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Abstract

We pursue a model-oriented rather than axiomatic appraathet foundations of Quantum
Mechanics, with the idea that new models can often suggestaxéms. This approach has
often been fruitful in Logic and Theoretical Computer ScienRather than seeking to construct a
simplified toy model, we aim for a ‘big toy model’, in which Bojuantum and classical systems
can be faithfully represented — as well as, possibly, moatiekinds of systems. To this end, we
show how Chu spaces can be used to represent physical systearsous kinds. In particular,
we show how quantum systems can be represented as Chu spactseaunit interval in such a
way that the Chu morphisms correspond exactly to the phjsiceeaningful symmetries of the
systems — the unitaries and antiunitaries. In this way weaiak full and faithful functor from
the groupoid of Hilbert spaces and their symmetries to Clacep. We also consider whether it
is possible to use a finite value set rather than the unitiatewe show that three values suffice,
while the two standard possibilistic reductions to two ealboth fail to preserve fullness.

1 Introduction

Modelsvs. Axioms The main method pursued in the foundations of quantum méhaas been
axiomatiG one seeks conceptually primitive and clearly motivateidras, shows that quantum sys-
tems satisfy these axioms, and then, often, aims fepeesentation theoreshowing that the axioms
essentially determine the “standard model” of Quantum Maas. Or one may admit non-standard
interpretations, and seek to locate Quantum Mechanicsadrgai “space” of theories.

There is an alternative and complementary approach, wiaistbben less explored in the founda-
tions of Quantum Mechanics, although it has proved veryftrlin mathematics, logic and theoretical
computer science. Namely, one looks for conceptually ahtanstructions of modelslifferent from
the standard mathematical formalism of Quantum Mechar@ften a new model construction can
suggest new axioms, articulated in terms of new forms ottire. There are many examples of this
phenomenon, sheaves and topos theory being a case in point.

A successful recent example of gaining insight by model waoson is the well-known paper by
Rob Spekkens on a toy model for Quantum Mechanics [29], winshed to some elegant categorical
formulations and novel ideas concerning phase groups alughivariable models [5].

Big Toy Models We shall also, in a sense, be concerned with “toy models drptesent paper; with
building models which exhibit “quantum-like” features fhaut necessarily exactly corresponding to
the standard model of Quantum Mechanics. Indeed, the mffeeatit the model construction can be



to the usual formalism, while still reproducing many quamtlike features, the more interesting it will
be from this perspective. However, there will be an impdrtiifierence between the kind of model
we will build, and the usual idea of a “toy model”. Usually,@ytmodel will be a small, simplified
gadget, which gives a picture of Quantum Mechanics in soro#dfused” form, with much detail
thrown away. By contrast, we are aiming fobig toy model, in whichboth quantum and classical
systems can be faithfully representedas well as, possibly, many more exotic kinds of systems.

Results More precisely, we shall see how the simple, discrete nstifiChu spaces suffice to deter-
mine the appropriate notions of state equivalence, andkoquit the physically significant symmetries
on Hilbert space in a very striking fashion. This leads tolhdnd faithful representation of the cat-
egory of quantum systems, with the groupoid structure df {hteysical symmetries, in the category
of Chu spaces valued in the unit interval. The arguments ln@ve some subtlety, and make use of
Wigner’s theorem and the dualities of projective geomeétrthe modern form developed by Faure
and Frolicher [10, 30]. The surprising point is that untidanitunitarity is essentiallyorced by the
mere requirement of being a Chu morphism. This even extendsriectivity, which here islerived
rather than assumed.

We also consider the guestion of whether we can obtain aalatpresentation of this form in
Chu spaces over a finite value set. We show that this can bevdtingust three values. By contrast,
the two standard possibilistic reductions to two values limit to preserve fullness

The use of Chu spaces for representing physical systemstiaseith in this paper seems quite
promising; a number of further topics immediately sugghstriselves, including mixed states, uni-
versal models, the representation of convex theoriesaflibges, and local logics for quantum sys-
tems.

The plan of the remainder of the paper is as follows. In SacBpwe shall provide a brief
overview of Chu spaces. Section 3 contains the main tedhr@salts, leading to a full and faithful
representation of quantum systems and their symmetrieb@asgaices and morphisms of Chu spaces.
Section 4 presents the results on finite value sets. Fir&dlgtion 5 contains a discussion of conceptual
and methodological issues.

2 Chu Spaces

We shall assume that the reader is familiar with a few basion® of category theory. The bare
definitions of category and functor will suffice for the moatip

Chu spaces are a special case of a construction which dhygaggpeared in [4], written by Po-
Hsiang Chu as an appendix to Michael Barr's monographk-antonomous categories [1].

Interest inx-autonomous categories increased with the advent of Lihegic [11], sincex-
autonomous categories provide models for Classical Migéifive Linear Logic (and with additional
assumptions, for the whole of Classical Linear Logic) [ZIfhe Chu construction applied to the cat-
egorySet of sets and functions was independently introduced (uridename of ‘games’) by Yves
Lafont and Thomas Streicher [16], and subsequently (uiename ofChu spacesformed the sub-
ject of a series of papers by Vaughan Pratt and his collabisa¢.g. [6, 22, 23]. Recent papers on
Chu spaces include [8, 20].

Chu spaces have several interesting aspects:

e They have arich type structure, and in particular form medéLinear Logic.

1The charming introductory text [21] should be more than sigffit. Unfortunately, the version for philosophers has not
been written yet.



e They have a rich representation theory; many concrete @a#sgof interest can be fully em-
bedded into Chu spaces.

e There is a natural notion of ‘local logic’ on Chu spaces [3|d @n interesting characterization
of information transfer across Chu morphisms [31].

Applications of Chu spaces have been proposed in a numbeea$,aincluding concurrency [24],
hardware verification [14], game theory [32] and fuzzy sys¢19]. Mathematical studies concerning
the general Chu construction include [2, 12].

We briefly review the basic definitions.

Fix a setK. A Chu space oveK is a structurd X, A, ¢), whereX is a set of ‘points’ or ‘objects’,
A is a set of ‘attributes’, and : X x A — K is an evaluation function.

A morphism of Chu spaces

f:(X,Ae) —» (X' A €)
is a pair of functions
f=f: X=X, .Y =Y)

such that, for all: € X anda’ € A”:

e(x, f7(d)) = €(fi(x),d).

Chu morphisms compose componentwise’ if(X1, A1, e1) — (X2, A2, e2) andg : (Xo, Ag,e9) —
(Xg, Ag, 63), then
(gofle=gsofs, (gof)"=fog"
Chu spaces ovek and their morphisms form a categdBhuy.
Given a Chu spac€ = (X, A, e), we say thaC' is:

e extensionalf for all aq,as € A:

Vr € X.e(x,a1) =e(x,a2)] = a1 =aq
e separabléf for all x1, 22 € X:

Va € A.e(x1,a) = e(xe,a)] = x1 = x9

e biextensionalf it is extensional and separable.
We define a relation oX by:

x1 ~xy < Vac€ Ae(xy,a) =e(xg,a).

This is evidently an equivalence relation: is separable exactly when this relation is the identity.
There is a Chu morphism

(q,ida) : (X, A,e) — (X/~, A, €)
wheree'([z],a) = e(z,a) andq : X — X/~ is the quotient map. The spa¢&/~, A, ¢') is
separable; if X, A, e) is extensional, it is biextensional.
Proposition 2.1 If f: (X, A,e) — (X', A, ¢') is a Chu morphism, thefi. preserves-. That s, for
all r1,x0 € X,
z1 ~ T3 = ful@1) ~ fulw2).
Proof Foranya’ € A"

e'(fu(a1),d') = e(z1, f7(a")) = e(2, f*(a)) = €/ (fu(22), ).



We shall writeeChug, sChux andbChuy for the full subcategories d@huy determined by
the extensional, separated and biextensional Chu spaces.

We shall mainly work with extensional and biextensional Gpaces. Obviouslp»pChug is a
full sub-category o&Chug.

Proposition 2.2 The inclusionrbChuy —— eChug has a left adjoint.
Proof  The unit of the adjunction is the Chu morphism
(q,ida) : (X, A e) = (X/~, A €)
we have already described, while Proposition 2.1 guararite# given a Chu morphism
f(X,A,e) = (Y, B,r)

to a biextensional Chu space, we can factor it through théentespace X/~, A, ¢).
The functor@ : eChux — bChug provided by this adjunction sends morphisms

(fir £7) 1 (X, Ayer) — (X', Al eg)
to
(f*/N7 f*) : (X/N7A7 ell) - (X,/N’ A/’ 6/2)
wheref, /~([z]) = [f()]. O

We refer to the functo€) as thebiextensional collapse
We can define an equivalence relation on the Chu morphismecimlgom-set ik Chug by:

fr~g = Vo fdz) ~ gi(T).

ThenQf =Qg & f ~g.

Representations Recall that a functof' : ¢ — D is faithful if for each pair of objectsA, B of C,
the induced mag'ap : C(A, B) — D(F A, FB) is injective; it isfull if each F45 is surjective; and
it is anembeddingf F is faithful and injective on objects. We refer to a full andHéul functor as a
representationand to a full embedding assdrict representation Note that if /' is a representation,
it can only identify isomorphic objects. I is a representation, thehis equivalent to a full sub-
category of D, while if F'is a strict representation, theéhis isomorphic to a full sub-category of
D.

As a first example of the representational capacity of Chaeespasuppose thdd, 1} C K. For
any setX, define the following Chu space dii: (X, PX, ex ), where:

1, reS
X (l’, S) =
0 otherwise
Given a functionf : X — Y, we send it to the Chu space morphism
(fa f_l) : (Xv PX7 EX) - (Y> PY> EY)-

It is easy to see that this defines a full embeddin§ef into Chuy.



3 Representation of Quantum Systems

Our point of view in modelling physical systems as Chu spag#de as follows. We take a system
to be specified by its set atatesS, and the set ofjuestions) which can be ‘asked’ of the system.
We shall consider only ‘yes/no’ questions; however, thelltesf asking a question in a given state
will in general beprobabilistic. This will be represented by an evaluation function

e:SxQ—[0,1]

wheree(s, q) is the probability that the questianwill receive the answer ‘yes’ when the system is
in states. This is essentially the point of view taken by Mackey in Hisesic pioneering work on
the foundations of Quantum Mechanics [17]. Note that weeprdfe term ‘question’ to ‘property’,
since in the case of Quantum Mechanics we cannot think instesfrstatic properties which are
determinately possessed by a given state; questions ingygamicact of asking.

It is standard in the foundational literature on quantum lmaedcs to focus on yes/no questions.
However, the usual approaches to quantum logic avoid treetdintroduction of probabilities. We
shall return to the issue of whether it is necessary to taébghilities as our value set in Section 4.

We can take the categoBet itself as a crude version of discrete deterministic clagsgstems,
with arbitrary irreversible transformations allowed. Waanconsider the quantum case, in the pure
state formulation. Mixed states will be considered in a sétputhe present paper.

Let H be a complex Hilbert spaceWe define the following Chu space ovér 1]:

(Hov L(H)> 67‘1)
where;:

e H, = H \ {0}, the set of non-zero vectors. We shall regard all such vectmt necessarily
normalized, as representations of states of the systene tNat the zero vector isot a legiti-
mate state; its rdle in Quantum Mechanics proper (as opipsknear-algebraic calculations)
is largely as an ‘error element’ when operations cannotitagtely be performed.

e L(H) is the lattice of closed subspaces?f This is the standard notion of yes/no questions
in Quantum Mechanics. The observable corresponding toubspsceS is the self-adjoint
operator whose spectral decompositios i S+ = H. To each subspacs there corresponds
the projectorPs.

e The evaluatiorey is the fundamental formula or ‘statistical algorithm’ [28iving the basic
predictive content of Quantum Mechanics:

(W | Psy) _ (Ps | Ps) _ |[Psyl®
(¥ 1) (¥ 1) 1>

Note thatey (v, S) = eH(W,S), so this is equivalent to working with normalized vectors
only.

67‘((7:[)7 S) =

We have thus directly transcribed the basic ingredientb®firac/von Neumann-style formulation
of Quantum Mechanics [7, 33] into the definition of the Chucgpeorresponding to a given Hilbert
space.

2There are several introductions to the basic formalism afrum Mechanics oriented towards philosophers, e.g. [13].
A useful reference for the mathematical background is [15].



3.1 Characterizing Chu Morphismson Quantum Chu Spaces

Recall firstly the following explicit expression for the peotion of a vector) on a subspacs. Let
{e;} be an orthonormal basis fé. Then

Psip = ZW | ei)e

It follows thatv | S if and only if Psy) = 0.
We begin with a basic fact which we record explicitly.

Lemma3.l Fory € HoandS € L(H):

pel = ey,S)=1

Proof  Firstly, if 1) € S, thenPs(¢)) = ¢, soex (v, S) = 1.
Next, we recall thaPs. = I — Ps. Hence

en(p,S*) = o7 — Psip | ¢ — Psy)
- T(@p | ) — (¢ | Psp) — (Psap | ) + (Pstp | Psy)))
= 1 7 (& [ ¥) = (Psy | Psy)).

/\‘

Hence
en(¥,S) +en(v, 87) = i (Psy | Ps) + (¥ | ¢) — (Psy | Psi))
= AWl =1
Soify ¢ S, it suffices to show thaty (¢, S*) > In this casey) = 6 + x, wheref € S and
x € S\ {0};s0Pg.(f) = 0andPgL(x) = Then
e, S5) =k (Pos (6) + Psi(x) | Py (6) + Psi(x))
= wixlx >0

O

Proposition 3.2 The Chu spacéH,, L(H), ey ) is extensional but not separable. The equivalence
classes of the relatior on states are exactly thaysof H. That is:

o~y <= JINeC.¢= Y.
Proof Extensionality follows directly from Lemma 3.1, since ifdvgubspaces have the same eval-
uations on all states, they have the same elements.

We have AR (Pt | >
Psy | P
A, S —_— Y, S
e e R PR
S0 = \p = ¢ ~ 1. For the converse, let S be the one-dimensional subspagesfranned by),
and suppose that ¢ S. By Lemma 3.1ex (¢, S) = 1, while ey (¢, S) # 1. Hencep « 1. O



Thus we have recovered the standard notion of pure staté® aiayts of the Hilbert space from
the general notion of state equivalence in Chu spaces.

We shall now use some notions and results from projectivengéy. We shall use the very nice
Handbook article [30] as a convenient reference.

Given a vector) € H,, we writel) = {\y) | A € C} for the ray which it generates. The rays are
theatomsin the latticel (H).

We write P(H) for the set of rays of{. By virtue of Proposition 3.2, we can write the biexten-
sional collapse ofH., L(H), ex) given by Proposition 2.2 as

(P(H),L(H), &n)

Whereé?‘((qﬁv S) = €x (¢7 S)
We restate Lemma 3.1 for the biextensional case.

Lemma3.3 Foriy € HoandS € L(H):

en(,8) =1 <= ¢ CS.
Proof  SinceS is a subspace) C S iff ¢ € S, and the result follows from Lemma 3.1. O

We now turn to the issue of characterizing the Chu morphiseterden these biextensional Chu
representations of Hilbert spaces. This will lead to out fiepresentation theorem.
To fix notation, suppose we have Hilbert spagéand/C, and a Chu morphism

(e £7) = (P(H), L(H), x) — (P(K), L(K), ex)-
Proposition 3.4 For ¢ € H, andS € L(K):

P CfH(S) = fu(v)CS.
Proof ByLemma 3.3:

b CfN(S) & en@, [7(9) =1 & ex(f(¥),S) =1 & fi(d) C 8.

Note thatP(H) C L(H).

Proposition 3.5 If f, is injective, then the following diagram commutes:

P(H) e

P(K)

(1)

Thatis, for ally) € Ho:

Y = f*(fu()).
Proof  Proposition 3.4 implies that C f*(f.(¢)). For the converse, suppose thaC f*(f.()).
Applying Proposition 3.4 again, this implies that(¢) C f.(¢). Sincef.(¢) and f.(v)) are atoms,
this implies thatf.(¢) = f.(¢), which sincef, is injective implies that) = 1. Thus the only atom
below f*(f.(1)) is 1. SinceL(H) is atomistic[30], this implies thatf*(f.(y)) C 1. a
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We state another important basic property of the evaluation

Lemma3.6 Forany¢,v € Ho:

en(d, ) =0 <= ¢ L.
Proof o
en(9.) =0 < (Py(¢) | Py(¢)) =0 & Py(¢) =0 < ¢ L.
O

Proposition 3.7 If f, is injective, itpreserves and reflects orthogonalifjhat is, for all¢, v € H,:

¢LY = fu(@) L fu(d).

Proof
d Ly = éen(o,) =0 Lemma 3.6
< en(o, f*(f«(x))) =0 Proposition 3.5
<~ 7]C(f*((5)7f*(1[})) =0
= fuld) L fi(¥) Lemma 3.6
O
We defineamag— : L(H) — L(K):
F7(8) = VA @) [ ¢ € S}
whereS, = S\ {0}.
Lemma 3.8 The mapf— is left adjoint tof*.
Proof We must show that, for a$ € L(H) andT" € L(K):
7S CT < SCfNT).
Using Proposition 3.4, we have:
78 CT — VeSS, ful)) ST
= Wy eS.vC fHT)
— S C 7).
O



We can now extend the diagram (1):

P(H) I P(K)
@
f—>
L(H) 1 LK)
f*

By construction,f— extendsf,: this says thaif — preserves atoms. Singe” is a left adjoint,
it preserves sups. Henge” and f, are paired under the duality of projective lattices andqmtje
geometries, for which see Theorem 16 of [30]. In particulag,have the following.

Proposition 3.9 f, is atotal map of projective geometri¢30].

It follows that we can applyVigner's Theoremin the form given as Theorem 4.1 in [9]. In order
to state this, we need some additional notions.

Let V1 be a vector space over the fiédldand V5 a vector space over the fielél A semilinear map
from V; to V5 is a pair(f,«) wherea : F — G is a field homomorphism, anfl: V; — V5 is an
additive map such that, for all € F andv € Vi:

f(w) = a(N)f(v).

Note that semilinear maps compose(ffa) : Vi — Vo and(g,3) : Vo — V3, then(go f,fo ) :
V1 — V4 is a semilinear map.

This notion is usually defined in greater generality, foriglan rings, but we are only concerned
with Hilbert spaces over the complex numbers.

Given a semilinear mag: V; — V5, we definePg : PV, — PV, by

P(9)(¥) = g(¥).
We can now state Wigner's Theorem in the form we shall use it.

Theorem 3.10 Letf : P(H) — P(K) be a total map of projective geometries, whére H > 2. If
f preserves orthogonality, meaning that

oLy = f()Lf(¥)
then there is a semilinear map: H — K such that?(¢) = f, and

(9(e) [ 9(¥)) = a((P [ ¥)),

whereo is the homomorphism associated wjthMoreover, this homomorphism is either the identity
or complex conjugation, s@is either linear or antilinear. The map is unique up to hasei.e. a
scalar of modulus 1.

The final statement follows from the Second Fundamental reéme®f Projective Geometry, Theo-
rem 3.1 in [9] or Theorem 46 in [30].

Note that in our case, takinf. = f, Pg is just the action of the biextensional collapse functor on
Chu morphisms.

Note that a total map of projective geometries must necéssame from aninjective map g
on the underlying vector spaces, sirg/)) maps rays to rays, and hengenust have trivial kernel.
For this reason, partial maps of projective geometries ansidered in the Faure-Frolicher approach
[10, 30]. However, we are simply following the ‘logic’ of Chapace morphisms here.
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Proposition 3.11 Letg : H — K be a semilinear morphism such thatg) = f. wheref is a Chu
space morphism, andim () > 0. Suppose that the endomorphism C — C associated witly is
surjective, and hence an automorphism. Thes surjective.
Proof We writeIm g for the set-theoretic direct image @f which is a linear subspace &, since
o is an automorphism. In particulay,carries rays to rays, sincgy(¢) = g(c=*(\)¢).

We claim that for any vectoy € X, which is not in the image of, v L Im g. Given such ap,
for any ¢ € H, it is not the case that.(¢) C 1; for otherwise, for some\, g(¢) = A\, and hence
g(e=1(A71)¢) = +. Then by Proposition 3.4f*(¢)) = {0}. It follows that for all¢ € H.,

é/C(f*(‘%)»i)) = é’]—((qZ_b, {0}) =0,

and hence by Lemma 3.6 thatl Im g.

Now suppose for a contradiction that suclp &xists. Consider the vectar + x wherey is a
non-zero vector idm g, which must exist since is injective and® has positive dimension. This
vector is not inlm g, nor is it orthogonal tdm g, since e.g{(y) + x | x) = (x | x) # 0. This yields
the required contradiction. d

We can now put the pieces together to obtain the main restifi®Eection. We say that a map
U : 'H — K is semiunitanyif it is either unitary or antiunitary; that s, if it is a bipive map satisfying

Ulp+¢)=Us+ Uy,  UXP)=cNUs, (U|U¢)=0((o|))

whereg is the identity ifU is unitary, and complex conjugation(f is antiunitary. Note that semiu-
nitaries preserve norm, solif andV are semiunitaries and = AV, then|\| = 1.

Theorem 3.12 LetH, K be Hilbert spaces of dimension greater than 2. Consider a@brphism

(fo, ) - (P(H), L(H), &) — (P(K), L(K), ex ).

wheref, is injective. Then there is a semiunitaly: H — K such thatf, = P(U). U is unique up
to a phase.

Proof By the proviso on injectivity, we can apply Proposition 3By this and Proposition 3.9,
together with the proviso on dimension, we can apply Wign&heorem 3.10. Since the semilinear
map in Wigner's Theorem has an associated automorphismamwepply Proposition 3.11. O

3.2 The Representation Theorem
We now turn to the big picture. We define a categ8yymmH as follows:
e The objects are Hilbert spaces of dimensior2.
e MorphismsU : ' H — K are semiunitaryi(e. unitary or antiunitary) maps.

e Semiunitaries compose as explained more generally forliseani maps in the previous sub-
section. Since complex conjugation is an involution, sertiwies compose according to the
rule of signs: two antiunitaries or two unitaries composétm a unitary, while a unitary and
an antiunitary compose to form an antiunitary.

This category is a groupoidlge. every arrow is an isomorphism.
The seminunitaries are thghysically significant symmetries of Hilbert spdoem the point of
view of Quantum Mechanics. The usual dynamics accordingg&throdinger equation is given by a

10



continuous one-parameter gro{iig (¢)} of these symmetries; the requirement of continuity forbes t
U(t) to be unitaries. However, some important physical symmetries are repreden antiunitaries,
e.g.time reversabndcharge conjugation

By the results of the previous subsection, Chu morphismengisdly force us to consider the
symmetries on Hilbert space. As pointed out there, linegpamahich can be represented as Chu
morphisms in the biextensional category must be injectwed if L : H — K is an injective linear
or antilinear map, theR (L) is injective. Our results then show thatZ/ifcan be represented as a Chu
morphism, it must in fact be semiunitary. This delineatiéthe physically significant symmetries by
the logic of Chu morphisms should be seen as a strong poiavouf of this representation by Chu
spaces.

We define a functor? : SymmH — eChuyg ;:

R:U:H—K — (U, U : (Ho,L(H),ex) — (Ko, LK), ex)

whereU, is the restriction ot/ to H,.
As noted in Proposition 2.2, the inclusititChuy, ;; — eChuy ;) has a left adjoint, which we
nameq). By Proposition 3.2, this can be defined on the imag& ek follows:

@ : (Ho, L(H), ex) — (PH,L(H),en)
and for(Us,, U™1Y) & (Ho, L(H), ex) — (Ko, L(K), ex),
Q: (Us,UY v (PU,U).

We write emChu, bmChu for the subcategories @fChuy, ;; andbChuy, ;; obtained by re-
stricting to Chu morphismg for which f, is injective. The functors? and @ factor through these
subcategories.

Proposition 3.13 R : SymmH — emChu and @ : emChu — bmChu are functors. R is
faithful but not full; @ is full but not faithful.

Proof We verify that ifU : H — K is semiunitary,RU is a well-defined morphism iamChu.
Firstly, we verify the Chu morphism condition. Sinbeis semiunitary, for) € H, andS € L(K):

Ps(Urp) = U(Py-1(s)).

Indeed, ifU is unitary, let{e;} be an orthonormal basis fér. Then{U ¢, } is an orthonormal basis
for U=1S. Now

UPysy¥) = UC(w U e)Uey)
= Y| U e)e
= > Uy |eiei
= PsUy

where the third equation holds becadige! = UT. A similar calculation holds if’ is antiunitary. In
this case, the inner product is commuted when we apply catgulinearity in the second equation,
and commuted back in the third, since for an antiunitary wesha

(Ui | ) = (U e | UTIUY) = (UY | e,

3Indeed, the Schrodinger equation can actually be recdveven this group via Stone’s Theorem [28].
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leading to the same result.
Moreover,U preserves norms, $@/«|| = ||¢|. Now

(PsUY | PsUY) = (U(Py-1sy¥) | U(Py-1(5)¢))
= (Pu-1s)¥ | Pu-1(s)¥)-

Henceey (v, U=1(S)) = ex (U, S), so(U,, U~1') is a Chu morphism. Finally/ is bijective, sa’,
is injective. O

We can analyze the non-fullness Bfmore precisely as follows.
Proposition 3.14 Let (U,, U™ : (Ho,L(H),ex) — (Ko, L(K),ex) be a Chu morphism in the
image ofR. Given an arbitrary functiory : H — C\ {0}, definefU : H, — K, by:

fU@) = f()U ().

Then(fU,U~') ~ (U,,U~'). Moreover, the~-equivalence class d@f is exactly the set of functions
of this form.

Thus before biextensional collapse, Chu morphisms caadotre arbitrary scalar factors pointwise.
Once we move to the biextensional category, we know by Tine@d2 that our representation will
be full, and essentially faithful — up to a global phase. Tgosts to the need for a projective version
of the symmetry groupoid.

The mathematical object underlying phases isdingde groupU(1):

Ul)={reC|N=1}={" | cR}

Since has modulus 1 if and only ¥\ = 1, U(1) is the unitary group on the one-dimensional Hilbert
space.

The circle group acts on the symmetry groupSigmmMH by scalar multiplication. For Hilbert
spacesH, K we can define

U(1) x SymmH(H, ) — SymmH(H, K) :: (A\,U) — AU.
Moreover, this is a category action, meaning that
AN)oV =Uo(AV)=AUoV).

It follows that we can form a quotient category (in fact agaigroupoid) with the same objects as
SymmH, and in which the morphisms will be the orbits of this groupiat

U~V & INeU1).U = V.

We call the resulting catego®ySymmH, the projective quantum symmetry groupoitlis a natural
generalization of the standard notion of thejective unitary groupon Hilbert space. There is a
quotient functorP : SymmH — PSymmH, and by virtue of Theorem 3.12, we can factppe R
through this quotient to obtain a functBR : PSymmH — bmChu.

The situation can be summarized by the following diagram:

R
SymmH >———> emChu

P Q
\ v

PSymmH W> bmChu
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Theorem 3.15 The functorPR : PSymmH — bmChu is a representation.

Proof This follows from Theorem 3.12. To see tHaR is essentially injective on objects, we can
use the representation theorems of Piron and Soler [3G¢hikll us that we can reconstrugf as a
Hilbert space fronk.({). This reconstruction will give us a Hilbert spakg such that (1) = L(H'),
andP(H) = P(H’). We can apply Wigner's theorem to this isomorphism to ob&semiunitary
U : 'H = H' from which we can recover the Hilbert space structurg-orThis means that we have
recoveredH uniquely to within the coset dfly; in PSymmH. O

4 Reducing The Value Set

We now return to the issue of whether it is necessary to ustuthenit interval as the value set for
our Chu spaces.
We begin with some generalities. Given a functionK — L, we define a functoF), : Chux —
Chuy,:
F,: (X,Ae)— (X,Avoe)

andF, f = f for Chu morphismg.

Proposition 4.1 F, is a faithful functor. Ifv is injective, it is full.

Proof  This is easily verified. The Chu morphism condition is presdrby composing with any
function on values, whild", is evidently faithful. For fullness, note that the only vedun L relevant
to whether a pair of functions

(f,9) : (X, A voe) — (X' A ,voe)

satisfies the Chu morphism condition are those in the ranfges e andv o ¢/, which if v is injective
are in bijection with those in the rangescande’. O

We can now state the question we wish to pose more precisely:

Is there a mapping : [0, 1] — K from the unit interval to some finite séf such that
the restriction of the functoF, to the image oP R is full, and thus the composition

F,oPR: PSymmH — bmChug

iS a representation?

There is nageneralreason to suppose that this is possible; in fact, we shall shat it is, although
not quite in the obvious fashion.

We shall writen = {0,...,n — 1} for the finite ordinals. The most popular choice of value set
for Chu spaces, by far, has be2nand indeed many interesting categories can be strictly éxen
concretely) represented {@hu, [22]. This makes the following question natural:

Question 4.2 Is there a functior : [0, 1] — 2 such thatF, o PR is full and faithful?

What we can show is that the most plausible candidates fdr fwactions, yielding the two
canonical forms opossibilistic semanticas a coarse-graining of probabilistic semantics, bothdh fa
fail.

13



Note that any functiom : [0,1] — {0, 1} must lose information either ahor on1 — or both. In
this sense, the two ‘sharpest’ mappihgsll be:

vo:0+—0,(0,1] — 1 v1:]0,1) — 0,1 — 1.

These are the two canonical reductions of probabilisticdssybilistic information: the first maps
‘definitely not’ to ‘no’, and anything else to ‘yes’, which te be read as ‘possibly yes’; the second
maps ‘definitely yes’ to ‘yes’, and anything else to ‘no’, te kead as ‘possibly no’. Note that, under
the first of these, Lemma 3.1 will no longer hold, while under second, Lemma 3.6 will fail.

Proposition 4.3 For neitherv = vg horv = vy is F,, o PR full.

Proof LetH be a Hilbert space with < dim’H < oo, and let(g, o) be any semilinear automor-
phism of H, wheres can be any automorphism of the complex figldkor each of the above two
mappings of the unit interval t@, we shall construct €hus endomorphismf : F, o PR(H) —
F, o PR(H) with f, = P(g). This will show the non-fullness af,.

Case 1 Here we consider the mapping which sendg0, 1) to 0 and fixes 1. In this case:

en(,S)=1 < ¢yeSs
and hence the Chu morphism condition(gi, f*), wheref, = P(g), is:
Y e fi(S) = g()es.
Taking f* = ¢! obviously fulfills this condition. Note that, singgis a semilinear automorphism,
andH is finite-dimensionalg~! : L(H) — L(H) is well-defined.
Case 2 Now consider the mapping, keeping 0 fixed and sendir(@, 1] to 1. In this case:
en(,S)=0 < ¢ LS
and hence the Chu morphism condition(gi, f*), wheref, = P(g), is:
YL = g) LS.

We definef*(S) = g~ (S+)*. Note thatf* : L(H) — L(H) is well defined, and also that ! (S+)
is a subspace df(; henceg=! (S+)++ = g=1(S+). Now:

en(, f*8) =0 <<= YLf*S
= Yeg (S =g1(5h)
= g()est
= g)LS
= en(f(¥),5) =0
and hencé f., f*) is a Chu morphism as required. O

“We consider only functions which fix 0 and 1, to exclude ivalet permutations and the trivial case of constant maps.
SWe can extend the argument to infinite-dimensional Hilbesice by requiring to be continuous.
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However, this negative result immediately suggests a rgntedkeep the interpretations abth
0 and 1 sharp We can do this with three values! Namely, we defin€0, 1] — 3 by

0—0, (0,1)—2, 11

Thus we lose information only on the probabilities stridigtween 0 and 1, which are lumped together
as ‘maybe’ — represented here, by arbitrary convention,.by 2

Why is this adequate? Given a vectoand a subspac®, we can write) uniquely a®+ y, where
6 € S andy € S*. For non-zera, there are only three possibilitie¢:= 0 andy # 0, which yields
en(¢,S) = 0by Lemma 3.69 # 0 andy = 0 which yieldsez (¢, S) = 1 by Lemma 3.1; and # 0
andy # 0, which yieldsey (¢, S) € (0,1) by these Lemmas again, and hence e (1, S) = 2.
These are the only case discriminations which are used irresults leading to the Representation
Theorem 3.15Hence we have:

Theorem 4.4 The functorF,, o PR : PSymmH — bmChugs is a representation.

We note thaChug has found some uses in concurrency and verification [24 ubdler a temporal
interpretation: the three values are read as ‘before’,indirand ‘after’, whereas in our setting the
three values represent ‘definitely yes’, ‘definitely no’ anaybe’.

Theorem 4.4 may suggest some interesting uses for 3-valoeal ogics’ in the sense of Jon
Barwise [3].

5 Discussion

We should understand Chu spaces as providing a very geamadl e might reasonably say, rather
simple) ‘logic of systems or structures’. Indeed, they hiagen proposed by Barwise and Seligman
as the vehicle for a general logic of ‘distributed systenmsl amformation flow [3]. This logic of Chu
spaces was in no way bhiassed in its conception towards tloeijgiien of quantum mechanics or any
other kind of physical system. Just for this reason, it igne$ting to see how much of quantum-
mechanical structure and concepts can be absorbed andiaseleterminedoy this more general
systems logic.

It might be argued that our representation of quantum sys&sChu spaces has already speci-
fied the essential ingredients of the quantum structure dndh The conceptual significance of our
technical results is precisely to show that there is a nietatfcapturing’ of quantum structure by the
general notions of Chu spaces:

e Firstly, Proposition 3.2 shows that the general Chu spatiemof biextensionality subsumes
the standard identification of quantum states with rays lhetii space. This is scarcely surpris-
ing, but it is a first sign of the proper alignment of concepts.

e The main technical result of the present paper is the Remtassn Theorem 3.15. It is worth
spelling out the content of this in more elementary termsceéOme have represented our quan-
tum systems as biextensional Chu spad®s+),L(H), ex), all we have, from the viewpoint
‘inside’ the categoryChuy y, is a pair of sets and an evaluation function, with all infation
about their provenance lost. A Chu morphism

(fe, /7) = (P(H), L(H), ex¢) — (P(K), L(H), ex)

is given byany pair of set-theoretic functionsf,, f*) satisfying the Chu morphism condition:
en(v, () = ex(f«(¥), 9).
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The Representation Theorem says ttie logic of this Chu morphism condition is strong
enough to guarantee that any such pair of functions musedr@m a unitary or antiunitary
mapU : H — K on the underlying Hilbert spacewith the sole proviso of injectivity of,.6
Moreover,U is uniquely determined by, up to a phase factor. Of course, we are using one
of the ‘big guns’ of the subject, Wigner’'s Theorem, to egsdbkhis result. It is worth not-
ing, though, that there is some distance to travel betwesCtiu morphism condition and the
hypotheses of Wigner's Theorem; and there are surprises dt@ way, most notably Propo-
sition 3.11, whichderivessurjectivity from the Chu morphism condition — whereas itsnu
invariably be added as a hypothesis to the many versions giié¥s Theorem.

e The results on reduction to finite value sets are also intrgguNot only is the bare Chu con-
dition on morphisms sufficient to whittle them down to the gemtaries, this is even the case
when the discriminations on which the condition is based@deced to three values. The gen-
eral case for two values remains open, but we have shownhbdivo standard possibilistic
reductions botHail to preserve fullnessA negative answer for two-valued semantics in gen-
eral would suggest an unexpected role for three-valueit iogthe foundations of Quantum
Mechanics.

Where Next? Of course, the developments described in the present pepenly a first step. We
shall briefly discuss some of the natural continuations e$¢hideas, several of which are already in
progress.

e There are some interesting and surprising connections amtasts between Chu spaces and
another important paradigm for categorical systems miogglhamelycoalgebra[26]. These
connections, which seem not to have been explored preyjcariée both at the general level,
and also with specific reference to the representation o$ipalysystems. We shall report on
this in a forthcoming sequel to the present paper.

e A natural next step as regards physical modelling is to camsnixed statesThere is a general
construction on Chu spaces which allows mixed states touukest in a uniform fashion, ap-
plicable to both classical and quantum systems. Againyiiide described in a forthcoming
sequel to the present paper.

e It is also of interest to considemiversalChu spaces; single systems in which all Chu spaces
of a given class can be embedded, and which therefore praviiagle model for a large
class of systems. We may additionally ask for such systerbe lmmogeneoysvhich means
that they exhibit a maximum degree of symmetry; such unaletsomogeneous spaces are
unique up to isomorphism. Universal homogeneous Chu spaees been constructed for
bifinite Chu spaces recent work by Manfred Droste and Guo-Qiang Zhang [8].tTHoatext
is too limited for our purposes here. It remains to be seemifarsal homogeneous models
can be constructed for larger subcategories of Chu spasesmpassing those involved in our
representation results.

e The relation of the rich logical and type-theoretic aspett€hu spaces to quantum and other
physical systems should also be investigated.

The injectivity assumption offi. is annoying. It remains unclear if it necessary.
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