assumes that every
x (y) input communication offers an infinite range of inputs. Secondly, π-calculus networks
are frequently dynamic and potentially unbounded in size, as seen in the construction above
that built the trace-refinement-minimal process. This takes them outside FDR’s “comfort
zone” and probably out of its range altogether.
7 In such usage it will be necessary to ensure that any CSP used respects the no-selective-input regime

required to make channel-based models works.

It therefore seems sensible to start by looking at π-calculus networks that create static
networks and which generate only finitely new names using νz P constructs.

We therefore consider networks which take the form

νx1 νx2 . . .νxn (P1 | P2 | . . . | Pm)

where the Pi make no use of the operators | and νx and are therefore finite-state except
for the precise names they contain.

The author conjectures that the majority of trace refinement checks involving such
processes can be performed finitely in the following way, thanks to Lazić’s theory of data
independence in CSP [8].

– Use the bipartite approach to semantics.
– Use a type of n + k + 2 names, of which n are tied to the identifiers x1, . . . , xn , k are

the externally visible names in the system, and the final two are “extras”. The reason
there are just 2 extra names is that every π-calculus term, with the exception of the
inequality constraints for fresh variables, satisfies the condition PosConjEqT from [8],
which states that no two members of the data independent type (here Names) are every
compared for equality except in such a way that the consequences of equality are always
trace refined by the consequences of inequality. In π-calculus, both (obviously) equality
guards [x = y] and communication in P | Q represent equality tests of this sort. The first
use of any extra name must be as an input along a pre-existing channel. Lazić’s results
show that in similar circumstances, it usually suffices to consider a check in which the
data independent type is of size one or two greater than the number of distinct constant
values. This represents a threshold value for the refinement check.
Thus initially, and until the process has extruded one or more of the names xi , inputs
are restricted to the other k + 2 names L.

– Regarding the identifiers xi as constants, replace the system with (P1 | . . . | Pm) ‖
Σπ

BOF (L).
– This process may well not be symmetric in the names xi , but if it is refinement checked

against a process that is symmetric in them (for example by not referring to them at
all, as will presumably be the case when the system does not extrude names) it should
be equivalent to check that the unsymmetric version refines the specification.

Data independence will, in fact, be applicable to all π-calculus descriptions of systems:
it is impossible to create π-calculus processes that are not data independent, at least using
the syntax we have adopted for it.

Another class of system that uses an unbounded collection of fresh values has already
been widely studied in CSP, namely cryptographic protocols where the values are keys,
nonces etc. (This connection has already been exploited in the Spi Calculus [1].) Several
related methods for turning naturally infinite-state refinement checks involving these into
finite-state ones have been developed for these protocols[21, 7]. These methods use a combi-
nation of recycling values that no longer have any meaning to the system and making room
fro this by identifying “out of date” values.

It would be interesting to see whether these same techniques can be employed usefully
for π-calculus systems that generate an infinite number of fresh names in their lifetimes but
only have a finite number meaningful at any one time.

Using the present version of FDR it is not possible to analyse networks that grow
unboundedly. It should, however, be possible to analyse ones that are dynamic but only

have a bounded number of active (i.e. non-0 processes in π-calculus terms) at any one time
and only have a finite number of patterns that these processes follow. We would need to
create a CSP process definition Flex that could be initialised to behave like one of these
patterns and returns to the state Flex once the first pattern has finished. When a process
executes a parallel command P | Q it would implement one of these (say P) itself and
initialise one of the available Flexes to behave like Q .

6.3 Full abstraction

All the well-known CSP models are fully abstract with respect to one or more simple tests
that can be made of processes in the sense that two processes P and Q are identified
in the model if and only if, for all CSP contexts C [·], C [P] passes each of the tests if
and only if C [Q] does. Thus, for example, the finite traces model T is fully abstract with
respect to the test “P has the trace 〈a〉” for an arbitrarily chosen visible event a, and the
failures divergences model N is fully abstract with respect to the test “neither deadlocks
nor divergences on 〈〉”.

It is clear that, when a given CSP model M has such a property, then two π-calculus
terms P and Q are identified in it if and only if all CSP contexts applied to them give the
same results for the tests. It is interesting to ask whether the same will hold for π-calculus
contexts. The author believes that most of these results will indeed carry across in this way,
but resolving these questions is beyond the scope of this paper.

6.4 Comparison

Equivalences for π-calculus terms have previously been given in terms of bisimulation re-
lations of different sorts. Over other process calculi it is true that bisimulations relations
generally give finer equivalences than CSP-style models, except that some bisimulations
(e.g. weak) do not make the same distinctions based on the potential to diverge that some
CSP models do. The author expects that the same will be true for π-calculus.

It seems to the author that the semantics of π-calculus in CSP models have the merit of
simplicity, in the sense that each recorded behaviour only gives a single value to each name,
whichever of our four options is picked. These models seem no less natural for π-calculus
than they do for CSP. Indeed, given that in a unified name space it is inevitable that any
branching-lime model for π-calculus there will be recorded behaviours on which the name
declared in νz P will appear with two different values, the use of linear observations seems
particularly appropriate here.

7 Conclusions

We have illustrated the enormous expressive power of Hoare’s CSP by giving a number of
semantics to π-calculus. The author hopes that in addition to providing this demonstration
of the power of CSP this paper will also be the key to new understandings and process
analysis methods for π-calculus, and that for some audiences it might provide a relatively
comprehensible way of explaining the semantics of that notation. In particular it will be
interesting to see if the existence of compositional theories of refinement for π-calculus will
have any applications.

In addition to the topics for further work highlighted in the previous section, there is
a further open end to be explored, namely the topic of models with infinite traces. The

author suspects that it may be possible to modify our CSP translation so that this works
with a countably infinite name space using the bipartite approach, but not using the unified
approach to fresh names.

While this may or may not be apparent to the reader, the author discovered on numerous
occasions that the semantic decisions made in the design of π-calculus were absolutely crucial
to the creation of a reasonably elegant semantics for it in CSP. A prime example of this
is the rule that no fresh name can be used as a channel until it has been passed along
another channel is necessary for ensuring that the first time a name appears in a behaviour
in a channel-based model is as the “data” field of an actually communicated event. This
is key to a number of things working properly in the CSP semantics. Thus, at least to the
author, this work demonstrated not only the power of CSP but also the great elegance of
the π-calculus.

References

1. M. Abadi and A.D. Gordon, A calculus for cryptographic protocols: the Spi calculus, Proceedings of the
4th ACM conference on Computer and communications security, 1997.

2. S.D. Brookes, A model for Communicating Sequential Processes, Oxford University DPhil thesis, 1983.
3. S.D. Brookes, C.A.R. Hoare and A.W. Roscoe, A theory of communicating Sequential Processes, Ap-

peared as monograph PRG-16, 1981
http://web.comlab.ox.ac.uk/people/Bill.Roscoe/publications/1.pdf

and extended in JACM 31 pp 560-599, 1984. 1
4. S.D. Brookes, A.W. Roscoe and D.J. Walker, An operational semantics for CSP, Oxford University

Technical Report, 1986. 25
5. He Jifeng and C.A.R. Hoare, CCS is a retract of CCS, Unifying Theories of Programming symposium,

Springer LNCS 4010, 2006.
6. C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
7. Eldar Kleiner, A web services security study using Casper and FDR, Oxford University DPhil thesis,

2008.
8. R.S. Lazić, A semantic study of data-independence with applications to the mechanical verification of

concurrent systems, Oxford University D.Phil thesis, 1998.
9. R. Milner, A Calculus of Communicating Systems, LNCS 92, 1980

10. R. Milner, Communication and concurrency, Prentice-Hall, 1989
11. R. Milner, Communicating and mobile systems: the π-calculus, CUP, 1999
12. R Milner, J Parrow and D Walker, A calculus of mobile systems, Parts I/II, Information and Compu-

tation, 1992
13. A.W. Roscoe, A mathematical theory of Communicating Sequential Processes, Oxford University DPhil

thesis, 1982. 2
14. A.W. Roscoe, Denotational semantics for occam, Proceedings of the 1984 Pittsburgh Seminar on Con-

currency, Springer LNCS 197. 10
15. A.W. Roscoe, model-checking CSP, in A Classical Mind, essays in honour of C.A.R. Hoare, Prentice-Hall

1994. 50
16. A.W. Roscoe, The theory and practice of concurrency, Prentice-Hall International, 1998. Updated version

available at 68.
17. A.W. Roscoe, Seeing beyond divergence, Communicating Sequential Processes, the first 25 years, Springer

LNCS 3525, 2005. 95
18. A.W. Roscoe, Revivals, stuckness and the hierarchy of CSP models, JLaP 78, 3, pp163-190, 2009. 105
19. A.W. Roscoe, The three platonic models of divergence-strict CSP Proceedings of ICTAC 2008. 121
20. A.W. Roscoe On the expressiveness of CSP, Submitted for publication. 125
21. A.W. Roscoe and P.J. Broadfoot, Proving security protocols with model checkers by data independence

techniques, Journal of Computer Security 7, pp147-190, 1999. 70
22. A. W. Roscoe, P.H.B. Gardiner, M.H. Goldsmith, J.R. Hulance, D.M.Jackson and J.B. Scattergood,

Hierarchical compression for model-checking CSP, or How to check 102̂0 dining philosophers for deadlock,
In Proceedings of TACAS 1995 LNCS 1019. 59

23. D. Sangiorgi and D. Walker The π-calculus: A theory of mobile processes, CUP, 2001.

24. J.E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory,
MIT Press, 1977.

25. R.J. van Glabbeek, On cool congruence formats for weak bisimulation, Proceedings of ICTAC 2005,
Springer LNCS 3722.

26. P.H. Welch and F.R.M. Barnes, A CSP model for mobile processes, Proc CPA 2008 (IOS Press, 2008).

All the works listed above whose authors include A.W. Roscoe can be found at
http:web.comlab.ox.ac.uk/people/publications/personal/Bill.Roscoe.html.
The numbers 1 etc refer to their respective numbers on that web page.

