
Specifying and Modelling Secure Channels in
Strand Spaces

Allaa Kamil and Gavin Lowe

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

{allaa.kamil,gavin.lowe}@comlab.ox.ac.uk

Abstract. We adapt the Strand Spaces model to reason abstractly
about layered security protocols, where an Application Layer protocol
is layered on top of a secure transport protocol. The model abstracts
away from the implementation of the secure transport protocol and just
captures the properties that it provides to the Application Layer. We
illustrate the usefulness of the model by using it to verify a small single
sign-on protocol.

1 Introduction

Many security architectures make use of layering of protocols: a special-purpose
Application Layer protocol is layered on top of a general-purpose Secure Trans-
port Layer protocol, such as SSL/TLS [Tho00]. The secure transport protocol
provides a secure channel to the Application Layer, i.e., it provides a commu-
nication channel with some extra security services such as authentication and
confidentiality. The Application Layer protocol builds on this to provide extra
functionality and security guarantees.

As an example, one common use of such layered architectures is in Single-
Sign-On (SSO) protocols. In such protocols, a User seeks to access services
provided by a Service Provider ; the User is authenticated by a trusted Identity
Provider. Typically, the User can open a unilateral TLS connection to the
Service Provider, which authenticates the Service Provider but not the User.
Further, the User can open a unilateral TLS connection to the Identity Provider,
which authenticates the Identity Provider; the User then provides a password
to authenticate herself. The SSO protocol builds upon these secure channels to
allow the User to authenticate herself to the Service Provider. The SAML SSO
Protocol [OAS05] is one such protocol.

However, the use of secure channels is not enough to ensure the security of
the application protocol. For example, Google adapted the SAML SSO for use
with Google Apps [Goo08]. Unfortunately, this adaptation introduced a flaw,
reported in [ACC+08].

The aim of our research programme is to investigate how to analyse such
layered protocols. In this paper, we extend the Strand Spaces model [THG98]
in order to specify and model layered protocols.

One way to analyse such layered protocols would be to explicitly model both
layers; this is the approach taken in [HSN05]. We take the view that it is better
to abstract away from the implementation of the Secure Transport Layer and
simply to model the services it provides to the Application Layer. This greatly
simplifies the analysis of the architecture. Further, such an analysis produces
more general results: it allows us to deduce the security of the Application
Layer protocol when layered on top of an arbitrary secure transport protocol
that provides (at least) the assumed services.

Of course, this approach introduces a proof obligation that the secure trans-
port protocol does indeed provide the services assumed of it. However, such
a proof only needs to be done once per transport protocol. An example such
proof, for bilateral TLS, appears in [Kam09,KL09]. Such proofs tend to assume
that the two layers are independent, so that no message can be replayed from
one layer to the other.

Different secure transport protocols will allow or prevent different actions
by a dishonest penetrator. Any reasonable transport protocol will allow the
penetrator to take part in sessions, to send messages using his own identity,
and receive messages intended for him. Some transport protocols will keep
Application Layer messages confidential, such as the transport protocol that
encodes Application Layer message m from A to B as

TL1A,B (m) = A,B , {m}PK (B)

(where PK (B) is B ’s public key). But others will allow the penetrator to learn
them, such as the transport protocol that encodes m from A to B as

TL2A,B (m) = A,B , {m}SK (A)

[CGRZ03] (where SK (A) is A’s secret key). Some transport protocols will allow
the penetrator to fake messages, causing a regular (i.e. honest) agent to receive
an arbitrary Application Layer message known to the penetrator, apparently
from some third party; this is the case with encoding TL1 but not TL2 . Finally,
some transport protocols will allow the penetrator to hijack messages, changing
either the intended recipient or the apparent sender of the message; for example,
with encoding TL2 , the penetrator may transform the Transport Layer message
into A,C , {m}SK (A) and redirect it to C ; alternatively, with encoding TL1 , the
penetrator may transform the Transport Layer message into C ,B , {m}PK (B)

and re-ascribe it to C .
Our approach is to build an abstract model that describes each of these po-

tential penetrator actions —sending, receiving, learning, faking and hijacking—
as a high-level penetrator strand. Of course, the penetrator may also build
Application Layer messages himself, pick them apart, or otherwise transform
them; we capture these abilities using (slightly adapted versions of) standard
penetrator strands.

We assume that different transport protocols deployed in the same system
are independent, in the sense that the penetrator cannot directly transform a
message sent over one transport protocol into a message over another protocol,
other than by performing a receive or learn followed by a send or fake.

2

In the next section we present the foundations of the model, describing the
way we abstractly represent Transport Layer messages and the penetrator’s pos-
sible actions in high-level bundles. In Section 3 we describe how to specify the
properties of secure channels by disallowing appropriate high-level penetrator
strands. In Section 4 we prove a normal form lemma that subsequently allows
us to restrict our attention to bundles in a particular form. We illustrate our
model in Section 5 by using it to analyse a small single sign-on protocol. We
sum up and discuss forthcoming work in Section 6.

Related work The work closest to the current paper is [DL08,Dil08]. That paper
uses a CSP-style formalism [Ros98], with a view towards analysing protocols
using model checking. That paper, like this, defines potential capabilities of
the penetrator, and then specifies secure channels by limiting those capabili-
ties. We see the two approaches as complementary: model checking is good for
finding attacks; the Strand Spaces approach is good for building the theoretical
foundations, and producing proofs of protocols that reveal why the protocol is
correct.

Armando et al. [ACC07] use LTL to specify security properties of channels,
and then use SATMC, a model checker for security protocols, to analyse a fair
exchange protocol. In [ACC+08] they analyse SAML SSO and the Google Apps
variant using the same techniques. Bella et al. [BLP03] adapt the inductive
approach to model authenticated and confidential channels, and use these ideas
to verify a certified e-mail delivery protocol. Bugliesi and Focardi [BF08] model
secure channels within a variant of the asynchronous pi-calculus. Each of these
works captures the properties of secure channels by limiting the penetrator’s
abilities regarding messages on such channels, although each considers fewer
variants of authenticated channels than the current paper.

As noted above, our work is mainly targeted at layered protocol architectures.
However, it can also be used to model empirical channels, where some messages
of a protocol are implemented by human mediation, and so satisfy extra security
properties. Creese et al. [CGRZ03] capture such empirical channels, within the
context of CSP model checking, again by restricting the penetrator’s abilities.

2 The abstract model: High-level bundles

In this section we present high-level bundles, which abstractly model secure
transport protocols. We present high-level terms, which capture Transport Layer
messages. We then adapt the notion of a strand space [THG98] to such high-level
terms. We then describe how we model the penetrator’s ability to manipulate
both Transport Layer and Application Layer messages. Finally, we define high-
level bundles.

2.1 High-level terms and nodes

Let A be the set of possible messages that can be exchanged between principals
in a protocol. The elements of A are usually referred to as terms. As in the

3

original Strand Spaces model [THG98], A is freely generated from two disjoint
sets, T (representing tags, texts, nonces, and principals) and K (representing
keys) by means of concatenation and encryption.

Definition 1 Compound terms are built by two constructors:

– encr : K ×A → A representing encryption;
– join : A×A → A representing concatenation.

Conventionally, {t}k is used to indicate that a term t is encrypted with a key k
and t0 t̂1 to denote the concatenation of t0 and t1 .

The set K of keys is equipped with a unary injective symmetric operator
inv : K → K; inv(k) is usually denoted k−1 . Let Tname ⊆ T be the set of agent
names, ranged over by X , Y ; let Tpname ⊆ Tname , ranged over by P , be the
set of names the penetrator uses when actively participating in a protocol as
himself; we let A, B range over names of regular agents.

As in the original Strand Spaces model, a strand is a sequence of message
transmissions and receptions. A node is the basic element of a strand. Each
node n is associated with a message, or high-level term, denoted msg(n). A
positive node is used to represent a transmission while a negative node is used to
denote reception. Each node communicates over a channel, which may provide
some security services to the message; a channel that does not provide any
security services is called the bottom channel, denoted ⊥. In our abstract model,
messages are modelled as follows.

Definition 2 Every node n in strand st is associated with a high-level term of
the form (X ,Y ,m, c) where:

– m ∈ A is the Application Layer message.
– X ∈ Tname : If n is positive and st is a regular strand, then X is the name

of the regular agent who is running st. Otherwise, X refers to the agent that
is claimed to have sent m.

– Y ∈ Tname : If n is negative and st is a regular strand, then Y is the name
of the regular agent who is running st. Otherwise, Y refers to the agent that
is intended to receive m.

– c is the identifier of the secure channel over which n communicates.

We write Â for the set of high-level terms.

We may use an underscore () in the first or second position of the tuple to
indicate that the term is not associated with a particular sender or receiver
respectively. If n is a regular node then we assume that its term must be
associated with a specified sender and receiver.

The following definition is a straightforward adaptation from [THG98]. The
relation n → n ′ represents inter-strand communication, while n ⇒ n ′ represents
flow of control within a strand.

Definition 3 A directed term is a pair 〈σ, a〉 with σ ∈ {+,−} and a ∈ Â; we
write it as as +t or −t. (±Â)∗ is the set of finite sequences of directed terms.
A typical element of (±Â)∗ is denoted by 〈〈σ1 , a1 〉, ..., 〈σn , an〉〉. A strand space
over Â is a set Σ with a trace mapping tr : Σ → (±Â)∗. Fix a strand space Σ.

4

1. A node n is a pair 〈st , i〉, with st ∈ Σ and i an integer satisfying 1 ≤ i ≤
length(tr(st)). The set of nodes is denoted by N . We define msg(n) =
tr(st)(i). We will say the node n belongs to the strand st.

2. There is an edge n1 → n2 if and only if msg(n1) = +a and msg(n2) = −a
for some a ∈ Â. The edge means that node n1 sends the message a, which
is received by n2 , recording a potential causal link between those strands.

3. When n1 = 〈st , i〉, and n2 = 〈st , i + 1 〉 are members of N , there is an edge
n1 ⇒ n2 . The edge expresses that n1 is an immediate causal predecessor
of n2 on the strand st. n ′ ⇒+ n is used to denote that n ′ precedes n (not
necessarily immediately) on the same strand.

We now define the notions of origination and unique origination in the context
of a high-level strand space.

Definition 4 Let Σ be a high-level strand space.

1. Let I be a set of undirected terms. The node n ∈ Σ is an entry point for I
iff n is positive and associated with a high-level term (A,B ,m, c) for some
m ∈ I, and whenever n ′ ⇒+ n and n ′ is associated with a high-level term
(A′,B ′,m ′, c′), m ′ /∈ I.

2. An undirected term t originates on a node n iff n is an entry point for the
set of messages that contain t as a subterm.

3. An undirected term t is uniquely originating in a set of nodes S ⊂ N iff
there is a unique n ∈ S such that t originates on n.

2.2 The penetrator

We can classify the activities of the penetrator, according to their effects on
Application Layer messages:

– Actions that are used to construct or pick apart Application Layer messages;
– Actions that are used to handle high-level terms, affecting the Transport

Layer “packaging” without modifying the corresponding Application Layer
messages.

The first type of actions is used to transform and create messages of the
form (, ,m,⊥), i.e. messages that are sent on the bottom channel without
being associated with a particular sender or receiver. To model them, we adapt
the standard penetrator strands from [THG98] to handle high-level terms.

Definition 5 A standard penetrator strand in a high level bundle is one of the
following:

M. Text message: 〈+(, , r ,⊥)〉 where r ∈ TP ;
K. Key: 〈+(, , k ,⊥)〉 where k ∈ KP ;
C. Concatenation: 〈−(, , t0 ,⊥),−(, , t1 ,⊥),+(, , t0ˆt1 ,⊥)〉;
S. Separation into components: 〈−(, , t0ˆt1 ,⊥),+(, , t0 ,⊥),+(, , t1 ,⊥)〉;
E. Encryption: 〈−(, , k ,⊥),−(, , t ,⊥),+(, , {t}k ,⊥)〉 where k ∈ K;

5

D. Decryption: 〈−(, , k−1 ,⊥),−(, , {t}k ,⊥),+(, , t ,⊥)〉 where k ∈ K.

The second type of penetrator actions only affects the “packaging” of the
Application Layer message, i.e. it only affects the first, second, and fourth com-
ponents of a high-level term. These paths are used to perform the following
activities:

1. Send: the penetrator may send an Application Layer message m by creating
a Transport Layer message with payload m, and inserting it in the network
using a penetrator’s identity.

2. Receive: the penetrator may receive an Application Layer message m as
a payload of a Transport Layer message that was sent for him by a regular
agent.

3. Learn: the penetrator may intercept and learn an Application Layer mes-
sage m from a Transport Layer message with a payload m that was ex-
changed between regular agents.

4. Fake: the penetrator may fake an Application Layer message by creating a
Transport Layer message with payload m, and inserting it in the network
dishonestly (i.e. using another agent’s identity).

5. Hijack: the penetrator may change the sender and/or receiver field in a
previously sent Transport Layer message without changing the Application
Layer message; the penetrator can perform hijacking in three ways [DL08]:

(a) Re-ascribe: the penetrator may re-ascribe a previously sent message
by intercepting and sending it using another agent’s identity.

(b) Redirect: the penetrator may redirect a previously sent message by
intercepting it and sending it to a different agent.

(c) Re-ascribe/redirect: the penetrator may re-ascribe and redirect a pre-
viously sent message at the same time.

We abstractly model each of the penetrator paths defined above as a high-
level penetrator strand that sends and receives terms in the form (A,B ,m, c).

Definition 6 A penetrator strand in a high-level bundle is either a standard
penetrator strand or a high-level penetrator strand of one of the following forms:

SD. Sending: 〈−(, ,m,⊥),+(P ,B ,m, c)〉 where P ∈ Tpname and B /∈ Tpname ;
RV. Receiving: 〈−(A,P ,m, c),+(, ,m,⊥)〉 where P ∈ Tpname and A /∈ Tpname ;
LN. Learning: 〈−(A,B ,m, c),+(, ,m,⊥)〉 where A,B /∈ Tpname ;
FK. Faking: 〈−(, ,m,⊥),+(A,B ,m, c)〉 where A,B /∈ Tpname ;
HJ. Hijacking: 〈−(X ,Y ,m, c),+(X ′,Y ′,m, c)〉 such that X 6= X ′ or Y 6= Y ′.

As an example, Figure 1 illustrates part of a bundle, where the penetrator
uses several different strands to transform the high level message (S ,P , Â N , c)
into (S ,B ,PˆN , c).

6

RV
•

(S,P,AˆN ,c) // •
�� S C M

•
(, ,AˆN ,⊥) // •

��

•
��

•
(, ,P,⊥)oo

•
��

(, ,N ,⊥) // •
�� FK

•
(, ,A,⊥)oo •

(, ,PˆN ,⊥) // •
��
•

(S,B,PˆN ,c) //

Fig. 1. Transforming a high-level term.

2.3 High-Level Bundles

A high-level bundle is a finite subgraph of 〈N , (→ ∪ ⇒)〉 for which the edges
express the causal dependencies of the nodes.

Definition 7 [THG98] Suppose →B ⊂ →, ⇒B ⊂ ⇒, and B = 〈NB,→B ∪⇒B〉
is a subgraph of 〈N ,→ ∪ ⇒〉. B is a bundle if (1) NB and →B ∪ ⇒B are finite;
(2) If n2 ∈ NB and msg(n2) is negative, then there is a unique n1 such that
n1 →B n2 ; (3) If n2 ∈ NB and n1 ⇒ n2 then n1 ⇒B n2 ; and (4) B is acyclic.
We write �B for (→B ∪ ⇒B)∗.

The relation �B expresses the causal relationship in the high-level bundle B.

Proposition 8 Let B be a high-level bundle. Then �B is a partial order, i.e.
a reflexive, antisymmetric, transitive relation. Every non-empty subset of the
nodes in B has a �B-minimal member.

Definition 9 Bundles B and B′ in a strand space Σ are equivalent iff they have
the same regular strands.

3 Modelling Secure Channels

So far we allow high-level bundles with arbitrary penetrator strands. In this
section we restrict these strands to capture properties of secure channels. Our
approach follows [DL08]. We begin with confidential channels, and then provide
the building blocks of authenticated channels. Each channel is associated with
a specification that states which of these properties it satisfies.

Confidential channels protect the confidentiality of the messages sent on
them. If message (A,B ,m, c) is sent over a confidential channel c, the pene-
trator cannot deduce m if the message was not intended for him. However, he
can still see the high-level message. We can define a secure channel c to satisfy
the confidentiality property C in terms of the penetrator’s activity as follows.

Definition 10 (Confidential Channels) Let channel c satisfy C . Then there
is no LN strand of the form 〈−(A,B ,m, c),+(, ,m,⊥)〉 where A,B /∈ Tpname

in any high-level bundle.

7

For example, if the Transport Layer protocol encodes the high-level term
(A,B ,m, c) as Â {m}PK (B), where PK (B) is B ’s public key, then it provides a
confidential channel. We write C (c) to indicate that c satisfies C , and similarly
for the properties we define below.

If a channel is non-fakable, then the penetrator cannot create and send an
application message using another agent’s identity.

Definition 11 (No faking) Let channel c satisfy NF. Then there is no FK
strand of the form 〈−(, ,m,⊥),+(A,B ,m, c)〉 where A,B /∈ Tpname in any
high-level bundle.

For example, if the Transport Layer protocol encodes the high-level term
(A,B ,m, c) as Bˆ{m}SK (A), where SK (A) is A’s secret key, then it provides
a non-fakable channel.

We now consider various restrictions on hijacking. In each case we do not
want to prevent HJ strands of the form 〈−(X ,Y ,m, c),+(X ′,Y ′,m, c)〉 where
(i) if C (c) then Y ∈ Tpname , and (ii) if NF (c) then X ′ ∈ Tpname : in such
cases the penetrator could learn m (via a RV or LN strand) and then produce
+(X ′,Y ′,m, c) (via a SD or FK strand) to produce the same effect.

If a channel is non-re-ascribable, then the penetrator cannot intercept a pre-
viously sent message and send it using a different sender’s identity. Follow-
ing [DL08], we distinguish between two notions of no re-ascribing:

– No re-ascribing where the penetrator cannot re-ascribe messages using any
identity;

– No honest re-ascribing where the penetrator cannot re-ascribe messages us-
ing an honest identity, but can still re-ascribe messages using a penetrator’s
identity.

For example, if the Transport Layer protocol encodes the high-level term
(A,B ,m, c) as {{m}PK (B)}SK (A), then the penetrator P may replace the sig-
nature using SK (A) with his own signature using SK (P), so as to re-ascribe
the message to himself; however, he cannot re-ascribe the message to an honest
agent. On the other hand, if (A,B ,m, c) is encoded as {{m,A}PK (B)}SK (A),
then he can no longer re-ascribe the message to himself.

We define non re-ascribable channels as follows.1

Definition 12 (No honest re-ascribing) Let channel c satisfy NRA−. Then
for every HJ strand of the form 〈−(X ,Y ,m, c),+(X ′,Y ′,m, c)〉 in a high-level
bundle, one of the following holds: (a) X = X ′, i.e. no re-ascribing takes place;
(b) X ′ ∈ Tpname , i.e. the message is re-ascribed with a penetrator’s identity; or
(c) if C (c) then Y ∈ Tpname , and if NF (c) then X ′ ∈ Tpname , i.e., as discussed
above, the penetrator can learn the underlying Application Layer message and
then send or fake the message.

1 Some of the details of these definitions are a little delicate, and are necessary for
some of the future work discussed in Section 6.

8

Definition 13 (No re-ascribing) Let channel c satisfy NRA. Then for ev-
ery HJ strand of the form 〈−(X ,Y ,m, c),+(X ′,Y ′,m, c)〉 in a high-level bun-
dle, one of the following holds: (a) X = X ′, i.e. no re-ascribing takes place;
(b) X ,X ′ ∈ Tpname , i.e. the message is re-ascribed from one penetrator identity
to another; or (c) if C (c) then Y ∈ Tpname , and if NF (c) then X ′ ∈ Tpname .

If a channel is non-redirectable, the penetrator cannot intercept a previously
sent message and send it for a different receiver. As with re-ascribing, we dis-
tinguish between two notions of no redirecting:

– No-redirecting where the penetrator cannot redirect any message;
– No-honest redirecting where the penetrator cannot redirect messages sent to

honest participants, but can redirect messages sent to himself.

For example, if the Transport Layer protocol encodes the high-level term
(A,Y ,m, c) as {{m}SK (A)}PK (Y), then the penetrator P can transform a mes-
sage for himself, i.e. {{m}SK (A)}PK (P), into one for B , i.e. {{m}SK (A)}PK (B),
and so redirect it to B ; however he cannot redirect a message sent to an honest
agent. On the other hand, if (A,Y ,m, c) is encoded as {{m,Y }SK (A))}PK (Y),
then he can no longer redirect a message sent to himself.

We define non-redirectable channels as follows.

Definition 14 (No honest redirecting) Let channel c satisfy NRD−. Then
for every HJ strand of the form 〈−(X ,Y ,m, c),+(X ′,Y ′,m, c)〉 in a high-level
bundle, one of the following holds: (a) Y = Y ′, i.e. no redirecting takes place;
(b) Y ∈ Tpname , i.e. the original message was sent to the penetrator; or (c) if
C (c) then Y ∈ Tpname , and if NF (c) then X ′ ∈ Tpname .

Definition 15 (No-redirecting) Let channel c satisfy NRD. Then for ev-
ery HJ strand of the form 〈−(X ,Y ,m, c),+(X ′,Y ′,m, c)〉 in a high-level bun-
dle, one of the following holds: (a) Y = Y ′, i.e. no redirecting takes place;
(2) Y ,Y ′ ∈ Tpname , i.e. the message is redirected from one penetrator identity
to another; or (c) if C (c) then Y ∈ Tpname , and if NF (c) then X ′ ∈ Tpname .

4 Normal and abstractly efficient bundles

Bundles can contain various types of redundancy. For example, an encryption
edge immediately followed by a decryption edge just reproduces the original
term: this redundancy can be removed to produce an equivalent bundle. It is
clearly simpler if we can restrict our attention to bundles without such redun-
dancies. This is the question we consider in this section.

Definition 16 In a high-level bundle, a ⇒+ edge is constructive if it is part of
an E, C, SD or FK strand. It is destructive if it is part of a D, S, LN or RV
strand. An edge is non-destructive if it is constructive or part of an HJ strand.
Similarly, an edge is non-constructive if it is destructive or part of an HJ strand.

9

Definition 17 A high-level bundle B is normal iff for any penetrator path of B,
no non-destructive edge precedes a non-constructive edge.

Proposition 18 For every high-level bundle B, there exists an equivalent high-
level normal bundle B′. Moreover, the penetrator nodes of B′ form a subset of the
penetrator nodes of B and the ordering �B′ is a restriction of the ordering �B.

Proof. (Sketch.) The proof proceeds by showing that whenever a non-destructive
edge precedes a non-constructive edge, an equivalent bundle can be found with-
out this redundancy. For standard penetrator strands, the proof is as in [GT01].
Figure 2 (a)–(d) gives some examples of how to replace redundancies arising
from high-level penetrator strands. A simple case analysis shows no redundancy
involves a standard penetrator strand and a high-level penetrator strand.

Normal bundles may still contain redundancies. For example, an LN strand
followed by an SD strand may be replaced by an HJ strand (or a transmission
edge if the identities match).

Definition 19 A high-level bundle B is abstractly efficient if every penetrator
path p that starts at n1 such that msg(n1) = +(X ,Y ,m, c), and ends at n2

such that msg(n2) = −(X ′,Y ′,m, c), consists of a single HJ strand or else there
is a transmission edge between n1 and n2 .

Proposition 20 For every high-level bundle, there exists an equivalent high-
level efficient bundle that is also normal.

Proof. (Sketch.) Figure 2 (e)–(f) gives examples of how some of the remaining
redundancies can be removed.

5 Example: a single sign-on protocol

In this example we illustrate our definitions of high-level bundles and secure
channels via a small example. We consider a single sign-on protocol that au-
thenticates a User U to a Service Provider SP , with the help of an Identity
Provider IdP .

We will use a secure channel c that satisfies C ∧ NRD−. It is reasonable to
suppose that the Service Provider and Identity Provider each has a public key
certificate, so unilateral TLS can be used to establish an authenticated channel
to them; we believe that this channel satisfies C ∧ NRD−. For messages sent
from the Identity Provider to the User, the channel could be implemented using
unilateral TLS to authenticate the Identity Provider, combined with the User
sending a password to authenticate herself; we believe that this channel satisfies
C ∧NF ∧NRD ∧NRA, which is stronger than is required.

We will consider the following protocol, where →c indicates messages sent
using channel c, and → indicate messages sent on the bottom channel.

0 . U → SP : UˆIdP
1 . SP →c IdP : 1ˆSPˆUˆN
2 . IdP →c U : 2ˆIdPˆSPˆN
3 . U →c SP : 3ˆUˆIdPˆN

10

FK LN
◦

(, ,m,⊥) // •
��
•

(A,B,m,c) // •
��
•

(, ,m,⊥) // ◦

◦
(, ,m,⊥) //

++VVVVVVVVVVVVVVV •
��
•

(A,B,m,c)♣ //

◦
(a) A path containing an FK-LN redun-
dancy, replaced by a transmission edge.

FK HJ
◦

(, ,m,⊥) // •
��
•

(A,Y ,m,c) // •
��
•

(A′,Y ′,m,c)// ◦

FK
◦

(, ,m,⊥) // •
��

�'F
F

F
F

F
F

F
F

F
F

F
F

•
(A,Y ,m,c)♣ // •

•
(A′,Y ′,m,c)// ◦

(b) A path containing an FK-HJ redun-
dancy, replaced by an FK strand.

HJ LN
◦

(X ,B,m,c) // •
��
•

(X ′,B′,m,c) // •
��
•

(, ,m,⊥) // ◦

LN
◦

(X ,B,m,c) // •
��

�'F
F

F
F

F
F

F
F

F
F

F
F

•
(X ′,Y ,m,c)♣ //

•
(, ,m,⊥) // ◦

(c) A path containing an HJ-LN redun-
dancy, replaced by an LN strand.

HJ HJ
◦

(X ,Y ,m,c) // •
��
•

(X1 ,Y1 ,m,c) // •
��
•

(X2 ,Y2 ,m,c)// ◦

HJ
◦

(X ,Y ,m,c) // •
��

�&
F

F
F

F
F

F

F
F

F
F

F
F

•
(X1 ,Y1 ,m,c)♣// •

•
(X2 ,Y2 ,m,c)// ◦

(d) A path containing an HJ-HJ redun-
dancy, replaced by an HJ strand.

LN SD
◦

(A,B,m,c) // •
��
•

(, ,m,⊥) // •
��
•

(P,B′,m,c) // ◦

HJ
◦

(A,B,m,c) // •

 (III
III

III
II

III
III

III
II

•
(P,B′,m,c) // ◦

(e) An inefficient LN-SD path and the
corresponding efficient path.

RV FK
◦

(A,P,m,c) // •
��
•

(, ,m,⊥) // •
��
•

(A′,B,m,c) // ◦

HJ
◦

(A,P,m,c) // •

 (II
II

II
II

II
I

II
II

II
II

II
I

•
(A′,B,m,c) // ◦

(f) An inefficient RV-FK path and the cor-
responding efficient path.

Fig. 2. Redundancies and how to eliminate them. ♣ indicates a discarded message.

11

Here N is a fresh unpredictable value; “1”, “2” and “3” are distinct tags used to
ensure unique readability of the messages. Message 0 is sent across the bottom
channel to initiate the protocol. SP then creates a fresh nonce which is passed
via IdP to U , and then back to U in order to authenticate U to SP .

In order to model this protocol, we start by defining regular strands for each
of the three roles.

– Strands of the form User(U ,SP , IdP ,N) have trace

〈+ (U , SP , UˆIdP , ⊥),
− (IdP , U , 2ˆIdPˆSPˆN , c),
+ (U , SP , 3ˆUˆIdPˆN , c) 〉.

– Strands of the form ServProv(SP ,U , IdP ,N) have trace

〈− (U , SP , UˆIdP , ⊥),
+ (SP , IdP , 1ˆSPˆUˆN , c),
− (U , SP , 3ˆUˆIdPˆN , c) 〉.

– Strands of the form IdProv(IdP ,U ,SP ,N) have trace

〈− (SP , IdP , 1ˆSPˆUˆN , c),
+ (IdP , U , 2ˆIdPˆSPˆN , c) 〉.

We will therefore consider bundles B containing strands of the above form (and
no other regular strands). Further, since each nonce N is freshly generated, we
assume that for every ServProv(SP ,U , IdP ,N) strand st containing at least two
nodes in the bundle, N originates uniquely at (st , 2).

Consider a bundle B containing all three nodes of a Service Provider strand
st = ServProv(SP ,U , IdP ,N), and such that SP ,U , IdP /∈ Tpname . We aim
to show that there is a corresponding User strand in B, i.e., the User is au-
thenticated to the Service Provider. By Proposition 20, we may, without loss of
generality, assume that B is normal and abstractly efficient.

The reason the protocol works is that only SP , U and IdP can ob-
tain N . The lemma below captures this. Let X be the set containing
the terms (SP , IdP , 1ˆSPˆUˆN , c), (IdP , U , 2ˆIdPˆSPˆN , c), and (U , SP ,
3ˆUˆIdPˆN , c).

Lemma 21 Every occurrence of N on a regular node is within a high-level term
from X ; N does not occur within any high-level term of the form (, ,m,⊥).

Proof. Suppose for a contradiction that the result does not hold. Let n be a
�B-minimal node where this occurs (there must be a minimal such node by
Proposition 8). Clearly n 6= (st , 2), since msg(st , 2) is in X . Since N originates
uniquely at (st , 2), N does not originate at n. Hence one of the following holds.

– n is a positive regular node. Then there must be some node n ′ such
that n ′ ⇒+ n and N occurs within msg(n ′). Then, by the assumed �B-
minimality of n, msg(n ′) ∈ X ; hence the strand containing n and n ′ trans-
forms a message from X into a message not in X . But no regular strand can
do this; for example:

12

• If an Identity Provider strand receives a message from X , it is neces-
sarily of the form (SP , IdP , 1ˆSPˆUˆN , c); it will then send (IdP , U ,
2ˆIdPˆSPˆN , c), which is also in X : the presence of the SP and U fields
within message 1 is important here.

• If a User strand receives a message from X , it is necessarily of the form
(IdP , U , 2ˆIdPˆSPˆN , c); it will then send (U , SP , 3ˆUˆIdPˆN , c),
which is also in X : the presence of the SP field within message 2 is
important here.

– n is either a negative regular node containing N outside X , or a penetrator
node containing N in a term of the form (, ,m,⊥). In each case, the
term is produced by a penetrator path that starts at a regular node n ′

containing a term from X . Since B is normal and abstractly efficient, every
such penetrator path must start with an RV or LN strand, or comprise a
single HJ strand. Clearly no RV strand can operate on terms from X . Since
c is a confidential channel, no LN strand can operate on messages from X .
Since c satisfies C∧NRD−, every HJ strand either: (case (a) of Definition 14)
changes only the first field of high-level messages, but no honest strand will
accept the result of transforming a term from X in this way; or (cases (b)
and (c) of Definition 14) operates on high-level messages whose second field
is an element of Tpname , so cannot operate on messages from X . ut

Now consider the term (U , SP , 3ˆUˆIdPˆN , c) received at (st , 3). From
the above lemma, the term could not have been produced by an FK strand.
Using this and the fact that the bundle is normal and abstractly efficient, the
term must result from either a transmission edge, or an HJ strand, from a term
from X . The latter case cannot occur (since each HJ strand changes either the
sender or receiver field). An analysis of the honest strands then shows that the
message is transmitted from the final node of a User(U ,SP , IdP ,N) strand.

A similar analysis could be used to show the presence of a corresponding
Identity Provider strand; we omit the details.

It is possible to simplify the protocol slightly, by removing some fields. How-
ever, we do need the fields U and SP in message 1, and SP in message 2 to
ensure that Lemma 21 is satisfied, in particular by honest Identity Provider and
User strands. Further (but arguably less importantly), the IdP field in message 3
is needed to ensure the User and Service Provider agree upon the identity of the
Identity Provider. Finally, the presence of the U field in message 3 simplifies
the proof slightly.

6 Conclusion

In this paper we have described how to model secure channels within the Strand
Spaces formalism. We represent messages sent over the network using high-level
terms, which abstract away from the implementation of the secure transport
protocol. We then abstractly modelled ways in which the penetrator can operate
upon such high level terms: to obtain the underlying Application Layer message

13

(either honestly or dishonestly); to have an honest agent receive the Application
Layer message (either apparently from the penetrator or some third party); or
to hijack the message, to change either the recipient or the apparent sender. We
specified properties of secure channels by restricting the capabilities available to
the penetrator. Finally, we illustrated the model by using it to verify a property
of a simple single sign-on protocol: we believe that the proof helps to explain
why the protocol is correct.

This is the first of a planned series of papers reporting work from [Kam09].
We briefly discuss some of the results here.

Many secure transport protocols group messages together into sessions, so
that the recipient of messages receives an assurance that the sender sent those
messages as part of the same session. For example, a single sign-on protocol is
normally used as a prelude to some session: the Service Provider wants to be
sure that all the messages in that session came from the same User who was
authenticated by the single sign-on. Further, some transport protocols give the
recipient a guarantee that the messages were received in the same order in which
they were sent. These properties are captured in [Kam09, Chapter 5].

In this paper we have presented high-level bundles, which abstract away from
the implementation of the secure transport protocol. As mentioned in the In-
troduction, one could also model layered architectures by explicitly modelling
the transport protocol, in low-level bundles. In [Kam09, Chapter 6] the rela-
tionship between these models is described, and it is shown that —subject to
certain independence assumptions— for every low-level bundle, there is a high-
level bundle that abstracts it. Hence the abstraction is sound: by verifying a
protocol in a high-level Strand Space, one can deduce that the implementation
of the protocol, as modelled in the low-level Strand Space, is also correct.

In [DL08] it is shown that not all combinations of the properties from Sec-
tion 3 are distinct, and a hierarchy of different properties is —informally—
derived. In [Kam09, Chapter 7] the same result is —more formally— obtained
for our Strand Spaces definitions.

In Section 5, we performed a direct verification of the example protocol.
In [Kam09, Chapter 7], a number of verification-oriented rules are presented.
Some rules concern when an honest agent receives a message over a particular
secure channel, and allow one to deduce facts about how that message was pro-
duced. Further rules allow one to verify the secrecy of certain terms, while oth-
ers adapt the Authentication Tests of [GT00] to high-level bundles. In [Kam09,
Chapter 8], these rules are used in a number of examples, concerning both lay-
ered protocol architectures and empirical channels.

References

[ACC07] A. Armando, R. Carbone, and L. Compagna. LTL model checking for se-
curity protocols. In 20th IEEE Computer Security Foundations Symposium,
2007.

[ACC+08] A. Armando, R. Carbone, L. Compagna, J. Cuellar, and L. Tobarra. Formal
analysis of SAML 2.0 web browser single sign-on: Breaking the SAML-based

14

single sign-on for Google Apps. In The 6th ACM Workshop on Formal
Methods in Security Engineering (FMSE 2008), 2008.

[BF08] M. Bugliesi and R. Focardi. Language based secure communication. In
Proceedings of the 21st IEEE Computer Security Foundations Symposium,
2008.

[BLP03] G. Bella, C. Longo, and L. Paulson. Verifying second-level security protocols.
In Theorem Proving in Higher Order Logics: 16th International Conference,
(TPHOLs 2003), 2003.

[CGRZ03] S.J. Creese, M.H. Goldsmith, A. W. Roscoe, and I. Zakiuddin. The attacker
in ubiquitous computing environments: formalising the threat model. In
Proceedings of the 1st International Workshop on Formal Aspects in Security
and Trust (FAST), 2003.

[Dil08] Christopher Dilloway. On the Specification and Analysis of Secure Transport
Layers. DPhil thesis, Oxford University, 2008.

[DL08] Christopher Dilloway and Gavin Lowe. Specifying secure transport layers.
In 21st IEEE Computer Security Foundations Symposium (CSF 21), 2008.

[Goo08] Google. Web-based reference implementation of SAML-based SSO for
Google Apps. http://code.google.com/apis/apps/sso/saml reference

implementation web.html, 2008.
[GT00] Joshua D. Guttman and F. Javier Thayer. Authentication tests. In IEEE

Symposium on Security and Privacy, pages 96–109, 2000.
[GT01] Joshua D. Guttman and F. Javier Thayer. Authentication tests and the

structure of bundles. Theoretical Computer Science, 2001.
[HSN05] S. M. Hansen, J. Skriver, and H. R. Nielson. Using static analysis to validate

the SAML single sign-on protocol. In Proceedings of the 2005 Workshop on
Issues in the Theory of Security (WITS ’05), 2005.

[Kam09] Allaa Kamil. The Modelling and Analysis of Layered Security Architectures
in Strand Spaces. DPhil thesis, Oxford University, 2009. Forthcoming.

[KL09] Allaa Kamil and Gavin Lowe. Analysing TLS in the Strand Spaces model.
Submitted for publication, 2009.

[OAS05] OASIS Security Services Technical Committee. Security assertion markup
language (SAML) v2.0 technical overview, 2005. Available from http://

www.oasis-open.org/committees/security/.
[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,

1998.
[THG98] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman. Strand

spaces: Why is a security protocol correct?. In IEEE Symposium on Re-
search in Security and Privacy, pages 160–171. IEEE Computer Society
Press, 1998.

[Tho00] Stephen Thomas. SSL and TLS: Securing the Web. Wiley, 2000.

15

