
Deadlock Freedom Through Object Ownership

Eric Kerfoot
Oxford University Computing

Laboratory
Wolfson Building, Parks Road

Oxford, UK
eric.kerfoot@comlab.ox.ac.uk

Steve McKeever
Oxford University Computing

Laboratory
Wolfson Building, Parks Road

Oxford, UK
steve.mckeever@comlab.ox.ac.uk

Faraz Torshizi
∗

Department of Computer
Science, University of Toronto

10 King’s College Road
Toronto, Ontario, Canada

faraz@cs.toronto.edu

ABSTRACT
Active objects are an attractive method of introducing con-
currency into Java-like languages by decoupling method ex-
ecution from invocation. In this paper, we show how owner-
ship is used in the Java [14] subset language CoJava [17] to
prevent deadlock associated with active object method calls.
This approach builds on existing type-based approaches that
eliminates data races and data-based deadlock in concurrent
systems. The novel addition is the use of ownership to or-
ganize active objects, thus preventing deadlock from arising
when objects are allowed to block awaiting responses from
others.

Typechecking is used to prevent threads from sharing mu-
table data, thus CoJava is free of data races and data-based
deadlock. Behavioural deadlock is prevented by the use of
promise objects which prevent clients from blocking indefi-
nitely while awaiting responses. Ownership imposes a hier-
archy on active objects; this allows owners to safely block
while waiting for responses from owned objects. The paper
also discusses the implications of this approach to specifica-
tion with JML, formal reasoning about programs, and the
consequences to runtime assertion checking.

Categories and Subject Descriptors
D.3.2 [Language Classifications]: Concurrent, distributed,
and parallel languages;
D.3.3 [Language Constructs and Features]: Concurrent
programming structures—Classes and objects;
F.3.1 [Specifying and Verifying and Reasoning about
Programs]: Specification techniques

Keywords
CoJava, Java, Ownership, Active Objects, Concurrency, Dead-
lock, Data Races

∗Part of this work was conducted under an NSERC schol-
arship

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWACO ’09, July 6 2009, Genova, Italy
Copyright 2009 ACM 978-1-60558-546-8/09/07 ...$10.00.

1. INTRODUCTION
The Active Object Design Pattern [18] describes a sim-

ple method of introducing concurrency in object-oriented
languages. It decouples method execution from method
invocation, thereby introducing concurrency though asyn-
chronous method invocation. This contrasts with sequential,
passive objects where executing immediately follows invoca-
tion. However it does not focus on issues of concurrency cor-
rectness directly, specifically those of data races and dead-
lock. Type-based approaches have been demonstrated to
effectively tackle data race issues, but how this can be used
to prevent deadlock is an open question.� �
c lass A { B b;

void m1() { b.m3(this);}
void m2() { . . . }

}
c lass B { void m3(A a) { a.m2();} }� �

Figure 1: Deadlock Situation

Consider the situation when two active objects send re-
quests to one another. Typically an active object cannot
respond while it deals with a request. Thus if two objects
are waiting for responses from one another, deadlock has
occurred. Figure 1 sketches such a situation where classes
A and B are active object types. While executing m1(), the
call to m3() causes m2() to be called. The object cannot
respond when m2() is called, thus both objects wait for one
another indefinitely. Deadlock in this situation is a result of
method re-entry.

This paper describes an active object-based approach used
in CoJava [17]. This work builds on the type-based approach
to data race-freedom, but uses ownership to organize active
objects into hierarchies. The purpose of using ownership is
to prevent circular relationships where two or more active
objects wait indefinitely for one another. CoJava uses JML-
like [19] annotations to declare active object types as these
can be applied to existing Java types.

CoJava addresses the deadlock problem in two ways to
prevent blocking in re-entrant calls:

• Active objects unrelated through ownership must com-
municate in a way that does not block. This is achieved
through the use of promise objects [21] that act as re-
ceptacles for return values. A client may thus defer
collecting results until a later time rather than block-
ing. The client may wait to get a response for a time

period, if no result comes within this period, a timeout
event occurs.

• Ownership is used to organize objects into hierarchies.
An owner may safely block waiting for responses from
the objects it owns, so it need not use the promise
object approach. Owned active objects also imply
that fewer objects may communicate with it, affording
greater understanding and control over their runtime
behaviour. This will be shown to have implications for
specification and formal reasoning.

The CoJava concurrency methodology focuses on correct
active objects while introducing as few new concepts as pos-
sible. Each active object will have one thread associated
with it and so guarantees safety at the expense of efficiency.
The methodology uses tool-generated proxies to implement
active objects. This tool performs necessary type checks to
ensure that mutable data is never shared between active ob-
jects, hence no locks are used.

The paper is organized as follows: Section 2 describes the
CoJava language in brief, including the ownership type sys-
tem. Section 3 describes the active object approach used
by CoJava and the type requirements necessary to prevent
the sharing of mutable state. This includes the concept
of admissibility and immutable types. Section 4 discusses
the relationship between active objects and ownership, and
how hierarchy and encapsulation organize threads into co-
operative units. This section also includes discussion on the
implications for sequential reasoning and runtime assertion
checking.

2. COJAVA
This section briefly introduces CoJava [17], a subset of

the Java language with formal type and operational rules.
CoJava is a framework towards object ownership and sim-
ple concurrency in Java. CoJava is intended to be smaller
than full Java so that its formal semantic description can be
kept concise. This makes the semantics for ownership and
concurrency much more manageable and with less need to
consider complex features of Java. The CoJava Tool oper-
ates as a type checker to enforce non-Java type rules and
generates output Java code from CoJava input.

A subset of JML is used to define specifications in Co-
Java, which are presented as annotations embedded in reg-
ular Java comments beginning with //@ or /*@. The subset
of annotations used to specify CoJava include those for con-
tracts and type annotations. The full CoJava grammar is
shown in Figure 2, and the tool with documentation includ-
ing formal rules can be found at
http://devel.softeng.ox.ac.uk/cojava.

2.1 Ownership
CoJava’s transitive ownership [2, 8, 24] type system uses

a type modifier represented as the JML-like annotation
/*@ owned @*/. This is applied to the types of attributes
and variables to indicate that they reference objects owned
by the current object. Not all objects have owners, unlike
other schemes where some owner (such as a top-level owner)
must be specified. This allows Java code written without
ownership annotations to be easily integrated with CoJava
code.

Type ::= int |char |boolean |C

Defs ::= (Class | Inter)∗

Class ::= class C [extends D] [implements I]
{ Attr∗ Constr Meth∗ }

Inter ::= interface C [extends I] { IMeth∗ }
Constr ::= public C(Type x) { [super(E);] Stmt∗ }
Attr ::= Mod Type x ;

Meth ::= Mod Type m(Type x) { Stmt∗ return Exp;}
|Mod void m(Type x) { Stmt∗ }

IMeth ::= public (Type |void) m(Type x);

Mod ::= public |private |protected

Stmt ::= Type x [= Exp]; |Name = Exp;

|Call; |; | { Stmt∗ } | while(Exp) Stmt

| if (Exp) Stmt else Stmt

| for(Type x : Exp) Stmt

| for(Type x = Exp ; Exp ; x = Exp) Stmt

Name ::= this.y |this.x.y |x.y |x
Call ::= this.m(Exp) |this.x.m(Exp)

|x.m(Exp) |super.m(Exp)

Exp ::= null | lit |Name |Call |(Type) Exp|(Exp)

|new C(Exp) | - Exp | ! Exp|Exp Op Exp

Op ::= + |- |* |/ |% |&& ||| |== |!= |< |> |<= |>=
Figure 2: The CoJava Grammar

If an object a instantiates an object b with the owned
annotation included in the new expression, then a is the
immediate owner of b. This is purely defined as a property
of the type and does not affect what class defines b. If b

owns some object c, then a also owns c transitively.
An owned type has the aforementioned annotation be-

fore the type name, thus the owned version of type T is
/*@ owned @*/ T. A variable (eg. a local variable, argu-
ment, or attribute) with an owned type is called an owned
variable. An object referenced by such a variable is called
an owned object; by virtue of the type it is owned by the
current object.

The following is a set of properties of the CoJava type
system that the tool enforces:

• Owned values cannot be assigned to non-owned vari-
ables and attributes, or vice versa. This ensures that
an owned object can only be aliased through an owned
reference.

• Methods with owned arguments can be called, and
owned attributes assigned to, only when the receiver is
this. This prevents any client from changing the rela-
tionship between owned objects, especially from break-
ing the hierarchical structure.

• Methods returning owned references and owned at-
tributes can only be accessed through an owned re-
ceiver. This prevents non-owners from accessing criti-
cal internal state.

• Within the method bodies of some class T, this has
type /*@ owned @*/ T. Since non-owing clients can-
not call methods returning owned values, this is not
accessible to non-owners.

As a result, the following properties are guaranteed by the
type system for well-typed CoJava programs:

• Objects cannot be aliased by owned and non-owned
references at once (excluding this).

• Owned objects are organized into tree structures en-
capsulated by their owners.

• If an object is aliased through a non-owned reference,
its owned objects are inaccessible to its clients since no
method call or attribute access makes them available.

• Since methods accepting owned arguments and owned
attributes can only be accessed by this, clients cannot
pass owned references to an object.

• Owners can access the owned objects transitively, but
they cannot modify the object structures created by
those objects it owns.

For example, consider an object list which contains a
linked list of objects. Each node in the list owns the next
node and list owns the first object called head. The list

object can access any of the nodes but it cannot insert a
node into the list; it must call a method of the nodes to do
this. If list is aliased through a non-owned reference, then
no client can access these nodes.

Ownership enforces the encapsulation of head and every
other node by list. In this case, it also enforces structural
correctness since no node in the chain may alias any nodes
above it, creating a loop. If every method of list returning
an owned object and every owned attribute were private,
then even owners of list cannot access the nodes, and so
an even stronger encapsulation property (denoted by the
contained class modifier) is enforced.

This section gave a brief definition of CoJava, in particular
its ownership type system. The next section describes how
active objects are implemented and what requirements are
needed for their type system.

3. ACTIVE OBJECT CONCURRENCY
CoJava active objects are defined with the threaded JML-

like annotation, which can be applied to class definitions
or variable and attribute type declarations. An active (or
threaded) object is in fact a proxy object generated by the
CoJava Tool. The methods of this proxy have a similar sig-
nature to those found in the object they encapsulate. These
proxies have their own type, such that the active version of
type T is /*@ threaded @*/ T. Proxies can be generated
for existing class types without custom code or annotations,
therefore compatibility with existing Java code is provided
within the bounds of the admissibility criteria discussed in
Section 3.2. Immutable types that can be safely shared be-
tween threads are defined Section 3.3.

CoJava prevents data races by restricting what types can
be shared between active objects, thus it is lock-free. Ex-
cluding locks also prevents deadlock when multiple threads
wait to lock the same data. Less waiting occurs without
locks, thus concurrency methodologies that exclude them
offer efficiency advantages [12].

Ownership itself is not used to provide these benefits in
CoJava. Owned types can determine which objects may be

safely shared or transferred between threads, or which need
to be locked, as demonstrated in other concurrency research
efforts [5, 6, 7, 10]. For example, a locking regime may state
that when a lock on an owner is acquired, every object it
owns is also locked. Ownership may also be used to desig-
nate owning threads for every object, such that only objects
owned by a thread may be modified during the course of its
execution. Transferring ownership between threads would
also facilitate sharing in this scheme.

These ownership approaches contrast with verification ap-
proaches [20, 16]. The goal is to prove that data race and
deadlock freedom result from correct synchronization schemes,
rather than deriving these as properties of the type system.

Guava [3] however uses special types to implement a form
of active objects, value semantics, and unique references [1]
as well as ownership. Kilim [27] uses special message types
that are unencapsulated values and have at most one owner
at any given time. The purpose of these techniques is to
prevent mutable data sharing between active objects. Co-
Java accomplishes this through the admissibility criteria dis-
cussed below.

The threaded proxy classes operate by placing a message
on an internal queue whenever one of its methods is called.
The methods of the proxy return promise objects of type
Result. A promise object functions as a receptacle that
eventually will store the return value for the call once it is
calculated. Result also includes methods to test whether
timeout or error events have occurred. This operates in a
similar manner to the active object implementation in the
JAC [22] language.

The sent message contains the arguments passed with the
call, and will be eventually processed by the internal thread.
The thread will call the actual method on an internal in-
stance of the base type, and place any possible results in the
promise object. Only one message is processed at once, thus
no more than one method is ever called at any one time on
the local object.

The use of promise objects implies that clients do not
block waiting for the methods of threaded objects to be ex-
ecuted, but may defer collecting results to a later time. The
promise objects allow the client to wait for a specified finite
time period before a timeout event is considered to have oc-
curred. Such events indicate a situation that would other-
wise result in deadlock, where two or more threaded objects
are waiting for each other to respond. We illustrate this con-
currency approach with a producer-consumer example that
demonstrates communication between threaded objects.

3.1 Example
Figure 3 sketches a simple producer-consumer example us-

ing a threaded class StringQueue. Producer sends a String

to the queue by calling the add() method of q, which is in
fact a threaded proxy. The message for the call is placed on
q’s message queue and will eventually be executed.
Consumer requests an item from the queue through a call

to the method get(), which returns a Result object r in-
stead of the actual result. When the queue’s thread executes
the actual call, the value will be placed in r which can be
retrieved through the objectResult() method. The argu-
ment to this call is the timeout value in milliseconds, if the
caller waits longer than the given time then the call returns
null and r’s method hasTimedOut() will return true.

The type /*@ threaded @*/ Producer represents the

proxy type. An instance of this type contains a private queue
of messages, a thread processing the messages, and an in-
stance of Producer (the delegate object) whose methods the
thread calls in the course of processing the messages. The
delegate object’s JML contracts are checked at runtime in
the same way that a regular local object’s contracts would
be checked. If a violation occurs this is captured by the
Result object.� �
c lass Producer {

public void produce(StringQueue q) {
for (int c=0; true;c=c+1)

q.add(""+c);
}

}
c lass Consumer {

public void consume(StringQueue q) {
while(true){

Result r=q.get();
String i=(String)r.objectResult (100);

i f (r.hasTimedOut ()) // handle timeout
else i f (r.isError ()) // handle error
else . . // consume i

}
}

}
. . .
StringQueue i=new StringQueue (10);
/*@ threaded @*/ Producer p=

new /*@ threaded @*/ Producer ();
/*@ threaded @*/ Consumer c=

new /*@ threaded @*/ Consumer ();
p.produce(i); c.consume(i);� �

Figure 3: The Producer Consumer Example

3.2 Admissibility and Data-race Freedom
CoJava threaded (active) objects prevent data races by

not sharing mutable data. This is accomplished by restrict-
ing what types of objects may be passed through a threaded
object’s public interface, which in effect is the thread bound-
ary separating one thread from all others.

Consequently, mutex locks or other means of access con-
trol are not needed in CoJava. Implementations are thus
simplified since code to provide synchronization is not needed.
It also implies that there will be no waiting by one ob-
ject for a shared object to be released so that it can be
locked, hence the performance of concurrent code will be
enhanced. This comes at the cost of restricting what types
of objects can be transmitted between threaded objects, and
requires time and space to serialize objects implementing the
StringSerializable interface.

Rather than using ownership or reference uniqueness, a
simple concept of admissibility is employed:

• An admissible type is a primitive type, an immutable
object type, a threaded object type, or a subtype of the
interface StringSerializable which effects cloning by
converting objects to and from String representations.

• An admissible method is one whose argument types
and return type are all admissible types.

• An admissible constructor is one whose argument types
are admissible types.

• An admissible attribute is one with admissible type.

An object whose type is admissible can be safely passed
over a thread boundary since it is either safe to share with
multiple threads or can be cloned. The CoJava Tool will
generate methods in the threaded proxy class only for pub-
lic admissible methods of the original type T. Accessor and
mutator methods are generated only for public admissible
attributes. There must be an admissible constructor for in-
stances of this threaded type to exist.

Objects implementing StringSerializable are turned
into String objects by the proxy, then converted back to
objects before the actual call occurs. This mechanism is
used for simplicity in CoJava, which cannot make use of
Java’s cloning mechanism since exceptions are not included
in the language.

Admissibility allows CoJava threaded objects to share pre-
existing object types. The Java types String, Integer, and
others are known to be ostensibly immutable and so the
CoJava tool is aware of this through model definitions.

Threaded versions of existing types can also be instan-
tiated, assuming they have admissible members and that
they can be imported into the CoJava environment through
model type definitions. The CoJava concurrency approach
is based on types and not introduced custom programming
constructs. Therefore Java library types such as String can
have threaded instances of type /*@ threaded @*/ String,
which can only make available the methods of String that
are admissible.

3.3 Immutable Types
Often an object type is defined whose instances do not

change state over their lifetimes. These immutable objects,
such as Java’s String, can be safely shared by threaded
objects since data races are only a product of mutable state.
JAC [22], for example, employs immutability to allow such
safe sharing between threads.

Immutability is enforced through compiler checks in ad-
dition to ownership types, an approach similar to other im-
mutable object schemes [4, 15]. The tool enforces the fol-
lowing requirements on classes declared as immutable:

• All public constructors and methods must be pure.

• All methods with owned arguments or return types
must be non-public.

• All attributes must be non-public.

• All object attribute must be owned or immutable.

• Immutable types can only extend Object or other im-
mutable types.

• No mutable type can extend or implement an immut-
able type.

3.4 Wait Conditions
Classically, a precondition must be established before a

method is called. It is often useful to state a precondition
that will eventually be true when a method of an active ob-
ject is called. A wait condition is a special precondition that
is not required to be true when the message for the method
is sent, but is expected to eventually be fulfilled. In the
meantime, if the condition is not met, then the message can

be temporarily skipped. Wait conditions are translated into
regular preconditions as well, such that the passive instances
of types with the conditions will still correctly check method
requirements.� �
/*@ threaded @*/ c lass StringQueue {
public /*@ owned @*/ ArrayList items;

//@ wait !isFull ();
//@ ensures items.size ()==
//@ \old(items.size ())+1 &&
//@ items.get(\old(items.size ()))==i;
public void add(String i){ items.add(i); }

//@ wait size ()>0;
//@ ensures items.size ()==
//@ \old(items.size ())-1 &&
//@ \ result == \old(items.get (0));
public String get() {

String s=(String)items.get (0);
items.remove (0); return s;

}
. . .
}� �

Figure 4: The StringQueue class

Figure 4 describes two methods from the StringQueue

class that use wait conditions, specified with the wait key-
word. The method add() requires that the queue not be full
when it attempts to add an item. If the wait condition is
not satisfied, the clients wait for other threads to remove el-
ements from the queue. Once the wait condition is met, the
call is performed when the delayed message is next processed
by the internal thread.

Wait conditions provide an atomic means of checking for
a condition. If the wait condition for add() were a regu-
lar precondition, a client of the queue must instead check
whether isFull() was true or not before making the call.
Between this check and the actual call, another client might
call add() and cause the queue to become full again, thus
precipitating a precondition violation. By using a wait con-
dition, there is no opportunity for this to occur between the
condition being fulfilled and the actual call being executed.

This section outlined the active object approach used in
CoJava. Active objects require proxies generated by the Co-
Java tool, and type checks ensure mutable state is not shared
between them. The next section discusses implications of us-
ing ownership with active objects, such as how this affects
sequential reasoning and runtime assertion checking.

4. CONCURRENT OWNERSHIP
This section discusses the application of ownership to ac-

tive objects, specifically how it prevents deadlock from oc-
curring when objects block waiting for results from threaded
method calls. Since ownership organizes objects into hier-
archies, calls that block may only be performed by owners
when calling methods of owned objects. This ensures that
blocking calls propagate down the hierarchy and do not form
loops of blocking calls.

The purpose of the promise object type Result is to allow
clients to wait for return values for a finite amount of time,
i.e., they do not block, preventing deadlock. This was con-

sidered in Figure 1 that roughly sketched the situation where
method re-entrancy between threaded objects resulted in
deadlock.

Timeouts allow a program to progress when a deadlock
situation occurs and to report the error. However, looping
indefinitely until a call succeeds without timeout translates
deadlock into livelock. There exists as yet no means of stat-
ically detecting this in CoJava, or knowing when a call will
result in a timeout event.

Deadlock is a product of mutual aliasing where two or
more objects are involved in a reciprocal calling situation.
The CoJava ownership type system enforces hierarchy on
objects, thus this relationship does not occur between an
owned object and its owner.

An owner may safely block waiting for a response from ob-
jects it owns, since the hierarchy guarantees that the owned
object will not be allowed to block indefinitely waiting for a
response from its owner. Assuming that the method called
by the owner does not loop indefinitely when timeout occurs
(a form of divergence), the method will eventually return.� �
/*@ threaded @*/ c lass A {

public /*@ owned @*/ B b; . . .
public boolean m1(A a)

{ b.m4(a); return b.m3(); }
public boolean m2() { . . . }

}
/*@ threaded @*/ c lass B { . . .

public boolean m3() { . . . }
public void m4(A a)

{ Result r=a.m2(); . . . }
}
. . . A a = new A(); a.m1(a);� �

Figure 5: Threaded Ownership Example

Figure 5 illustrates calling a method of a threaded owned
object directly. When m3() is called, it returns a boolean
value rather than a promise object. The caller object a will
block until this call completes with the expectation that b

cannot initiate a blocking call back to a since it is owned.
However, when m4() is called, a reference value which hap-

pens to point to the same object as the caller is passed as an
argument. This allows b to call a method of a, but will have
to use the promise object and will always encounter a time-
out. This is an instance where an owned object may acquire
access to its owner through a regular reference. Assuming
that m4() does not loop forever until the call succeeds, it
will return some default value after (hopefully) reporting
the timeout error. The Result type includes methods for
querying if a timeout or error has occurred when waiting for
a response, thus timeout events are treated as programming
errors that can be reported and which allow the program to
continue execution.

Although a timeout will occur when m4() is called, this
does not result in deadlock, although one object has been
allowed to block waiting for another. The relationship be-
tween owner and ownee is asymmetrical and therefore can
be used to ensure that only one party in a concurrent call
sequence may block indefinitely awaiting a response.

4.1 Specification and Sequential Reasoning
The previously discussed active object implementations

do not discuss specification in significant depth. This con-

trasts with the SCOOP [9, 13, 25] language that extends
Eiffel [23] with object-centered concurrency. A prototype
Java version of the SCOOP model, called JSCOOP, is also
available [28]. The SCOOP model uses locking semantics
and a formal computational model [26] to determine what
locks are required and when. The design-by-contract ap-
proach fundamental to Eiffel can thus be applied to active
objects. This is, however, at the expense of complex seman-
tics and compiler implementations.

CoJava owned threaded objects can be used in specifica-
tions in a seamless manner. Regular threaded objects re-
quire the use of the promise object and hence are very cum-
bersome in contracts, and a timeout event has undefined log-
ical meaning. Most importantly, because ownership restricts
who may alias an owned object, there is greater control over
what messages it receives and when. This leads to greater
understanding of semantics and a guarantee that properties
established by contracts will hold.

When reasoning about passive objects, it is expected that
a property established about an object will hold until an-
other operation is performed on it. This cannot be estab-
lished locally for threaded objects since after such a property
is established, the threaded object might receive a message
that invalidates it.

Ownership restricts when this happens by controlling who
may send messages to a threaded object. Methods may be
defined assuming that their type’s instances have sole ac-
cess to threaded objects. However, if other owners exist, it
can be assumed that they are careful about mutating tran-
sitively owned objects. The same encapsulation is beneficial
for passive objects therefore it serves a very useful function
for threaded objects as well.� �
/*@ owned @*/ StringQueue queue; . . .
queue.add("Hello");
// assert queue.size()>0
queue.get();� �

Figure 6: StringQueue Example

Figure 6 illustrates a use of the StringQueue class, where
between the two method calls the property that the queue
is non-empty is assumed to hold. Messages sent to threaded
objects are processed in order. A property established by
a method will therefore hold when subsequent messages are
processed. Once the message for get() is processed, the
queue will be storing the given item and the so precondition
will certainly be met.� �
//@ ensures q.contains(s);
public void addString(StringQueue q,

String s){
q.add(s);

}� �
Figure 7: Add Example

This block of code assumes that either the current object
is the sole owner of queue, or that any other owners are
responsible for invoking the method containing this code in
a safe manner that does not interfere with queue. Ensuring
that an owned threaded object is not accessible to transitive

owners can be done by annotating the owning class with the
contained keyword. However, often a class may want its
owners to access its owned state in a safe manner, which
demands careful co-operation.

The queue exists in a separate thread context and per-
forms operations asynchronously, but since messages are
processed in order, sequential reasoning can still be applied.
This also extends to contracts, as Figure 7 illustrates. The
method addString() may exit before the call add() is ac-
tually processed by q, therefore the postcondition isn’t true
just yet. However, if a client of q attempted to call its meth-
ods to query whether s was indeed contained by it, the calls
would not be processed until the completion of the original
add() call. Although in this case the postcondition is yet to
be established, it will be observably true to external clients
after addString() completes.

Wait conditions may introduce the possibility of deadlock
in CoJava, with or without ownership. If a wait condition for
a method is always false, then any client calling that method
will always encounter a timeout event, or deadlock if it is an
owner. In Figure 6 an owned StringQueue is given an item
by calling add(). If the queue was already full and there
was only the one owner, then deadlock will result. Since
no other objects can remove items from the queue, the wait
condition for that method call can never be fulfilled.

As a result, owners must treat wait conditions as regular
preconditions since there is no guarantee that other owning
clients exist that may cause the condition to be fulfilled.
To support this, the generated proxies are aware of what
messages are sent as part of owned object calls and will not
wait when these are processed. Since the wait conditions
will still be treated like preconditions, if runtime assertion
checking is being used then the condition will be checked.

4.2 Barbershop Example
A larger example is introduced that illustrates how own-

ership is used to co-ordinate active objects as co-operating
threads. Figure 8 presents the CoJava implementation of
a barber class for the Sleeping Barber concurrency exam-
ple [11]. The barber contains a queue of customers with
a capacity of two, who are represented by their names in
String form. Although the queue is owned, it is public and
thus accessible to owners of barbers, which are expected to
add names to the queue and call wakeUp() to cause the bar-
ber to cut hair. By making the queue owned, this allows
only owners to add items to it.

The owner of a Barber instance would be the shop it works
in, illustrated in Figure 9. The BarberShop class is declared
as contained and so even owners of its instances cannot
access its Barber object. The Barber therefore provides a
service exclusively to its owner. The relationship between
the shop and the barber is similar to the producer-consumer
one previously discussed, where the shop produces clients
while the barber consumes. The shop and the barber can
operate asynchronously since the queue of customers is itself
a threaded type.

Multiple calls might cause a precondition violation to oc-
cur if the queue was empty when the call is eventually made.
The BarberShop is thus responsible for calling the methods
of Barber only at safe times, and must use objects it owns
transitively in a safe manner that does not adversely affect
the operation of other owners.

The method getHaircut() does not rely on the wait con-

� �
c lass Barber {

public /*@ owned @*/ StringQueue queue;

public Barber () {
queue=new /*@ owned @*/ StringQueue (2);

}

//@ ensures queue.size ()==0;
public void wakeUp () {

while(queue.size ()>0)
cutHair ();

}

//@ requires queue.size ()>0;
//@ ensures
//@ queue.size ()==\old(queue.size ())-1;
public void cutHair () {

String c=queue.get();
// cut c’s hair

}
}� �

Figure 8: The Barber Class� �
/*@ contained @*/ c lass BarberShop {
private /*@ owned @*/ StringQueue queue;
private /*@ owned threaded @*/

Barber barber;
//@ invariant queue== barber.queue;

public BarberShop () {
barber=

new /*@ owned threaded @*/ Barber ();
queue=barber.queue;

}

public void getHaircut(String customer) {
i f (queue.isFull ())

// customer is discarded
else {

queue.add(customer);
barber.wakeUp ();

}
}

}� �
Figure 9: The BarberShop Class

dition for add() but instead explicitly checks to see if the
queue is full. Since the queue is owned, the wait condition
is treated as a regular precondition, therefore this check is
necessary. Because the BarberShop is contained it is known
that no object it owns is accessible to external clients, owned
or otherwise. Combined with the knowledge that only the
Barber object can alias the queue and it never adds items,
no object will add an item to the queue in the time between
the isFull() check and the call to add(). If this structural
assumption were not true, a client might cause the queue to
be full and thus cause a precondition violation to occur.

This section has discussed ownership and its implication
for the organization of active objects. By co-ordinating how
active objects interact, this allows CoJava to formally co-
ordinate threads of control in a data race-free, deadlock-free
manner. Custom runtime assertion checking code prevents
the evaluation of JML contracts from introducing deadlock

when the actual body of the relevant methods do not. The
Barbershop example illustrates how one owned threaded ob-
ject is used as a service provider exclusively by one owner,
thus eliminating any chance of unintended interaction with
other threads of control.

5. CONCLUSION
CoJava has thus been presented as a very small language

implementing a complex concurrency design pattern. Simple
type-based techniques statically ensure that well-typed Co-
Java programs are data race-free, and deadlock is prevented
by the use of promise objects or ownership.

A number of issues remain for subjects of further research.
One that has not been discussed here is the use of wait con-
ditions in place of preconditions for methods. A wait condi-
tion causes the message for a method call to be temporarily
skipped in the queue if the associated condition for it was
not met. This is designed to allow subsequent messages to
be processed in the hopes that the condition will be met
and the call can continue. A wait condition that cannot be
met implies that the message for that method is never pro-
cessed. If the receiver is not owned, then this may not be
catastrophic although the original caller will always get a
timeout from the associated promise object. A greater un-
derstanding of what is feasible for wait conditions is needed
on the part of the programmer, or greater understanding
on the tool side to disallow conditions that produce endless
waiting.

Every threaded object in CoJava has one thread for pro-
cessing messages, and might have many more when perform-
ing runtime assertion checking. This is very inefficient al-
though correct. A more ideal solution would involve a pool
of threads which are not attached to any particular object,
but process messages for threaded objects as needed. This
implies that for efficiency reasons there would likely be more
threaded objects than threads, since threaded objects might
potentially spend a lot of time being idle and thus not re-
quire dedicated threads.

The CoJava Tool was implemented as an experimental
type checker and code generator. It is not suitable for use as
a real-world development tool, neither is CoJava a practical
language for such work. Many features of Java, not least of
all generics and exceptions, are absent in CoJava and cannot
be correctly handled by the tool. Future work on the tool
would focus on extending it to accept the entirety of the
Java language, and address the existing rough areas of the
current implementation.

CoJava itself suffers from a profusion of keywords and an-
notations. Though many are necessary, a simpler language
is an attractive goal as it places lesser burden on the pro-
grammer. The ownership type system was designed for sim-
plicity in contrast to other schemes, but has a number of
drawbacks. An owner of a linked list, for example, cannot
insert a node in the middle, instead complicated shuffling of
data is necessary. The shortcomings of simplicity are being
addressed as CoJava and its tool are being developed.

Active objects have been a topic of much work and progress
has been made towards feasible, flexible, and highly useful
means of introducing concurrency into Java-like languages.
CoJava’s focus has been on static correctness through the
use of type systems. This paper has demonstrated how own-
ership can be leveraged to prevent deadlock in cases when
one object blocks waiting for another, and how it can be

used to organize threads in more coherent and robust ways.

References
[1] J. Aldrich, V. Kostadinov, and C. Chambers. Alias

annotations for program understanding, 2002.

[2] P. S. Almeida. Balloon types: Controlling sharing of
state in data types. Lecture Notes in Computer Science,
1241:32, 1997.

[3] D. F. Bacon, R. E. Strom, and A. Tarafdar. Guava:
A dialect of Java without data races. In In Object-
Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA, pages 382–400. ACM Press, 2000.

[4] A. Birka and M. D. Ernst. A practical type system and
language for reference immutability. In In OOPSLA,
pages 35–49. ACM Press, 2004.

[5] C. Boyapati, R. Lee, and M. Rinard. Ownership types
for safe programming: preventing data races and dead-
locks. In OOPSLA ’02: Proceedings of the 17th ACM
SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, volume 37, pages
211–230, New York, NY, USA, November 2002. ACM
Press.

[6] C. Boyapati and M. Rinard. A parameterized type
system for race-free Java programs. In OOPSLA ’01:
Proceedings of the 16th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, pages 56–69, New York, NY, USA, 2001.
ACM.

[7] D. Clarke, T. Wrigstad, J. Östlund, and E. B. Johnsen.
Minimal ownership for active objects. In APLAS ’08:
Proceedings of the 6th Asian Symposium on Program-
ming Languages and Systems, pages 139–154, Berlin,
Heidelberg, 2008. Springer-Verlag.

[8] D. G. Clarke, J. M. Potter, and J. Noble. Ownership
types for flexible alias protection. In Proceedings of
the 13th Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA-98),
volume 33:10 of ACM SIGPLAN Notices, pages 48–64,
New York, Oct. 18–22 1998. ACM Press.

[9] M. Compton. SCOOP: an Investigation of Concurrency
in Eiffel. Master’s thesis, Department of Computer Sci-
ence, The Australian National University, 2000.

[10] D. Cunningham, S. Drossopoulou, and S. Eisenbach.
Universe Types for Race Safety. In VAMP 07, pages
20–51, August 2007.

[11] E. W. Dijkstra. Cooperating sequential processes, tech-
nical report EWD-123. 1965.

[12] W. B. Easton. Process synchronization without long-
term interlock. In SOSP ’71: Proceedings of the
third ACM symposium on Operating systems principles,
pages 95–100, New York, NY, USA, 1971. ACM.

[13] O. Fuks, J. S. Ostroff, and R. F. Paige. SECG: The
SCOOP-to-Eiffel Code Generator. JOT Journal of Ob-
ject Technology, 11(3), 2004.

[14] J. Gosling et al. The Java Language Specification. GO-
TOP Information Inc., 5F, No.7, Lane 50, Sec.3 Nan
Kang Road Taipei, Taiwan, 1996.

[15] C. Haack, E. Poll, J. Scḧı£¡fer, and A. Schubert. Im-
mutable objects for a java-like language. In R. D.
Nicola, editor, ESOP, volume 4421 of Lecture Notes in
Computer Science, pages 347–362. Springer, 2007.

[16] B. Jacobs, F. Piessens, J. Smans, K. R. M. Leino,
and W. Schulte. A programming model for concurrent
object-oriented programs. ACM Trans. Program. Lang.
Syst., 31(1):1–48, 2008.

[17] E. Kerfoot and S. McKeever. Maintaining invariants
through object coupling mechanisms. In T. Wrigstad,
editor, 3rd International Workshop on Aliasing, Con-
finement and Ownership in object-oriented program-
ming (IWACO), in conjunction with ECOOP 2007,
Berlin, Germany, July 2007.

[18] R. G. Lavender and D. C. Schmidt. Active object: an
object behavioral pattern for concurrent programming.
Proc.Pattern Languages of Programs,, 1995.

[19] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A no-
tation for detailed design. In H. Kilov, B. Rumpe, and
I. Simmonds, editors, Behavioral Specifications of Busi-
nesses and Systems, pages 175–188. Kluwer Academic
Publishers, 1999.

[20] K. R. M. Leino and P. Müller. A basis for verify-
ing multi-threaded programs. In ESOP, volume 5502
of Lecture Notes in Computer Science, pages 378–393.
Springer, 2009.

[21] B. Liskov and L. Shrira. Promises: linguistic support
for efficient asynchronous procedure calls in distributed
systems. In PLDI ’88: Proceedings of the ACM SIG-
PLAN 1988 conference on Programming Language de-
sign and Implementation, pages 260–267, New York,
NY, USA, 1988. ACM.

[22] K.-P. Löhr and M. Haustein. The JAC system: Mini-
mizing the differences between concurrent and sequen-
tial java code. Journal of Object Technology, 5(7), 2006.

[23] B. Meyer. Object-Oriented Software Construction.
Prentice-Hall, second edition, 1997.

[24] P. Müller. Modular Specification and Verification of
Object-Oriented Programs. PhD thesis, FernUniversität
Hagen, 2001.

[25] P. Nienaltowski. Practical framework for contract-based
concurrent object-oriented programming 17061. PhD
thesis, ETH Zurich, 2007.

[26] J. S. Ostroff, F. A. Torshizi, H. F. Huang, and
B. Schoeller. Beyond contracts for concurrency. For-
mal Aspects of Computing, 10.1007/s00165-008-0073-8,
2008.

[27] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed
actors for java. In European Conference on Object Ori-
ented Programming ECOOP 2008, 2008.

[28] F. Torshizi, J. S. Ostroff, R. F. Paige, K. J. Doyle, and
J. Lau. Jscoop: A high-level concurrency framework for
java. Technical Report CSE-2008-09, York University,
2008.

