

A Functional Implementation of the
Formal Template Language

Nicolas Wu

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

nicolas.wu@comlab.ox.ac.uk

Abstract. There has been growing interest in using the Z notation to
describe design patterns and to encourage model driven development,
but these are often expressed in terms of instances, rather than in a
more general form. Instead of relying on the interpretation of instances,
the Formal Template Language (FTL) has been used with Z as a means
of capturing patterns in a framework that generates code on instantia-
tion, thereby allowing reuse at the level of modelling and verification in
a formal way. Until now, the instantiation of these templates has been
manual. We present an implementation of the FTL in Haskell that allows
the automatic generation of sentences from templates and evaluation en-
vironments. Our implementation uses Haskell and Happy (a functional
parser generator for Haskell) to generate a parser that performs semantic
analysis on given templates within specific environments to produce in-
stantiations. By construction our implementation is faithful to the FTL
specification in Z, by exploiting the commonalities between this specifi-
cation and Haskell itself.

1 Introduction

In recent years there has been a growing interest within the software engineer-
ing community in using abstractions and frameworks that assist in the correct
design of systems. In particular, it is now widely accepted that describing often
occurring problems and their solutions in terms of patterns [1] is both fruitful
and beneficial, and this methodology is becoming part of the common software
engineering toolbox. Formal methods are also gaining popularity, and specifica-
tion languages such as the Z notation [2] are increasingly being considered as a
useful way of outlining a solution during the design stage.

It is of little surprise, then, that there has been interest in using patterns
within formal methods [3], and indeed a catalogue of Z patterns has been com-
piled [4, 5], thus encouraging the reuse of commonly found abstractions within
that notation. Typically, a pattern is described in terms of an instance, where the
particular instance serves as an example that best captures the form of the pat-
tern. Describing patterns in this way makes them easily understood, and leaves
the details of an application explicit, but the lack of formality with regards to

the general form of the pattern makes it impossible to automate the genera-
tion of instances from these descriptions. At present, semi-formal notations such
as UML [6] are used in this context, where its formal syntax combined with
its pragmatic approach to design has helped it to become universally accepted.
However, UML is not without its flaws, and its lack of formal semantics makes
it difficult to reason about systems with the precision of a fully formal notation
like Z.

Recent work by Amálio, Stepney and Polack has focused on developing a
fully formal framework for representing patterns. They have introduced the For-
mal Template Language, which allows the representation of patterns of formal
development and enabling reasoning at the pattern level using meta-proof [7].
The FTL is able to capture the form of sentences of arbitrary languages, and
has been used with Z as a means of generalising schemas in a way that is more
flexible and expressive than the use of Z generics. There have been several suc-
cessful applications of the FTL: it has been used to describe an object oriented
method of formal design based on patterns [8]; in combination with UML and
Z to assist with model-driven development [9]; and more recently we have been
usingit as a means of describing relational database meta-models in Z.

At the heart of the FTL is the desire to formally delineate aspects of a
language from parts that are in fact part of the meta-language. For example, a
textbook introduction to Z might demonstrate the syntax of schemas using the
following pseudocode:

Name
declarations

predicates

However, the identifiers Name, declarations, and predicates are meant to act as
placeholders for other text, and should not form part of the schema verbatim.
The FTL disambiguates this by using the following notation:

<Name>
[<declaration>]

[<predicate>]

Here placeholders are specifically enclosed by < > brackets, and lists of place-
holders are enclosed by [] brackets. The concept behind the FTL is not re-
markably complex, yet this level of precision in specification becomes particularly
useful when trying to formally describe patterns that occur within a language
or notation, where a simple augmentation of existing syntax is welcomed.

The applications of the FTL have yet to reach their full potential, since they
are all somewhat hindered by the lack of tool support. Indeed, the significance
of a generative framework like the FTL lies in its ability to capture often used
patterns of development, and remove the burden of instantiating these patterns
from the developer. Yet in the absence of automated template instantiation, the

developer is left with the error prone, and somewhat tedious task of manually
instantiating templates.

In this report, we present an implementation of the FTL in a functional style
using Haskell [10] to define semantics, and Happy [11] to generate a parser. The
generated parser returns a data structure that represents a template, and this
can be evaluated in the context of an environment to generate an appropriate
instance. Both the syntax and the semantics of the FTL have been defined
by Amálio using a combination of BNF notation for the syntax, and Z for the
semantics, and we show that our approach lends itself well to implementing code
that has been specified using those notations.

Our implementation is useful since it allows the mechanised generation of
sources that can then be analysed by the tool of the target language. This is
particularly useful for formal languages like Z, where type checking and auto-
mated proofs can be performed by other tools once the templates have been
instantiated.

2 The Formal Template Language

Before we begin describing our implementation, we provide a brief introduction
to the syntax of the FTL in BNF and Z, as introduced by Amálio [12]. We de-
scribe the various elements of syntax in turn, along with the data representations
used for its particular elements. In this exposition BNF is used to describe the
syntax of the FTL, and Z to describe the environment data structure.

2.1 Syntax

The FTL is made up of four different constructs, text, placeholders, lists, and
choices. All of the identifiers in the FTL are made up of symbols drawn from
the target language, SYMB , or from a set of identifiers I . In Z, we write these
two sets as follows, where we also provide the definition of Str :

[SYMB , I] Str == seq SYMB

We have defined Str as a convenience, since sequences of symbols are often used
in the FTL specification.

Text The most basic element of the FTL is a fragment of text, which can be
considered to be a sequence of characters from the target language. We denote
a text element by T , and it can be defined as:

T ::= Str

As a basic unit, these text fragments are useful only when used in conjunction
with the other template constructs.

Placeholder A placeholder is used to hold a template variable, which is in-
stantiated by text denoted in its associated instantiation environment. Each
placeholder contains an identifier I that is made distinct from the surrounding
text by using angled brackets as shown below. The identifier I is instantiated by
an environment Env which is effectively a mapping between I and Str :

<I> Env == I 7→ Str

When the semantic evaluator encounters a placeholder, it is replaced by the
string that its identifier maps to within the environment in context. For example,
consider the following template, alongside an instantiation mapping (shown as
a set of maplets):

<x> : <t> {x 7→ a, t 7→ N}
This trivially produces the text a : N as its instantiation.

List What makes the FTL particularly useful is the use of lists of placeholders.
A list term LT is enclosed in template list brackets:

L ::= [LT]

The list terms within lists are actually sequences of atoms, where an atom A is
either text, a placeholder, or another list. A list is evaluated within the context
of a tree structure of environments:

LT ::= A | ALT TreeEnv ::= tree〈〈Env × seq TreeEnv〉〉
A ::= <I> | T | L

The TreeEnv structure is required since its enclosing Env provides the mappings
for placeholders within the current scope, and the sequence of TreeEnv provides
mappings for lists within that scope.

This is more easily explained with an example (adapted from [12]), where we
consider the following template, alongside a final instantiation:

[<s>] [X]
[<x> ::= <v>[| <v>]] A ::= a1 | a2 | a3

B ::= b1 | b2

The text on the right is the result of applying the following environment to the
template:

tree({s 7→ X },
〈tree({x 7→ A, v 7→ a1},

〈tree({v 7→ a2, 〈〉), tree({v 7→ a3}, 〈〉)〉),
tree({x 7→ B , v 7→ b1〉,
〈tree({v 7→ b2}, 〈〉)〉)〉)

By using this tree of environments, arbitrarily nested list instantiations like the
one above are made possible.

Lists also support a notation that allows us to define a separator SEP , and
an empty instantiation to the list EI , which are fragments of text that are to be
placed between list elements, and when the content of the list is empty. We use
Λ to denote the empty string, giving us the following definition for a list L, and
how the two list constructors relate:

L ::= [LT](SEP,EI) | [LT] [LT] = [LT](Λ,Λ)

We cover the details of the semantics of lists in more detail in Section 3.

Choice The final construct that the FTL supports is the choice of instantiation.
Indeed, any FTL expression E is a sequence made up of atoms and choices:

E ::= A | C | AE | C E

A choice C can denote either an optional element or multiple choice, and is
expressed as follows, where a choice list CL is the choice between at least two
elements:

C ::= (E)? | (CL) GEnv == seq N× TreeEnv
CL ::= E 8 E | E 8 CL

In order to instantiate a choice of environments, we must further extend the
definition of an instantiation environment, and use GEnv for this purpose. The
environment GEnv uses a sequence of integers, one for each choice environment
in turn, that dictates which choice is taken.

For optional choice environments, we use 0 to indicate that the choice is not
taken, and 1 to indicate otherwise. For example, consider the following template:

(<x> : <t>)?

This could be instantiated with either of the following environments:

(〈0〉, tree(∅, 〈〉)) (〈1〉, tree({x 7→ a, t 7→ N}, 〈〉))

The first environment produces no text, and the second is the result of ordinary
substitution, which yields a : N. Multiple choice environments are instantiated
similarly, where the desired choice is indicated by the appropriate number indi-
cated in the environment.

In the next section we describe our implementation of the formal language
using Haskell. This implementation is equivalent to the specification given by
Amálio that we have discussed here, and shown in full in Appendix A. Our
initial implementation closely resembles the specification in its structure and we
later refine the data structure for a more efficient version.

2.2 Parser

We have seen how the syntax of the FTL can be described in terms of BNF
production rules, and this gives an overview of how the terminal tokens relate
to one another, and how structure is imposed by the grammar. The specifica-
tion also comes with a description in Z, which indicates appropriate functional
constructors for the various structural aspects of the grammar. These are used
when defining the semantics of the FTL. The description of the FTL syntax is
shown alongside the Z constructors in Figure 1; a correspondence that we can
make use of in our functional definitions.

E ::= A | C | AE | C E eat〈〈A〉〉 | ech〈〈C 〉〉 | eats〈〈A× E〉〉 | echs〈〈C × E〉〉
C ::= (E)? | (CL) och〈〈E〉〉 | mch〈〈CL〉〉

CL ::= E 8 E | E 8 CL chs〈〈E × E〉〉 | lchs〈〈E × CL〉〉
A ::= <I> | T | L param〈〈I 〉〉 | tx 〈〈Str〉〉 | ls〈〈L〉〉
L ::= [LT](SEP,EI) | [LT] list〈〈LT × Str × Str〉〉 | listr〈〈LT 〉〉

LT ::= A | ALT at〈〈A〉〉 | lat〈〈A× LT 〉〉
` ∀ lt : LT • listr lt = list(lt , 〈〉, 〈〉)

Fig. 1. The formal syntax of the FTL, with BNF notation on the left, and Z specifi-
cation on the right.

We can translate the Z description of constructors directly to a series of
Haskell datatypes, by ensuring each constructor begins with an upper case letter,
and Currying datatypes that are made up of Cartesian products by removing
parenthesis and allowing functions of higher order type.1

data E = Eat A | Ech C | Eats A E | Echs C E
data C = Och E |Mch CL
data CL = Chs E E | Lchs E CL
data A = Param I | Tx String | Ls L
data L = List LT String String
data LT = At A | Lat A LT
type I = String

These datatypes allow us to describe how the parser should link parsed tokens
to data constructions in Happy, shown in Figure 2. The correspondence between
the mixed BNF and Z notation and the Happy grammar specification makes the
translation from specification to implementation remarkably simple.

A Happy grammar consists of various terminal and non-terminal symbol
recursions, each with its associated production code, denoted by a pair of braces
1 This Currying is not essential, but results in code that is of preferable style.

E : A {Eat $ 1}
| C {Ech $ 1}
| A E {Eats $ 1 $ 2}
| C E {Echs $ 1 $ 2}

C : ’(|’ E ’|)?’ {Och $ 2}
| ’(|’ CL ’|)’ {Mch $ 2}

CL : E ’[]’ E {Chs $ 1 $ 3}
| E ’[]’ CL {Lchs $ 1 $ 3}

A : ’<|’ String ’|>’ {Param (toI $ 2)}
| String {Tx $ 1}
| L {Ls $ 1}

L : ’[|’ LT ’|]_’ ’(’ String ’,’ String ’)’ {List $ 2 $ 5 $ 7}
| ’[|’ LT ’|]’ {List $ 2 [] []}

LT : A {At $ 1}
| A LT {Lat $ 1 $ 2}

Fig. 2. The FTL grammar described in Happy.

and written to the right of the appropriate token match rule. When a pattern is
matched by a rule, the appropriate production is created, based on what is in
between the braces. The production code is ordinary Haskell, where matches in
the syntax are referred to by position using $n as its notation, where n denotes
the syntactic element to match.

Our production code is nothing more than the appropriate type constructor
required for a particular rule. The only exception is when we want an identifier
within the Param constructor, where we use the toI function to make sure that
the identifier is valid.

toI :: String → I
toI s = takeWhile (¬ ◦ isSpace) $ dropWhile isSpace s

This function removes any leading whitespace, and consumes following charac-
ters until the next occurrence of whitespace, or the input string is empty. The
consumed characters are used as the identifier.

We stray from the specification grammar at only one point, since the defini-
tion of L should also include a constructor Listr LT , but we do not include it
since we encode the equivalence

Listr lt = List lt [] []

directly into our parser. When the syntax for a Listr is detected by the parser,
the syntax tree is populated with the equivalent List type instead.

Using the grammar in Figure 2, Happy produces a function that we have
named parser that takes a list of tokens and returns the result of the first rule
that is defined: in our case, the rule named E, which always returns a data
constructor for the type E that we introduced earlier.

2.3 Lexer

The Happy grammar in Figure 2 makes use of various tokens to define the
terminal symbols. This is done in another section of the Happy grammar file,
shown in Figure 3. Each terminal symbol is associated to a token that is typically
generated by a lexer, and these are listed side by side.

% token
String {TString$$}
’<|’ {TBSubs} ’|>’ {TESubs} ’[]’ {TChoice}
’(|’ {TBChoice} ’|)’ {TEChoice} ’|)?’ {TEChoice}
’[|’ {TBList} ’|]’ {TEList} ’|]_’ {TEList}
’(’ {TBParen} ’)’ {TEParen} ’,’ {TComma}

Fig. 3. Terminal symbol definitions in Happy, each alongside its corresponding token.

It is the job of the lexer to transform a particular input string, or sequence of
symbols, into appropriate tokens. For completeness, we define a lexer that looks
for a sequence of symbols that match an ASCII representation of the various
FTL constructs, and treats all other characters as template text.

lexer :: String → [Token]
lexer = compact ◦ lexer′
lexer′ :: String → [Token]
lexer′ [] = []
lexer′ (’<’ : ’|’ : cs) = TBSubs : lexer′ cs
lexer′ (’|’ : ’>’ : cs) = TESubs : lexer′ cs
lexer′ (’(’ : ’|’ : cs) = TBChoice : lexer′ cs
lexer′ (’|’ : ’)’ : cs) = TEChoice : lexer′ cs
lexer′ (’|’ : ’)’ : ’?’ : cs) = TEChoice : lexer′ cs
lexer′ (’[’ : ’|’ : cs) = TBList : lexer′ cs
lexer′ (’|’ : ’]’ : ’_’ : cs) = TEList : param cs
lexer′ (’|’ : ’]’ : cs) = TEList : lexer′ cs
lexer′ (’[’ : ’]’ : cs) = TChoice : lexer′ cs
lexer′ (c : cs) = TChar c : lexer′ cs

The lexer itself depends on a function compact that removes lists of tokens of
type TChar, and replaces them with a single token of type TString.

compact :: [Token]→ [Token]
compact [] = []
compact (TChar c : []) = [TString [c]]
compact (TChar c : ts) = compact (TString [c] : ts)
compact (TString s : TChar c : ts) = compact (TString (c : s) : ts)

compact (TString s : ts) = TString (reverse s) : compact ts
compact (t : ts) = t : compact ts

This allows us to avoid the explicit transformation of sequences of characters
to strings within the FTL grammar definition. This definition accumulates se-
quences of characters in a leading TString structure. Appending characters to
the head of a list takes constant time, but reverses the sequence order. The
original sequence is recovered by reversing the list when no more characters are
encountered.

The function param is used to extract two parameters after a list type. This
is a recursive definition whose final continuation is the function lexer′.

param :: String → [Token]
param (’\\’ : ’\\’ : cs) = TChar ’\\’ : param cs
param (’\\’ : ’{’ : cs) = TChar ’{’ : param cs
param (’\\’ : ’}’ : cs) = TChar ’}’ : param cs
param (’{’ : cs) = TBParen : param cs
param (’}’ : ’{’ : cs) = TComma : param cs
param (’}’ : cs) = TEParen : lexer′ cs

We have defined our lexer this way for convenience; a more complete solution
would also encode a mechanism for escaping the various reserved sequences of
characters that have been used to represent the FTL constructs. Moreover, the
input sequence need not be our stylised ASCII representation, and a more typical
method of inputting specifications might be through a LATEX script. Since the
FTL specification makes no reference to the exact nature of the lexicographic
analysis, we make no effort to continue its development here, although a more
complex lexer could easily be generated either manually, or by using a tool like
Alex [13] that generates Haskell tokenisers based on regular expressions.

With a lexer and parser fully defined, we have effectively created a means
of transforming sequences of characters into Haskell datatypes, representing the
structure of an FTL template, that can then be evaluated by a semantic analyser.

3 Semantic analyser

With our grammar in place, and a means of taking structured text into an
instantiation of that grammar, we now focus on giving appropriate semantics to
the structure. In this section, we use the Z specification for the FTL found in
Appendix A to guide our development.

3.1 Environment

Our first task is to define the appropriate data structure that will hold the
environments with which the templates will be evaluated. Again, the translation
between the Z specification and Haskell is very natural, with the code below
corresponding to the Z specification of Amálio [12] that we discussed in Section 2.

type Env = Map I String
data TreeEnv = Tree Env [TreeEnv]
data GEnv = GEnv [Integer] TreeEnv

An alternative definition of Env would make it a synonym for I → String, using
it as a function directly. However, we have chosen to use a Map instead, since this
provides a convenient way of creating new mappings from lists of associations,
and also has an efficient implementation. This allows for simple instantiation of
a new Env, and also gives us a reasonable mechanism for handling incomplete
mappings using Maybe constructs.

3.2 Variable Extraction

The semantic analyser needs to be able to ascertain whether or not a particular
variable is in context for a particular expression. The functions VA, VLT , VC ,
VCL, and VE reflect those in the Z specification in a functional style.2

VA :: A→ [I]
VA (Param i) = [i]
VA (Tx s) = []
VA (Ls l) = []
VLT :: LT → [I]
VLT (At a) = VA a
VLT (Lat a lt) = union (VA a) (VLT lt)
VC :: C → [I]
VC (Och e) = VE e
VC (Mch cl) = VCL cl
VCL :: CL→ [I]
VCL (Chs e1 e2) = union (VE e1) (VE e2)
VCL (Lchs e cl) = union (VE e) (VCL cl)
VE :: E → [I]
VE (Eat a) = VA a
VE (Ech c) = VC c
VE (Eats a e) = union (VA a) (VE e)
VE (Echs c e) = union (VC c) (VE e)

These functional definitions follow on very naturally from the Z specification.
The most noticeable change is that we use lists, rather than sets of I. This is
a convenience that later affords us brevity when checking membership of the
list. Since lists preserve multiplicity of elements, we need to ensure that the our
list maintains the uniqueness of its elements. This property is enforced by the
function union which is the only function used to compose lists.

2 The function names here and throughout the document have been formatted for
exposition, and are easily replaced by valid Haskell identifiers.

3.3 Semantic Evaluation

Our final task is to provide the functions that generate strings, given an appro-
priate template and environment. Again, the translation from specification to
implementation is with little effort.

Since we decided to implement the type Env with a Map, we dereference
the value of env with value i by using env ! i, rather than function application.

MA :: A→ TreeEnv → String
MA (Tx t) (Tree env lte) = t
MA (Param i) (Tree env lte) = env ! i
MA (Ls l) (Tree env lte) =ML l lte

The largest changes between the specification found in the appendix and
the implementation are in the function that follows. Here, we have refactored
the singleton and non-empty cases of ML into a single non-empty case. This
refactoring is made valid since

ML (List (Lat (Tx sep) lt) [] []) [] ≡ []

and so the singleton and non-empty case agree, and can reduce to the non-empty
case alone.

Possibly the most significant change is the refinement of the specification:

¬VLT lt ∩ dom env = ∅

to its implementation as:

any (flip member env) (VLT lt)

Here we have made the most of our decision to use [I] rather than Set I as the
return value of VLT , since the function any maps a predicate onto a list, and
returns true if any result of the application of the predicate yields true.

ML :: L→ [TreeEnv]→ String
ML (List lt sep ei) [] = ei
ML (List lt sep ei) ((Tree env lte) : ts)
| any (flip member env) (VLT lt) =MLT lt (Tree env lte) ++

ML (List (Lat (Tx sep) lt) [] []) ts
| otherwise = ei

In the functions that follow the changes in translation are all trivial.

MLT :: LT → TreeEnv → String
MLT (At a) t =MA a t
MLT (Lat a lt) t =MA a t++MLT lt t

MCL :: CL→ Integer → E
MCL (Chs e1 e2) 1 = e1

MCL (Chs e1 e2) 2 = e2
MCL (Lchs e cl) 1 = e
MCL (Lchs e cl) n =MCL cl (n− 1)
MC :: C → Integer → E
MC (Och e) 0 = Eat (Tx [])
MC (Och e) n = e
MC (Mch cl) n =MCL cl n

As before, we have refactored the following definition to remove redundant
singleton list clauses, which turn out to be equivalent to non-empty cases.

ME :: E → GEnv → String
ME (Eat a) (GEnv ns t) =MA a t
ME (Ech c) (GEnv (n : ns) t) =ME (MC c n) (GEnv ns t)
ME (Eats a e) (GEnv ns t) =MA a t++ME e (GEnv ns t)
ME (Echs c e) (GEnv (n : ns) t) =ME (MC c n++E e) (GEnv ns t)

(++E) :: E → E → E
(Eat a) ++E e = Eats a e
(Ech c) ++E e = Echs c e
(Eats a e1) ++E e2 = Eats a (e1 ++E e2)
(Echs c e1) ++E e2 = Echs c (e1 ++E e2)

The changes we have made throughout have been somewhat superficial, and
for the most part were motivated by a desire for elegance, rather than by neces-
sity. The ease of development of a functional implementation from a mixed BNF
and Z specification speaks for itself, and we have highlighted how using Happy
and Haskell have made this remarkably simple.

4 Example

At this point we demonstrate the evaluation of an expression in an environment
using the ME function as appropriate. For the purpose of this example, we use
the following template, which is made up of most of the elements of the FTL:

([<x> : <y>;] 8 [<x> : <y>→ <z>;])

Instantiating this template demonstrates the use of choice, lists, placeholders,
and text. In our discussion above, we implemented the FTL tokens for these
elements using an ASCII representation, so we use this representation of the
above template in the Haskell code that follows.3 The value of t is the result
of first tokenising the input string using our lexer function, and then using
3 This rendering is rather difficult to read, and is the consequence of our simplified

lexer. The production version of this tool uses LATEX input and is therefore easier to
read, so for the purposes of this example we concede this eyesore.

the function parser generated by Happy, to return a structure of type E that
represents the template.

t = (parser ◦ lexer)
"(|[|<|x|> : <|y|>; |][][|<|x|> : <|y|> -> <|z|>; |]|)"

We then define the tree environment that we use to evaluate the template:

env =
Tree empty [Tree (fromList [("x", "a"), ("y", "A"), ("z", "B")]) [],

T ree (fromList [("x", "b"), ("y", "C"), ("z", "D")]) []]

Here the function fromList takes a list of pairs, and returns a map where the
first element of a pair becomes a key, with the value found in the second element
of the pair.

Since the template includes choice, we demonstrate the two alternatives:

ME t (GEnv [1] env) = "a : A; b : C; "

ME t (GEnv [2] env) = "a : A -> B; b : C -> D; "

This example does little to provide full validation of our tool, but serves as a
brief demonstration of its capabilities. In fact, using Haskell as the implementa-
tion language has gained us a hidden benefit: the text above showing the result
of applyingME was generated entirely automatically using lhs2TeX, a tool that
is able to execute fragments of Haskell within a source script before generating
LATEX code. Since the source of this very report is a Haskell script that con-
tains all the definitions discussed so far, we not only have the assurance that
the definitions are well typed (since it has been checked by a Haskell compiler),
but this document has the precise result of our template instantiation rendered
automatically.

In the following section we consider how the implementation might be im-
proved and optimised further.

5 Refactoring and Optimisation

5.1 Left Recursion is Happier

Our main optimisation is to do with the way that Happy generates compilers.
The parsers produced as a result of a left recursion are more efficient than those
that are a result of a right recursion. A left recursion results in a constant stack
parser, whereas a right recursion results in a parser that requires space equivalent
to the length of the list parsed. Since the grammar of the FTL is relatively simple,
making all rules left-recursive is not a difficult task, and results in what is shown
in Figure 4, where recursions found in E, CL, and LT have all been modified.

Unfortunately, this refactoring adds an inconvenient complication, since new
elements that are on the right hand side of the grammar are appended to the left

E ′ ::= A′ | C ′ | E ′A′ | E ′ C ′

C ′ ::= (E ′)? | (CL′)

CL′ ::= E ′ 8 E ′ | CL′ 8 E ′

A′ ::= <I> | T | L′
L′ ::= [LT ′](SEP,EI) | [LT ′]

LT ′ ::= A′ | LT ′A′

Fig. 4. A left-factored version of the FTL BNF syntax.

of a constructed datatype. This results in the reversal of the element order, and
the resulting datatypes must be reversed again to regain the original sequence.
This can be achieved by defining a reversal function for the types that have
had their rules altered. For example, the reverse function for the type E is the
following4:

reverseE :: E → E
reverseE (Eat a) = Eat a
reverseE (Ech c) = Ech c
reverseE (Eats a e) = reverseE e++E Eat a
reverseE (Echs c e) = reverseE e++E Ech c

Similar definitions for CL and LT are also required, which in turn need imple-
mentations of specialised concatenation. To complete this refactoring, we rewrite
the Happy grammar to produce what is shown in Figure 5.

Alternatively, it would be possible to redefine the basic datatypes with con-
structor parameters reversed, but this would have required a reimplementation
of the various V andM functions to reflect this change, which would be consid-
erably removed from the original specification.

Since our changes are entirely in the grammar production rules, and the
return types are unmodified, our semantic evaluatorME does not need to change
to function correctly with this optimised parser.

5.2 Native Datatypes

The initial FTL specification in Z [12] suggested a concrete syntax for the var-
ious data structures, using free type definitions to directly represent each of
the BNF constructs. The flexibility of Haskell datatype constructors allowed us
to use these free type definitions almost verbatim, and this in turn allowed a
very natural translation between the Z semantics and their implementation. An-
other approach would be to represent the syntactic elements using native Haskell
datatypes.
4 This is an inefficient version of reverse that does not use an accumulator. We use it

here for its simple definition.

E′ : A′ {Eat $ 1}
| C′ {Ech $ 1}
| E′ A′ {Eats $ 1 $ 2}
| E′ C′ {Echs $ 1 $ 2}

C′ : ’(|’ E′ ’|)?’ {Och (reverseE $ 2)}
| ’(|’ CL′ ’|)’ {Mch (reverseCL $ 2)}

CL′ : E′ ’[]’ E′ {Chs (reverseE $ 3) (reverseE $ 1)}
| CL′ ’[]’ E′ {Lchs $ 1 (reverseE $ 3)}

A′ : ’<|’ String ’|>’ {Param (toI $ 2)}
| String {Tx $ 1}
| L′ {Ls $ 1}

L′ : ’[|’ LT ′ ’|]_’ ’(’ String ’,’ String ’)’ {List (reverseLT $ 2) $ 5 $ 7}
| ’[|’ LT ′ ’|]’ {List (reverseLT $ 2) [] []}

LT ′ : A′ {At $ 1}
| LT ′ A′ {Lat $ 2 $ 1}

Fig. 5. The FTL’ grammar described in Happy.

For example, the type LT expressed in Figure 1 could be more naturally
defined as follows, using an extended BNF notation, where a + indicates that
there is one or more of the preceding element.

LT ::= A+

Indeed, this definition is found in an early version of the FTL [8]. Viewing the
definition this way makes it rather obvious that LT ought to be implemented
using a non-empty list of type A, and so we might suggest this as a more logical
representation:

data LT ′ = [A′]

Similarly, the type E can be expressed using the following syntax:

E ::= (A | C)+

And this indicates that E ought to be implemented as a list of elements that
can be either A or C:

type E′ = [Either A′ C ′]

Continuing in this way, an alternative set of datatypes that represents the FTL
syntax could be used, where synonyms of the familiar native datatypes are
favoured.5 Arguably, such definitions would have been the natural starting point
for our program.
5 Strictly speaking, we have introduced some generalisations here that were not orig-

inally specified — the type E′ now contains an empty list, whereas the type of E
does not permit this. We would therefore have to take care to handle this case ap-
propriately in the redefinition of both VE andME , and likewise for other definitions
that introduce lists.

Defining the basic types in this style complicates the translation from spec-
ification to implementation, but results in an implementation that can exploit
the rich library of functions that are provided by Haskell. However, there is little
incentive to do so in this case, since we scarcely make use of the library functions.

6 Conclusion

We have demonstrated the implementation of the FTL in a functional style using
Haskell and Happy, and as far as we are aware, this is the first working imple-
mentation of the FTL. In our implementation we have been careful to adhere to
the specification set out by Amálio, and have shown that the translation from Z
and BNF to Haskell and Happy is rather natural.

Other parser generators like Antlr and Yacc were also considered for use,
but the perspicuous nature of Haskell is appealing for its strength in exposi-
tion and for its clarity. In addition, the implementation of a specification in Z
lends itself quite naturally to a functional style of programming. Other func-
tional approaches such as OCaml and its parser generator Ocamlyacc were also
considered, and Haskell was favoured for its lighter syntactic requirements.

On a practical note, using this tool has proved to be useful for database
templates, but we find that the means of inputting instantiation environments
using raw data structures is somewhat cumbersome. This is not a problem with
our implementation per se, since such structures are part of the design of the
FTL. Further theoretical work concerning the FTL itself would be required, with
the aim of facilitating the creation of instantiation environments in a notation
that more closely resembles the target language, and that has fewer syntactic
requirements. To solve this, we plan to extend the use of templates to consider
not only how to output structured text, but as a means of inputting text too.

Our implementation has also brought to our attention other aspects of the
FTL that could be improved. For example, the choice of templates currently has
two constructors; one to create optional choices, and the other to create multiple
choices. It is not clear why these two constructors have not been unified, since
one could easily imagine a single choice constructor with multiple choices that
could be optionally ignored using the same mechanism that optional choices
currently take. As such, this simplification was not implemented since our aim
was to design a tool that was fully compliant with the original FTL. To this end,
our implementation has shown itself to be entirely successful.

Acknowlegements

The author is grateful to Andrew Simpson for his comments on an earlier draft
of this report.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley (1995)

2. Spivey, J.M.: The Z notation: A Reference Manual. Prentice-Hall (1992)

3. Stepney, S., Polack, F., Toyn, I.: An outline pattern language for Z: five illustrations
and two tables. In Bert, D., Bowen, J.P., King, S., Walden, M., eds.: ZB2003: Third
International Conference of B and Z Users, Turku, Finland. Volume 2651 of LNCS.,
Springer (2003) 2–19

4. Stepney, S., Polack, F., Toyn, I.: A Z patterns catalogue I: specification and refac-
torings, v0.1. Technical Report YCS-2003-349, Department of Computer Science,
University of York (January 2003)

5. Valentine, S.H., Stepney, S., Toyn, I.: A Z patterns catalogue II: definitions and
laws, v0.1. Technical Report YCS-2004-383, Department of Computer Science,
University of York (October 2004)

6. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Pearson Higher Education (2004)

7. Amálio, N., Stepney, S., Polack, F.: A Formal Template Language Enabling
Metaproof. In Misra, J., Nipkow, T., Sekerinski, E., eds.: Proceedings of FM 2006.
Volume 4085 of Lecture Notes in Computer Science., Springer (2006) 252–267

8. Amálio, N., Stepney, S., Polack, F.: Modular UML semantics: Interpretations in Z
based on templates and generics. In Van, H.D., Liu, Z., eds.: FACS’03 Workshop
on Formal Aspects of Component Software, Pisa, Italy, September 2003. Volume
284 of UNU/IIST Technical Report. (2003)

9. Amálio, N., Polack, F., Stepney, S.: Frameworks Based on Templates for Rigorous
Model-driven Development. Electr. Notes Theor. Comput. Sci. 191 (2007) 3–23

10. Jones, S.L.: Haskell 98 language and libraries: the revised report. Cambridge
University Press (2003)

11. Gill, A., Marlow, S.: Happy: The parser generator for Haskell (June 2009)
http://www.haskell.org/happy/.

12. Amálio, N.: Generative Frameworks for Rigorous Model-Driven Development. PhD
thesis, Department of Computer Science, Univ of York (2006)

13. Marlow, S.: Alex: A lexical analyser generator for Haskell (June 2009)
http://www.haskell.org/alex/.

A FTL Semantics in Z

This appendix shows the various definitions of the FTL semantic functions, as
given by Amálio [12].

A.1 Auxiliary Definitions

[I ,SYMB]
Str == seq SYMB

++E : E × E → E

∀ a : A; e : E • (eat a) ++E e = eats (a, e)
∀ c : C ; e : E • (ech c) ++E e = echs (c, e)
∀ a : A; e1, e2 : E • eats (a, e1) ++E e2 = eats (a, e1 ++E e2)
∀ c : C ; e1, e2 : E • echs (c, e1) ++E e2 = echs (c, e1 ++E e2)

VA : A→ P I

∀ i : I • VA (param i) = {i}
∀ s : Str • VA (tx s) = ∅
∀ l : L • VA (ls l) = ∅

VLT : LT → P I

∀ a : A • VLT (at a) = VA a
∀ a : A; le : LT • VLT (lat (a, le)) = VA a ∪ VLT le

VC : C → P I
VCL : CL→ P I
VE : E → P I

∀ e : E • VC (och e) = VE e
∀ cl : CL • VC (mch cl) = VCL cl
∀ e1, e2 : E • VCL (chs (e1, e2)) = VE e1 ∪ VE e2

∀ e : E ; cl : CL • VCL (lchs (e, cl)) = VE e ∪ VCL cl
∀ a : A • VE (eat a) = VA a
∀ c : C • VE (ech c) = VC c
∀ a : A; e : E • VE (eats (a, e)) = VA a ∪ VE e
∀ c : C ; e : E • VE (echs (c, e)) = VC c ∪ VE e

A.2 Semantic Functions

Env == I 7→ Str
TreeEnv ::= tree〈〈Env × seq TreeEnv〉〉
GEnv == seq N× TreeEnv

MA : A→ TreeEnv 7→ Str
ML : L→ seq TreeEnv 7→ Str
MLT : LT → TreeEnv 7→ Str

∀ t : Str ; env : Env ; lte : seq TreeEnv • MA (tx t) (tree (env , lte)) = t
∀ i : I ; env : Env ; lte : seq TreeEnv • MA (param i) (tree (env , lte)) = env i
∀ l : L; env : Env ; lte : seq TreeEnv • MA (ls l) (tree (env , lte)) =ML l lte
∀ le : LT ; ld , let : Str • ML (list (le, ld , let)) 〈〉 = let
∀ le : LT ; ld , let : Str ; env : Env ; lte : seq TreeEnv •

ML (list (le, ld , let)) 〈(tree (env , lte))〉 =
if ¬VLT le ∩ dom env = ∅
thenMLT le (tree (env , lte))
else let

∀ le : LT ; ld , let : Str ; env : Env ; ltes, ltet : seq TreeEnv •
ML (list (le, ld , let)) (〈tree (env , ltes)〉a ltet) =

if ¬VLT le ∩ dom env = ∅
thenMLT le (tree (env , ltes)) aML (list (lat ((tx ld), le, 〈〉, 〈〉)) ltet
else let

∀ a : A; te : TreeEnv • MLT (at a) te =MA a te
∀ a : A; le : LT ; te : TreeEnv • MLT (lat (a, le)) te =MA a te aMLT le te

MCL : CL→ N1 7→ E

∀ e1, e2 : E • MCL (chs (e1, e2)) 1 = e1

∀ e1, e2 : E • MCL (chs (e1, e2)) 2 = e2

∀ e : E ; cl : CL; n : N1 • MCL (lchs (e, cl)) n =
if n = 1 then e elseMCL cl (n − 1)

MC : C → N 7→ E

∀ e : E • MC (och e) 0 = eat (tx 〈〉)
∀ e : E ; n : N1 • MC (och e) n = e
∀ cl : CL; n : N1 • MC (mch cl) n =MCL cl n

ME : E → GEnv → Str

∀ a : A; chs : seq N; te : TreeEnv • ME (eat a) (chs, te) =MA a te
∀ c : C ; n : N; te : TreeEnv • ME (ech c) (〈n〉, te) =ME (MC c n) (〈〉, te)
∀ c : C ; n : N; chs : seq N; te : TreeEnv •

ME (ech c) ((〈n〉a chs), te) =ME (MC c n) (chs, te)
∀ a : A; e : E ; chs : seq N; te : TreeEnv •

ME (eats (a, e)) (chs, te) =MA a te aME e (chs, te)
∀ c : C ; e : E ; n : N; te : TreeEnv •

ME (echs (c, e)) (〈n〉, te) =ME ((MC c n) ++E e) (〈〉, te)
∀ c : C ; e : E ; n : N; chs : seq N; te : TreeEnv •

ME (echs (c, e)) ((〈n〉a chs), te) =ME ((MC c n) ++E e) (chs, te)

