
Computing Science

TRACTABLE BENCHMARKS FOR CONSTRAINT
PROGRAMMING

Justyna Petke and Peter Jeavons

CS-RR-09-07

�
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD

Tractable Benchmarks for Constraint Programming∗

Justyna Petke and Peter Jeavons

Abstract

The general constraint satisfaction problem for variables with finite domains is known to
be NP-complete, but many different conditions have been identified which are sufficient to
ensure that classes of instances satisfying those conditions are tractable, that is, solvable in
polynomial time. Results about tractability have generally been presented in theoretical
terms, with little discussion of how these results impact on practical constraint-solving
techniques. In this paper we investigate the performance of several standard constraint
solvers on benchmark instances that are designed to satisfy various different conditions
that ensure tractability. We show that in certain cases some existing solvers are able to
automatically take advantage of the problem features which ensure tractability, and hence
solve the corresponding instances very efficiently. However, we also show that in many
cases the existing pre-processing techniques and solvers are unable to solve efficiently the
families of instances of tractable problems that we generate. We therefore suggest that
such families of instances may provide useful benchmarks for improving pre-processing
and solving techniques.

∗Further copies of this Research Report may be obtained from the Librarian, Oxford University
Computing Laboratory, Computing Science, Wolfson Building, Parks Road, Oxford OX1 3QD,
England (Telephone: +44-1865-273837, Email: library@comlab.ox.ac.uk).

1 Introduction

Software tools for solving finite-domain constraint problems are now freely available
from several groups around the world. Examples include the Gecode system developed
in Germany and Sweden [2], the G12 solver developed in Australia [1], and the Minion
constraint solver developed in the UK [20].

One way to drive performance improvements in constraint solvers, which has proved
very successful in the SAT-solving community, is to develop challenging benchmark in-
stances. This approach can also help to drive improvements in the robustness and flexi-
bility of constraint-solving software. For example, several families of benchmark MiniZinc
instances have been distributed with G12 [1] since version 0.7, and these have been used
to compare the performance of various solvers, and to develop and test an alternative
solver, FznTini [26], based on translation to Boolean Satisfiability [27].

How can suitable benchmark instances be obtained? One obvious source of benchmark
instances is from practical applications such as scheduling and manufacturing process or-
ganisation; the G12 MiniZinc suite includes several examples of this kind, such as “nurse
scheduling” problems and “car sequencing” problems. Another common source of bench-
mark instances is combinatorial problems such as puzzles and games; the G12 MiniZinc
suite also includes several examples of this kind, such as “Golomb ruler” problems and
“kakuro” puzzles.

In this paper we suggest another important source of useful benchmark instances
which has not yet been systematically explored: the theoretical study of constraint satis-
faction. From the very beginning of the study of constraint programming there has been
a strand of research which has focused on identifying features of constraint problems
which make them tractable to solve [10, 13, 15, 17] and this research has gathered pace
recently with the discovery of some deep connections between constraint problems and
algebra [4, 5, 7, 6], logic [11, 12, 16], and graph and hypergraph theory [9, 24].

This research has focused on two main ways in which imposing restrictions on a con-
straint problem can ensure that it can be tractably solved. The first of these is to restrict
the forms of constraint which are allowed; these are sometimes known as constraint lan-
guage restrictions. For example, it was shown in [10] that certain forms of arithmetic
constraint introduced in the CHIP programming language [34] had a property which en-
sured that they could be efficiently solved no matter how they were combined. It was also
shown in [10] that many other forms of constraint also had the same property and could
also be combined arbitrarily whilst allowing an efficient solution algorithm. Since then
many other classes of so-called tractable constraint languages have been identified, and
a sophisticated algebraic theory has been developed which aims to distinguish tractable
forms of constraints from those which can lead to intractable problems [5, 6].

The second standard approach to identifying restrictions on constraint problems which
ensure tractability has been to consider restrictions on the way in which the constraints
overlap; these are sometimes referred to as structural restrictions. For example, it was
shown in [17] that binary constraint problems where the underlying graph of the con-
straints has bounded width can be efficiently solved by choosing an appropriate variable
ordering. For non-binary constraint problems, where each constraint may involve more

1

than two variables, the underlying structure is a hypergraph, and certain structural con-
ditions on this hypergraph can again be sufficient to ensure tractability, regardless of
the forms of constraint imposed. For example, if this hypergraph is acyclic [14] or has
a bounded degree of cyclicity [25] or a bounded hypertree width [21] then the resulting
constraint problem has been shown to be tractable. A complete characterisation of the
class of hypergraphs which lead to tractable constraint problems was obtained in [24],
for problems where the maximum arity of any constraint is bounded. However, some
of these structural tractability results rely on the assumption that constraints are repre-
sented extensionally, by an explicit table of allowed tuples, and this assumption is often
not satisfied in practical constraint problems, where constraints are often represented
by special-purpose algorithms known as propagators. A theory of structural tractability
for constraints represented by propagators was developed in [22], and results in rather
smaller tractable classes.

In this paper we begin the process of translating from theoretical results in the liter-
ature to concrete families of instances of constraint problems. We obtain several families
which are known to be efficiently solvable by simple algorithms, but which cause great
difficulties for some existing constraint solvers. We argue that such families of instances
provide a useful addition to benchmark suites derived from other sources, and can provide
a fruitful challenge to the developers of general-purpose solvers.

2 Definitions

In the theoretical literature the (finite-domain) constraint satisfaction problem
(CSP) is typically defined as follows:

Definition 2.1. A instance of the constraint satisfaction problem is specified by a triple
(V,D,C), where

• V is a finite set of variables

• D is a finite set of values (this set is called the domain)

• C is a finite set of constraints. Each constraint in C is a pair (Ri, Si) where

– Si is an ordered list of ki variables, called the constraint scope;

– Ri is a relation over D of arity ki, called the constraint relation.

In practical constraint problems it is common to assume that each variable has its own
specified domain, but this is easily accommodated in the simplified theoretical framework
of Definition 2.1 by setting D to be the union of all the individual domains, and then
imposing a unary constraint on each variable to restrict the values to the appropriate
subset of D.

More significantly, Definition 2.1 says nothing about how the individual constraints are
represented in the specification of a particular concrete instance. For example, constraint
relations may be specified by explicitly listing all of the allowed tuples of values, or perhaps

2

all of the disallowed tuples of values, or simply by naming a standard relation such as
“all-different”. Although it is generally not an issue that is considered in the theoretical
literature, it is clearly an important issue in practice to decide how problem instances will
be encoded for input to a constraint solver, and the lack of a common agreed standard
in this area is one of the difficulties of developing widely-accepted benchmarks.

Two proposed standard higher-level languages for specifying constraint problems in
practice are Zinc [30] and Essence [19]. However, both of these languages are consid-
ered too abstract and too general to be used directly as the input language for current
constraint solvers, so they both have more restricted subsets which are more suitable for
solver input: these are called MiniZinc and Essence′. There exists a software translation
tool, called Tailor [32], which converts from Essence′ specifications to the input language
for the Minion solver (or Gecode). Another software translation tool distributed with the
G12/MiniZinc software [1], converts from MiniZinc to a more restricted language known
as FlatZinc, that serves as the input language for the G12 solver; FlatZinc input is also
accepted by Gecode. The FznTini solver, developed by Huang, transforms a FlatZinc file
into DIMACS CNF format and then uses a Boolean Satisfiability problem (SAT) solver,
called TiniSAT, to solve the resulting SAT problem [27].

Definition 2.2. A solution to a CSP instance P = (V,D,C) is an assignment of val-
ues from D to each of the variables in V , which satisfies all of the constraints in C
simultaneously.

Formally, a solution is a map h : V → D such that h(Si) ∈ Ri, for all i, where the
expression h(Si) denotes the result of applying h to the tuple Si, coordinate-wise (in other
words, if Si = 〈 v1, . . . , vk 〉, then h(Si) = 〈h(v1), . . . , h(vk) 〉).

Note that in the theoretical literature the CSP is generally formalised as a decision
problem: the question associated with each instance is simply to decide whether a solution
exists. In practice, of course, it is often more natural to consider the corresponding search
problem, which asks us to find a solution if one exists. However, we note that for any
class of CSP instances where we are allowed to add unary constant constraints, fixing the
assignments for some individual variables, we can find a solution with at most |V | × |D|
iterations of the decision algorithm by adding a new unary constant constraint and calling
the decision algorithm again on each iteration [8]. In the experimental results recorded
here we ask the solvers to solve the search problem.

The time complexity of this search problem is at most exponential in the size of the
input, since the size of the total search space for possible solutions is |D||V |. Moreover,
if we assume that each constraint is represented in such a way that checking whether a
given assignment satisfies a given constraint can be completed in polynomial time, then
CSP clearly belongs to the problem class NP, since an assignment can be verified in
polynomial-time in the size of the input. The general CSP is easily shown to be NP-
complete, since it includes standard NP-complete problems such as Satisfiability and
Graph Colouring [5]. However, for certain restricted classes of instances it is possible
to find a solution, or verify that no solution exists, in polynomial time. Such restricted
classes will be called tractable.

3

Definition 2.3. A class of CSP instances will be called tractable if there exists an al-
gorithm which finds a solution to all instances in that class, or reports that there are no
solutions, whose time complexity is polynomial in the size of the instance specification.

Many examples of tractable classes have been identified in the literature: see [31] for
an early survey, and [6, 23] for more recent surveys. In this paper we will focus on some
of the simplest and most widely-known examples of tractable classes. In particular, we
will construct families of instances that are tractable for each of the following reasons:

• All constraints allow some constant value d to be assigned to every variable (Sec-
tion 3).

• All constraints are “max-closed constraints” as defined in [29] (Section 4).

• All constraints are “0/1/all constraints” as defined in [10] (Section 5).

• The constraint hypergraph has bounded width (Section 6).

3 Constant-closed constraints

Classes of CSP instances where each constraint allows some constant value d to be as-
signed to every variable are clearly tractable according to Definition 2.3 because they can
be solved by the trivial algorithm that assigns the value d to every variable in the instance.
Such classes were included (for completeness) in several early lists of tractable classes,
including Schaefer’s Dichotomy Theorem for the Boolean satisfiability problem [33] and
the first survey of tractable cases identified by the algebraic approach to constraint com-
plexity [28].

Surprisingly, instances with this property do occur in practice: the majority of the
satisfiable binary decision diagram instances used in the third CSP solver competition [3]
have constant solutions1.

To investigate whether the presence of a constant solution affects the performance
of standard constraint solvers we generated CSP instances with just one solution - the
constant one. Our instance generator took as input the number of variables, n, and the
number of possible values for each variable, m and created instances with n variables
each with domain 0, . . . , (m − 1). Each of the generated constraints allowed the value
bm/2c to be assigned to all variables2.

As a simple way to ensure that each instance had only this solution, we generated a
line of binary constraints, with one constraint on each successive pair of variables. On
the first n − 1 variables these constraints were obtained by choosing a random list of
m/2 allowed values for each variable (with repetitions) from the domain 0..(m/2) and
allowing just those pairs of values formed by the corresponding entries in two successive

1This observation was made by Marc van Dongen in a personal communication.
2This middle value was chosen as the constant value so that default value orderings which considered

the values for each variable in ascending or descending order did not simply happen to consider the
constant value first.

4

MiniZinc

array[1..4] of var 0..4: X;
constraint
(
((X[1] = 1)/\(X[2] = 0))
\/((X[1] = 0)/\(X[2] = 0))
\/((X[1] = 2)/\(X[2] = 2))
) /\ (
((X[2] = 0)/\(X[3] = 0))
\/((X[2] = 0)/\(X[3] = 1))
\/((X[2] = 2)/\(X[3] = 2))
) /\ (
((X[3] = 3)/\(X[4] = 1))
\/((X[3] = 4)/\(X[4] = 1))
\/((X[3] = 2)/\(X[4] = 2))
) ;
solve satisfy;

Essence′

language ESSENCE’ 1.b.a
letting D be domain int(1..4)
find X : matrix indexed by [D]

of int(0..4)
such that
(
((X[1] = 1)/\(X[2] = 0))
\/((X[1] = 0)/\(X[2] = 0))
\/((X[1] = 2)/\(X[2] = 2))
) /\ (
((X[2] = 0)/\(X[3] = 0))
\/((X[2] = 0)/\(X[3] = 1))
\/((X[2] = 2)/\(X[3] = 2))
) /\ (
((X[3] = 3)/\(X[4] = 1))
\/((X[3] = 4)/\(X[4] = 1))
\/((X[3] = 2)/\(X[4] = 2))
)

Table 1: Typical constant-closed CSP instance specifications generated in MiniZinc and
Essence′ for n = 4 and m = 5. All constraints allow the value 2 for all variables.

Domain Number of Gecode G12 FznTini Minion
size variables Time Time Time Time
(m) (n) (secs.) (secs.) (secs.) (secs.)

4 100 > 15 min 0.53 0.04 > 15 min
10 30 41.42 0.47 0.03 5.49
10 100 > 15 min 0.75 0.08 > 15 min
20 20 16.40 0.49 0.04 2.19
100 10 7.96 0.67 0.12 1.48
100 15 254.48 0.91 0.11 38.96
100 20 > 15 min 1.06 0.21 > 15 min
200 10 61.79 1.05 0.29 11.40
200 15 > 15 min 1.80 0.45 344.91
200 20 > 15 min 2.15 0.37 > 15 min

Table 2: Average solution times for Gecode, G12, FznTini and Minion on constant-closed
CSP instances of the form shown in Table 1 which have exactly one solution.

lists (together with the pair (bm/2c, bm/2c)). The final binary constraint, between the
(n − 1)th and nth variables, restricted the (n − 1)th variable to values in the other half
of the domain, thus eliminating all possible solutions except the constant one with value

5

bm/2c. These binary constraints were then expressed in a form of explicit representation,
as a disjunction of conjunctions of possible assignments, as shown in Table 1.

We generated instances for various choices of the parameters n andm, and solved these
using Gecode (version 1.3), G12 (version 0.8.1), FznTini, and Minion (version 0.8RC1) -
see Table 2. As with all of the results presented in this paper, the times given are elapsed
times on a Lenovo 3000 N200 laptop with an Intel Core 2 Duo processor running at
1.66GHz an 2GB of RAM. These timings exclude the time required to translate the input
from MiniZinc to FlatZinc (for input to Gecode, G12 and FznTini) or from Essence′ to
Minion input format. (In the special case of FznTini, times include the additional time
required to translate from FlatZinc to DIMACS CNF format.) Average times over three
runs with different generated instances are shown, but the variability was found in all
cases to be quite small.

It is clear that by far the most efficient solvers for instances of this kind, when pre-
sented in this way, is FznTini, which appears to be able to identify the single constant
solution extremely rapidly without any specific tuning. The standard constraint solvers
are much less efficient3 on these instances, which is somewhat surprising since, if the
constraints are viewed as binary table constraints, all other values for all of the variables
can be eliminated by enforcing arc-consistency, which all of these solvers do by default
when propagating constraints. In fact, the translations to FlatZinc and Minion input
format do not recognise the constraints as explicit binary constraints, but instead handle
the disjunctions by introducing a large number of auxiliary variables, but this is common
to all of the solvers tested (including FznTini).

This very simple first set of potential benchmark instances already reveals that there
is considerable scope for improving the ability of current CSP solvers to recognise and
exploit structure in the constraints, for example by better recognition and translation of
table constraints, or by adapting the value ordering.

4 Max-closed constraints

One of the first non-trivial classes of tractable constraint types described in the liter-
ature is the class of max-closed constraints introduced in [29].

Definition 4.1 ([29]). A constraint (R,S) with relation R of arity r over an ordered
domain D is said to be max-closed if for all tuples (d1, ..., dr),(d′1, ..., d

′
r) ∈ R we have

(max(d1, d
′
1), ...,max(dr, d

′
r)) ∈ R.

In particular, one useful form of max-closed constraint is an inequality of the form
a1X1 +a2X2 + · · ·+ar−1Xr−1 ≥ arXr +c, where the Xi are variables, c is a constant, and
the ais are non-negative constants [29]. Hence, we constructed a generator which pro-
duced random inequalities of this form. An extract from a typical instance specification
produced by this generator is shown in Table 3.

3The reason that Gecode and Minion are so much less efficient than G12 on these instances appears
to be due to the different default value orderings used.

6

array[1..10] of var 1..5: X;
constraint
97*X[6] >= 46*X[3] + 16 /\
81*X[5] +88*X[4] +60*X[2] +92*X[7] +28*X[10] >= 43*X[8] + 4 /\
16*X[3] +78*X[10] +61*X[7] +97*X[5] +50*X[8] +30*X[1] >= 19*X[6] + -51 ;
solve satisfy;

Table 3: A generated max-closed instance specification in MiniZinc with 3 inequalities.

Number of Satis- Number of Number of Gecode G12 FznTini Minion
inequalities fiable? variables values Time Time Time Time

(k) (n) (m) (secs.) (secs.) (secs.) (secs.)
10 yes 10 100 0.01 0.32 9.71 0.01
10 yes 10 200 0.01 0.26 3.49 0.01
10 yes 100 10 0.02 0.41 > 15 min 0.05
100 yes 10 100 0.02 0.41 > 15 min 0.06
100 no 10 100 0.02 0.41 > 15 min 0.03
1000 yes 20 100 0.08 1.34 error 0.38
1000 no 20 100 0.03 0.59 error 0.13
1000 yes 30 200 0.08 1.59 error 0.52
1000 no 30 200 0.03 0.57 error 0.13
1000 yes 200 10 0.46 6.99 error 2.88
1000 no 200 10 0.03 0.59 error 0.14

Table 4: Average solution times for Gecode, G12, FznTini and Minion on max-closed
CSP instances of the form shown in Table 3.

To generate solvable max-closed CSP instances, we selected a random assignment to
all of the variables, and then generated random inequalities of the form above, keeping
only those that were satisfied by this fixed assignment. This ensured that the system of
inequalities had at least one solution. To generate unsolvable max-closed CSP instances,
we generated the inequalities without imposing this condition; if the resulting set was
solvable, another set was generated. Average times over 3 runs with different instances
are shown in Table 4.

The results for these instances are exactly the reverse of those in Section 3 - see Table 2.
Predictably, FznTini performs very poorly on these inequalities, which it has to translate
into (large) sets of clauses. (For the larger sets of inequalities we considered it simply
gave an ‘out of memory’ error.) Standard CSP solvers should do well on these instances,
because the efficient algorithm for solving max-closed instances is based on achieving arc-
consistency, and all standard constraint solvers do this by default. Our results confirm
that the standard CSP solvers do indeed all perform well on these instances, although
this time the G12 solver was noticeably less efficient than the other two.

7

5 0/1/all constraints

Our final example of a language-based restriction ensuring tractability involves the
0/1/all constraints introduced and shown to be tractable in [10].

Definition 5.1 ([10]). Let x1 and x2 be variables. Let A be a subset of possible values
for x1 and B be a subset of possible values for x2.

• A complete binary constraint is a constraint R(x1, x2) of the form A×B.

• A permutation constraint is a constraint R(x1, x2) which is equal to
{(v, π(v))|v ∈ A} for some bijection π : A→ B.

• A two-fan constraint is a constraint R(x1, x2) where there exists v ∈ A and w ∈ B
with R(x1, x2) = (v ×B) ∪ (A× w).

A 0/1/all constraint is either a complete constraint, a permutation constraint, or a two-
fan constraint.

What is particularly interesting about this form of constraint, for our purposes, is that
the efficient algorithm for 0/1/all constraints is based on achieving path-consistency [10],
which is not implemented in standard constraint solvers.

To investigate whether instances with 0/1/all constraints are solved efficiently in prac-
tice by standard constraint solvers, even without explicitly using path-consistency, we
wrote a generator for satisfiable CSP instances with 0/1/all constraints of various kinds
on n variables. To ensure satisfiability we first generate a random assignment and then
add only those 0/1/all constraints that satisfy the initial assignment. An extract from a
typical instance specification produced by our generator is shown in Table 5.

We generated instances for various choices of the parameters n and m, and solved
these using Gecode, G12, FznTini, and Minion. Average timings over 3 instances are
shown in Table 6, but the variability is again very small. All the solvers performed very
well, especially Gecode.

We also generated unsatisfiable instances with 0/1/all constraints on just a small
number of variables, leaving all other variables unconstrained, see Table 7. FznTini
quickly reported ‘no solutions’, but this solver does not distinguish between unsatisfiable
instances, and instances that require too much memory [27], so this answer cannot be
relied on. The G12 solver reported ‘no solutions’ in 0.2 seconds, but Minion and Gecode
could not solve this problem within 15 min. When the domain size was decreased to two,
none of the solvers could verify that this simple unsatisfiable instance had no solutions
within 15 minutes. The problem seems to be the fixed default variable ordering: the
solvers try every possible combination of values for the first 49 ‘unconstrained’ variables
before they report that the problem does not have a solution. None of the standard
solvers focus the search on the few variables that are restricted; having no constraint
between two variables is treated in the same way as having a complete constraint. Once
the unsatisfiable instances were embedded in satisfiable instances, such as the one shown
in Table 5, the performance of all the solvers was as good as before.

8

var {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: X0;
var {0, 1, 3, 4, 7, 8, 9}: X1;
var {0, 2, 3, 5, 6, 7, 8, 9}: X2;
var {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: X3;
var {0, 2, 3, 4, 6, 8}: X4;
constraint
((X0 + 7 >= 10) -> (X1 == X0 + 7 - 10)) /\
((X0 + 7 < 10) -> (X1 == X0 + 7)) /\
((X0 == 2) \/ (X2 == 0)) /\
((X1 + 7 >= 10) -> (X3 == X1 + 7 - 10)) /\
((X1 + 7 < 10) -> (X3 == X1 + 7)) /\
((X1 + 9 >= 10) -> (X4 == X1 + 9 - 10)) /\
((X1 + 9 < 10) -> (X4 == X1 + 9)) /\
((X3 == 6) \/ (X2 == 8)) /\
((X3 == 6) \/ (X4 == 6)) ;
solve satisfy;

Table 5: A typical CSP instance with 0/1/all constraints specified in MiniZinc. Note
that complete constraints are imposed by restricting the domains to some subset, permu-
tation constraints are imposed by constraints of the form x = y + k mod d, and two-fan
constraints are imposed by constraints of the form x = v ∨ y = w.

Number of Number of Gecode G12 FznTini Minion
variables values Time Time Time Time

(n) (m) (secs.) (secs.) (secs.) (secs.)
10 100 0.02 0.41 0.06 0.06
50 100 0.09 1.04 0.61 0.58
100 10 0.33 3.49 1.68 1.51
100 50 0.32 3.53 2.32 2.03
100 100 0.37 3.58 2.42 2.19

Table 6: Average solution times for Gecode, G12, FznTini and Minion on satisfiable
0/1/all CSP instances of the form shown in Table 5.

array[0..99] of var 0..3: X;
constraint
((X[50] == 2) \/ (X[51] == 1)) /\
((X[50] == 1) \/ (X[51] == 2)) /\
((X[50] == 2) \/ (X[51] == 2)) /\
((X[50] == 1) \/ (X[51] == 1)) ;
solve satisfy;

Table 7: An unsatisfiable CSP instance with 0/1/all constraints on 100 variables with
domain size 4 specified in MiniZinc.

9

These results suggest that standard CSP solvers can handle random collections of
0/1/all constraints very effectively, even without specialised algorithms. However, they
appear to be poor at focusing search on more highly constrained regions, which is thought
to be one of the strengths of the current generation of SAT-solvers. This suggests an
obvious target for improvement in adapting the variable ordering to the specific features
of the input instance.

6 Bounded-width structures

For our final example, we consider classes of CSP instances which are tractable because
of the way that the constraint scopes are chosen. In other words, we consider structural
restrictions.

Definition 6.1. A hypergraph is a pair H = (V,E), where V is an arbitrary set, called
the vertices of H, and E is a set of subsets of V , called the hyperedges of H.

For any CSP instance, the scopes of all the constraints can be viewed as the hyperedges
of an associated hypergraph whose vertices are the variables. This hypergraph is called
the structure of the CSP instance. If we impose certain conditions on the kinds of
structure we allow an instance to have, then this can be sufficient to ensure tractability
for all possible CSP instances with structures satisfying those conditions, regardless of
the type of constraints [23]. In particular, one very simple condition which is sufficient to
ensure tractability is to require the structure to have a tree decomposition [23], with some
fixed bound on the maximum number of vertices in any node of the tree. Such structures
are said to have bounded width.

However, the efficient algorithm for CSP instances with bounded width structures is
based on choosing an appropriate variable ordering, and imposing a level of consistency
proportional to the width [12, 14, 18]. None of the standard CSP solvers incorporate such
algorithms, so it is not at all evident whether they can solve bounded width instances
efficiently.

To investigate this question we wrote a generator for a family of specific CSP instances
with a very simple bounded-width structure.

The instances we generate are specified by two parameters, w and m. They have
(mw + 1) ∗ w variables arranged in groups of size w, each with domain {0, ...,m}. We
impose a constraint of arity 2w on each pair of successive groups, requiring that the sum
of the values assigned to the first of these two groups should be larger than the sum of
the values assigned to the second. This ensures that a solution exists and satisfies the
following conditions: the difference between the sum of values assigned to each successive
group is 1, and the sum of the values assigned to the last group is zero. An extract from
a typical instance specification produced by our generator is shown in Table 8.

When w = 1, the generated instances have a single line of binary constraints, so they
have a tree structure, and can be efficiently solved using arc-consistency. For this special
case, all of the solvers are able to solve the instances very quickly (see the first row of
Table 9).

10

MiniZinc

array[1..7] of var 0..2: X1;
array[1..7] of var 0..2: X2;
array[1..7] of var 0..2: X3;
constraint
forall(i in 1..6)(
X1[i]+X2[i]+X3[i]
>
X1[i+1]+X2[i+1]+X3[i+1]);
solve satisfy;

Essence′

language ESSENCE’ 1.b.a
letting D be domain int(1..7)
letting E be domain int(1..6)
find X1 : matrix indexed by [D] of int(0..2)
find X2 : matrix indexed by [D] of int(0..2)
find X3 : matrix indexed by [D] of int(0..2)
such that
forall i : E. (
X1[i]+X2[i]+X3[i]
>
X1[i+1]+X2[i+1]+X3[i+1])

Table 8: Generated specification in MiniZinc and Essence′ for a CSP instance with
bounded-width structure, where w = 3 and m = 2.

Group Maximum Number of Gecode G12 FznTini Minion
size value variables Time Time Time Time
(w) (m) w(wm+ 1) (secs.) (secs.) (secs.) (secs.)
1 100 101 0.02 0.41 0.26 0.02
2 5 22 0.57 0.22 0.46 0.10
2 6 26 25.07 0.25 0.36 21.22
2 7 30 > 15 min 0.25 0.11 > 15 min
2 12 50 > 15 min 0.40 2.91 > 15 min
3 2 21 0.01 0.23 0.01 1.45
3 3 30 706.59 0.55 0.07 740.55
3 4 39 > 15 min 103.19 0.23 > 15 min
3 5 48 > 15 min > 15 min 2.31 > 15 min

Table 9: Solution times for Gecode, G12, FznTini and Minion on bounded-width CSP
instances of the form shown in Table 8.

Group Maximum Number of Gecode G12 FznTini Minion
size value variables Time Time Time Time
(w) (m) w(wm+ 1) (secs.) (secs.) (secs.) (secs.)
1 100 101 0.02 0.37 0.24 0.02
2 5 22 0.01 2.98 0.05 0.06
2 6 26 0.01 166.26 0.03 0.02
2 7 30 0.01 > 15 min 0.12 0.05
2 12 50 0.02 > 15 min 1.66 0.02
3 2 21 0.03 0.49 0.02 0.02
3 3 30 0.07 > 15 min 0.07 0.08
3 4 39 8.51 > 15 min 0.11 10.55
3 5 48 > 15 min > 15 min 0.15 > 15 min

Table 10: Solution times for Gecode, G12 and Minion on bounded-width CSP instances
of the form shown in Table 8, with inequalities reversed.

11

For larger values of w, the generated instances have width 2w, because their structure
has a simple tree-decomposition as a path of nodes, with each node corresponding to
a constraint scope. In this case, although the problem is still tractable according to
Definition 2.3, it cannot be solved efficiently using standard propagation algorithms.
In fact, the runtimes of Gecode and Minion grow rapidly with problem size, as shown
in Table 9. The runtimes for the G12 solver do not increase so fast for these specific
instances, but if we reverse the inequalities, then they do increase in the same way (see
Table 10), although in this case Gecode and Minion perform much better. Somewhat
surprisingly, FznTini seems to be able to solve all of these instances fairly efficiently, even
though they contain arithmetic inequalities which have to be translated into fairly large
sets of clauses.

It is clear from these results that Gecode, G12 and Minion do not take advantage of
the simple structure of the instance they are attempting to solve. Hence an important
opportunity to improve the performance of CSP solvers would be in finding an efficient
way of taking advantage of instance structure by adapting the variable ordering or other
aspects of the search process to the particular instance. Moreover, as the ordering can
be set in the input file, the question arises as to whether those adjustments could be
automatically identified by the translators as part of the pre-processing.

7 Conclusions

We believe that the results presented in this paper have established that the various
ideas about different forms of tractable constraint satisfaction instances presented in
the theoretical literature can provide a fruitful source of inspiration for the design of
challenging benchmark instances.

The initial applications of these ideas, presented in the previous sections, have already
identified significant differences between different solvers in their ability to exploit salient
features of the problem instances they are given.

There are a number of technical difficulties to overcome in developing useful bench-
mark instances. First of all, unlike SAT solvers, there is no standard input language
for CSP solvers. Some progress has been made in proposing standard specification lan-
guages, and in providing automatic translation between different input languages, but
these are currently far from complete. We have seen in Section 3 that the translation
from MiniZinc to FlatZinc, or from Essence′ to Minion, can sometimes obscure the nature
of an essentially simple problem, and hence badly affect the efficiency of the solution. We
suggest that a better awareness of the factors of a problem specification that can ensure
tractability could lead to better translation software, which ensures that such features
are preserved. In particular, identifying tractable parts of an instance specification could
lead to pre-processing tools that would automatically annotate such features in a way
that could be exploited by a solver. This might be a simple matter of identifying useful
value- or variable-orderings, or it might mean packaging some parts of the instance into
(tractable) global constraints that can then use dedicated propagation algorithms to take
advantage of their structure.

12

SAT solvers avoid many of the difficulties of translating between different input lan-
guages by adopting a single standard format for the input: all constraints must be ex-
pressed as clauses in CNF. However, the cost of this standardisation is a loss of expressive
power. We have seen in Section 4 that translating simple forms of constraints such as
linear inequalities into CNF may be very inefficient, and may lose the important features
of the constraints which guarantee tractability.

Even when they have been successfully captured in an appropriate specification lan-
guage, and input to a constraint solver, it can be the case that theoretically tractable
instances may still be solved very inefficiently in practice. We have seen in Sections 5,
and especially in Section 6, that when the tractability is due to a property that re-
quires a higher level of consistency than arc-consistency to exploit, instances may be
very challenging for standard solvers. It may be that this gap between theoretical no-
tions of tractability, as expressed in Definition 2.3, and efficient solvability in practice,
can suggest additional refinements that can usefully be added to the constraint-solving
armoury (for example, some notion of adaptive consistency that invokes higher-levels
of consistency when they can be easily shown to be effective). The dramatic progress
in SAT-solving technology that has resulted from the exploitation of heuristics, such as
clause learning and random restarts, that serve to focus the search more effectively, is an
encouraging precedent. Finding effective automatic ways to improve the variable order-
ings and value orderings used by a solver according to specific relevant features of the
input instance seems a promising first step which has not been sufficiently pursued. For
example, the connection between having a bounded-width structure and the existence of
a variable ordering with certain favourable properties (such as bounded induced width) is
well-known [18, 14, 12] but does not seem to have been explored in any of the solvers or
translation tools used in this study.

Summing up, in order to improve the performance of constraint solvers we need ef-
fective benchmarks which can explore that performance over a range of different problem
types with different characteristics. One way to systematically develop such benchmarks
is to use the insights from the theoretical study of constraint satisfaction. Benchmarks
derived in this way can be simple enough to analyse in detail, and yet challenging enough
to reveal specific weaknesses in solver techniques. This paper has begun to explore the
potential of this approach, but much remains to be done.

References

[1] G12/MiniZinc constraint solver. Software available at
http://www.g12.cs.mu.oz.au/minizinc/download.html.

[2] Gecode constraint solver. Software available at http://www.gecode.org/.

[3] Third international CSP solver competition. Instances and results at
http://cpai.ucc.ie/08/.

13

[4] M. Bodirsky. Constraint satisfaction problems with infinite templates. In Complexity
of Constraints, volume 5250 of Lecture Notes in Computer Science, pages 196–228.
Springer Verlag, 2008.

[5] A. Bulatov, A. Krokhin, and P. Jeavons. Classifying the complexity of constraints
using finite algebras. SIAM Journal on Computing, 34(3):720–742, 2005.

[6] A. Bulatov and M. Valeriote. Recent results on the algebraic approach to the CSP.
In Complexity of Constraints, volume 5250 of Lecture Notes in Computer Science,
pages 68–92. Springer, 2008.

[7] Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a
3-element set. Journal of the ACM, 53(1):66–120, 2006.

[8] D. Cohen. Tractable decision for a constraint language implies tractable search.
Constraints, 9:219–229, 2004.

[9] D. Cohen, P. Jeavons, and M. Gyssens. A unified theory of structural tractability
for constraint satisfaction problems. Journal of Computer and System Sciences,
74:721–743, 2007.

[10] M.C. Cooper, D.A. Cohen, and P.G. Jeavons. Characterising tractable constraints.
Artificial Intelligence, 65:347–361, 1994.

[11] N. Creignou, S. Khanna, and M. Sudan. Complexity Classification of Boolean Con-
straint Satisfaction Problems, volume 7 of SIAM Monographs on Discrete Mathe-
matics and Applications. Society for Industrial and Applied Mathematics, 2001.

[12] V. Dalmau, Ph. Kolaitis, and M. Vardi. Constraint satisfaction, bounded treewidth,
and finite-variable logics. In Proceedings 8th International Conference on Constraint
Programming—CP’02, volume 2470 of Lecture Notes in Computer Science, pages
310–326. Springer-Verlag, 2002.

[13] R. Dechter. From local to global consistency. Artificial Intelligence, 55(1):87–107,
1992.

[14] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelli-
gence, 38:353–366, 1989.

[15] Y. Deville, O. Barette, and P. van Hentenryck. Constraint satisfaction over connected
row convex constraints. Artificial Intelligence, 109:243–271, 1999.

[16] T. Feder and M.Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: A study through Datalog and group theory. SIAM
Journal on Computing, 28:57–104, 1998.

[17] E.C. Freuder. A sufficient condition for backtrack-bounded search. Journal of the
ACM, 32:755–761, 1985.

14

[18] E.C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In
Proceedings of the 8th National Conference on Artificial Intelligence, pages 4–9, 1990.

[19] A. Frisch, W. Harvey, C. Jefferson, B. Martnez-Hernndez, and I. Miguel. The essence
of ESSENCE: A constraint language for specifying combinatorial problems. In In
Proceedings of the 20th International Joint Conference on Artificial Intelligence,
pages 73–88, 2005.

[20] I. Gent, C. Jefferson, and I. Miguel. Minion: A fast scalable constraint solver. In
Proceeedings ECAI 2006, 17th European Conference on Artificial Intelligence, pages
98–102. IOS Press, 2006. Software available at http://minion.sourceforge.net/.

[21] G. Gottlob, L. Leone, and F. Scarcello. A comparison of structural CSP decompo-
sition methods. Artificial Intelligence, 124:243–282, 2000.

[22] M. Green and C. Jefferson. Structural tractability of propagated constraints. In Pro-
ceedings 14th International Conference on Constraint Programming—CP’08, pages
372–386, 2008.

[23] M. Grohe. The structure of tractable constraint satisfaction problems. In Math-
ematical Foundations of Computer Science 2006, volume 4162 of Lecture Notes in
Computer Science, pages 58–72. Springer, 2006.

[24] M. Grohe. The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Journal of the ACM, 54:1–24, 2007.

[25] M. Gyssens, P.G. Jeavons, and D.A. Cohen. Decomposing constraint satisfaction
problems using database techniques. Artificial Intelligence, 66(1):57–89, 1994.

[26] J. Huang. FznTini constraint solver. Software available at
http://users.rsise.anu.edu.au/~jinbo/fzntini/.

[27] J. Huang. Universal Booleanization of constraint models. In Principles and Practice
of Constraint Programming - CP’08, volume 5202 of Lecture Notes in Computer
Science, pages 144–158. Springer, 2008.

[28] P.G. Jeavons, D.A. Cohen, and M. Gyssens. Closure properties of constraints. Jour-
nal of the ACM, 44:527–548, 1997.

[29] P.G. Jeavons and M.C. Cooper. Tractable constraints on ordered domains. Artificial
Intelligence, 79(2):327–339, 1995.

[30] N. Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck, and G. Tack. MiniZinc:
Towards a standard modelling language. In Proceedings of the 13th International
Conference on Principles and Practice of Constraint Programming - CP’07, volume
4741 of Lecture Notes in Computer Science, pages 529–543. Springer, 2007.

15

[31] J.K. Pearson and P.G. Jeavons. A survey of tractable constraint satisfaction prob-
lems. Technical Report CSD-TR-97-15, Royal Holloway, University of London, July
1997.

[32] Andrea Rendl. TAILOR - tailoring Essence′ constraint models to constraint solvers.
Software available at http://www.cs.st-andrews.ac.uk/~andrea/tailor/.

[33] T.J. Schaefer. The complexity of satisfiability problems. In Proceedings 10th ACM
Symposium on Theory of Computing, STOC’78, pages 216–226, 1978.

[34] P. van Hentenryck, Y. Deville, and C-M. Teng. A generic arc-consistency algorithm
and its specializations. Artificial Intelligence, 57:291–321, 1992.

16

