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Abstract: Within an intuitive diagrammatic calculus and corresponding high-
level category-theoretic algebraic description we axiomatise complementary ob-
servables for quantum systems described in finite dimensional Hilbert spaces,
and study their interaction. We also axiomatise the phase shifts relative to an
observable. The resulting graphical language is expressive enough to denote any
quantum physical state of an arbitrary number of qubits, and any processes
thereof. The rules for manipulating these result in very concise and straightfor-
ward computations with elementary quantum gates, translations between dis-
tinct quantum computational models, and simulations of quantum algorithms
such as the quantum Fourier transform. They enable the description of the in-
teraction between classical and quantum data in quantum informatic protocols.

More specifically, we rely on the previously established fact that in the sym-
metric monoidal category of Hilbert spaces and linear maps non-degenerate ob-
servables correspond to special commutative †-Frobenius algebras. This leads to
a generalisation of the notion of observable that extends to arbitrary †-symmetric
monoidal categories (†-SMC). We show that any observable in a †-SMC comes
with an abelian group of phases. We define complementarity of observables in
arbitrary †-SMCs and prove an elegant diagrammatic characterisation thereof.
We show that an important class of complementary observables give rise to a
Hopf-algebraic structure, and provide equivalent characterisations thereof.
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1. Introduction

In classical physics all observables are compatible, that is, they all admit sharp
values at the same time. In contrast, quantum observables are typically incom-
patible. Maximally incompatible observables are called complementary or unbi-
ased. Incompatible observables are usually identified by properties which they
they fail to obey, for example, in algebraic terms they do not commute and in
order-theoretic terms they yield non-distributivity. In this paper we will take
a more constructive stance and treat complementarity as a resource. We study
the capabilities a pair of complementary observables, and show how these capa-
bilities are exploited in quantum information and computation. Indeed, many
computations with elementary quantum gates turn out to crucially rely on the
capabilities of complementarity, and so do algorithms and protocols. For exam-
ple, we shall see in Section 6.1 that the fact that the composite of two ∧ Z-gates
is the identity boils down to the graphical derivation:

where the dotted area is a diagrammatic characterisation of complementarity.
We perform this study within the framework of †-symmetric monoidal cate-

gories. In a recent series of papers it was shown that many important features
of quantum theory are already present at this highly abstract level, and that
this abstract level suffices for important fragments of quantum informatic rea-
soning [1,8,37,11,13,14]. The main difference between this program and earlier
axiomatic accounts of quantum theory is that the primitive concept here is the
description of compound quantum systems, which we model by the monoidal
tensor, while most other approaches take the notion of observable as primitive.
In our approach observables are a definable concept, namely special commu-
tative †-Frobenius algebras [15,16], or in short, observable structures. Hence
complementarity will be a special relation between two observable structures.

An important feature of †-symmetric monoidal categories is that they admit
an intuitive diagrammatic calculus [33,23,37,38]. Within this graphical calculus,
each observable induces a normal form which makes them particularly easy to
reason with [29,11]. One typically refers to this result as the ‘spider’ theorem.

Different kinds of observables induce different equations over diagrams: com-
patible observables are characterised by homotopic transformations of diagrams,
reducing connected components to points, while complementary observables, as
we shall see in this paper, introduce changes in topology, characterised by dis-
connecting components. The following table shows the key examples of this be-
haviour, where the green components are defined in terms of one observable, and
the red components in terms of a complementary one:
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compatible (self-)interaction:

complementary interaction:

For both of the depicted interactions, complementarity yields two disconnected
components, while for compatible observables connectedness is preserved. This
topological distinction has very important implications for the capabilities of
complementary observables in quantum informatics. In particular, the discon-
nectedness in the case of complementary observables stands for the fact that
there is no flow of information from one component to the other, a dynamic
counterpart to the fact that knowledge of one observable in a pair of comple-
mentary observables doesn’t result in any knowledge of the other observable.
The definition and derivation of the above graphical laws is in Section 6.1.

Before arriving at the definition of complementarity, in Section 5 we provide
a category-theoretic account of an important related concept, namely the phase
relative to an observable. We show that each observable structure always comes
with an abelian group of phases. As this group of phases is defined in terms
of observable structure, it behave particularly well with respect to the normal
form theorem for diagrams involving observables. We refer to this result as the
‘decorated spider’ theorem. Together, the algebra of complementary observables
and the calculus of phases radically simplifies certain computations. For example,

HH
HH

α β γ

HH HHβ γα β γα= =

is an important computation in the context of measurement based quantum
computing [35], which in Hilbert space terms would involve computations with
32 × 32 matrices. This example provides a straightforward translation between
quantum computational models, transforming a measurement-based configura-
tion into a circuit. We provide several such quantum computational examples
throughout the paper and Section 9 is entirely devoted to them.

In Section 7 we identify a special kind of complementary observables, which
we refer to as closed. These include the complementary observables that are rel-
evant to quantum computing. We show that any pair of closed complementary
observables defines a Hopf-algebra, hence exposing an unexpected connection
between quantum computation and the area of Hopf algebras and quantum
groups [7,24,41]. We moreover provide further, equivalent, characterisations of
these closed complementary observables. All of these equivalent characterisa-
tions take the form of some sort of commutativity, be it either commutativity
of multiplication and a comultiplication, commutativity of a multiplication and
an operation, or commutativity of operations. These commutation properties
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present a remarkable contrast with the usual characterisation of incompatibility
as non-commutativity.

The observable structures were introduced under the name classical objects
[15] and then used under the name classical structures [13]. In those papers their
main use was somewhat different than in this paper. They were used to describe
classical data flows in quantum informatic protocols such as quantum telepor-
tation [5]. This unified treatment of classical and quantum data within a single
diagrammatic calculus is indeed an important achievement of our categorical
approach. In Section 9.6 we present a diagrammatic presentation of the quan-
tum teleportation protocol which combines the use of observable structures to
describe complementarity with their use as a representation of classical data.

Section 2 reviews the necessary category theoretic background, symmetric
monoidal †-categories and generalised scalars in particular, and diagrammatic
calculus for symmetric monoidal †-categories. The category-theoretic structures
employed in this paper have a long history, tracing back to Carboni and Walters’
Frobenius law [6], Kelly and Laplaza’s compact (closed) categories [25], and Joyal
and Street’s and Lack’s work on diagrammatic calculus [23,29]. Appendix A pro-
vides a more detailed account on internal comonoids in a †-symmetric monoidal
category. Section 3 reviews the quantum mechanical background, states, logic
gates, observables and unbiased observables in particular, as well as the basics of
categorical quantum mechanics, and the standard model of categorical quantum
mechanics, i.e. FdHilb. We also define the notions of state basis and coherent
unbiased basis for Hilbert spaces, and study these. These concepts play a key
role in this paper and to our knowledge have not appeared in the literature yet.

2. †-symmetric monoidal categories

Some tutorials with a focus on symmetric monoidal categories and correspond-
ing diagrammatic calculi intended for physicists are now available [3,4,12,38].
Specialised papers are [21,23,37]. A standard textbook is [30].

2.1. Symmetric monoidal categories.

A monoidal category (C,⊗, I), for details of which we refer the reader to [30,12],
is a category which comes with a bifunctor

−⊗− : C×C→ C ,

a unit object I, natural unit isomorphisms

λA : A ' I⊗A and ρA : A ' A⊗ I ,

and a natural associativity isomorphism

αA,B,C : A⊗ (B ⊗ C) ' (A⊗B)⊗ C ,

which are subject to certain coherence conditions. It is a symmetric monoidal
category if it also comes with a natural symmetry isomorphism

σA,B : A⊗B ' B ⊗A

again subject to some coherences. We refer to these four morphisms as the struc-
ture maps of a monoidal category.
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Definition 1. The morphisms of type I→ I in a monoidal category C are called
scalars. For c : I→ I a scalar we call the natural transformation{

c · 1A := λ−1
A ◦ (c⊗ 1A) ◦ λA : A→ A

∣∣ A ∈ |C|}
the scalar multiplication with scalar c. More explicitly, we can define

c · f := λ−1
B ◦ (c⊗ f) ◦ λA = f ◦ (c · 1A) = (c · 1B) ◦ f

to be the scalar multiplication of morphism f : A→ B with scalar c.

The scalars, in any monoidal category, form a commutative monoid [25]. From
the definition of scalar multiplication it follows that

(c · f) ◦ (c′ · g) = (c ◦ c′) · (f ◦ g) and (c · f)⊗ (c′ · g) = (c ◦ c′) · (f ⊗ g) .

Intuitively, in the language of symmetric monoidal categories, if a scalar appears
in the description of a morphism, it does not matter where it appears: its effect
is that of a global multiplier for the entire morphism.

2.2. The † functor.

Following [1,2,37] we augment symmetric monoidal categories with additional
structure that plays an essential role in the quantum mechanical formalism.

Definition 2. A †-symmetric monoidal category (†-SMC) is a symmetric monoidal
category equipped with an identity-on-objects contravariant endofunctor

(−)† : Cop → C

which coherently preserves the monoidal structure, that is,

(f ◦ g)† = g† ◦ f† 1†A = 1A f†† = f (f ⊗ g)† = f† ⊗ g†

together with the fact that the natural isomorphisms θ of the symmetric monoidal
structure are all unitary, that is, θ−1 = θ†.

The † functor provides an involution for the monoid of scalars.

Example 1. The category FdHilb, has finite dimensional Hilbert spaces as ob-
jects and linear maps as its morphisms. It is a †-SMC with the usual tensor
product as the monoidal structure, and the † functor is given by the adjoints of
linear algebra. The unit object for the monoidal structure is the field of complex
numbers C —which is a one-dimensional Hilbert space over itself— since

H⊗ C ' H ,

and the monoid of scalars is isomorphic to the monoid of the complex numbers
(C, ·, 1). Indeed, a linear map s : C → C is completely determined by s(1), due
to linearity, so there is a bijection

FdHilb(C,C)→ C :: s 7→ s(1) .

The involution for the monoid of scalars is complex conjugation.
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The internal structure of the state spaces is hidden—abstracted away—in this
categorical setting; the state spaces are effectively reduced to labels which deter-
mine when morphisms may be composed. However, in FdHilb and many other
important examples, the internal structure of the spaces may be reconstructed
via the structure of the morphisms into that space. In particular, any linear map
ψ : C → H is completely determined by ψ(1), due to linearity, hence there is a
bijection,

FdHilb(C,H)→ H :: ψ 7→ ψ(1).
We call the elements of FdHilb(C,H) the points of object H. To distinguish
between the linear map ψ and the vector ψ(1) we will denote the latter by |ψ〉.
Example 2. The category Rel which has sets as objects and relations as mor-
phisms is a †-SMC with the Cartesian product of sets as monoidal structure,
and the relational converse as the † functor. The unit object for the monoidal
structure is the singleton set {∗}, since

X × {∗} ' X
for any set X, and the monoid of scalars is now isomorphic to the Boolean
monoid (B,∧, 1), since there are only two relations r : {∗} → {∗}, namely
the empty relation and the identity relation. The involution for the monoid of
scalars is now trivial. We write FRel when restricting to finite sets. In this case
the points of an object X are not its elements but its subsets [12]. While at
first sight (F)Rel seems to have little to do with physics, it enables to encode a
surprising amount of quantum phenomena, e.g. Spekkens’ toy quantum theory
[40] can be embedded within it as a sub-†-SMC Spek [9].

2.3. Diagrammatic calculus.

Diagrammatic calculus for tensor categories traces back to Penrose [33]. The
first formal treatments are in [21,23]. We refer the reader in particular to [37]
and to the tutorials [4,12,38]. Also [27] is helpful.

Morphisms in †-SMCs are represented by boxes, domain types by input wires,
and codomain types by output wires. Composition is depicted by connecting
matching outputs and inputs by wires, and tensor by juxtaposing wires or boxes
side by side. Pictures are to be read from top to bottom. E.g.

1A f g ◦ f f ⊗ g f ⊗ 1C (f ⊗ g) ◦ h

f

C

g

A

f

D

gf

A

B CB

f

A

B

A

h

E

f

A

D

g

CA

A

C

We translate axioms of symmetric monoidal structure such as

A⊗ C
1A⊗g //

f⊗1C

��

A⊗D

f⊗1D

��

A⊗ C
σA,C //

f⊗g
��

C ⊗A

g⊗f
��

B ⊗ C
1B⊗g

// B ⊗D B ⊗D σB,D
// D ⊗B
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into the following diagrammatic equations:

= =
A C A C A C A C

B D B D D B D B

f

g f
g

f

fg

g

We are allowed to ‘slide’ boxes along the wires, and also along the crossings
which represent the symmetry natural isomorphism. The adjoint corresponds to
reflection of the picture in the horizontal axis:

f : A→ B f† : B → A

B A

BA
f f

where we made the box asymmetric, by introducing the white square, to expose
this reversal. Reversing twice leaves the box invariant, exposing the involutive
nature of the adjoint. The monoidal unit I is represented by ‘no wire’. For ex-
ample, in this paper you will encounter the following symbols:

ψ : I→ A ψ† : A→ I
√
D : I→ I

A

A

The identity on the monoidal unit 1I : I → I is represented by an ‘empty wire’
and hence an equation of the form s = 1I is depicted as:

s =
leaving the right-hand side empty.

3. Some concrete and generalised quantum theory

We restrict ourselves here to ingredients that play a role in this paper. In par-
ticular, all Hilbert spaces involved will be finite-dimensional.

3.1. Some Quantum Mechanics, von Neumann style.

Quantum mechanics postulates that a quantum system has states which live
within a complex Hilbert space. More precisely, states are unit vectors within
this space, and for reasons discussed below, two unit vectors which differ only
in terms of a scalar eiθ describe the same state. States correspond, therefore, to
one-dimensional subspaces, or rays. Somewhat abusively, we will denote the set
of rays in a Hilbert space H, which we refer to as the state space, by H itself. To
distinguish between states and vectors, we write ||ψ〉〉 to denote the unique state
containing the (non-zero) vector |ψ〉. Similarly, |

∑
i ci| vi 〉〉 is the state spanned
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by vector
∑
i ci| vi 〉. In quantum computation the state space of the elementary

computational unit is the qubit, that is, Q = C2 = C ⊕ C; the vectors of the
computational basis for the underlying vector space are written |0〉 , |1〉.

Quantum mechanics postulates that the joint state space of two systems with
state spaces H1 and H2 is the tensor product state space H1 ⊗H2.

Quantum mechanics postulates that the reversible operations that we can
apply to a quantum system with states H are the unitary maps U : H →
H, i.e. linear maps that preserve the inner product, or equivalently, in finite
dimensions, linear maps for which the adjoint is equal to the inverse. Typical
unitary operations, known as quantum logic gates in quantum computation,
include the Pauli X-gate, the Pauli Z-gate, the Hadamard gate, the controlled-X
gate and the controlled-Z gate, whose matrix forms respectively are:

X =
(

0 1
1 0

)
Z =

(
1 0
0 −1

)
H =

1√
2

(
1 1
1 −1

)

∧X =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ∧ Z =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


Quantum mechanics postulates that each observable quantity O for a quantum

system with states H corresponds to a self-adjoint operator Ô : H → H. Here we
will assume that Ô has a non-degenerate spectrum, that is, for each eigenvalue
λi the space of eigenvectors is one-dimensional, hence

Ô =
∑
i

λi |vi〉 〈vi|

where we assume eigenvectors vi to be of unit length, and we can speak of the
eigenstate ||vi〉〉 for an eigenvalue λi. If a quantum system is in state ||ψ〉〉 then
measuring O will result with probability

pi = |〈vi | ψ〉|2

in observing λi. Note here that for angle α, we have∣∣〈vi | eiαψ〉∣∣2 =
∣∣eiα〈vi | ψ〉∣∣2 = |〈vi | ψ〉|2 ;

hence the vectors
∣∣eiαψ〉 and |ψ〉 yield the same outcomes with the same prob-

ability for every possible measurement. Since there is no observable distinction
between

∣∣eiαψ〉 and |ψ〉, they define the same state ||eiαψ〉〉 = ||ψ〉〉.
Observation of λi is accompanied by a change of state,

||ψ〉〉 7→ ||vi〉〉 .

Note that the actual value of λi does not affect this change of state, nor does it
affect the probability pi. Therefore it makes sense to abstract over the values λi
and identify an observable by the set

{||v1〉〉, . . . , ||vn〉〉}
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of eigenstates of Ô. Below, by observable we intend such a set. We refer to a
corresponding orthonormal basis

{|v1〉 , . . . , |vn〉}

as a vector basis; cf. Definition 4 below. To summarise:

vector state vector basis observable
|ψ〉 ||ψ〉〉 {|v1〉 , . . . , |vn〉} {||v1〉〉, . . . , ||vn〉〉}

Definition 3. A vector |ψ〉 (or state ||ψ〉〉) is unbiased relative to vector basis
{|v1〉 , . . . , |vn〉} (or observable {||v1〉〉, . . . , ||vn〉〉}) if for all i, j we have

|〈vi | ψ〉| = |〈vj | ψ〉| ,

and two vector bases (or two observables) are mutually unbiased if each vector
(or state) in one of these vector bases (or observables) is unbiased relative to the
other vector basis (or observable).

When H = CD then we have |〈vi | ψ〉| = |〈vj | ψ〉| = 1/
√
D.

Example 3. A typical example of such observables are the spin observables of
the electron measured along the X and Z axes. The state space is C2 and the
corresponding self-adjoint operators are the Pauli X and Z matrices mentioned
above. The Z operator has |0〉 and |1〉 as eigenvectors and hence can be identified
by the observable {||0〉〉, ||1〉〉} while the X operator has

|+〉 =
1√
2

(|0〉+ |1〉) and |−〉 =
1√
2

(|0〉+ |1〉)

as eigenvectors and hence can be identified by the observable {||+〉〉, ||−〉〉}. One
easily sees that the Hadamard gate transforms the X-observable in the Z-observable
and vice versa. On the Bloch sphere an observable is a pair of antipodal points.
The X- and Z-observables can be represented:

where the green dots represent the eigenstates of the Z-observable and the red
dots represent the eigenstates of the X-observable.
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3.2. Bases for vectors vs. bases for states.

A vector basis of a Hilbert space is characterised by the following property:

Proposition 1. Let {|v1〉 , . . . , |vn〉} be any vector basis of a Hilbert space H.
Then, any linear map f : H → H′ is completely determined by the values f takes
on |v1〉 , . . . , |vn〉. Further, no proper subset {|v1〉 , . . . , |vn〉} suffices to determine
f .

Now, any regular linear map induces a map from states to states, namely

f̂ :: ||ψ〉〉 7→ |f(|ψ〉)〉

However, knowing the values that f̂ takes on an observable {||v1〉〉, . . . , ||vn〉〉}
does not suffice to fix f̂ itself. For example, define a family of linear maps

fθ =
(

1 0
0 eiθ

)
,

where the matrix is expressed in the vector basis {|0〉 , |1〉}. Every f̂θ leaves both
||0〉〉 and ||1〉〉 invariant, while

f̂(||+〉〉) = ||0〉+ eiθ|1〉〉 6= ||0〉+ eiθ
′
|1〉〉 = f̂θ′(||+〉〉)

whenever θ 6= θ′ for θ, θ′ ∈ [0, 2π). Is there an analogue to Proposition 1? Can f̂
be characterised by its image on some minimal set of states? The answer is yes:

Definition 4. We call a set of states of the form

observable ∪ {unbiased state for that observable} (1)

a state basis. We call the unbiased state the deleting point.

Proposition 2. Any map on states f̂ induced by a regular linear map f : H →
H′ is completely determined by the values it takes on a state basis for some
arbitrary observable. Moreover, no proper subset of such a set of states suffices
to determine f̂ .

Proof. Let f be a regular linear map, and let f̂ be the corresponding map of
states. Let {||v1〉〉, . . . , ||vn〉〉}∪{||s〉〉} form a state basis, and suppose that f̂ takes
known values upon these states. We will show this determines f on a vector basis
{|η1〉 , . . . , |ηn〉} of H, up to a common, overall phase.

Set |ηi〉 = 〈vi | s〉 |vi〉 and letH′′ be the subspace spanned by f(|η1〉), . . . , f(|ηn〉).
Since f is regular {f(|η1〉), . . . , f(|ηn〉)} is a basis for H′′, and let 〈− | −〉� denote
the inner-product on H′′ for which {f(|η1〉), . . . , f(|ηn〉)} is orthonormal. Then
the codomain restriction of f to (H′′, 〈− | −〉�) is unitary. Relying on this we
have

f(|ηi〉) = f(〈vi | s〉 |vi〉) = 〈vi | s〉f(|vi〉) = 〈f(|vi〉) | f(|s〉)〉� f(|vi〉) .

This expression is completely determined by f̂(||vi〉〉) and f̂(||s〉〉) up to a phase
factor contributed by f(|s〉), but this phase factor is the same for all f(|ηi〉).
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It now follows that, given an arbitary state ||ψ〉〉 = |
∑
i ci |ηi〉〉, we have

f̂(||ψ〉〉) = |f(|ψ〉)〉 = |f(
∑
i

ci |ηi〉)〉 = |
∑
i

cif(|ηi〉)〉 ,

where each f(|ηi〉) is determined upto the common phase. This phase is therefore
a global phase for the vector

∑
i cif(|ηi〉), hence f̂(||ψ〉〉) yields a unique state,

and so f̂ is well-defined on all states.
It is easily seen that no proper subset of {||v1〉〉, . . . , ||vn〉〉, ||s〉〉} is sufficient to

completely determine f̂ . 2

State bases and vector bases are related by the following proposition:

Proposition 3. Let S be the set of all state bases for H, let V be the set of all
vector bases for H, and let V/ ∼ be the set of equivalence classes [−]∼ in V for
the equivalence relation ‘equal up to an overall phase’ i.e.

{|v1〉 , . . . , |vn〉} ∼ {|w1〉 , . . . , |wn〉} ⇔ ∃θsuch that ∀j : |vj〉 = eiθ · |wj〉 .

There is a bijective correspondence

S
sv -- V/ ∼
vs

ll

where

– sv : {||v1〉〉, . . . , ||vn〉〉} ∪ {||s〉〉} 7→ [{〈v1 | s〉 |v1〉 , . . . , 〈vn | s〉 |vn〉}]∼
– vs : [{|v1〉 , . . . , |vn〉}]∼ 7→ {||v1〉〉, . . . , ||vn〉〉} ∪ {|

∑
i |vi〉〉}.

Proof. Note that sv is indeed well-defined in the sense that its prescription does
not depend on the choice of the respective vectors |v1〉 , . . . , |vn〉 , |s〉 in the states
||v1〉〉, . . . , ||vn〉〉, ||s〉〉. Also vs is easily seen to be well-defined. Verifying that these
maps are each other’s inverse is straightforward. 2

Example 4. On the Bloch sphere the deleting point lies on the equator for the an-
tipodal points that represent the observable. E.g. for the Z-observable {||ψ0〉〉, ||ψ1〉〉}
and the deleting point ||+〉〉 := ||0〉+ |1〉〉 we have:

so the observable and the deleting point together make up a T-shape. The choice
of the name ‘deleting point’ will become clear below.
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Given a vector basis, we can turn it into an observable by forgetting the
phases of each of the basis vectors, which we formalise by passing to equivalence
classes. To construct a vector basis from an observable, we have to choose a
phase for each basis element. This construction factors over the construction of
state bases as follows:

observable
choose deleting point ..

choose individual phases

**
state basis

forget deleting point
nn Prop. 3

choose overall phase
..
vector basis

forget overall phase

nn

forget individual phases

jj

3.3. Coherent bases.

Definition 5. We call two mutually unbiased vector bases (= MUVBs), V =
{|v1〉 , . . . , |vn〉} and W = {|w1〉 , . . . , |wn〉}, coherent iff

1√
n

∑
i

vi ∈ W and
1√
n

∑
i

wi ∈ V .

We call two mutually unbiased state bases (= MUSBs) coherent iff the deleting
point of each is contained in the observable of the other.

These notions of coherence coincide along the bijection of Proposition 3:

Proposition 4. If V and W are coherent MUVBs then vs([V]∼) and vs([W]∼)
are coherent MUSBs, and if S and T are coherent MUSBs then there exist
V ∈ sv(S) and W ∈ sv(T ) such that V and W are coherent MUVBs.

Proof. The first statement follows directly from the definition of vs. For coherent
MUSBs S = {||v1〉〉, . . . , ||vn〉〉, ||w1〉〉} and T = {||w1〉〉, . . . , ||wn〉〉, ||v1〉〉} for V ∈
sv(S) andW ∈ sv(T ) we have

∑
i V =

∑
i〈vi | w1〉 |vi〉 = |w1〉 and

∑
iW = |v1〉.

Hence we obtain coherence if 〈w1 | v1〉 |w1〉 = |w1〉 and 〈v1 | w1〉 |v1〉 = |v1〉, that
is, 〈v1 | w1〉 = 1. This can be realised by choosing an appropriate overall phase
for V relative to W. 2

Pairs of observables arise from a coherent bases:

Theorem 1. For each pair of MUVBs {|v1〉 , . . . , |vn〉} and {|w1〉 , . . . , |wn〉}
there exists a pair of coherent MUVBs {|v′1〉 , . . . , |v′n〉} and {|w′1〉 , . . . , |w′n〉} that
induces the same observables i.e. ||vi〉〉 = ||v′i〉〉 and ||wi〉〉 = ||w′i〉〉 for all i.

Proof. Given a pair of MUVBs forget all phases to obtain the corresponding pair
of induced observables. Then adjoin as a deleting point to each of these a state of
the other, in order to obtain coherent MUSBs. Now we can rely on Proposition
4 to obtain coherent MUVBs that induce the same observable as the initial one.
2
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3.4. Some quantum mechanics, categorically.

The categorical version of quantum mechanics has become an active area of
research, some of the key papers being [1,2,37,15]. Particularly relevant here
are [8,15,16,14,18,9]. This approach seeks to axiomatise the structural features
of the concrete physical theory and to extract the most general mathematical
environment in which quantum mechanics could be carried out. The required
environment is generally a †-SMC.

The objects of the category represent the systems (or entities) of the theory;
for example, in FdHilb the Hilbert spaces represent quantum systems, and the
two-dimensional Hilbert space represents the qubit. Tensors A⊗B represent the
joint system consisting of A and B. Morphisms are interpreted as operations (or
processes). In this paper all processes will be pure (or closed) – mixed (or open)
processes can be derived from these via Selinger’s CPM-construction [37].

The monoidal unit I, given that it satisfies A⊗I ∼= I⊗A ∼= A, is interpreted as
‘no system’. The points, that is, the morphisms of type I→ A, are the states of
system A. We can think of these also as preparation procedures. As demonstrated
in Example 1, in FdHilb these are the vectors of the corresponding Hilbert
space. But as discussed above, states of quantum systems are not vectors, but
equivalence classes of vectors, that is, rays. This problem can be overcome by
passing to the category FdHilbp which has the same objects as FdHilb but
whose morphisms are equivalence classes of FdHilb-morphisms, given by the
equivalence relation

f ∼ g ⇔ ∃c ∈ C \ {0} s.t. f = c · g.

In FdHilbp the states are now indeed the rays of the Hilbert space, together
with one point representing the zero vector. The points for the two-dimensional
Hilbert space in FdHilbp, that is, the set FdHilbp(C,C2), exactly correspond
with the points of the Bloch sphere. General morphisms correspond to the partial
maps from states to states induced by linear maps – cf. Section 3.2.

A point Ψ : I → A ⊗ B is a state of the compound system A ⊗ B, and this
state may or may not be entangled. If it is not entangled, then we have

Ψ = (ψA ⊗ ψB) ◦ λI ,

that is, the state Ψ factors in state ψA of system A and state ψB of system B.
It is entangled if such a factorisation does not exist. Additional structure of the
†-SMC can guarantee the existence of entangled states, and, for example, enable
derivation of teleportation-like protocols [1].

The morphisms of type I→ I can be interpreted as probability amplitudes. In
FdHilb they are the complex numbers, hence too many, and in FdHilbp there
are only two, hence too few. The solution consists of enriching FdHilbp with
probabilistic weights, i.e. to consider morphisms of the form r · f where r ∈ R+

and f a morphism in FdHilbp. Therefore, let FdHilbwp be the category whose
objects are those of FdHilb and whose morphisms are equivalence classes of
FdHilb-morphisms for the congruence

f ∼ g ⇔ ∃α ∈ [0, 2π) s.t. f = eiα · g.

A detailed categorical account on FdHilbwp is in [8].
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The three categories considered above are related via inclusions:

FdHilbp
��
⊂ - FdHilbwp

��
⊂ - FdHilb

The theorems proven in this paper apply to each of these.
Further, in any †-category, given any two points ψ, φ, the composition

ψ† ◦ φ : I→ A→ I

is a scalar. In FdHilb, (·)† is the usual linear algebraic adjoint, so ψ† ◦ φ is
the inner product 〈ψ | φ〉. On the other hand, in FdHilbwp it provides the
absolute value of the inner-product, of which the square accounts for transition
probabilities. The notion of unitarity in Definition 2 guarantees that this inner-
product is preserved. In the case of FdHilb this notion of unitarity coincides
with the usual one.

Example 5. The unitaries in FdHilbp(C,C2), i.e. those maps U satisfying

U ◦ U† = U† ◦ U = 1C2 ,

correspond to rotations of the Bloch sphere.

It is standard to interpret the eigenstates ||ψi〉〉 for an observable {||ψi〉〉}i
as classical data. Hence, in FdHilbwp, the operation δ of an observable struc-
ture copies the eigenstates ||ψi〉〉 of the observable it is associated with. We can
interpret the deleting point ||ε〉〉 as the state which uniformly deletes these eigen-
states: by unbiasedness the probabilistic distance of each eigenstate ||ψi〉〉 to ||ε〉〉
is equal. Therefore we will refer to δ as (classical) copying and to ε as (classical)
erasing. A crucial point here is that given an observable there is a choice involved
in picking ε.

4. Observable structures and their classical points

4.1. Observable structures.

An internal commutative monoid in an SMC is a triple

(A , m : A⊗A→ A , e : I→ A)

for which the multiplication m : A⊗A→ A is both associative and commutative
and it has e as its unit, that is, respectively,

m ◦ (m⊗ 1X) = m ◦ (1X ⊗m) m ◦ σA,A = m m ◦ (1X ⊗ ε) = 1X .

Dually, an internal commutative comonoid in an SMC is a triple

(A , δ : A→ A⊗A , ε : A→ I)

for which the comultiplication δ : A → A ⊗ A is both coassociative and cocom-
mutative and it has ε as its unit, that is, respectively,

(δ ⊗ 1X) ◦ δ = (1X ⊗ δ) ◦ δ σA,A ◦ δ = δ (1X ⊗ ε) ◦ δ = 1X .

Appendix A provides some additional background and intuitions on these con-
cepts. In a †-SMC each internal commutative monoid is also an internal com-
mutative comonoid, for δ := m† and ε := e†, and vice versa.
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Definition 6. [15] An observable structure in a †-SMC is an internal cocommu-
tative comonoid

(A , δ : A→ A⊗A , ε : A→ I )

for which δ is special and satisfies the Frobenius law, that is, respectively,

δ† ◦ δ = 1A and δ ◦ δ† = (δ† ⊗ 1A) ◦ (1A ⊗ δ).

Example 6. The unit object I canonically comes with observable structure

δI := λI : I ' I⊗ I and εI := 1I .

Example 7. In [15] it was observed that any orthonormal basis {|ψi〉}i for a
Hilbert space H induces an observable structure by considering the linear maps
that respectively ‘copy’ and ‘uniformly delete’ the basis vectors:

δ : H → H⊗H :: |ψi〉 7→ |ψi〉 ⊗ |ψi〉 and ε : H → C :: |ψi〉 7→ 1 . (2)

This observable structure is moreover ‘basis capturing’: we can recover the basis
vectors from which we constructed δ as the solutions to the equation

δ(|ψ〉) = |ψ〉 ⊗ |ψ〉 .

This also shows that the basis {|ψi〉}i is faithfully encoded in the linear map δ,
and that ε does not carry any additional data.

The following theorem characterises all observable structures in FdHilb.

Theorem 2. [16] All observable structures in FdHilb are of the form (2).

Hence, observable structures precisely axiomatise orthonormal bases; more specif-
ically, they characterise bases in terms of the tensor product only, without any
reference to the additive linear structure of the underlying vector spaces.

Example 8. Each observable structure in FdHilb induces one in FdHilbwp in
the obvious manner. But, in the light of Proposition 3, the correspondence in
FdHilb between observable structures and vector bases, becomes one between
observable structures and state basis in FdHilbwp. Note that

δ : H → H⊗H :: ||ψi〉〉 7→ ||ψi〉 ⊗ |ψi〉〉

does not define a unique δ anymore. In addition we need to specify that |
∑
i |ψi〉〉,

the deleting point of the state basis, provides the unit for the comultiplication:

δ†(−⊗ |
∑
i |ψi〉〉) = 1H .

Corollary 1. Observable structures in FdHilbwp are in bijective correspon-
dence with state bases via the correspondence outlined in example 8.
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Notation. Within graphical calculus for †-SMCs we depict δ and ε by

and ,

and their adjoints, δ† and ε† by

and .

In the graphical language the speciality equation and the Frobenius law are:

Example 9. The notion of observable structure also applies to non-standard quantum-
like theories. For example, it provides a generalised notion of basis for Spekkens’
toy theory [9], despite the lack of an underlying vector space structure.

4.2. Spider theorem.

When the monoidal structure is strict, something which is of course always
the case in graphical representation, observable structures obey the following
remarkable theorem [29,11] – similar results are known for concrete †-Frobenius
algebras, for example, for 2D topological quantum field theories, as well as in
more general categorical settings [27].

Theorem 3. Let δn : A→ A⊗n be defined by the recursion

δ0 = ε , δn = δ ◦ (δn−1 ⊗ 1A) .

If f : A⊗n → A⊗m is a morphism generated from the observable structure
(A, δ, ε), the symmetric monoidal structure maps, and the adjoints of all of these,
and if the graphical representation of f is connected, then we have

f = δm ◦ δ†n.

Hence, f only depends on the object A and the number of inputs and outputs.

We represent this morphism as an n+m-legged spider

.

Theorem 3 provides a formal justification for ‘fusing’ connected dots representing
δ, ε, δ† and ε† into a single dot:

.
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Otherwise put, ‘spiders’ admit the following composition rule:

.

i.e. when two spiders ‘shake hands’ they fuse into a single spider. There are some
special cases of spiders were we simplify notation:

.

Note also that, conversely, the axioms of observable structure are consequences of
this fusing principle, since the defining equations only involve connected pictures.

4.3. Induced compact structure.

Observable structures refine the †-compact structure which was used in [1,37],
provided the latter is self-dual. Such †-compact categories are the †-augmented
variant of Kelly’s compact categories [25].

Proposition 5. [13] Every observable structure is a self-dual †-compact struc-
ture, that is, a tuple (A, η : I→ A⊗A) for which we have

λ†A ◦ (η† ⊗ 1A) ◦ (1A ⊗ η) ◦ ρA = 1A and σA,A ◦ η = η .

Proof. It suffices to set η := δ ◦ ε†. The first equation then follows from the
Frobenius law together with the unit law for the comonoid. The second equation
follows by commutativity of the comonoid. 2

Graphically, the defining equations of self-dual compactness are

.

and these indeed straightforwardly follow from Theorem 3. We can now define
the transpose f∗ : B → A of a morphism f : A → B relative to observable
structures (A, δA, εA) and (B, δB , εB) to be the morphism

f∗ := (1A ⊗ η†B) ◦ (1A ⊗ f ⊗ 1B) ◦ (ηA ⊗ 1B) ,

where ηX := δX ◦ ε†X , and the conjugate f∗ : A → B of a morphism f : A → B
relative to observable structures (A, δA, εA) and (B, δB , εB) to be the morphism

f∗ := (1B ⊗ η†A) ◦ (1B ⊗ f† ⊗ 1A) ◦ (ηB ⊗ 1A) .
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Diagrammatically, f∗ and f∗ respectively are:

A

B

B

A

ff f

A

A

B

B

f

The green squares indicated the dependency of f∗ and f∗ on the observable
structures (A, δA, εA) and (B, δB , εB). We are following [37] when representing
the conjugate by reflection of the picture relative to a vertical mirror and the
transpose by a 180◦ rotation:

A A

BB
f f

B B

AA
f ff

f †

f
*

f *

which is consistent with the fact that f∗ = (f†)∗ = (f∗)†, or equivalently, f† =
(f∗)∗ = (f∗)∗. In FdHilb the linear function f∗ is obtained by conjugating the
entries of the matrix of f when expressed in the observable structure bases.

Remark 1. The compact structures induced by different observable structures
may or may not coincide [14]. For example, while compact structures induced
by the basis structures that copy the {|0〉 , |1〉} and {|+〉 , |−〉} coincide, this is
not the case anymore for the bases {|0〉 , |1〉} and {|0〉+ i |1〉 , |0〉 − i |1〉}. When
no confusion is possible we denote compact structure by:

Corollary 2. [15] If (A, δ, ε) is an observable structure then δ and ε are self-
conjugate, that is, δ∗ = δ and ε∗ = ε.

Proof. By Theorem 3 we have:

.

The first equality states that δ is self-conjugate and the second equality states
that ε is self-conjugate. 2
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Definition 7. Let A be an object in a †-SMC which comes with a observable
structure, and hence an induced compact structure (A, η). The dimension of A
is dim(A) := η† ◦ η, represented graphically by a circle:

Lemma 1. Dimension is independent of the choice of observable structure.

Proof. We will depict two distinct observable structures in green and red respec-
tively. Then, repeatedly relying on compactness we have

so the circles induced by the two observable structures coincide. 2

4.4. Classical points and generalised bases.

We now provide a category-theoretic counterpart to the role played by basis
vectors/states in FdHilb and FdHilbwp.

Definition 8. Given an observable structure (A, δ, ε), a morphism z : I → A is
a classical point iff it is a self-conjugate comonoid homomorphism.

Graphically, the defining equations for classical points become:

z z z z z z

Proposition 6. Classical points are normalised.

Proof. Since each classical point z : I→ A is self-conjugate its adjoint z† : A→ I
and its transpose z∗ : A→ I coincide. Hence we have:

z

z

z z
z

z

that is, z† ◦ z = 1I. 2
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Example 10. In FdHilb the classical points for an observable structure are ex-
actly the basis vectors {|v1〉 , . . . , |vn〉} and in FdHilbwp they constitute the
corresponding observable {||v1〉〉, . . . , ||vn〉〉}. Hence, while in FdHilb the classi-
cal points completely determine an observable structure, this is not the case in
FdHilbwp, where it is the classical points together with a deleting point that
determine an observable structure.

The following is a category-theoretic generalisation of a notion of basis, either
in the sense of Proposition 1 or in the sense of Proposition 2, which respectively
applies to the categories FdHilb and FdHilbwp.

Definition 9. An observable structure (A, δ, ε) with classical points B is called
a vector basis iff for all objects B and all morphisms f, g : A→ B we have[

∀z ∈ B : f ◦ z = g ◦ z
]
⇒ f = g .

It is called a state basis iff for all B and all f, g : A→ B we have[
∀z ∈ B ∪ {ε†} : f ◦ z = g ◦ z

]
⇒ f = g .

Proposition 7. Two observable structures (A, δA, εA) and (B, δB , εB) canoni-
cally induce an observable structure on A⊗B with

δA⊗B = (1A ⊗ σA,B ⊗ 1B) ◦ (δA ⊗ δB) i.e. A B

and
εA⊗B = εA ⊗ εB i.e. A B .

Moreover, if a is a classical point for (A, δA, εA) and b is a classical point for
(B, δB , εB) then a⊗ b is a classical point for (A⊗B, δA⊗B , εA⊗B).

Proof. Straightforward verification of Definitions 6 and 8. 2

Definition 10. We say that the monoidal tensor lifts vector bases iff for all
vector bases (A, δA, εA) with classical points B and (B, δB , εB) with classical
points B′, all objects C, and all morphisms f, g : A⊗B → C, we have that[

∀(z, z′) ∈ B × B′ : f ◦ (z ⊗ z′) = g ◦ (z ⊗ z′)
]
⇒ f = g

– hence it follows that the observable structure (A⊗B, δA⊗B , εA⊗B) is also vector
basis. Similarly, the monoidal tensor lifts state bases iff[

∀(z, z′) ∈ (B × B′) ∪ {(ε†A, ε
†
B)} : f ◦ (z ⊗ z′) = g ◦ (z ⊗ z′)

]
⇒ f = g .

– hence it follows that (A⊗B, δA⊗B , εA⊗B) is also state basis.

Since observable structures induce compact structures we have the following.

Proposition 8. Monoidal tensors always lift vector bases and state bases.

Proof. If f ◦(z⊗z′) = g◦(z⊗z′) then (f ◦(1A⊗z′)◦ρA)◦z = (g◦(1A⊗z′)◦ρA)◦z
so f ◦ (1A ⊗ z′) ◦ ρA = g ◦ (1A ⊗ z′) ◦ ρA since (A, δA, εA) is a vector/state basis,
hence f ◦ (1A ⊗ z′) = g ◦ (1A ⊗ z′), and hence (1A ⊗ f) ◦ (ηA ⊗ 1B) ◦ λB ◦ z′ =
(1A ⊗ g) ◦ (ηA ⊗ 1B) ◦ λB ◦ z′ with ηA = δA ◦ ε†A. So (1A ⊗ f) ◦ (ηA ⊗ 1B) ◦ λB =
(1A ⊗ g) ◦ (ηA ⊗ 1B) ◦ λB since (B, δB , εB) is a vector/state basis, and hence
f = g follows by compactness. 2
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5. Phase shifts and a generalised spider theorem

In the preceding section we saw that observable structures correspond to bases
of our state space; now we introduce an abstract notion of phase relative to a
given basis, and generalise Theorem 3 to incorporate such phase shifts.

5.1. A monoid structure on points.

Definition 11. Let (A, δ, ε) be an observable structure in a †-SMC C and let
C(I, A) be the underlying set of points. We define a multiplication on points

−�− : C(I, A)×C(I, A)→ C(I, A)

by setting, for all points ψ, φ ∈ C(I, A),

ψ � φ := δ† ◦ (ψ ⊗ φ) i.e. .

Notation. We use an asymmetric depiction of these points to indicate that they
need not be self-conjugate.

Proposition 9. (C(I, A),�, ε†, (−)∗) is an involutive commutative monoid.

Proof. Associativity, commutativity, and that ε† is the monoid’s unit, i.e.:

θ
θ

follow immediately from internal monoid laws for (A, δ†, ε†). 2

As well as giving an involutive commutative monoid on the points of A, we can
use δ† to lift this monoid up to the endomorphisms of A.

Definition 12. For (A, δ, ε) an observable structure in a †-SMC C let

Λ : C(I, A)→ C(A,A)

be defined by setting, for each point ψ ∈ C(I, A),

Λ(ψ) = δ† ◦ (ψ ⊗ 1A) i.e. ,

and we denote the range of Λ by Λ(A,A).
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Proposition 10. The map Λ is an isomorphism of involutive commutative monoids:(
C(I, A),�, ε†, (−)∗

)
'
(
Λ(A,A), ◦, 1A, (−)†

)
.

that is, explicitly:

Λ(ψ � φ) = Λ(ψ) ◦ Λ(φ) Λ(ε†) = 1A Λ(ψ∗) = Λ(ψ)†,

and hence commutativity is inherited:

Λ(ψ) ◦ Λ(φ) = Λ(ψ � φ) = Λ(φ) ◦ Λ(ψ) i.e. .

Proof. Preservation of monoid multiplication and unit follow directly from the
unit and commutativity law of the internal monoid. By Theorem 3 we have:

that is, conjugation of points is mapped to the adjoint of endomorphisms. 2

Note that the notation of endomorphisms in Λ(A,A) is invariant under 180◦
rotations. This is justified by the following proposition.

Proposition 11. Each Λ(ψ) ∈ Λ(A,A) is equal to its transpose.

Proof. By Corollary 2 we have that δ is self-conjugate so it follows that Λ(ψ)∗ =
Λ(ψ∗), which is equal to Λ(ψ)† by Proposition 10. Conjugating Λ(ψ)∗ = Λ(ψ)†
yields the desired result. This again could also be directly seen in graphical terms
by relying on Theorem 3. 2

Proposition 12. The endomorphisms in Λ(A,A) obey

Λ(ψ)◦δ† = δ†◦(1A⊗Λ(ψ)) = δ†◦(Λ(ψ)⊗1A) i.e. .

Proof. As a consequence of Theorem 3 all three diagrams normalise to:

so they are indeed all equal. 2

The following proposition shows that the inner-product structure on points is
subsumed by the commutative involutive monoid structure on points.
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Proposition 13. For points ψ, φ : I → A in C we have:

〈φ|ψ〉 := φ† ◦ ψ = ε ◦ (φ∗ � ψ) .

Proof. Unfolding the definition of the conjugate yields:

*

which completes the proof. 2

5.2. The generalised spider theorem.

Theorem 4. Let f : A⊗n → A⊗m be a morphism generated from the observable
structure (A, δ, ε), the symmetric monoidal structure maps, their adjoints, and
points ψi : I → A (not necessarily all distinct). If the graphical representation
of f is connected then

f = δm ◦ Λ
(⊙

i

ψi

)
◦ δ†n i.e.

where

δn := (δ ⊗ 1X⊗n−2) ◦ (δ ⊗ 1X⊗n−3) ◦ ... ◦ (δ ⊗ 1X) ◦ δ i.e. .

Proof. If neither δ nor δ† occurs in f , then result is trivial. Otherwise, all points ψ
occurring in f may be lifted to Λ(ψ); by virtue of Proposition 12, these commute
freely with the observable structure, hence can all be collected together. The
result now follows by applying Theorem 3. 2

Theorem 4 is a strict generalisation of Theorem 3: diagrams with equal numbers
of inputs and outputs are equal whenever the product of points occurring in
them is equal. The theorem gives a specific normal form to which this entire
class of diagrams is equal; this justifies the use of a single simplified diagram to
represent the whole class: the decorated spider.
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In graphical terms, Theorem 4 allows arbitrary diagrams constructed from the
same observable structure to ‘fuse’ together provided we ‘multiply decorations’.
Otherwise put, ‘decorated spiders’ admit the following composition rule:

.

i.e. when two decorated spiders ‘shake hands’ they fuse into a single spider and
their ‘decorations’ are multiplied.

5.3. Unbiased points.

Example 11. Let (δ, ε) be the observable structure corresponding to the standard
basis of Cn, and consider |ψ〉 =

∑
i ci| i 〉. When written in the basis fixed by

(δ, ε), Λ(ψ) consists of the diagonal n×n matrix with c1, . . . , cn on the diagonal.
Hence, Λ(ψ) is unitary, upto a normalisation factor, if and only if ||ψ〉〉 is unbiased
for {||1〉〉, . . . , ||n〉〉}. This fact admits generalisation to arbitrary †-SMCs.

Definition 13. We call a point α : I → A unbiased relative to (A, δ, ε) if there
exists a scalar s : I→ I such that:

s · α� α∗ = ε† i.e.
αα

s .

Example 12. Since the point ε† satisfies this definition due to the spider theorem,
every observable structure has at least one unbiased point.

Lemma 2. If an unbiased point α is normalised, i.e. α† ◦ α = 1I , then the
scalar s in the above definition is equal to D = dimA. Hence, if on the other
hand |α|2 := α† ◦ α = D then this scalar is 1I.

Proof. We have:

α α α

α
s s s

where we relied on Proposition 13. 2

The expression α � α∗ denotes ‘convolution’ of α with itself; since the point
ε† represents the uniform distribution over the basis defining δ, this definition
indeed captures the usual understanding of what it means for a vector to be
unbiased with respect to a basis. The following shows that this is exactly correct.

Lemma 3. Let α, z : I → A be points of A such that α is unbiased and nor-
malised, and z is classical, for (A, δ, ε); then

D · |〈z|α〉|2 := D · (z† ◦ α) · (α† ◦ z) = 1I i.e.
α

α
z

z
.
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Proof. We have:

α
α α α

α α
z

z z z z z

where we used the adjoint to the unbiasedness law. 2

Since we operate in an arbitrary †-SMC, the scalars form a commutative monoid
rather than a group; to retrieve the usual definition of unbiasedness,

|〈z | α〉| = 1√
dimA

,

we simply divide.

5.4. The phase group.

Proposition 14. A point α of length |α|2 = D is unbiased iff Λ(α) is unitary.

Proof. Due the commutativity property of Λ in Proposition 10 we need check
only one equation to show that Λ(α) is unitary, namely,

Λ(α) ◦ Λ(α)† = 1A i.e.
α
α

.

Suppose that α is unbiased; then by the spider theorem we have

αα
α
α

,

as required. The other direction of the proof is essentially the same. 2

Since unitary maps are invertible, they form a group, and this group structure
transfers back onto the unbiased points.

Theorem 5. If in the isomorphism of involutive commutative monoids of Propo-
sition 10 we restrict ourselves to unbiased points relative to the observable struc-
ture of length |α|2 = D, and unitary endomorphisms, then we obtain an isomor-
phism of abelian groups, with the involution as the inverse.

Proof. This immediately follows from Proposition 14 and the fact that for a
unitary morphism the adjoint is the inverse. 2

Definition 14. The abelian group of endomorphisms of Theorem 5 is called the
phase group, and its elements are called phase shifts.
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Remark 2. We chose length |α|2 = D since this results in the inverse taking a
simple form. However, fixing another length would also have given us an abelian
group structure.

Example 13. In C2, the phase shifts of the observable structure {||0〉〉, ||1〉〉, ||+〉〉}
(cf. Proposition 1) are obtained by rotating along the equator of the Bloch
sphere:

α
.

The states which are unbiased relative to {||0〉〉, ||1〉〉} are of the form ||+θ〉〉 :=
||0〉 + eiθ|1〉〉, and so form a family parameterised by a phase θ. In particular,
we have ||+θ1〉〉 � ||+θ2〉〉 = ||+θ1+θ2〉〉, that is, the operation � is simply addition
modulo 2π, which is an abelian group with minus as inverse.

Example 14. Phase groups can provide an algebraic witness for physical differ-
ences between theories. For example, as shown in [10], the toy model category
Spek (cf. Example 2) and the category Stab (a restriction of FdHilb to the
qubit stabilizer states) are essentially the same except for the phase groups of
their respective qubits. In the case of Spek the phase group is the Klein four
group Z2×Z2, while for Stab the phase group is the cyclic four group Z4. This
difference in phase groups is closely connected to the fact that while states in
Spek always admit a local hidden variable representation, in Stab there are
states which don’t, namely the GHZ state [31].

Using the ‘decorated spider notation’ justified by Theorem 4, we can set

α :=
(
Λ(α)⊗ Λ(α)

)
◦ δ ◦ Λ(α)† and α := ε ◦ Λ(α)†,

and for α unbiased relative to (A, δ, ε), again by the generalised spider theorem,
it follows that these morphisms define an observable structure. Hence elements
of the phase group define an observable structure.

5.5. Example: state transfer.

Referring to eq.(2), we define a particular observable structure (C2, δZ , εZ), for
the specific case of a qubit C2 in FdHilb, namely

δZ : |i〉 7→ |ii〉 , εZ : |0〉+ |1〉 7→ 1 .

Its classical points are {|0〉 , |1〉}. As mentioned above, the unbiased points for
(C2, δZ , εZ) are of the form |αZ〉 = |0〉+ eiα |1〉, and |αZ〉 �Z |βZ〉 = |(α+ β)Z〉,
hence the group of unbiased points is isomorphic to the interval [0, 2π) under
addition modulo 2π. Direct calculation verifies that

ΛZ(α) =
(

1 0
0 eiα

)
,
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and in particular, ΛZ(π) = Z. We will use (C2, δZ , εZ) to study some protocols.
Assume that we have two qubits, one in an unknown state and one in the |+〉

state. We want to transfer the unknown state from the first qubit to the second.
To simplify the discussion we condition on measurements outcomes, hence we
can consider arbitrary projections. Our claim is that this can be done by means
of two projections. Consider:

We claim that this is a projector. Idempotence, that is

,

follows by the spider theorem, and self-adjointness follows by the fact that its
picture is invariant under reflection. The reader may check these graphical com-
putations by numerical ones, given that

=

1 0
0 0
0 0
0 1

 ◦ ( 1 0 0 0
0 0 0 1

)
=

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


in the {|00〉, |01〉, |10〉, |11〉} basis. We propose the following protocol:

measurement bra

measurement projector

ket

which, by the spider theorem, indeed provides the desired transfer:

((
1 1
)
⊗
(

1 0
0 1

)) 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

(( 1 0
0 1

)
⊗
(

1
1

))
= =

(
1 0
0 1

)
.

So in the graphical calculus the whole matrix computation becomes a trivial,
one-step application of the spider theorem. Now, in addition to the transfer, we
also would like to at the same time apply a phase gate to the qubit we start
from. From the decorated spider theorem we can conclude that

measurement bra α
α =

(
1 0
0 eiα

)

indeed does the job. This protocol was introduced in [34] in order to reduce the
required resources in measurement based quantum computing.
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6. Complementarity ≡ Hopf law

6.1. The case of coinciding compact structures.

Definition 15. Two observable structures (A, δZ , εZ) and (A, δX , εX) in a †-
SMC are called complementary if they obey the following rules:

comp1 whenever z : I → A is classical for (δZ , εZ) it is unbiased for (δX , εX);
comp2 whenever x : I → A is classical for (δX , εX) it is unbiased for (δZ , εZ);

We abbreviate complementary observable structure as COS.

Notation. Graphically we distinguish two distinct observable structures in terms
of their colour. To emphasise that classical points are copied by an observable
structure of one colour, say green, while unbiased with respect to an observable
structure of another colour, say red, we denote them by:

z

that is, the outside colour indicates which observable structure copies this point,
while the inner colour shows to which observable structure the point is unbiased.
The fact that we denote these points in a manner which is invariant under
conjugation is a consequence of the fact that in this section we will assume that
the compact structures induced by the two COSs coincide, i.e.:

δZ ◦ ε†Z = δX ◦ ε†X i.e.

It then follows that classical points of one colour are not only self-conjugate for
‘their own colour’ (cf. Corollary 2), but also self-conjugate for ‘the other colour’:

Proposition 15. If (A, δZ , εZ) and (A, δX , εX) are two observable structures for
which the induced compact structures ηZ := δZ ◦ ε†Z and ηX := δX ◦ ε†X coincide,
then for classical points z : I → A of (δZ , εZ) and x : I → A of (δX , εX) we have

z = (z† ⊗ 1A) ◦ ηX and x = (x† ⊗ 1A) ◦ ηZ ,

which we can depict graphically as:

z z x x .

As mentioned in Remark 1 this is not the case in general, but all our results can
be easily adjusted; we discuss the general case in Section 6.3.

The comonoid homomorphism laws governing classical points become:

z z z z x x x x

and the mutual unbiasedness conditions become:

zz xx
.
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Theorem 6. Let (A, δZ , εZ) and (A, δX , εX) be two observable structures of which
the induced compact structures coincide. If these observable structures obey a
‘scaled Hopf law with trivial antipode’, namely

D · δX ◦ δ†Z = ε†X ◦ εZ i.e. ,

then they are complementary observable structures.

Proof. We have to show that comp1 and comp2 of Definition 15 hold. We do
this graphically for comp1:

z z

z z

and the same argument holds for comp2 subject to exchanging the colours. 2

The converse to Theorem 6 also holds if one of the observable structures involved
is either a vector or state basis – cf. Definition 9.

Theorem 7. If (A, δZ , εZ) and (A, δX , εX) are COSs, and if at least one of these
is either a vector basis or a state basis, then the Hopf law of Theorem 6 holds.

Proof. We need to show that when applying the left-hand side and the right-
hand side of the Hopf law to an element of the basis that both sides are equal,
for all the elements of the basis. For the case of a vector basis we have:

z

z z

z

and for the case of a state basis we moreover have:

where the first equation relies on coinciding compact structures. 2
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6.2. Example: the controlled not gate.

We take the ‘green’ observable structure (δZ , εZ) as in the example in Section
5.5, and define a complementary ‘red’ observable structure (δX , εX) setting

δX :
{
|+〉 7→ |++〉
|−〉 7→ |−−〉 εX :

√
2 |0〉 7→ 1 .

Its classical points are {|+〉 , |−〉} and its unbiased points have the form

|αX〉 =
√

2(cos
α

2
|0〉+ sin

α

2
|1〉) , and ΛX(α) =

(
cos α2 i sin α

2
i sin α

2 cos α2

)
,

in particular, ΛX(π) = X. On the Bloch sphere we have:

α

α
.

We have Z ◦ |αX〉 = |−αX〉, and, upto a global phase, X ◦ |αZ〉 = |−αZ〉.
We claim that we now have enough expressive power to write down any

arbitrary linear map from n qubits to m qubits. In the example in Section 5.5
we showed that we can express arbitrary one-qubit phase gates by relying on the
phase group structure. Combining both the ‘green’ and the ‘red’ phases allows
us to write down any arbitrary one-qubit unitary in terms of its Euler-angle
decompositions on the Bloch sphere:

ΛZ(γ) ◦ ΛX(β) ◦ ΛZ(α) =
α

γ
β .

Moreover, the pair of complementary observables also allows us to graphically
denote the controlled not gate ∧X. One verifies by concrete calculation that: 1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

 = .

But we can also give a purely abstract proof. Let |z〉 be a classical point for
the green observable structure (δZ , εZ). Since (δZ , εZ) and the red observable
structure (δX , εX) are complementary, |z〉 is an unbiased point for (δX , εX). So
z can be represented by certain special ‘angles’ of the phase group of (δX , εX). In
the case of the qubit these are the angles 0 and π respectively, since |0〉 = |0X〉
and |1〉 = |πX〉. Graphically we denote |0X〉 and |πX〉 respectively as:

0 π .
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When evaluating ∧X with an input to its control qubit (the green end), by first
relying on the fact that |z〉 is copied by the green observable structure and then
that it is unbiased for the red one we obtain:

z

z
z

z
z ,

where for z = 0 we have ΛX(0) = identity, while for z = π we have ΛX(π) = X.
We now compose this gate with itself: 1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

 ◦
 1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

 = .

Hence the Hopf law, which stands for complementarity, plays a key role in this
computation, from which it also follows that ∧X is indeed unitary.

With a ∧X gate and arbitrary one qubit unitaries at our disposal we can
now depict arbitrary n-qubit unitaries. Hence, we can also depict arbitrary n-
qubit states as the image of any n-qubit state—for example ε†X ⊗ . . .⊗ ε

†
X—by a

well-chosen unitary. Finally, compact structure allows us to obtain any arbitrary
linear map from n qubits to m qubits from some n + m qubit state by relying
on the compact structure, which realises map-state duality.

The quantum teleportation protocol, including classical communication, also
crucially relies on the Hopf law. We defer this example until in Section 9.6.

6.3. The general case: dualisers as antipodes.

The results of this section still hold when the compact structures induced by the
two COSs do coincide, provided we extend the observable structures formalism
with dualisers, as described in [14] by Paquette, Perdrix and one of the authors.

Definition 16. The dualiser of two distinct observable structures (A, δZ , εZ)
and (A, δX , εX) on the same object A is

dZX = ((ε†Z ◦ δZ)⊗ 1A) ◦ (1A ⊗ (εX ◦ δ†X)) i.e. .

Remark 3. If the induced compact structures of the two observable structures
on A happen to coincide then their dualiser is 1A, hence trivial. More generally,
the dualiser is easily seen to always be unitary, by compactness.

Lemma 4. For observable structures (A, δZ , εZ) and (A, δX , εX) we have

(dXZ ⊗ 1A) ◦ δX ◦ ε†X = δZ ◦ ε†Z i.e. ,

and the equation obtained by exchanging the colours also holds.
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Proof. Straightforward by compactness. 2

Remark 4. Lemma 4 together with unitarity of the dualiser provides a more
concise proof of the fact that dimension does not depend on observable structure.

Lemma 5. Let z : I→ A be a classical point for observable structure (A, δZ , εZ)
and let (A, δX , εX) be another observable structure. Then the point

dZX ◦ z : I→ A i.e. z

is the conjugate to z for the compact structure induced by (A, δX , εX).

Proof. The (A, ηX)-conjugate to dZX ◦ z is, using Lemma 4,

z z

z

since the (A, ηZ)-transpose to z is also its adjoint. 2

Theorem 8. If two observable structures obey

D · δX ◦ (dZX ⊗ 1A) ◦ δ†Z = ε†X ◦ εZ i.e. ,

to which we refer as the ‘scaled Hopf law with the dualiser as the antipode’,
then they are complementary observable structures. Conversely, if (A, δZ , εZ)
and (A, δX , εX) are COSs, and if at least one of these is either a vector basis or
a state basis, then the Hopf law depicted above holds.

Proof. Lemma 4 and Lemma 5 straightforwardly allow to adjust the proofs of
Theorem 6 and Theorem 7 to this more general situation. 2

7. Closed complementary observable structures

In this section we study a special case of complementary observables, to which
we refer as closed. The main theorem of this section provides a number of equiv-
alent characterisations of these. Again, for the sake of conciseness and clarity,
we assume that the compact structures induced by the observable structures
coincide. In Subsection 7.5 we briefly discuss the general case.
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7.1. Coherence for observable structures.

In this section we provide a category-theoretic generalisation of coherence for
mutually unbiased vector and state bases of Definition 5 above. First we set:

and denote this scalar by
√
D for reasons we explain below.

Lemma 6. If (A, δZ , εZ) and (A, δX , εX) are two observable structures for which
the induced compact structures coincide then we have:

√
D
†

=
√
D i.e. .

Proof. By Corollary 2 we know that εZ are εX are both self-conjugate, that is,
εZ is self-conjugate for the compact structure induced by (A, δZ , εZ) and εX is
self-conjugate for the compact structure induced by (A, δX , εX). Hence:

so the result follows by the fact that the dualiser is trivial when the induced
compact structures coincide. 2

We now explain our choice of the notation
√
D for , which translates as

=
√
D ·
√
D = D = ,

so by Lemma 6 we have

= = . (3)

Since the ‘length’ of both ε†Z and ε†X is
√
D—cf. Lemma 3—i.e.

= = ,

eq.(3) states that ε†Z and ε†X are unbiased, which is a natural requirement for a
pair of COSs. It moreover follows from coherence of complementary observables
as we show below in Proposition 16.

Definition 17. Two observable structures (A, δZ , εZ) and (A, δX , εX) in a †-
SMC are called coherent if they obey the following two rules:
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coher1 εX satisfies:

√
D · δZ ◦ ε†X = ε†X ⊗ ε

†
X i.e.

coher2 εZ satisfies:

√
D · δX ◦ ε†Z = ε†Z ⊗ ε

†
Z i.e.

Remark 5. The condition coher1 in Definition 17 states that ε†X differs from
a classical point of (A, δZ , εZ) by a scalar factor of

√
D. The choice of

√
D =

(ε†Z ◦ ε
†
X) for this scalar is not arbitrary but is imposed by the fact that εZ is

the unit for the comultiplication δZ . To see this, it suffices to post-compose both
sides of coher1 with εZ ⊗ εX , which results in:

?
? .

Dually, condition coher2 asserts the same relationship between ε†Z and (A, δX , εX).

Proposition 16. For coherent observable structures on A we have:

√
D ·
√
D = D = dim(A) i.e. .

Proof. We have:

where in the last step we relied on coinciding compact structures. 2

Example 15. For the case of FdHilb and FdHilbwp this category-theoretic no-
tion of coherence coincides with the one defined in Definition 5. For these cases
Theorem 1 tells us that we don’t loose generality by requiring that COSs are
coherent.

7.2. Commutation for observable structures.

Several notions of ‘commutation’ may apply to observable structures. In this
section we consider three of these.
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Remark 6. One should clearly distinguish the notions of commutation that we
consider in this paper from that of commuting observables as found in most
of the quantum theory literature. The kind of observables considered here are
complementary, and are thus non-commuting in the usual sense. What we wish to
expose here is that certain alternative notions of commutation, which are useful
in computations, do apply to the specific case of complementary observables.

Notation. For an observable structure (A, δZ , εZ), with classical points BZ de-
picted in green, and an observable structure (A, δX , εX) depicted in red, we set
for all z ∈ BZ :

z
z

The use of two colours in this graphical representation reflects its dependence on
two observable structures. We denote this morphism by ΛX(z). By Lemma 2 we
know that, when z is unbiased for (A, δX , εX), this morphism is unitary if and
only if z† ◦ z = D. Therefore it is more convenient to consider classical points to
have length

√
D rather than being normalised. The comonoid homomorphism

laws governing classical points then become:

z z z z x x x x

where we somewhat abusively depict
√
D by as in the case of coherent ob-

servable structures. Complementarity, in the case it holds, becomes:

zz xx

Remark 7. The similarity between the graphical notation for ΛX(z) and that of
the classical points for COSs in Section 6.1 anticipates Theorem 10.

Definition 18. An observable structure (A, δZ , εZ) with classical points BZ , and
an observable structure (A, δX , εX) with classical points BX , satisfy operator
commutation iff for all z ∈ BZ and all x ∈ BX :

ΛZ(x) ◦ΛX(z) = (x† ◦ z) · (ΛX(z) ◦ΛZ(x)) i.e.
z z

z
x

xx
.

Definition 19. An observable structure (A, δZ , εZ) with classical points BZ , and
an observable structure (A, δX , εX), satisfy comultiplicative commutation iff for
all z ∈ BZ :

δZ ◦ΛX(z) = (ΛX(z)⊗ΛX(z))◦δZ i.e. z
z z

.
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Remark 8. While this equation seems akin to the defining equation for classical
points it carries a lot more structure. The reason for this is the involvement of
two observable structures, which is exposed by the colouring.

Definition 20. Observable structures (A, δZ , εZ) and (A, δX , εX) satisfy bialge-
braic commutation iff:

D ·(δ†X⊗δ
†
X)◦(1⊗σ⊗1)◦(δZ⊗δZ) =

√
D ·δZ ◦δ†X i.e. .

Remark 9. For coherent observable structures, by Proposition 16, when
√
D ad-

mits an inverse we can simplify the bialgebraic commutation equation to:

To see that the choice of scalars is not arbitrary, we can, for example, either
assume coherence or the Hopf law for the observable structures, both resulting
in:

? ?

Definition 21. A scaled bialgebra is a pair of coherent observable structures
which satisfy bialgebraic commutation, that is, all together:

.

Remark 10. If we remove the scalars from the definition of a scaled bialgebra
and adjoin the equation εZ ◦ ε†X = 1I – which is trivial anyway when taken ‘up
to a scalar’ – then we obtain the usual notion of a bialgebra [7,41].

Theorem 9. Each scaled bialgebra satisfies the Hopf law.

Proof. We have:

.
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where the 1st step uses compactness, the 2nd step the spider theorem, the 3rd
step uses the bialgebra law, the 4th step uses coherence i.e. the green comulti-
plication copies the red unit, and the 5th step uses the spider theorem. 2

Corollary 3. If a pair of observable structures constitutes a scaled bialgebra then
these are complementary observable structures.

While at first sight the three notions of commutation we have introduced in this
section look very different, in fact, they boil down to the same thing in all of our
example categories, as we shall see in Theorem 10 below.

7.3. Closedness for observable structures.

Definition 22. The classical points BZ of an observable structure (A, δZ , εZ)
are closed for another observable structure (A, δX , εX) iff for all z, z′ ∈ BZ we
have

z �X z′ ∈ BZ .

From the assumption that the induced compact structures coincide, since by
Corollary 2 and Definition 8 we have that δX , z and z′ are all self-conjugate, it
follows that the composite z �X z′ is also self-conjugate. Hence, setting:

z z,
z z, ;

The closedness requirement is depicted graphically as:

z z,
z z, z z, z z,

.

Remark 11. If the observable structures are coherent, then the normalisation
condition is also trivially satisfied. If classical points were taken to be normalised
then we would take

√
D · z �X z′ rather than z �X z′ in Definition 22.

Remark 12. Again, similarly to Remark 7, this notation which seems to indicate
that z �X z′ is unbiased to (A, δX , εX) anticipates Theorem 10 below.

We now show that on every Hilbert space we can find a pair of closed COSs,
and hence by Theorem 1 we can find a pair of closed coherent COSs.

Proposition 17. In FdHilb there exist pairs of closed coherent COSs on Hilbert
spaces Cn for any dimension n ∈ N.

Proof. Without loss of generality we take the first observable structure as being
defined by the standard basis on Cn, i.e. δ : |i〉 7→ |i〉⊗|i〉 with the deleting point
ε† =

∑
i |i〉. Notice that the multiplication induced by this observable structure

is simply point-wise:

(
∑
i

ai |i〉)� (
∑
i

bi |i〉) =
∑
i

aibi |i〉 .
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We need to find a basis which contains ε†, is unbiased with respect to the stan-
dard basis, and is closed under �. It is routine to check that the family

|fj〉 =
1√
N

∑
k

ωjkn |k〉 ,

where j and k range from 0 to n− 1, and ωn = e2πi/n, provides an orthonormal
basis satisfying these conditions. To complete the proof we simply choose |0〉 as
the deleting point. 2

Corollary 4. There exist pairs of closed coherent complementary observable
structures for any dimension FdHilbwp.

Remark 13. Thanks to Theorem 1, to find a pair of coherent COSs on Cd it
suffices to find any dephased complex Hadamard matrix, that is, an orthogonal
matrix whose entries are all complex units, and whose first row and column
are all ones. The columns of the matrix will provide the required basis. The
family |fj〉 used above are a particular example: they form the columns of the
d-dimensional Fourier matrix. If d = 2, 3 or 5 the only dephased Hadamards are
Fourier matrices [42], hence we can conclude that every pair of coherent COSs
in these dimensions is closed. However this does not hold in general. If d = 4,
for example,

F4(x) =

1 1 1 1
1 ieix −1 −ieix
1 −1 1 −1
1 −ieix −1 ieix


is not closed when x is irrational. Similar counterexamples can be constructed
for dimensions d ≥ 6. This shows that the notion of a closed COSs is strictly
stronger than that of a COS.

Since closed COSs exist for all dimensions, for most practical purposes we can
assume that COSs are both coherent and closed.

Closed COSs moreover behave well with respect to the monoidal structure,
in that the canonical induced observable structures of Proposition 7, which are
defined on the tensor space, inherit both complementarity and closedness.

Proposition 18. Let (A, δZ , εZ) and (A, δX , εX) be coherent COSs such that
(δZ , εZ) is closed with respect to (δX , εX), and let (B, δZ′ , εZ′) and (B, δX′ , εX′)
be coherent COSs such that (δZ′ , εZ′) is closed with respect to (δX′ , εX′); then
the canonical observable structure on the joint space (A⊗B, δZ ⊗ δZ′ , εZ ⊗ εZ′)
is both complementary and closed with respect to (A⊗B, δX ⊗ δX′ , εX ⊗ εX′).

7.4. Our main theorem on pairs of closed observable structures.

Theorem 10. The following are equivalent for two observable structures:

closed They are closed.
oper They obey operator commutation.
comul They obey comultiplicative commutation.
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bialge They obey bialgebraic commutation.

subject to the following requirements:

bialge

none

��
closed

1B(+Coh)wwwwwwwww

wwwwwwwww

7?wwwwwwww

wwwwwwww

comulnoneks none +3 oper

2B(+Coh)EEEEEEEEE

EEEEEEEEE

^f EEEEEEEE

EEEEEEEE

where ‘none’ stands for no additional requirements, except for the ones explicitly
stated in the proof; where ‘1B’ means that at least one of the observable structures
has either a vector basis or a state basis, where ‘2B’ means that this is the case
for both observable structures, and ‘(+ Coh)’ means that in the case of state
bases we also require coherence. We indicate in the proof where we assume that√
D has an inverse and where we use the fact that compact structures coincide.

Proof. We show all required implications graphically:

– bialge⇒ comul:

z z

z
z z

zz

Here we assumed that
√
D has an inverse.

– comul⇒ closed:

z
z z

z, z,

z z,

z
z,

z
z,

z z, z z,

– comul⇒ oper:

z
z z

xx

z
x z

x

z
z

x z
x

– closed⇒ bialge:

z z,
z z, z z,

z z,

z z, z z,

z z,
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The assumption that the classical points for the green observable structure
constitute a vector basis, together with the fact that the monoidal tensor lifts
to vector basis, imply bialgebraic commutation. By coherence we have:

so the result holds when there is a state basis for the green observable struc-
ture. Steps 2–4 assume that the induced compact structures coincide.

– oper⇒ bialge:

z z
z
x

xx
z
x x

z

z

x
x

z

(4)

so by compactness we have:

zzx x

Under the assumption that the classical points both for the green and the red
observable structure constitute a vector basis, together with the fact that the
monoidal tensor lifts vector bases, we have:

from which the bialgebra follows by compactness. The two diamonds are equal
to a circle given that the compact structures coincide. For the case that both
observable structures have a state basis it remains to be shown that:

To do so, we now show that the equation
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holds, by relying on the fact that we have a state basis for both observable
structures, and as above, by again relying on compactness. We have:

x

z
z x

x

z
z x

where in the dotted area we used derivation (4) above. Finally:

where the last step assumes that induced compact structures coincide.

This concludes this proof. 2

Remark 14. We leave it to the reader to see how ‘2B (+ Coh)’ factors into re-
quirements for oper⇒ comul and comul⇒ bialge.

The examples of COSs discussed in Proposition 17 satisfy all the equations
stated in Theorem 10. In particular, they constitute scaled bialgebras. These
equations are strictly stronger than the Hopf law by Theorem 11, and hence all
pairs of observable structures that satisfy them are COSs.

7.5. The case of non-coinciding induced compact structures.

Again, we can adjust Theorem 10 to the case that compact structures do not
coincide. We do not present this in detail but merely indicate how one needs to
adjust the scaled bialgebra structure such that it still implies complementarity,
that is, the dualised Hopf law of Theorem 8.

Definition 23. A scaled bialgebra with dualisers is a pair of coherent observable
structures which satisfy a modified form of bialgebraic commutation:

.

Theorem 11. Any scaled bialgebra with dualisers satisfies the scaled Hopf law
with the dualiser as the antipode, so its observable structures are complementary.
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Proof. We have:

where we used the properties of the dualiser from Section 6.3. 2

8. Further group structure and the classical automorphisms

In Section 5.4 we saw how the abelian group of phase shifts arose naturally from
the presence of unbiased points for a given observable structure. When we have a
pair of COSs, the two phase groups can interfere with each other, an interaction
which arises from the special role of the classical points within each phase group.

In the following, suppose (A, δZ , εZ) and (A, δX , εX) are coherent COSs which
jointly form a scaled bialgebra. Let UZ denote all the unbiased points for (δZ , εZ),
and let CZ denote its classical points; define UX and CX similarly. By virtue of
complementarity we have CX ⊆ UZ and CZ ⊆ UX . Recall that by Proposition 5,
(UZ ,�Z) is an abelian group, isomorphic to the phase group of (δZ , εZ).

Proposition 19. CX is a subgroup of (UZ ,�Z) if either: CX is finite; or, if the
two observable structures give rise to the same compact structure.

Proof. CX is always a submonoid of UZ because of the closure and coherence of
the two observable structures; any finite submonoid is a subgroup. Alternatively,
given a point x ∈ CX , its inverse in UZ is given by its conjugate with respect to
the compact structure of (δZ , εZ); by the definition of classicality, x is self conju-
gate with respect to the compact structure of (δX , εX). Hence, if these compact
structures agree (cf. Proposition 15), x−1 = x in UZ , so CX is a subgroup. 2

Remark 15. Shared compact structure is a powerful assumption. The proof above
indicates that in the case of coinciding compact structures, not only do the
classical points within UZ form a subgroup, but the resulting group is a product
of copies of S2. In the case of qubits described by X and Z spins, the compact
structure is shared, and the resulting classical subgroup is just S2.

Proposition 20. For all x ∈ CX , ΛZ(x) is a left action on UZ and, in partic-
ular, a permutation on CX .

Proof. For any ψ : I → A, we have ΛZ(x) ◦ ψ = x�Z ψ by definition; that this
is a permutation on CX follows from the closure of CX . 2

Theorem 12. Suppose k ∈ CZ , and define K = ΛX(k); then K is a group
automorphism of UZ .
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Proof. Graphically we depict K as:

K =
k

k

Since k ∈ UX , K is unitary, and so is invertible. We must show that if α ∈ UZ
then also K ◦ α ∈ UZ . This holds if and only if ΛZ(K ◦ α) is unitary; we show
this directly:

α
k

-α
-k

α

-α

k

-k

-k

k

α -k

-α k

-k

k

where the equations are by the comultiplication property, the unitarity of K,
the unbiasedness of α, and the unitarity of K again. It remains to show that K
is a homomorphism of the group structure.

1. K ◦ (α�Z β) = (K ◦ α)�Z (K ◦ β) :

k

α β

k kk
k k

α α
α

β β
β

k

α β

The equations are: the definition of K; the bialgebra law; the classical prop-
erty of k; and the definition of K.

2. K ◦ ε†Z = ε†Z (upto global phase):

k
k

k

The equation simply uses coherence of δX and εZ ; the result follows by di-
viding by the scalar factor as per Lemma 3.

3. (K ◦ α)−1 = K ◦ α−1:

α
k

-α
k

α

k

-α

k

where we relied upon the comultiplication property of K and the unbiasedness
of α, showing that the inverse K ◦ α in UZ is K ◦ α−1 as required.
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Hence K is an automorphism of UZ . 2

Corollary 5. (CZ ,�X) is an abelian group of automorphisms on UZ whose ac-
tion is defined by (x, z) 7→ ΛX(x) ◦ z.

The possibility for the classical points to act as automorphisms on the corre-
sponding phase group gives rise to “interference” phenomena; this will be illus-
trated by the example of the quantum Fourier transform in Section 9.

9. Application to quantum computation

The examples in Sections 5.5 and 6.2 indicated that the structures introduced
in this paper provide a useful tool for reasoning about quantum computation.
This section provides some more examples to further substantiate this claim.

9.1. Simplifying the notation.

The diagrammatic notation we have used up till this point is well adapted to
deriving the properties of the theory. For practical uses, such as computing the
examples of this section, some simplifications can be made.

In the examples we consider a pair of COSs, which are coherent, and form a
scaled bialgebra. Furthermore we assume that all the classical points have length√
D. We restrict our attention to points which are unbiased for one observable

structure or the other, and we represent each dot with a single colour, that of
the observable structure to which it is unbiased. Points which are classical are
indicated by distinguished indices.

General: α α z x z x

Simplified: α α z x Not Allowed

Table 1. Translation between general and simplified graphical notation

The rules of the simplified calculus are summarised in these slogans:

1. The spider law applies to points of the same colour.
2. Within one colour conjugate points are mutually inverse.
3. Red copies green, green copies red, and copying consumes a diamond.

These respectively capture observable structure, unbiasedness, and classicality
of points, and are explicitly depicted as:

.
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α
α

α
α x x x z z z

9.2. Qubit Calculus.

As in the earlier examples we consider a ‘green’ observable structure (δZ , εZ)
corresponding to the Z-spin observable and a ‘red’ observable structure (δX , εX),
corresponding to the X-spin.

δZ : |i〉 7→ |ii〉 εZ :
√

2 |+〉 7→ 1 δX : |±〉 7→ |±±〉 εX :
√

2 |0〉 7→ 1

We first observe that δZ ◦ ε†Z = δX ◦ ε†X = |00〉+ |11〉 so both observables induce
the same compact structure. Pictorially, we have:

.

Concentrating first on the Z observable, from the definition of δZ we immediately
read that its classical points are |0〉 and |1〉; these points, together with ε†Z = |+〉
(ignoring the normalising factor), form a state basis for the space. Recall that
the points which are unbiased for Z have the form |αZ〉 = |0〉 + eiα |1〉 where
0 ≤ α < 2π, and hence the phase group consists of matrices of the form:

ΛZ(|αZ〉) =
(

1 0
0 eiα

)
= α .

The group (UZ ,�Z) is therefore isomorphic to the circle. Notice that |0Z〉 = |+〉
and |πZ〉 = |−〉; these points form a 2-element subgroup of UZ , corresponding to
the identity and the Pauli Z matrices. Since |+〉 and |−〉 are the classical points
CX of the X observable, this shows that the observable structure for X is closed.

The structure of the X observable is essentially the same. The state basis is
made up of the classical points |+〉 and |−〉, and the unit element |0〉. Its phase
group consists of rotations around X, that is matrices of the form

ΛX(|αX〉) =
(

cos α2 i sin α
2

i sin α
2 cos α2

)
= α ,

generated by the unbiased points |αX〉 = cos α2 |0〉 + i sin α
2 |1〉. We have CZ =

{|0X〉 , |πX〉} so the CZ forms a 2-element subgroup of UX as before; its matrix
form consists of the identity and the Pauli X.

Notation. In following examples, we will not apply ΛZ and ΛX to any vectors
other than the |αZ〉 and |αX〉 respectively, so we will simply write Zα and Xα

to denote these unitary matrices.
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The remaining piece of the structure to be described is the action of CZ on
UZ . Since Xπ = X we see that the non-trivial element of CZ sends |αZ〉 7→ |−αZ〉;
i.e. X assigns elements of UZ to their inverses. The action of CX on UX is exactly
dual. The group structure is summarised in Table 2.

Observable Classical Points Unbiased Points Phase Group

Z = (δZ , εZ) |0〉 , |1〉 |0〉+ eiα |1〉 Zα =

„
1 0
0 eiα

«
, , π α α

X = (δX , εX) |+〉 , |−〉 cos α
2
|0〉+ i sin α

2
|1〉 Xα =

„
cos α

2
i sin α

2
i sin α

2
cos α

2

«
, , π α α

Observable Classical Subgroup Automorphism Action

Z = (δZ , εZ) 1,X X : Zα 7→ Z−α

, , π π
α

−α=

X = (δX , εX) 1,Z Z : Xα 7→ X−α

, , π π
α

−α=

Table 2. Summary of the group structure for qubits

The presentation of the examples will be greatly simplified by adding one further
operation to the language, namely the unitary map which exchanges the X and
Z bases. From the graphical perspective, this map is an explicit colour changing
operation which transforms “green structures” into “red structures” and vice
versa. For the Z and X observables described above, the desired map is the
familiar Hadamard gate:

H =
1√
2

(
1 1
1 −1

)
= H .

We will introduce H into the graphical language with the following equations:

=

H

H

H
, α =

α
H ,

H
H

.
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As well as being unitary, H is self-adjoint, so we denote it with a square; its
symmetrical form indicates that is not changed by transposition, nor by con-
jugation. The three equations above are equivalent to the following equation
between spiders:

α = α
H H H H

H H H H
.

The spider form of the equations is frequently more useful.

Remark 16. As discussed in Section 6.2, since the calculus contains symbols forX
and Z rotations, every 1-qubit unitary can be represented (upto a global phase)
by its Euler decomposition, ZαXβZγ . In particular, H = Z−π2X−

π
2
Z−π2 . This

equation cannot be derived in the calculus as it stands. In fact this equation is
equivalent to Van den Nest’s theorem on local complementation of graph states
[43]; see [19] for details.

Now we move on to some examples of the kinds of calculations which the graph-
ical calculus can perform. In these examples we disregard scalar factors as these
only distract from the essential; the reader will find it easy to restore the scalars
if desired.

9.3. Quantum gates, circuits, and algorithms.

The 1-qubit unitaries Zα and Xβ correspond to rotations in the X-Y and the
Y -Z planes respectively; these suffice to represent all 1-qubit unitaries, and their
basic equational properties follow from the various lemmas introduced in the
preceding sections. We demonstrate how to define the ∧X and ∧Z gates, and
prove two elementary equations involving them. The addition of these operations
will provide a computationally universal set of gates.

Example 16 (∧X gate). In Section 6.2 we saw that the ∧X gate can be defined
as

∧X =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 = ;

by appealing to the Hopf law, we showed that this gate is involutive. We now
show how the bialgebra law provides additional computational power. By apply-
ing a ∧X gate three times, alternating the target and control input, we obtain a
swap—i.e. the symmetry map of the monoidal structure.

= = = = =

While this is a well-known property of ∧X, our proof uses only the bialgebra
structure, hence it will hold in much greater generality than for qubits.
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Example 17 (∧Z gate). Since Z = HXH we can obtain the ∧Z gate from the ∧X
gate by conjugating the target qubit with H gates, as shown below:

∧Z =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 =
H

H
H= .

Notice that we can immediately read off a property of this gate from its graph-
ical representation: it is symmetric in its inputs. We can use the colour change
equation and the Hopf law to prove that ∧Z ◦ ∧Z = 1, as shown below.

H
=

H
H
H

=
H

H
=

H

H
=

H

H
=

Example 18 (An algorithm: the quantum Fourier transform). The quantum Fourier
transform is one of the most important quantum algorithms, lying at the centre
of Shor’s famous factoring algorithm [39]. The equations of the diagrammatic
calculus are strong enough to simulate this algorithm. In this example the inter-
action between the two phase groups—as described in Theorem 12—is crucial.

To write down the required circuit, we must realise a controlled phase gate,
where the phase is an arbitrary angle α; this is shown below—the control qubit
is on the left. (Recall that the inputs are at the top of the diagram, and the
outputs at the bottom.)

∧Zα =

 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiα

 =

α/2

−α/2

The only gates which are required to construct the circuit implementing the
quantum Fourier transform are the Hadamard and the ∧Zα—see for example
[32]. The circuit for the 2-qubit QFT is shown below.

QFT2 =

π/4

−π/4

H

H

How can we simulate this circuit? First, we choose an input state, in this case
|10〉 = |πX〉⊗|0X〉 = π ; then we simply concatenate the input to the circuit,
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and begin rewriting according to the equations of the theory, as shown below.

π/4

−π/4

H

H

π

=

π/4

−π/4

H

H
π
π
π =

π/4

−π/4

H

H
π

π

π
=

π/4

−π/4

H

π

π

π

=

π/4

−π/4

π

π

π

=
π/4

−π/4

π

π =
π/4

−π/4

π

π = π/4
  π/4

π
= π/2

π

The final diagram in the sequence is simply the tensor product of |πZ〉 and
|π/2Z〉, or in the standard notation (|0〉− |1〉)⊗ (|0〉+ i |1〉), which is indeed the
desired result. Notice how this example makes use of classical values coded as
quantum states to control the interference of phases (the second last equation).
In passing we remark upon another feature of the graphical language: since the
last diagram is a disconnected graph, it represents a separable quantum state.

9.4. Multi-partite entanglement.

In our graphical language, a quantum state is nothing more than a circuit with
no inputs; output edges correspond to the individual qubits making up the state.
The interior of the diagram—i.e. its graph structure—describes how these qubits
are related. Hence this notation is ideal for representing large entangled states.

Example 19. The cluster states used in measurement-based quantum computing
[35], can be prepared in several ways; the graphical calculus provides short proofs
of their equivalence. For example, the original scheme describes a ∧Z interaction
between qubits initially prepared in the state |+〉; in our notation this is |0Z〉,
or . A one-dimensional cluster state can be presented diagrammatically as:

H

H

H

H

H

H. . . .
. . . .

where the boxes delineate the individual |+〉 preparations and ∧Z operations.
Alternatively, the cluster state can be prepared by fusion of states of the form
|Φ〉 = |0+〉+ |1−〉 which are obtained by applying a Hadamard gate to one part
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of a Bell pair [22]. The fusion operation is exactly the multiplication δ†Z , so a 1D
cluster prepared with this method looks like:

H H H H
. . . .

. . . .
.

Again we use dashed lines to indicate the individual components. While conven-
tional methods require some calculation to show that these methods of prepa-
ration produce the same state, using the spider theorem, the two diagrammatic
forms are immediately equivalent:

H H H HH

H

H

H
H HH H= = .

From the example of the 1D cluster, it’s easy to see how to construct diagrams
corresponding to arbitrary graph states. Indeed given a graph state |G〉, with
underlying graph G, we represent |G〉 by the same graph G, with green dots at
each vertex, and H gates on each edge; to complete the construction we must
add one output edge to each at each vertex.

Ongoing work seeks to classify multipartite entangled states in terms of their
graphical representatives, for example, the GHZ and the W state [20], which
respectively witness each of the two non-comparable SLOCC classes of genuine
three qubit entangled states, can be respectively depicted as:

π/3π/3

π/3

π/3 .

The behaviors of these states follow from the algebraical laws in this paper.

9.5. Properties of quantum computational models.

Our formalism axiomatises two key features of quantum mechanics: the underly-
ing monoidal structure and the interaction of complementary observables. Fur-
thermore it is a semantic, which is to say extensional, framework which makes it
ideal for unifying various approaches to quantum computation. For example, we
can demonstrate equivalence between different quantum computational models.

Example 20 (Verifying one-way quantum computations). We show how to verify
some example programs for the one-way model, taken from [17], by translation
to equivalent quantum circuits. In these examples we replace measurements with
projections onto a particular output state. These projections are represented by
copoints such as .
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Remark 17. The use of post-selection is not essential here, although it results in a
radical simplification of the diagrams. Observable structures were initially intro-
duced in [15] to represent classical control structure; the branching behaviour of
quantum measurements, and the unitary corrections that are thus required, can
easily be added to these examples. The last example demonstrates this structure
in the simpler setting of quantum teleportation.

First we consider a measurement-based program involving 4 qubits, which com-
putes a ∧X gate upon its inputs. In the syntax of the measurement calculus [17]
this pattern1 is written

M0
2M

0
4E13E23E34N3N4.

Reading from right to left, this specifies that qubits 3 and 4 should be prepared
in a |+〉 state, then ∧Z operations should be applied pairwise between qubits 1
and 3, 2 and 3, and 3 and 4; finally X basis measurements should be performed
upon qubits 2 and 4. Implicitly, qubits 1 and 2 are the inputs and qubits 1 and
4 are the outputs. We represent this pattern diagrammatically as:

H

H

H

Inputs 1 and 2

Output 1 Output 4

gates

Note that the measurements have been replaced with projections onto the |+〉
state. The spider theorem allows this one-way program to be rewritten to a ∧X
gate in no more than two steps:

H

H

H

H

H=
H

= =

Our next example is also a one-way program, this time implementing an arbi-
trary 1-qubit unitary. Recall that any single qubit unitary map U has an Euler
decomposition as such that U = ZγXβZα. Such a unitary can be implemented
by the following measurement pattern:

Mγ
3M

β
2 M

α
1 E12E23E34E45N2N3N4N5

1 Since we are post-selecting the measurements, we have omitted from this pattern, and the
next, the corrections which are needed to ensure that the program behaves deterministically;
see [17] for details.
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whereMα
i denotes a measurement of qubit i in theX−Y plane at angle α. Again,

we will replace this measurement by a projection onto the state |0〉+eiα |1〉. The
graphical form of this pattern is shown below:

HH
HH

α β γ

Input 1

Output 5

gates
.

Again a sequence of simple rewrites shows that the one-way program intended
to compute such a unitary does indeed produce the desired map.

HH
HH

α β γ

HH HHβ γα β γα= =

9.6. Observable structure as classical control structure.

As already mentioned in the introduction, observable structures were initially
introduced under the name classical structures in [15] to model classical data in
quantum informatic protocols. One of the initial goals of categorical quantum
axiomatics in [1] was indeed to provide a fully comprehensive description of
both classical and quantum data in quantum informatic protocols. In [1] this
relied on an explicit syntactical distinction of how objects are denoted. In [8,
37] the classical-quantum distinction was achieved in category-theoretic terms,
but relied on a second ‘additive’ monoidal structure. In [15,13] a description of
classical data in terms of observable structure was proposed. Hence with a single
concept we can account both for quantum observables, complementarity, phases,
as well as classical information flow. To illustrate this we provide a description
of the quantum teleportation protocol.

Notation. (!) In keeping with how the quantum teleportation protocol is usually
depicted, we reverse our earlier convention, and read this example from bottom
to top.

We will be very brief on the use of observable structures in order to describe
classical data flow; we refer the reader to [13] for more details. Graphically,
classical data and classical operation are represented by a single wire, while a
quantum data and quantum operations are represented by double wires. These
double wires arise via the CPM-construction of [37]. This ‘1 vs. 2’ as ‘classical
vs. quantum’ is also present in Dirac notation; for a mixed state

∑
i ωi|ψi〉〈ψi|

the clasical probabilistic state (ω1, . . . , ωn) occurs only once while the quantum
states occur both as a ket |ψi〉 and as a bra 〈ψi|.
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Pure quantum operations, controlled pure quantum operations, and destruc-
tive measurements are of the forms:

f f

f f
f f .

respectively, where for clarity we choose to colour the classical wires in the colour
of the observable structure which encodes that classical data, that is, for which
the classical data are classical points. We claim that the following constitutes
the quantum teleportation protocol, including the classical correction:

Bell state

(1) = Alice’s Bell basis measurement
(2) =Bob’s Pauli corrections

(1)

(2)

.

The green and the red wire represent the two qubits Alice has to send to Bob to
inform him of the measurement outcome. The Bell state, Bob’s Pauli corrections
and Alice’s Bell basis measurement can be rewritten respectively as:

.

hence, they are of the forms shown above.
The picture might seem somewhat complicated; the reason for this is that in

order to display the quantum-classical distinction graphically, all the quantum
operations are doubled. If we hide one of the two copies it becomes much clearer
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what is going on:

.

We show that the measurement and corrections in this picture are indeed the
ones we claim them to be. Post-selecting the Bell-basis measurement we obtain:

z x

z x =



0 0 = |00〉+ |11〉

π 0 π = |00〉 − |11〉

0 π π = |01〉+ |10〉

π π π π = |01〉 − |10〉

Similarly, selecting the Pauli corrections we obtain:

z x

x
z =



0
0

= I

π
0

π = Z

0
π

π = X

π
π

π
π

= Z ◦ X
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We now rely on the Hopf law to compute the overall result of the teleportation
protocol diagrammatically:

= = = =

The first step uses compactness for the black wires and the spider theorem for
the red dots, the second step uses the spider theorem for the green dots, the
third step uses complementarity of green and red dots, and the fourth step does
again all of the previous but now for swapped colours. The scalars that remain
at the end are a consequence of the fact that we didn’t normalise the Bell state
nor the Bell basis measurement.
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A. Internal comonoids in a symmetric monoidal category

Recall that a monoid is a triple (M, •, 1•) where • is the associative multiplication
of the monoid and 1• ∈M is its unit. The multiplication is of course a map

m• : M ×M →M :: (x, y) 7→ x • y

and we can also represent the unit as a map

e• : I→M :: ? 7→ 1•
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where I := {?} is a singleton set. The associativity and unit laws of the monoid
can now be re-written in terms of composition of maps and cartesian product:

m• ◦ (m• × 1M ) = m• ◦ (1M ×m•) m• ◦ (e• × 1M ) ' m• ◦ (1M × e•) ' 1M

where 1M : M →M is the identity on the set M .
An (internal) monoid in a symmetric monoidal category is a triple

(M,m : M ⊗M →M, e : I→M)

satisfying

m ◦ (m⊗ 1M ) = m ◦ (1M ⊗m) m ◦ (e⊗ 1M ) ◦λM = m ◦ (1M ⊗ e) ◦ρM = 1M ,

and it is moreover commutative if we have that m ◦ σM,M = m. Dually, an
(internal) comonoid in a symmetric monoidal category is a triple

(X, δ : X → X ⊗X, ε : I→ X)

satisfying

(δ ⊗ 1X) ◦ δ = (1X ⊗ δ) ◦ δ λ†X ◦ (ε⊗ 1X) ◦ δ = ρ†X ◦ (1X ⊗ ε) ◦ δ = 1X ,

and it is moreover commutative if we have that σM,M ◦ δ = δ.
Now consider a set X and let δ : X → X ×X be the function which copies

entries, i.e. δ :: x 7→ (x, x). Since δ is a function it is also a relation, namely

δ := {(x, (x, x)) | x ∈ X} ⊆ (X ×X)×X ,

and as a relation it admits a relational converse, obtained by exchanging the
two entries in the pairs which make up that relation. The relational converse to
δ, i.e.

m := {((x, x), x) | x ∈ X} ⊆ (X ×X)×X ,

relates pairs (x, x) ∈ X×X to x ∈ X, while it does not relate pairs (x, y) ∈ X×X
for x 6= y to anything. Let ε : X → I be the function which erases entries
i.e. ε : x 7→ ?. When conceived as a relation ε admits a relational converse

e := {(?, x) | x ∈ X} ⊆ I×X ,

which now relates ? ∈ I to each x ∈ X. When taking sets as objects and relations
as morphisms, with the composite of relations r ⊆ X × Y and s ⊆ Y × Z to be

s ◦ r := {(x, z) | ∃y : (x, y) ∈ r , (y, z) ∈ s} ⊆ X × Z ,

and when taking the cartesian product to be the tensor and the relational con-
verse to be the adjoint, we obtain a †-SMC Rel. The copying/deleting pair (δ, ε)
is a comonoid in Rel, and the pair (m, e) consisting of their respective con-
verses is a monoid in Rel. The pair (m, δ) moreover satisfies another important
remarkable property: the diagram

X ⊗X m //

δ⊗1X

��

X

δ

��
X ⊗X ⊗X

1X⊗m
// X ⊗X

(5)
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commutes. Indeed, we have

δ ◦m = (1X ⊗m) ◦ (δ ⊗ 1X) = {(x, x), (x, x) | x ∈ X} ⊆ (X ×X)× (X ×X) .

This fascinating property first appeared in the literature as part of Carboni and
Walters’ axiomatisation of the category Rel in [6] where they introduced the
notion of a Frobenius algebra in a SMC C, as any quintuple of morphisms

(X, d : X ⊗X → X, e : I→ X, δ : X → X ⊗X, ε : X → I)

where (X,m, e) is an internal commutative monoid and (X, δ, ε) is an internal
commutative comonoid, which together satisfy the Frobenius condition, that is,
they make diagram (5) commute. Such a Frobenius algebra is special if it more-
over satisfies m ◦ δ = 1X [27].

Frobenius structure is our structural vehicle for describing and reasoning
about classical contexts for quantum systems as well as classical data flows.
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