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Abstract

The are two main approaches to the representation of mean-
ing in Computational Linguistics: a symbolic approach and a
distributional approach. This paper considers the fundamen-
tal question of how these approaches might be combined. The
proposal is to adapt a method from the Cognitive Science lit-
erature, in which symbolic and connectionist representations
are combined using tensor products. Possible applications of
this method for language processing are described. Finally, a
potentially fruitful link between Quantum Mechanics, Com-
putational Linguistics, and other related areas such as Infor-
mation Retrieval and Machine Learning, is proposed.

Introduction
Representing the meanings of words and sentences in a form
suitable for use by a computer is a central problem in Com-
putational Linguistics (Jurafsky & Martin 2000). The prob-
lem is of theoretical interest – to linguists, philosophers and
computer scientists – but also has practical implications.
Finding a suitable meaning representation can greatly im-
prove the effectiveness of a Natural Language Processing
(NLP)1 system, whether it be for automatically translating
sentences from one language to another, answering ques-
tions, or summarising articles (to give just three examples).

There have been two distinct approaches to the represen-
tation of meaning inNLP.The first, thesymbolicapproach,
follows the tradition of Montague in using a logic to express
the meanings of sentences (Dowty, Wall, & Peters 1981).
The logical representation of a sentence is built up com-
positionally by combining the meanings of its constituent
parts. In contrast, thedistributionalapproach uses statistics
about the contexts in which a word is found, extracted from
a large text corpus, to provide a vector-based representation
of the meaning of an individual word. Thus the symbolic
approach is largely concerned with how individual mean-
ings are combined, but leaves the meanings of the elemen-
tary units (the words) unanalysed; whereas the distributional
approach is concerned with the meanings of words, but has
little to say about how these meanings combine. Given the
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1The termsComputational LinguisticsandNatural Language
Processingwill be used interchangeably in this paper.

importance inNLP of both these approaches to natural lan-
guage semantics, a fundamental question is whether they can
be integrated in a useful and meaningful fashion. This is an
interesting theoretical question, but also has practial conse-
quences, some of which will be described later in the paper.

Representations in Cognitive Science
A similar question has been addressed by the Cognitive Sci-
ence community, where two distinct approaches to the com-
putational modelling of the mind have been developed.2 The
first, theconnectionistapproach, models the mind/brain as
a massively interconnected network of simple processing
units, all operating in parallel. Each unit has an activation
value and is connected to other units through connections,
each with a corresponding weight. The activation value is
calculated according to some simple formula involving the
activation values of neighboring units and the connection
weights. The framework used to manipulate these objects
is the mathematics of vector and matrix algebra.

The second approach is to treat the mind as a serial de-
vice which manipulates discrete structures consisting of ab-
stract symbols. The remarkable productivity of the mind,
which enables it to process an unbounded number of dis-
tinct inputs, is explained by allowing the device to combine
the symbols in an infinite number of ways. A primary ex-
ample of thiscombinatorialstrategy comes from linguis-
tics, in which combinatorial theories of syntax, based on
the seminal work of (Chomsky 1957), explain how humans
can produce and comprehend an unbounded number of sen-
tences. Grammars consisting of a finite number of rewrite
rules, some of which are recursive, can model the hierarchi-
cal structures of these sentences. The meaning of a sentence
can then be computed so as to satisfy the principle ofcom-
positionality– the meaning of a sentence is a function of the
meanings of its components, the semantic analogue of syn-
tactic creativity. Here the mathematics of formal language
theory and logic provide the theoretical framework.

(Smolensky & Legendre 2006) integrate the connectionist
and symbolic models in the following way. First,

a symbolic structures is defined by a collection of
structural roles {ri} each of which may be occupied

2The following description of the two approaches is based on
(Smolensky & Legendre 2006).



by afiller f i; s is a set ofconstituents, each afiller/role
binding f i/ri. (p.66)

Linguistics again provides primary examples of such struc-
tures: many of the syntactic representations used in linguis-
tics – whether they be parse trees, dependency trees or func-
tional structures more closely associated with predicate ar-
gument structure – can be thought of as sets ofconstituents.

The key question is how to take connectionist represen-
tations of the roles and fillers, which are vectors of activa-
tion values, and produce a connectionist representation of
the symbolic structure. Smolensky and Legendre’s solution
is to use atensor product representation:

s =
∑

i

fi ⊗ r i (1)

The activity vector for the complete structure is the superpo-
sition (vector sum) of the constituent vectors, each of which
is a tensor product of the activity vector for the filler and
the activity vector for the structural role occupied by the
filler. Smolensky and Legendre note that, in cognitive do-
mains such as language, the representations are recursive:
the fillers and roles ofs can themselves be tensor product
representations made up of other fillers and roles.

(Smolensky & Legendre 2006) argue at length for why
the tensor product is appropriate for combining connection-
ist and symbolic structures. A number of other proposals for
realizing symbolic structures in vector representations are
described. Smolensky’s claim is that, despite appearances
to the contrary, all are special cases of a generalized tensor
product representation.

(Aerts & Gabora 2005) also propose use of the tensor
product, in order to combine vector-based representations
of concepts. More specifically they are interested in the
“pet fish” problem, a well-known phenomenon in psychol-
ogy where subjects typically rate a guppy as a poor example
of a fish, a poor example of a pet, but a good example of a
pet fish. This observation has been used to attack the claim
that prototypes(Rosch & Mervis 1975) can serve as word
senses. While the denotation ofpet fishis arguably the in-
tersection of the set of pets and the set of fish, the prototypes
do not seem to combine in a straightforwardly compositional
way. Aerts and Gabora, however, claim that the procedure
used for combining two quantum entities (the tensor prod-
uct) can be used to combine pet and fish to yield the desired
properties of pet fish.

Symbolic Representations of Meaning
Symbolic meaning representations are usually expressed in
some form of logic, or knowledge representation language.
Word senses are usually, though not invariably, treated as
primitive predicates of the logic with fixed denotations, and
any purely word-related inferences captured by axioms. In
some implementedNLP systems (Bos 2005) these axioms
are derived automatically from community resources like
WordNet. Parsed sentences are translated into logical forms
via some kind of syntax-directed translation technique; this
is a fully compositional process, combining the meanings of
words into meanings for phrases and then into meanings for

whole sentences. Typically, only fully parsed sentences can
be interpreted, since the translation process is guided by the
syntactic structure of the sentence. In principle, the result-
ing logical representations can then be used in conjunction
with a theorem prover (often this requires a further transla-
tion step into first order logic, where possible) or directly
transformed to executable code like Prolog orSQL.

This is in effect the “classical AI” approach to meaning
representation and, as such, symbolic approaches have often
been criticised for their lack of robustness and scalability:
implemented systems tend to be small scale and domain spe-
cific. However, the recent improvements in wide-coverage
parsing (Clark & Curran 2004) have led to attempts to scale
up symbolic approaches, with some success (Bos 2005).

Distributional Representations of Meaning

Document Content

Vector space models of document content originated in in-
formation retrieval (Sparck Jones & Willett 1997). A docu-
ment is represented as a vector in a high-dimensional “infor-
mation space”, with the words from a vocabulary forming
a set of orthogonal basis vectors. The vocabulary is typ-
ically the set of words found in a large document collec-
tion. The value of each component of the document vec-
tor is intended to represent the degree to which the corre-
sponding vocabulary word is indicative of the document’s
content or meaning. This is typically implemented using a
term frequency-inverse document frequency (TF-IDF) statis-
tic. Term frequency is the number of times the vocabulary
word appears in the document, and inverse document fre-
quency is the reciprocal of the total number of documents in
which the word appears (given some document collection).
IDF is intended to measure the importance of a word in de-
termining the content of a document, or distinguishing one
document from another.

One advantage in representing documents as vectors is
that semantic similarity between documents is easily mod-
elled as an inner product in the vector space. The document
vectors are typically normalised so that documents of differ-
ent lengths can be meaningfully compared, in which case the
inner product is the cosine of the angle between the vectors.
This geometric interpretation of document content is appeal-
ing, and provides solutions to a number ofIR problems. For
example, the document retrieval problem (the main problem
addressed by Google and other search engines) can be effec-
tively solved by representing a query as a “mini-document”
in the document space, and measuring the relevance of each
document to the query using the cosine measure.

This simple model of a document’s content is known as a
bag-of-wordsmodel, because any higher level relations be-
tween words – even linear order – are ignored. The bag-
of-words model is surprisingly effective for the document
retrieval problem and, despite many years of research at-
tempting to improve on it, still provides state-of-the-art per-
formance. However, there are nowIR tasks such as Question
Answering (QA) in which more sophisticated linguistic rep-
resentations have proven useful.



Thesaurus Extraction
It seems obligatory in a paper on distributional similarity to
quote Firth’s famous dictum that “you shall know a word by
the company it keeps”. This neatly expresses the idea be-
hind thedistributional hypothesis, namely that words with
similar meanings appear in similar contexts. Intuitively,car
andmotorbikehave similar meanings because cars and mo-
torbikes can be driven, bought, sold, crashed, and so on.

Such a model can be implemented by taking a large body
of text and creating context vectors for eachheadwordof
interest. The context can be a simple window surround-
ing the headword, or a more linguistically-motivated context
consisting of grammatical relations (Grefenstette 1992). To
rephrase the previous example,car andmotorbikehave sim-
ilar meanings becausecar andmotorbikeboth appear as the
direct object ofdrove, bought, sold, cleaned; as the subject
of sped, crashed; as the modifiee ofred, new, old; and so on.

Each component of the context vector represents a partic-
ular context, for example the direct object of the verbbuy.
The value for each component is the number of times the
headword is seen in that context. This value can be further
weighted to take into account how indicative the context is
of the headword’s meaning, in a similar way to the use of
IDF in document retrieval. Headwords can then be compared
using the cosine, or some other, measure. (Curran 2004) ap-
plies these methods to a large corpus (two billion words) to
create a noun thesaurus: an entry is created for each noun
headword consisting of the top-N most similar headwords,
for some suitable value ofN .

(Scḧutze 1998) extends these methods to represent the
content of words, i.e. word senses. He proposes a method
in which word senses are represented by second order vec-
tors. These are derived in two steps. First, each target word
is represented by a co-occurrence vector, as above; however,
these first order vectors will be noisy where the word has
more than one sense, since these will typically occur in dif-
ferent contexts: for example ‘bond’ will occur in a financial
context, as well as an “imprisonment” context. To counter
this, for each headword occurrence Schütze computes the
centroid of the vectors for each of the words within the con-
text window. This effectively averages the direction of the
words in the context. The resulting context vectors are then
clustered, with each cluster hopefully representing a differ-
ent sense of the target word. This model of word senses is
shown to perform well in word sense disambiguation tasks.

It is interesting to consider the vector space model of word
meaning by the usual criteria for theories of word sense,
since it is a direct implemention of the “distributional” the-
ory, advocated most famously by linguists like Firth, quoted
above, Zellig Harris and Maurice Gross, or as a version of
the “holistic” theory put forward by various philosophers:
Quine, Davidson, and Churchland. As (Fodor & Lepore
1999) argue in a recent attack on such theories, it is not at
all obvious that they assign to word senses the most basic re-
quirement: that they should support a compositional model
of semantic interpretation, or be preserved in translation.

Some limited kind of compositionality has perhaps been
demonstrated by (Widdows 2004) who showed that a kind
of negation on word senses could be defined in vector space
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Figure 1: Example dependency trees

models. A concept likesuit NOT lawsuit (i.e. the cloth-
ing sense) can be defined by projecting the first order vector
for suit (which will smear all the senses together) onto the
orthogonal subspace forlawsuit. Under this model the most
similar concepts tosuit included terms likeplaintiff andsued
whereas the most similar tosuitNOT lawsuitwere concepts
like pants, shirt, andjacket.

But this is not enough to satisfy real compositionality. To
put the problem simply, can we find a way of combining
the vectors for individual words (or word senses) in such
a way that the representation for a sentence likethe dog
bit the manwill be different from that forthe man bit the
dog? Or, in more detail, that the representation for the first
sentence should bear some revealing relationship to that for
the animal bit the human? A solution to this problem has
practical as well as theoretical interest. Calculating seman-
tic similarity between sentences, or larger discourse units, is
currently a hot topic inNLP, and has many applications, in-
cluding Question Answering, textual entailment, and multi-
document summarisation, to name a few.

The Combination
The proposal here is to adopt the tensor product represen-
tations used by Smolensky for combining the symbolic and
distributional meaning representations. The symbolic rep-
resentation, at the sentence level, could be a parse tree, a
dependency graph, a set of predicate argument relations: es-
sentially any structure that can be represented in terms of
filler-role bindings. The distributional representation, at the
word level, is assumed to be some context vector.

Figure 1 contains dependency trees for the sentencesJohn
drinks strong beer quicklyandMary eats big green potatoes.
The kind of tensor product representation we have in mind
for the first sentence is as follows:

drinks⊗subj⊗John⊗obj⊗(beer⊗adj⊗strong)⊗adv⊗quickly

where the order of the products is determined by some
canonical traversal of the tree. How to obtain vectors for
the dependency relations – subj, obj, etc. – is an open ques-
tion. For now we will simply assume that the dependency
relations form an orthonormal basis in a “relation space”,
so that each relation has length one and the inner product
between two different relations is zero.

What have we achieved with this representation? First,
the vector fordog bites manis not the same as the vector
for man bites dog. Second, the representation allows us to
compare sentences such asman reads magazineandwoman
browses newspaperin a straightforward way using the fol-



lowing property of the tensor product:

(w1 ⊗ w2).(w3 ⊗ w4) = (w1.w3)× (w2.w4) (2)

The similarity can be calculated by simply comparing the
respective pairs in each argument slot and multiplying the
inner products together:

man.woman× reads.browses×magazine.newspaper

The inner products between the respective dependency re-
lations will be one, because the corresponding relations are
the same. One consequence of equation 2 is that similarity
between these vectors can be calculated without building the
tensor product representations. This is a significant feature
for any implementation because the number of basis vectors
in the spaceV ⊗ W is the size ofV times the size ofW ;
and since the context vectors representing the words could
have tens of thousands of components, the vector product
representations quickly become too large to build explicitly.

One weakness of the representation is that it is only pos-
sible to compare dependency trees of the same type, where
type here means the tuple of dependency relations obtained
by traversing the tree in some canonical order. This means,
for example, thatthe dog bit the mancannot be compared
with the man was bit by the dog. This problem can be over-
come by using a more abstract representation in which the
passive and active forms of verbs are identified. However,
this approach will only work for syntactic alternations, and
will not allow the sentences in Figure 1 to be compared.

A possible solution to this problem is to use aconvolution
kernel(Haussler 1999). A convolution kernel between two
structures considers all possible ways of decomposing those
structures, and sums up the similarities between all the pair-
wise decompositions. In the case of the dependency trees,
this would involve decomposing each tree into all its sub-
trees (this being a natural decomposition of a tree) and sum-
ming the similarities between all pairs of subtrees. For this
particular example, this would allowJohn drinksto be com-
pared withMary eats; drinks beerto be compared witheats
potatoes; John drinks beerto be compared withMary eats
potatoes; strong beerto be compared withgreen potatoes;
and so on for all the subtrees. Since the number of subtrees
grows exponentially with the size of the tree, the subtrees
cannot be listed explicitly. A possible solution to this prob-
lem is to extend the tree kernel of (Collins & Duffy 2002),
which is a dynamic programming method for calculating the
number of common subtrees between two trees.

Conclusions
This paper has been submitted to a symposium on Quantum
Mechanics (QM) andAI , so what is the connection toQM?
The mathematical theory ofQM is based on Hilbert spaces;
the objects in which we have situated word meanings are
Hilbert spaces. The operator we have proposed for combin-
ing word meanings is the tensor product; composite systems
in QM, formed by interacting quantum-mechanical systems,
are represented using tensor products (Hughes 1989). This
link suggests that work inNLP which uses vector spaces may
benefit from borrowing more from the well-developed math-
ematical theory ofQM.

Other possible links exist.NLP is currently dominated by
probabilistic models. How to integrate probabilistic models
with the distributional models described here is another in-
teresting question. The mathematical theory ofQM, as well
as being based on Hilbert spaces, is a probabilistic theory.
(Widdows 2004) suggests a link between quantum logic and
the lattices he uses to model negation. (van Rijsbergen 2004)
has proposed a quantum mechanical theory for modelling
relevance inIR. Our proposal is that the interaction ofQM
and language is a fruitful area of research forAI .
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Scḧutze, H. 1998. Automatic word sense discrimination.Com-
putational Linguistics24(1):97–123.
Smolensky, P., and Legendre, G. 2006.The Harmonic Mind: from
neural computation to optimality-theoretic grammar. Cambridge,
MA: MIT Press.
Sparck Jones, K., and Willett, P., eds. 1997.Readings in Infor-
mation Retrieval. San Franscisco, CA: Morgan Kaufmann.
van Rijsbergen, C. J. 2004.The Geometry of Information Re-
trieval. Cambridge University Press.
Widdows, D. 2004.Geometry and Meaning. Stanford University:
CSLI Publications.


