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Abstract

We pursue a model-oriented rather than axiomatic approach to the foundations of Quantum
Mechanics, with the idea that new models can often suggest new axioms. This approach has
often been fruitful in Logic and Theoretical Computer Science. Rather than seeking to construct a
simplified toy model, we aim for a ‘big toy model’, in which both quantum and classical systems
can be faithfully represented — as well as, possibly, more exotic kinds of systems. To this end, we
show how Chu spaces can be used to represent physical systemsof various kinds. In particular,
we show how quantum systems can be represented as Chu spaces over the unit interval in such a
way that the Chu morphisms correspond exactly to the physically meaningful symmetries of the
systems — the unitaries and antiunitaries. In this way we obtain a full and faithful functor from
the groupoid of Hilbert spaces and their symmetries to Chu spaces. We also consider whether it
is possible to use a finite value set rather than the unit interval; we show that three values suffice,
while the two standard possibilistic reductions to two values both fail to preserve fullness.

1 Introduction

Models vs. Axioms The main method pursued in the foundations of quantum mechanics has been
axiomatic; one seeks conceptually primitive and clearly motivated axioms, shows that quantum sys-
tems satisfy these axioms, and then, often, aims for arepresentation theoremshowing that the axioms
essentially determine the “standard model” of Quantum Mechanics. Or one may admit non-standard
interpretations, and seek to locate Quantum Mechanics in a larger “space” of theories.

There is an alternative and complementary approach, which has been less explored in the founda-
tions of Quantum Mechanics, although it has proved very fruitful in mathematics, logic and theoretical
computer science. Namely, one looks for conceptually natural constructions of models, different from
the standard mathematical formalism of Quantum Mechanics.Often a new model construction can
suggest new axioms, articulated in terms of new forms of structure. There are many examples of this
phenomenon, sheaves and topos theory being a case in point.

A successful recent example of gaining insight by model construction is the well-known paper by
Rob Spekkens on a toy model for Quantum Mechanics [29], whichhas led to some elegant categorical
formulations and novel ideas concerning phase groups and hidden-variable models [5].

Big Toy Models We shall also, in a sense, be concerned with “toy models” in the present paper; with
building models which exhibit “quantum-like” features without necessarily exactly corresponding to
the standard model of Quantum Mechanics. Indeed, the more different the model construction can be
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to the usual formalism, while still reproducing many quantum-like features, the more interesting it will
be from this perspective. However, there will be an important difference between the kind of model
we will build, and the usual idea of a “toy model”. Usually, a toy model will be a small, simplified
gadget, which gives a picture of Quantum Mechanics in some “collapsed” form, with much detail
thrown away. By contrast, we are aiming for abig toy model, in whichboth quantum and classical
systems can be faithfully represented— as well as, possibly, many more exotic kinds of systems.

Results More precisely, we shall see how the simple, discrete notions of Chu spaces suffice to deter-
mine the appropriate notions of state equivalence, and to pick out the physically significant symmetries
on Hilbert space in a very striking fashion. This leads to a full and faithful representation of the cat-
egory of quantum systems, with the groupoid structure of their physical symmetries, in the category
of Chu spaces valued in the unit interval. The arguments herehave some subtlety, and make use of
Wigner’s theorem and the dualities of projective geometry,in the modern form developed by Faure
and Frölicher [10, 30]. The surprising point is that unitarity/anitunitarity is essentiallyforcedby the
mere requirement of being a Chu morphism. This even extends to surjectivity, which here isderived
rather than assumed.

We also consider the question of whether we can obtain a natural representation of this form in
Chu spaces over a finite value set. We show that this can be donewith just three values. By contrast,
the two standard possibilistic reductions to two values both fail to preserve fullness.

The use of Chu spaces for representing physical systems as initiated in this paper seems quite
promising; a number of further topics immediately suggest themselves, including mixed states, uni-
versal models, the representation of convex theories, linear types, and local logics for quantum sys-
tems.

The plan of the remainder of the paper is as follows. In Section 2, we shall provide a brief
overview of Chu spaces. Section 3 contains the main technical results, leading to a full and faithful
representation of quantum systems and their symmetries as Chu spaces and morphisms of Chu spaces.
Section 4 presents the results on finite value sets. Finally,Section 5 contains a discussion of conceptual
and methodological issues.

2 Chu Spaces

We shall assume that the reader is familiar with a few basic notions of category theory.1 The bare
definitions of category and functor will suffice for the most part.

Chu spaces are a special case of a construction which originally appeared in [4], written by Po-
Hsiang Chu as an appendix to Michael Barr’s monograph on∗-autonomous categories [1].

Interest in∗-autonomous categories increased with the advent of LinearLogic [11], since∗-
autonomous categories provide models for Classical Multiplicative Linear Logic (and with additional
assumptions, for the whole of Classical Linear Logic) [27].The Chu construction applied to the cat-
egorySet of sets and functions was independently introduced (under the name of ‘games’) by Yves
Lafont and Thomas Streicher [16], and subsequently (under the name ofChu spaces) formed the sub-
ject of a series of papers by Vaughan Pratt and his collaborators, e.g. [6, 22, 23]. Recent papers on
Chu spaces include [8, 20].

Chu spaces have several interesting aspects:

• They have a rich type structure, and in particular form models of Linear Logic.

1The charming introductory text [21] should be more than sufficient. Unfortunately, the version for philosophers has not
been written yet.
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• They have a rich representation theory; many concrete categories of interest can be fully em-
bedded into Chu spaces.

• There is a natural notion of ‘local logic’ on Chu spaces [3], and an interesting characterization
of information transfer across Chu morphisms [31].

Applications of Chu spaces have been proposed in a number of areas, including concurrency [24],
hardware verification [14], game theory [32] and fuzzy systems [19]. Mathematical studies concerning
the general Chu construction include [2, 12].

We briefly review the basic definitions.
Fix a setK. A Chu space overK is a structure(X,A, e), whereX is a set of ‘points’ or ‘objects’,

A is a set of ‘attributes’, ande : X ×A→ K is an evaluation function.
A morphism of Chu spaces

f : (X,A, e) → (X ′, A′, e′)

is a pair of functions
f = (f∗ : X → X ′, f∗ : Y ′ → Y )

such that, for allx ∈ X anda′ ∈ A′:

e(x, f∗(a′)) = e′(f∗(x), a
′).

Chu morphisms compose componentwise: iff : (X1, A1, e1) → (X2, A2, e2) andg : (X2, A2, e2) →
(X3, A3, e3), then

(g ◦ f)∗ = g∗ ◦ f∗, (g ◦ f)∗ = f∗ ◦ g∗.

Chu spaces overK and their morphisms form a categoryChuK .
Given a Chu spaceC = (X,A, e), we say thatC is:

• extensionalif for all a1, a2 ∈ A:

[∀x ∈ X. e(x, a1) = e(x, a2)] ⇒ a1 = a2

• separableif for all x1, x2 ∈ X:

[∀a ∈ A. e(x1, a) = e(x2, a)] ⇒ x1 = x2

• biextensionalif it is extensional and separable.

We define a relation onX by:

x1 ∼ x2 ⇐⇒ ∀a ∈ A. e(x1, a) = e(x2, a).

This is evidently an equivalence relation:C is separable exactly when this relation is the identity.
There is a Chu morphism

(q, idA) : (X,A, e) → (X/∼, A, e′)

wheree′([x], a) = e(x, a) and q : X → X/∼ is the quotient map. The space(X/∼, A, e′) is
separable; if(X,A, e) is extensional, it is biextensional.

Proposition 2.1 If f : (X,A, e) → (X ′, A′, e′) is a Chu morphism, thenf∗ preserves∼. That is, for
all x1, x2 ∈ X,

x1 ∼ x2 ⇒ f∗(x1) ∼ f∗(x2).

Proof For anya′ ∈ A′:

e′(f∗(x1), a
′) = e(x1, f

∗(a′)) = e(x2, f
∗(a′)) = e′(f∗(x2), a

′).

�
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We shall writeeChuK , sChuK andbChuK for the full subcategories ofChuK determined by
the extensional, separated and biextensional Chu spaces.

We shall mainly work with extensional and biextensional Chuspaces. ObviouslybChuK is a
full sub-category ofeChuK .

Proposition 2.2 The inclusionbChuK ⊂ - eChuK has a left adjoint.

Proof The unit of the adjunction is the Chu morphism

(q, idA) : (X,A, e) → (X/∼, A, e′)

we have already described, while Proposition 2.1 guarantees that given a Chu morphism

f : (X,A, e) → (Y,B, r)

to a biextensional Chu space, we can factor it through the quotient space(X/∼, A, e′).
The functorQ : eChuK → bChuK provided by this adjunction sends morphisms

(f∗, f
∗) : (X,A, e1) → (X ′, A′, e2)

to
(f∗/∼, f

∗) : (X/∼, A, e′1) → (X ′/∼, A′, e′2)

wheref∗/∼([x]) = [f∗(x)]. �

We refer to the functorQ as thebiextensional collapse.
We can define an equivalence relation on the Chu morphisms in each hom-set ineChuK by:

f ∼ g ⇐⇒ ∀x. f∗(x) ∼ g∗(x).

ThenQf = Qg ⇔ f ∼ g.

Representations Recall that a functorF : C → D is faithful if for each pair of objectsA, B of C,
the induced mapFAB : C(A,B) → D(FA,FB) is injective; it isfull if eachFAB is surjective; and
it is anembeddingif F is faithful and injective on objects. We refer to a full and faithful functor as a
representation, and to a full embedding as astrict representation. Note that ifF is a representation,
it can only identify isomorphic objects. IfF is a representation, thenC is equivalent to a full sub-
category ofD, while if F is a strict representation, thenC is isomorphic to a full sub-category of
D.

As a first example of the representational capacity of Chu spaces, suppose that{0, 1} ⊆ K. For
any setX, define the following Chu space onK: (X,PX, eX ), where:

eX(x, S) =







1, x ∈ S

0 otherwise

Given a functionf : X → Y , we send it to the Chu space morphism

(f, f−1) : (X,PX, eX ) → (Y,PY, eY ).

It is easy to see that this defines a full embedding ofSet into ChuK .
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3 Representation of Quantum Systems

Our point of view in modelling physical systems as Chu spaceswill be as follows. We take a system
to be specified by its set ofstatesS, and the set ofquestionsQ which can be ‘asked’ of the system.
We shall consider only ‘yes/no’ questions; however, the result of asking a question in a given state
will in general beprobabilistic. This will be represented by an evaluation function

e : S ×Q→ [0, 1]

wheree(s, q) is the probability that the questionq will receive the answer ‘yes’ when the system is
in states. This is essentially the point of view taken by Mackey in his classic pioneering work on
the foundations of Quantum Mechanics [17]. Note that we prefer the term ‘question’ to ‘property’,
since in the case of Quantum Mechanics we cannot think in terms of static properties which are
determinately possessed by a given state; questions imply adynamicact of asking.

It is standard in the foundational literature on quantum mechanics to focus on yes/no questions.
However, the usual approaches to quantum logic avoid the direct introduction of probabilities. We
shall return to the issue of whether it is necessary to take probabilities as our value set in Section 4.

We can take the categorySet itself as a crude version of discrete deterministic classical systems,
with arbitrary irreversible transformations allowed. We now consider the quantum case, in the pure
state formulation. Mixed states will be considered in a sequel to the present paper.

LetH be a complex Hilbert space.2 We define the following Chu space over[0, 1]:

(H◦,L(H), eH)

where:

• H◦ = H \ {0}, the set of non-zero vectors. We shall regard all such vectors, not necessarily
normalized, as representations of states of the system. Note that the zero vector isnot a legiti-
mate state; its rôle in Quantum Mechanics proper (as opposed to linear-algebraic calculations)
is largely as an ‘error element’ when operations cannot legitimately be performed.

• L(H) is the lattice of closed subspaces ofH. This is the standard notion of yes/no questions
in Quantum Mechanics. The observable corresponding to the subspaceS is the self-adjoint
operator whose spectral decomposition isS ⊕ S⊥ ∼= H. To each subspaceS there corresponds
the projectorPS .

• The evaluationeH is the fundamental formula or ‘statistical algorithm’ [25]giving the basic
predictive content of Quantum Mechanics:

eH(ψ, S) =
〈ψ | PSψ〉

〈ψ | ψ〉
=

〈PSψ | PSψ〉

〈ψ | ψ〉
=

‖PSψ‖
2

‖ψ‖2
.

Note thateH(ψ, S) = eH( ψ
‖ψ‖ , S), so this is equivalent to working with normalized vectors

only.

We have thus directly transcribed the basic ingredients of the Dirac/von Neumann-style formulation
of Quantum Mechanics [7, 33] into the definition of the Chu space corresponding to a given Hilbert
space.

2There are several introductions to the basic formalism of Quantum Mechanics oriented towards philosophers, e.g. [13].
A useful reference for the mathematical background is [15].
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3.1 Characterizing Chu Morphisms on Quantum Chu Spaces

Recall firstly the following explicit expression for the projection of a vectorψ on a subspaceS. Let
{ei} be an orthonormal basis forS. Then

PSψ =
∑

i

〈ψ | ei〉ei.

It follows thatψ⊥S if and only if PSψ = 0.
We begin with a basic fact which we record explicitly.

Lemma 3.1 For ψ ∈ H◦ andS ∈ L(H):

ψ ∈ S ⇐⇒ eH(ψ, S) = 1.

Proof Firstly, if ψ ∈ S, thenPS(ψ) = ψ, soeH(ψ, S) = 1.
Next, we recall thatPS⊥ = I − PS . Hence

eH(φ, S⊥) = 1
〈ψ|ψ〉〈ψ − PSψ | ψ − PSψ〉

= 1
〈ψ|ψ〉(〈ψ | ψ〉 − 〈ψ | PSψ〉 − 〈PSψ | ψ〉 + 〈PSψ | PSψ〉)

= 1
〈ψ|ψ〉(〈ψ | ψ〉 − 〈PSψ | PSψ〉).

Hence

eH(ψ, S) + eH(ψ, S⊥) = 1
〈ψ|ψ〉 (〈PSψ | PSψ〉 + 〈ψ | ψ〉 − 〈PSψ | PSψ〉)

= 1
〈ψ|ψ〉 〈ψ | ψ〉 = 1.

So if ψ 6∈ S, it suffices to show thateH(ψ, S⊥) > 0. In this case,ψ = θ + χ, whereθ ∈ S and
χ ∈ S⊥ \ {0}; soPS⊥(θ) = 0 andPS⊥(χ) = χ. Then

eH(ψ, S⊥) = 1
〈ψ|ψ〉〈PS⊥(θ) + PS⊥(χ) | PS⊥(θ) + PS⊥(χ)〉

= 1
〈ψ|ψ〉〈χ | χ〉 > 0.

�

Proposition 3.2 The Chu space(H◦,L(H), eH) is extensional but not separable. The equivalence
classes of the relation∼ on states are exactly theraysofH. That is:

φ ∼ ψ ⇐⇒ ∃λ ∈ C. φ = λψ.

Proof Extensionality follows directly from Lemma 3.1, since if two subspaces have the same eval-
uations on all states, they have the same elements.

We have

eH(λψ, S) =
|λ|2

|λ|2
〈PSψ | PSψ〉

〈ψ | ψ〉
= eH(ψ, S)

soφ = λψ ⇒ φ ∼ ψ. For the converse, let S be the one-dimensional subspace (ray) spanned byψ,
and suppose thatφ 6∈ S. By Lemma 3.1,eH(ψ, S) = 1, while eH(φ, S) 6= 1. Henceφ 6∼ ψ. �
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Thus we have recovered the standard notion of pure states as the rays of the Hilbert space from
the general notion of state equivalence in Chu spaces.

We shall now use some notions and results from projective geometry. We shall use the very nice
Handbook article [30] as a convenient reference.

Given a vectorψ ∈ H◦, we writeψ̄ = {λψ | λ ∈ C} for the ray which it generates. The rays are
theatomsin the latticeL(H).

We writeP(H) for the set of rays ofH. By virtue of Proposition 3.2, we can write the biexten-
sional collapse of(H◦,L(H), eH) given by Proposition 2.2 as

(P(H),L(H), ēH)

whereēH(ψ̄, S) = eH(ψ, S).
We restate Lemma 3.1 for the biextensional case.

Lemma 3.3 For ψ ∈ H◦ andS ∈ L(H):

ēH(ψ̄, S) = 1 ⇐⇒ ψ̄ ⊆ S.

Proof SinceS is a subspace,̄ψ ⊆ S iff ψ ∈ S, and the result follows from Lemma 3.1. �

We now turn to the issue of characterizing the Chu morphisms between these biextensional Chu
representations of Hilbert spaces. This will lead to our first representation theorem.

To fix notation, suppose we have Hilbert spacesH andK, and a Chu morphism

(f∗, f
∗) : (P(H),L(H), ēH) → (P(K),L(K), ēK).

Proposition 3.4 For ψ ∈ H◦ andS ∈ L(K):

ψ̄ ⊆ f∗(S) ⇐⇒ f∗(ψ̄) ⊆ S.

Proof By Lemma 3.3:

ψ̄ ⊆ f∗(S) ⇔ ēH(ψ̄, f∗(S)) = 1 ⇔ ēK(f∗(ψ̄), S) = 1 ⇔ f∗(ψ̄) ⊆ S.

�

Note thatP(H) ⊆ L(H).

Proposition 3.5 If f∗ is injective, then the following diagram commutes:

P(H)
f∗

- P(K)

L(H)
?

∩

�

f∗
L(K)

?

∩

(1)

That is, for allψ ∈ H◦:
ψ̄ = f∗(f∗(ψ̄)).

Proof Proposition 3.4 implies that̄ψ ⊆ f∗(f∗(ψ̄)). For the converse, suppose thatφ̄ ⊆ f∗(f∗(ψ̄)).
Applying Proposition 3.4 again, this implies thatf∗(φ̄) ⊆ f∗(ψ̄). Sincef∗(φ̄) andf∗(ψ̄) are atoms,
this implies thatf∗(φ̄) = f∗(ψ̄), which sincef∗ is injective implies that̄φ = ψ̄. Thus the only atom
belowf∗(f∗(ψ̄)) is ψ̄. SinceL(H) is atomistic[30], this implies thatf∗(f∗(ψ̄)) ⊆ ψ̄. �
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We state another important basic property of the evaluation.

Lemma 3.6 For anyφ,ψ ∈ H◦:

ēH(φ̄, ψ̄) = 0 ⇐⇒ φ⊥ψ.

Proof
ēH(φ̄, ψ̄) = 0 ⇔ 〈Pψ̄(φ) | Pψ̄(φ)〉 = 0 ⇔ Pψ̄(φ) = 0 ⇔ φ⊥ψ.

�

Proposition 3.7 If f∗ is injective, itpreserves and reflects orthogonality. That is, for allφ,ψ ∈ H◦:

φ⊥ψ ⇐⇒ f∗(φ̄)⊥ f∗(ψ̄).

Proof
φ⊥ψ ⇐⇒ ēH(φ̄, ψ̄) = 0 Lemma 3.6

⇐⇒ ēH(φ̄, f∗(f∗(ψ̄))) = 0 Proposition 3.5

⇐⇒ ēK(f∗(φ̄), f∗(ψ̄)) = 0

⇐⇒ f∗(φ̄)⊥ f∗(ψ̄) Lemma 3.6

�

We define a mapf→ : L(H) → L(K):

f→(S) =
∨

{f∗(ψ̄) | ψ ∈ S◦}

whereS◦ = S \ {0}.

Lemma 3.8 The mapf→ is left adjoint tof∗.

Proof We must show that, for allS ∈ L(H) andT ∈ L(K):

f→(S) ⊆ T ⇐⇒ S ⊆ f∗(T ).

Using Proposition 3.4, we have:

f→(S) ⊆ T ⇐⇒ ∀ψ ∈ S◦. f∗(ψ̄) ⊆ T

⇐⇒ ∀ψ ∈ S◦. ψ̄ ⊆ f∗(T )

⇐⇒ S ⊆ f∗(T ).

�
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We can now extend the diagram (1):

P(H)
f∗

- P(K)

L(H)
?

∩

f→
-

⊥�

f∗
L(K)

?

∩

(2)

By construction,f→ extendsf∗: this says thatf→ preserves atoms. Sincef→ is a left adjoint,
it preserves sups. Hencef→ andf∗ are paired under the duality of projective lattices and projective
geometries, for which see Theorem 16 of [30]. In particular,we have the following.

Proposition 3.9 f∗ is a total map of projective geometries[30].

It follows that we can applyWigner’s Theorem, in the form given as Theorem 4.1 in [9]. In order
to state this, we need some additional notions.

Let V1 be a vector space over the fieldF andV2 a vector space over the fieldG. A semilinear map
from V1 to V2 is a pair(f, α) whereα : F → G is a field homomorphism, andf : V1 → V2 is an
additive map such that, for allλ ∈ F andv ∈ V1:

f(λv) = α(λ)f(v).

Note that semilinear maps compose: if(f, α) : V1 → V2 and(g, β) : V2 → V3, then(g ◦ f, β ◦ α) :
V1 → V2 is a semilinear map.

This notion is usually defined in greater generality, for division rings, but we are only concerned
with Hilbert spaces over the complex numbers.

Given a semilinear mapg : V1 → V2, we definePg : PV1 → PV2 by

P(g)(ψ̄) = g(ψ).

We can now state Wigner’s Theorem in the form we shall use it.

Theorem 3.10 Letf : P(H) → P(K) be a total map of projective geometries, wheredimH > 2. If
f preserves orthogonality, meaning that

φ̄⊥ ψ̄ ⇒ f(φ̄)⊥ f(ψ̄)

then there is a semilinear mapg : H → K such thatP(g) = f , and

〈g(φ) | g(ψ)〉 = σ(〈φ | ψ〉),

whereσ is the homomorphism associated withg. Moreover, this homomorphism is either the identity
or complex conjugation, sog is either linear or antilinear. The mapg is unique up to aphase, i.e. a
scalar of modulus 1.

The final statement follows from the Second Fundamental Theorem of Projective Geometry, Theo-
rem 3.1 in [9] or Theorem 46 in [30].

Note that in our case, takingf∗ = f , Pg is just the action of the biextensional collapse functor on
Chu morphisms.

Note that a total map of projective geometries must necessarily come from aninjective mapg
on the underlying vector spaces, sinceP(g) maps rays to rays, and henceg must have trivial kernel.
For this reason, partial maps of projective geometries are considered in the Faure-Frölicher approach
[10, 30]. However, we are simply following the ‘logic’ of Chuspace morphisms here.
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Proposition 3.11 Let g : H → K be a semilinear morphism such thatP(g) = f∗ wheref is a Chu
space morphism, anddim(H) > 0. Suppose that the endomorphismσ : C → C associated withg is
surjective, and hence an automorphism. Theng is surjective.

Proof We writeIm g for the set-theoretic direct image ofg, which is a linear subspace ofK, since
σ is an automorphism. In particular,g carries rays to rays, sinceλg(φ) = g(σ−1(λ)φ).

We claim that for any vectorψ ∈ K◦ which is not in the image ofg, ψ⊥ Im g. Given such aψ,
for anyφ ∈ H◦ it is not the case thatf∗(φ̄) ⊆ ψ̄; for otherwise, for someλ, g(φ) = λψ, and hence
g(σ−1(λ−1)φ) = ψ. Then by Proposition 3.4,f∗(ψ̄) = {0}. It follows that for allφ ∈ H◦,

ēK(f∗(φ̄), ψ̄) = ēH(φ̄, {0}) = 0,

and hence by Lemma 3.6 thatψ⊥ Im g.
Now suppose for a contradiction that such aψ exists. Consider the vectorψ + χ whereχ is a

non-zero vector inIm g, which must exist sinceg is injective andH has positive dimension. This
vector is not inIm g, nor is it orthogonal toIm g, since e.g.〈ψ + χ | χ〉 = 〈χ | χ〉 6= 0. This yields
the required contradiction. �

We can now put the pieces together to obtain the main result ofthis section. We say that a map
U : H → K is semiunitaryif it is either unitary or antiunitary; that is, if it is a bijective map satisfying

U(φ+ ψ) = Uφ+ Uψ, U(λφ) = σ(λ)Uφ, 〈Uφ | Uψ〉 = σ(〈φ | ψ〉)

whereσ is the identity ifU is unitary, and complex conjugation ifU is antiunitary. Note that semiu-
nitaries preserve norm, so ifU andV are semiunitaries andU = λV , then|λ| = 1.

Theorem 3.12 LetH, K be Hilbert spaces of dimension greater than 2. Consider a Chumorphism

(f∗, f
∗) : (P(H),L(H), ēH) → (P(K),L(K), ēK).

wheref∗ is injective. Then there is a semiunitaryU : H → K such thatf∗ = P(U). U is unique up
to a phase.

Proof By the proviso on injectivity, we can apply Proposition 3.7.By this and Proposition 3.9,
together with the proviso on dimension, we can apply Wigner’s Theorem 3.10. Since the semilinear
map in Wigner’s Theorem has an associated automorphism, we can apply Proposition 3.11. �

3.2 The Representation Theorem

We now turn to the big picture. We define a categorySymmH as follows:

• The objects are Hilbert spaces of dimension> 2.

• MorphismsU : H → K are semiunitary (i.e. unitary or antiunitary) maps.

• Semiunitaries compose as explained more generally for semilinear maps in the previous sub-
section. Since complex conjugation is an involution, semiunitaries compose according to the
rule of signs: two antiunitaries or two unitaries compose toform a unitary, while a unitary and
an antiunitary compose to form an antiunitary.

This category is a groupoid,i.e.every arrow is an isomorphism.
The seminunitaries are thephysically significant symmetries of Hilbert spacefrom the point of

view of Quantum Mechanics. The usual dynamics according to the Schrödinger equation is given by a
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continuous one-parameter group{U(t)} of these symmetries; the requirement of continuity forces the
U(t) to be unitaries.3 However, some important physical symmetries are represented by antiunitaries,
e.g. time reversalandcharge conjugation.

By the results of the previous subsection, Chu morphisms essentially force us to consider the
symmetries on Hilbert space. As pointed out there, linear maps which can be represented as Chu
morphisms in the biextensional category must be injective;and ifL : H → K is an injective linear
or antilinear map, thenP(L) is injective. Our results then show that ifL can be represented as a Chu
morphism, it must in fact be semiunitary. This delineation of the physically significant symmetries by
the logic of Chu morphisms should be seen as a strong point in favour of this representation by Chu
spaces.

We define a functorR : SymmH → eChu[0,1]:

R : U : H → K 7−→ (U◦, U
−1) : (H◦,L(H), eH) → (K◦,L(K), eK)

whereU◦ is the restriction ofU toH◦.
As noted in Proposition 2.2, the inclusionbChu[0,1]

⊂ - eChu[0,1] has a left adjoint, which we
nameQ. By Proposition 3.2, this can be defined on the image ofR as follows:

Q : (H◦,L(H), eH) 7→ (PH,L(H), ēH)

and for(U◦, U
−1) : (H◦,L(H), eH) → (K◦,L(K), eK),

Q : (U◦, U
−1) 7−→ (PU,U−1).

We writeemChu, bmChu for the subcategories ofeChu[0,1] andbChu[0,1] obtained by re-
stricting to Chu morphismsf for which f∗ is injective. The functorsR andQ factor through these
subcategories.

Proposition 3.13 R : SymmH → emChu andQ : emChu → bmChu are functors.R is
faithful but not full;Q is full but not faithful.

Proof We verify that ifU : H → K is semiunitary,RU is a well-defined morphism inemChu.
Firstly, we verify the Chu morphism condition. SinceU is semiunitary, forψ ∈ H◦ andS ∈ L(K):

PS(Uψ) = U(PU−1(S)ψ).

Indeed, ifU is unitary, let{ei} be an orthonormal basis forS. Then{U−1ei} is an orthonormal basis
for U−1S. Now

U(PU−1(S)ψ) = U(
∑

i〈ψ | U−1ei〉U
−1ei)

=
∑

i〈ψ | U−1ei〉ei

=
∑

i〈Uψ | ei〉ei

= PSUψ

where the third equation holds becauseU−1 = U †. A similar calculation holds ifU is antiunitary. In
this case, the inner product is commuted when we apply conjugate linearity in the second equation,
and commuted back in the third, since for an antiunitary we have

〈U−1ei | ψ〉 = 〈U−1ei | U
−1Uψ〉 = 〈Uψ | ei〉,

3Indeed, the Schrödinger equation can actually be recovered from this group via Stone’s Theorem [28].
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leading to the same result.
Moreover,U preserves norms, so‖Uψ‖ = ‖ψ‖. Now

〈PSUψ | PSUψ〉 = 〈U(PU−1(S)ψ) | U(PU−1(S)ψ)〉

= 〈PU−1(S)ψ | PU−1(S)ψ〉.

HenceeH(ψ,U−1(S)) = eK(Uψ,S), so(U◦, U
−1) is a Chu morphism. Finally,U is bijective, soU◦

is injective. �

We can analyze the non-fullness ofR more precisely as follows.

Proposition 3.14 Let (U◦, U
−1) : (H◦,L(H), eH) → (K◦,L(K), eK) be a Chu morphism in the

image ofR. Given an arbitrary functionf : H → C \ {0}, definefU : H◦ → K◦ by:

fU(ψ) = f(ψ)U(ψ).

Then(fU,U−1) ∼ (U◦, U
−1). Moreover, the∼-equivalence class ofU is exactly the set of functions

of this form.

Thus before biextensional collapse, Chu morphisms can introduce arbitrary scalar factors pointwise.
Once we move to the biextensional category, we know by Theorem 3.12 that our representation will
be full, and essentially faithful — up to a global phase. Thispoints to the need for a projective version
of the symmetry groupoid.

The mathematical object underlying phases is thecircle groupU(1):

U(1) = {λ ∈ C | |λ| = 1} = {eiθ | θ ∈ R}

Sinceλ has modulus 1 if and only ifλλ̄ = 1, U(1) is the unitary group on the one-dimensional Hilbert
space.

The circle group acts on the symmetry groupoidSymmH by scalar multiplication. For Hilbert
spacesH, K we can define

U(1) × SymmH(H,K) → SymmH(H,K) :: (λ,U) 7→ λU.

Moreover, this is a category action, meaning that

(λU) ◦ V = U ◦ (λV ) = λ(U ◦ V ).

It follows that we can form a quotient category (in fact againa groupoid) with the same objects as
SymmH, and in which the morphisms will be the orbits of this group action:

U ∼ V ⇔ ∃λ ∈ U(1). U = λV.

We call the resulting categoryPSymmH, theprojective quantum symmetry groupoid. It is a natural
generalization of the standard notion of theprojective unitary groupon Hilbert space. There is a
quotient functorP : SymmH → PSymmH, and by virtue of Theorem 3.12, we can factorQ ◦ R
through this quotient to obtain a functorPR : PSymmH → bmChu.

The situation can be summarized by the following diagram:

SymmH >
R

> emChu

PSymmH

P

∨∨
>

PR
>> bmChu

Q

∨∨

12



Theorem 3.15 The functorPR : PSymmH → bmChu is a representation.

Proof This follows from Theorem 3.12. To see thatPR is essentially injective on objects, we can
use the representation theorems of Piron and Solèr [30], which tell us that we can reconstructH as a
Hilbert space fromL(H). This reconstruction will give us a Hilbert spaceH′ such thatL(H) ∼= L(H′),
andP(H) ∼= P(H′). We can apply Wigner’s theorem to this isomorphism to obtaina semiunitary
U : H ∼= H′ from which we can recover the Hilbert space structure onH. This means that we have
recoveredH uniquely to within the coset ofidH in PSymmH. �

4 Reducing The Value Set

We now return to the issue of whether it is necessary to use thefull unit interval as the value set for
our Chu spaces.

We begin with some generalities. Given a functionv : K → L, we define a functorFv : ChuK →
ChuL:

Fv : (X,A, e) 7→ (X,A, v ◦ e)

andFvf = f for Chu morphismsf .

Proposition 4.1 Fv is a faithful functor. Ifv is injective, it is full.

Proof This is easily verified. The Chu morphism condition is preserved by composing with any
function on values, whileFv is evidently faithful. For fullness, note that the only values inL relevant
to whether a pair of functions

(f, g) : (X,A, v ◦ e) → (X ′, A′, v ◦ e′)

satisfies the Chu morphism condition are those in the ranges of v ◦ e andv ◦ e′, which if v is injective
are in bijection with those in the ranges ofe ande′. �

We can now state the question we wish to pose more precisely:

Is there a mappingv : [0, 1] → K from the unit interval to some finite setK such that
the restriction of the functorFv to the image ofPR is full, and thus the composition

Fv ◦ PR : PSymmH → bmChuK

is a representation?

There is nogeneralreason to suppose that this is possible; in fact, we shall show that it is, although
not quite in the obvious fashion.

We shall writen = {0, . . . , n − 1} for the finite ordinals. The most popular choice of value set
for Chu spaces, by far, has been2, and indeed many interesting categories can be strictly (and even
concretely) represented inChu2 [22]. This makes the following question natural:

Question 4.2 Is there a functionv : [0, 1] → 2 such thatFv ◦ PR is full and faithful?

What we can show is that the most plausible candidates for such functions, yielding the two
canonical forms ofpossibilistic semanticsas a coarse-graining of probabilistic semantics, both in fact
fail.
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Note that any functionv : [0, 1] → {0, 1} must lose information either on0 or on1 – or both. In
this sense, the two ‘sharpest’ mappings4 will be:

v0 : 0 7→ 0, (0, 1] 7→ 1 v1 : [0, 1) 7→ 0, 1 7→ 1.

These are the two canonical reductions of probabilistic to possibilistic information: the first maps
‘definitely not’ to ‘no’, and anything else to ‘yes’, which isto be read as ‘possibly yes’; the second
maps ‘definitely yes’ to ‘yes’, and anything else to ‘no’, to be read as ‘possibly no’. Note that, under
the first of these, Lemma 3.1 will no longer hold, while under the second, Lemma 3.6 will fail.

Proposition 4.3 For neitherv = v0 nor v = v1 is Fv ◦ PR full.

Proof Let H be a Hilbert space with2 < dimH < ∞, and let(g, σ) be any semilinear automor-
phism ofH, whereσ can be any automorphism of the complex field.5 For each of the above two
mappings of the unit interval to2, we shall construct aChu2 endomorphismf : Fv ◦ PR(H) →
Fv ◦ PR(H) with f∗ = P(g). This will show the non-fullness ofFv .

Case 1 Here we consider the mappingv1 which sends[0, 1) to 0 and fixes 1. In this case:

ēH(ψ̄, S) = 1 ⇐⇒ ψ ∈ S

and hence the Chu morphism condition on(f∗, f
∗), wheref∗ = P(g), is:

ψ ∈ f∗(S) ⇐⇒ g(ψ) ∈ S.

Takingf∗ = g−1 obviously fulfills this condition. Note that, sinceg is a semilinear automorphism,
andH is finite-dimensional,g−1 : L(H) → L(H) is well-defined.

Case 2 Now consider the mappingv0 keeping 0 fixed and sending(0, 1] to 1. In this case:

ēH(ψ̄, S) = 0 ⇐⇒ ψ⊥S

and hence the Chu morphism condition on(f∗, f
∗), wheref∗ = P(g), is:

ψ⊥ f∗(S) ⇐⇒ g(ψ)⊥S.

We definef∗(S) = g−1(S⊥)⊥. Note thatf∗ : L(H) → L(H) is well defined, and also thatg−1(S⊥)
is a subspace ofH; henceg−1(S⊥)⊥⊥ = g−1(S⊥). Now:

ēH(ψ̄, f∗S) = 0 ⇐⇒ ψ⊥ f∗S

⇐⇒ ψ ∈ g−1(S⊥)⊥⊥ = g−1(S⊥)

⇐⇒ g(ψ) ∈ S⊥

⇐⇒ g(ψ)⊥S

⇐⇒ ēH(f∗(ψ̄), S) = 0

and hence(f∗, f∗) is a Chu morphism as required. �

4We consider only functions which fix 0 and 1, to exclude irrelevant permutations and the trivial case of constant maps.
5We can extend the argument to infinite-dimensional Hilbert space by requiringg to be continuous.
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However, this negative result immediately suggests a remedy: to keep the interpretations ofboth
0 and 1 sharp. We can do this with three values! Namely, we definev : [0, 1] → 3 by

0 7→ 0, (0, 1) 7→ 2, 1 7→ 1

Thus we lose information only on the probabilities strictlybetween 0 and 1, which are lumped together
as ‘maybe’ — represented here, by arbitrary convention, by 2.

Why is this adequate? Given a vectorψ and a subspaceS, we can writeψ uniquely asθ+χ, where
θ ∈ S andχ ∈ S⊥. For non-zeroψ, there are only three possibilities:θ = 0 andχ 6= 0, which yields
eH(φ, S) = 0 by Lemma 3.6;θ 6= 0 andχ = 0 which yieldseH(φ, S) = 1 by Lemma 3.1; andθ 6= 0

andχ 6= 0, which yieldseH(ψ, S) ∈ (0, 1) by these Lemmas again, and hencev ◦ eH(ψ, S) = 2.
These are the only case discriminations which are used in ourresults leading to the Representation
Theorem 3.15. Hence we have:

Theorem 4.4 The functorFv ◦ PR : PSymmH → bmChu3 is a representation.

We note thatChu3 has found some uses in concurrency and verification [24, 14],under a temporal
interpretation: the three values are read as ‘before’, ‘during’ and ‘after’, whereas in our setting the
three values represent ‘definitely yes’, ‘definitely no’ and‘maybe’.

Theorem 4.4 may suggest some interesting uses for 3-valued ‘local logics’ in the sense of Jon
Barwise [3].

5 Discussion

We should understand Chu spaces as providing a very general (and, we might reasonably say, rather
simple) ‘logic of systems or structures’. Indeed, they havebeen proposed by Barwise and Seligman
as the vehicle for a general logic of ‘distributed systems’ and information flow [3]. This logic of Chu
spaces was in no way biassed in its conception towards the description of quantum mechanics or any
other kind of physical system. Just for this reason, it is interesting to see how much of quantum-
mechanical structure and concepts can be absorbed and essentially determinedby this more general
systems logic.

It might be argued that our representation of quantum systems as Chu spaces has already speci-
fied the essential ingredients of the quantum structure ‘by hand’. The conceptual significance of our
technical results is precisely to show that there is a non-trivial ‘capturing’ of quantum structure by the
general notions of Chu spaces:

• Firstly, Proposition 3.2 shows that the general Chu space notion of biextensionality subsumes
the standard identification of quantum states with rays in Hilbert space. This is scarcely surpris-
ing, but it is a first sign of the proper alignment of concepts.

• The main technical result of the present paper is the Representation Theorem 3.15. It is worth
spelling out the content of this in more elementary terms. Once we have represented our quan-
tum systems as biextensional Chu spaces(P(H),L(H), eH), all we have, from the viewpoint
‘inside’ the categoryChu[0,1], is a pair of sets and an evaluation function, with all information
about their provenance lost. A Chu morphism

(f∗, f
∗) : (P(H),L(H), eH) → (P(K),L(H), eK)

is given byanypair of set-theoretic functions(f∗, f∗) satisfying the Chu morphism condition:

ēH(ψ̄, f∗(S)) = ēK(f∗(ψ̄), S).
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The Representation Theorem says thatthe logic of this Chu morphism condition is strong
enough to guarantee that any such pair of functions must arise from a unitary or antiunitary
mapU : H → K on the underlying Hilbert spaces, with the sole proviso of injectivity off∗.6

Moreover,U is uniquely determined byf∗ up to a phase factor. Of course, we are using one
of the ‘big guns’ of the subject, Wigner’s Theorem, to establish this result. It is worth not-
ing, though, that there is some distance to travel between the Chu morphism condition and the
hypotheses of Wigner’s Theorem; and there are surprises along the way, most notably Propo-
sition 3.11, whichderivessurjectivity from the Chu morphism condition — whereas it must
invariably be added as a hypothesis to the many versions of Wigner’s Theorem.

• The results on reduction to finite value sets are also intriguing. Not only is the bare Chu con-
dition on morphisms sufficient to whittle them down to the semiunitaries, this is even the case
when the discriminations on which the condition is based arereduced to three values. The gen-
eral case for two values remains open, but we have shown that the two standard possibilistic
reductions bothfail to preserve fullness. A negative answer for two-valued semantics in gen-
eral would suggest an unexpected rôle for three-valued logic in the foundations of Quantum
Mechanics.

Where Next? Of course, the developments described in the present paper are only a first step. We
shall briefly discuss some of the natural continuations of these ideas, several of which are already in
progress.

• There are some interesting and surprising connections and contrasts between Chu spaces and
another important paradigm for categorical systems modelling, namelycoalgebra[26]. These
connections, which seem not to have been explored previously, arise both at the general level,
and also with specific reference to the representation of physical systems. We shall report on
this in a forthcoming sequel to the present paper.

• A natural next step as regards physical modelling is to considermixed states. There is a general
construction on Chu spaces which allows mixed states to be studied in a uniform fashion, ap-
plicable to both classical and quantum systems. Again, thiswill be described in a forthcoming
sequel to the present paper.

• It is also of interest to consideruniversalChu spaces; single systems in which all Chu spaces
of a given class can be embedded, and which therefore providea single model for a large
class of systems. We may additionally ask for such systems tobehomogeneous, which means
that they exhibit a maximum degree of symmetry; such universal, homogeneous spaces are
unique up to isomorphism. Universal homogeneous Chu spaceshave been constructed for
bifinite Chu spacesin recent work by Manfred Droste and Guo-Qiang Zhang [8]. That context
is too limited for our purposes here. It remains to be seen if universal homogeneous models
can be constructed for larger subcategories of Chu spaces, encompassing those involved in our
representation results.

• The relation of the rich logical and type-theoretic aspectsof Chu spaces to quantum and other
physical systems should also be investigated.

6The injectivity assumption onf∗ is annoying. It remains unclear if it necessary.
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