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Abstract

Quantum algorithms are sequences of abstract operatic@r§opned on non-existent computers. They are in obvioud nee
of categorical semantics. We present some steps in thistidire following earlier contributions of Abramsky, Coecknd
Selinger. In particular, we analyze function abstractiarguantum computation, which turns out to characterizelassical
interfaces.

Some quantum algorithms provide feasible solutions of itapbhard problems, such as factoring and discrete log @ihi
are the building blocks of modern cryptography). Itis of e@rpractical interest to precisely characterize the cotagianal
resources needed to execute such quantum algorithms. afeemeany ideas how to build a quantum computer. Can we prove
some necessary conditions? Categorical semantics hetpswith questions. We show how to implement an importantfamil
of quantum algorithms using just abelian groups and relaio

1 Introduction

What do quantum programmers do? They do a variety of things, but there is a "design patterait they often follow,
based on thédidden Subgroup Problem (HSF26, 28, sec. 5.4]. Shor’s factoring and discrete log athams [37] are
examples of this pattern, as well as Hallgren’s algorithntlie Pell equation [15]. They all provide an exponentiaksig
with respect to the best known classical algorithms. Thekst member of the family is Simon’s algorithm for period
finding [38], which we use as the running example. The othdP ld§orithms only differ in "domain specific” details, but
yield to the same semantics.

The input for Simon’s algorithm is an arbitrary functign: Z5* — Z%, where(Z., ®, 0) is the group with two elements,
and @ is the "exclusive or” operation. The task is to find the peraddf, if it exists, i.e. a bitstring: € Z3* such that
flx®c) = f(z) forall z € ZJ*. For simplicity, let us assume that there is exactly one syels the discussion of the other
cases does not bring in anything essential.

Sincef is arbitrary, one cannot ascertain that a bitstrifga solution without computing the value pfx) for everyz € Z7".
But a quantum computer can compute all such values at onggisltalledquantum parallelismand is one of the first things
explained to quantum programmers’ apprentices [28, sé2]1.

Mathematically speaking, the main capability of a quantwmputer is that it can evaluate unitary operators. If theiigp

of a function are represented as the basis vectors of a H8pace, and the function itself is captured as a unitaryaiper

over it, then the quantum computer can compute all valueseofunction at once, by evaluating this unitary over a sljtab
generated combination of the basis vectors. Simon’s dlgurshows how to extract the information about the periodhef t
function from the projections of the resulting mixture.

But how do we represent a functigh: Z5* — Z% by a unitary operator? For an involutive functign B — B, the answer
is easy: definé/, : CB — CP by settingU,|b) = |g(b)), where|b) € C? are the basis vectors indexedby B. The fact



thatU, is unitary follows fromg o g = idg. For a generaf : Z5* — Z%, first define a corresponding involutigi, and then
extract the unitary/:
FrLy — 75w f(x)

fzyt — 28T sy xy & f(x)
Ug: (CZ;n+n — (CZZI“L : Ix,y) — |«T7y @ f(:c)>

where the basis vectofs, y) of CZ"™" are indexed by the bitstrings of lengthm concatenated with the bitstringsof
lengthn. The values of the functiofi are recovered frorV¢|z, 0) = |z, f(z)).

The other conceptual component of Simon’s algorithm, andllofiSP-algorithms, is a standard application of transform
theory [39]: transform the inputs into another domain, vetthie computation is easier, compute the outputs there heamd t
transform them back In our special casé/; is thus precomposed and postcomposed with a suitable westbe Fourrier
transform, which fofZ, boils down to the Hadamard-Walsh tranfoffi®™ |2) = ZIGZ?(—l)I'ﬂx). Herex - z denotes the

inner product irZy*, and we ignore the renormalizing factr % . This transform is applied to the first arguments ot/
to generate the desired superposition of all input§.dfhe quantum computer thus computes the followsing véctor

Simon = (H®™ ®id)U;(H®™ ®id) |0,0)
= D ()" f(@)

z,x €LY

When we measure the first component of this vector, it collaps a singl¢z), i.e. we gety. = |2)®3, .7 (—1)7% | f(2)).

By assumption, there is exactly opec Z3* such thatf(x & ¢) = f(x) holds for allz. The coefficient of each of the
basis vectorsz, f(z)) = |z, f(z @ ¢) is thusy? = (—=1)*% + (=1)@®)2 = (—1)*2 (1 4 (=1)=*). It follows that

(Ve € Z5'. v #0) <= c¢-z = 0. Each time that we run the algorithm, we can thus extracteatiequation ir. After

m runs, we can thus compute(The probability that at some stép< m we may get an equation dependent on the previous
ones s 0, becaugeare chosen randomly, and the measure of every proper linbapace oZ7" is 0.) On the other hand, in
order to convince ourselves classically that the period off, we should to compute all valugs which require2™ steps,
sincef is an arbitrary function.

The core of Shor’s factoring algorithm follows the same gt adapted fof : Z, — Zi, wheref(x) = ¢® mod k. The
factored integer i%, anda is randomly selected to be tested for common factors witlhich can be derived by finding a
period of f.

Summary of the paper. A program generally describes a family of computations a/fmily of input data. The various
input data to be computed with are denoted by variables, fagpolynomiak:? 4+ = + 2 can be construed as a program,
describing the family of computations that can be perforfoethe various values af. It is tacitly assumed that the possible
values ofr can be copied, so that one copy can be substituted for eacinrence ofr in the polynomiak? + x; and that
these data can also be deleted, if the polynomial isjuahdz does not occur in it.

The first problem with quantum programming is that quantuta dannot be manipulated in this way: it is a fundamental
property of quantum states that they generally cannot biedd1, 11], or even deleted [29, 2]. So how do we write quamtu
programs? In particular, given a progréitx) for a functionf, what kind of a program transformation leads to the quantum
programU¢|z, y), that we used to specify the unitelily above? This question is analyzed and answered in sectiam 8. a

It turns out that the needed copying and deleting operatiomslosely related with the abstraction.

On the other hand, copying, deleting and abstraction chfiedcan be viewed as the characteristics of classicapeaation.
In a quantum computer, a structure that supports copyingtidg and abstraction can be construed as its classicaface.
This is what we call &lassical structure An early analysis of this structure was in [7]. In the meuatj there are several
versions, and many applications [8, 31, 12]. In recent w@decke [9] uses the terbasis structuregor the same concept,
because a classical structure over a finitely dimensiorlaeHispace precisely correspond to a choice of a basisghd]can
be viewed as a purely categorical, element-free versiohisitotion. While the simple basis intuitions are attrastivstick

1E.g., Laplace’s transform maps a differential equation mpolynomial equation over the field, generated by the datiea ring in which the original
equation was stated [32]. The solutions of the polynomiabgiqn are then mapped back by the inverse Laplace transform
2\We ignore the renormalizing factors throughout.



here with the original terminology. One reason is that theeespondence of classical structures and the induced Isases
always as simple as it is in the category of finitely dimenaldiilbert spaces [31], and it is useful to keep the distmtti
A more important reason is that classical structures egghesfact thatlassicality is relativeas an algebraic structure. The
fact that classical data with respect to one classical streenay be entangled with respect to another one is the foedeal
feature of quantum computation. This is usually captureoubh change of basis. Classical structures provide atge
framework for such transforms. This is summarized in secio

The final step of the described algorithm pattern, measumgrisemodeled in section 6. The resulting categorical seitgn

is supported not only by the standard Hilbert space modélatso by non-standard models. We spell out a relational
interpretation, based on [9, 31]. In particular, Simontgoaithm turns out to have an effective relational implenagion,
using an abelian group as the computational resource sugphe power of a quantum computer.

Section 2 provides a brief summary of the basic semantiesieguisites, notations and terminology.

2 Preliminaries

2.1 Monoidal categories

We assume that the reader has some understanding of thechtsjorical concepts and terminology [27], and work with
symmetric monoidal categorié§, ®, I) [17, 16].

Strictness. For simplicity, and without loss of generality, we tacitlygsmme that each of our monoidal categoriesristly
associative and unitary.e. that the objects form a monoid in the usual sense. Hhuise&s no loss of generality because every
monoidal category is equivalent to a strictly associativd anitary one, along a monoidal equivalence. But note that t
tensor symmetry cannot be "strictified” without essenyialhanging the category; the canonical isomorphistns B ——

B ® A are thus generallgotidentities.

On the other hand, just like the tensors, we strictify furst@monoidalfunctor F' is always assumed to be strict, i.e. it
preserves the monoidal structure onthe nd8ed @ B) = FA® FBandFI = I.

The arrows fronT are sometimes callacectors or elementsThe abstract "vector spaces” are thus writtéX ) = C(1, X).
When confusion is unlikely, we elide the tensor symbol anilenX’ A f instead ofX ® A ® f.

2.1.1 String diagrams

Calculations in monoidal categories are supported by alsimpd intuitive graphical language: the string diagramisis T
language has its roots in Penrose’s diagrammatic notad®jp &nd it has been formally developed in categorétdierence
theory, and in particular in Joyal and Streetjgeometry of tensor calculy46]. The objects are drawn as strings, and the
morphisms as boxes attached on these strings. One canhairtké information flows through the strings, and is proegss

in the boxes. A direction of this flow is chosen by conveniendée shall assume that the information flows up, so that
the strings at the bottom of a box denote the domain of theespanding morphism; the threads at the top the codomain.
Drawing the stringsA and B next to each other represemtsp B; similarly with the boxes. Drawing a thread from one box
to another is denotes the compasition of the correspondorghisms.



BRX
TB(X)X(X)I)
BX®C
h® f
X®ARDR®B®X
id®z
XRARDRB®I
XRAQRcRr
X®ARB®D
XQRAQ®B®g
XQ®RARBRIDRDRX
Tx®a®D®D®z
IRIRDRDRI

One of the salient features if this notation is that the assoity is implicit, and automatic, both of the tensor anftioe
composition. The tensor symmetlry: B ® D — D ® B is denoted above by a circle. The circle is usually omitted, s
that symmetry boils down to crossing the strings. The idgmtiiorphisms are the "invisible boxes”, that can be placed on
any thread. The tensor uritis the "invisible thread”, that can be added to any diagrahis means that a box representing
a vectora € C(I, AB) does not have any visible threads coming in from below. Thisften emphasized by reducing
the bottom of such a box to a point: e.g., the vedtor— AB is denoted by a triangle. The box representing a covector
b € C(C,I) does not have any visible threads coming out, and boils dovanttiangle pointing up. The black triangles
denote the vector indeterminates—— X, freely adjointed to monoidal categories to form polyndmiguch polynomial
constructions will be discussed in Sec. 3.

2.1.2 Monoids and comonoids

A monoid in a monoidal category is a pair of arroWsg X Y. X & I such that

vo(veX)=v(X®vV)
vo(L®X)=vo(X®1)=idx

When the tensor is the cartesian product, this capturesstied notion of monoid.
A comonoid in a monoidal category is dual to a monoid: it is & pharrows X ® X £ x -1 I such that

(A X)oa=(X®A)oA
(T®X)oa=(X®T)oa=idx
In string diagrams, we draw the monoid evaluations as trapezoids pointing teyeas their units are little triangles pointing

down. The comonoids are represented by the trapezoids atittidtriangles in the opposite directions. E.g., the comid
laws correspond to the following graph transformations

A monoid iscommutativef v o cx x = v. A comonoid is commutative ifx x o A = A. In string diagrams, this means that
the value of the output of does not change if the strings that come into it cross; ardhiesoutput ofa does not change if
the strings coming out of it cross.



2.1.3 Cartesian categories
A monoidal categoryC, ®, I) is cartesianwhen it comes with natural transformations
XeoXx & x X

which make every objecX into a comonoid. The naturality of this structure means #vary morphismX L. vincis
a comonoid homomorphism. It is easy to see that this makegtiserX @ Y into a productX ® Y, such that any pair of

. h . . .
arrowsA —% X andA % v corresponds to a unique arro!&lv<'q’—>> A x B, and the tensor unit into the final object,
with a unique arrow from each object. Cartesian structutiets written in the formC, x, 1).

2.1.4 Monads and comonads

A monadon a category can be defined as a functdr: ¢ — C together with a monoid structuf€l” — T < 1din
the category of endofunctors @¢h With the corresponding monoid homomorphisms, monads ooategory on their own
[3]. Dually, comonad®nC can be defined as comonoids in the category of endofuncters’o\and accomodate similar
developments.

The categories of algebras for a monad and coalgebras fanared, and in particular the Kleisli and the Eilenberg-Moor
constructions that will be used below, are presented inldef@7, 3], and in many other books.

The following observation is the starting point for mostlod tonstructions in this paper. The proofis left as an easicese.

Proposition 2.1 Every (co)monoid\ in a monoidal category induces a (co)monall ® (—) : C — C. The corresponding
Kleisli categoryC x| is monoidal if and only if the (co)monoid is commutative.

More precisely, the category of monoids in a monoidal categads equivalent with the category of mondt®nC such that
T(A® B) =T(A) ® Band moreovehy = h; ® Bandmp = m; ® B hold for all A, B € C. The dual statement holds
for comonoids and comonads.

2.1.5 Convolution and representation

Any monoid(X, v, 1) in a monoidal categor{C, ®, I) induces the ordinary monoi@(X), e, L), whose operation
aeb = vo(a®b) 1)
is often callecconvolution A Cayley representation (or Yoneda embedding) of the mba®i v, 1) is a map

(=): CX) — C(X,X) )
(15x) — (X xex%X)
furthermore represents the vectars C(X) as endomorphisnise C(X, X).

Lemma 2.2 (Cayley, Yoneda) The Cayley representation is a monoidasginism between the convolution mon@dX ), e, 1)
and the monoidNat(X, X), o,idx) of naturalendomorphisms

Nat(X,X) = {feC(X,X)|VabeC(X).fo(aeb)=(foa)eb}

A comonoid structure oX induces a convolution monoid @i X, I), with ce d = (¢ ® d) o A, and with a similar Cayley
representation. In general, a convolution monoid can baeeéfver any hom-sé€t{ X, Y'), whereX is a comonoid and” a
monoid, by settingf e g = vy o (f ® g) o Ax.



Scalars. The canonical isomorphising I = I makes the tensor unitof C into a commutative monoid and comonoid; the
tensor associativity is the associativity law of this (cojid; the tensor commutativity makes the (co)monoid comaiiue;
the coherence conditions tell that this is the only (co)mdstructure on/. The convolution monoidC (I, I), e,id;) is the
abstracscalar algebraof the monoidal categorg. The coherence conditions imply that there is only one nebatilicture
onl, henceset =sot=s®tholdsforall scalars,t € C(I, ).

Abusing notation, the scalar actien C(I,I) x C(A, B) — C(A, B) is defined bys e f = s @ f. If the tensor unif is not
strict, thens ® f needs to be precomposed By= I ® A and postcomposed by® B = B.

2.2 Duals with daggers

2.2.1 Dualities

A duality structure in a monoidal categofyconsists of two object& and X* and two arrows, the pairingd @ X* = T
and the copairind - X* ® X, such that

e X)(Xen =X (X*®e)(n® X*) =X~

X X X X
A duality structure is writter{n, ) : X 4 X*. Note thatX** = X, becausécn,ec) : X* 4 X is also a duality structure.

If every objectX € C has a chosen duality structure, then such choices inddoeléy functor« : C°? — C, which maps

AL Bto . .
f*:B* nB A*AB* AfB A*BB* A¥e A*

Using a duality(n, ¢) : X - X*, the abstract trace operataisy” : C(X A, X B) — C(A, B) can be defined as follows:

TrdBg. A X4 xrxa X9 xxp 8, p

2.2.2 Dagger-monoidal categories

A daggerover a categorg is an involutive iooft : C°? — C. In other words, it satisfied* = A on the objects ang** = f
on the arrows. This very basic structure turns out to sufficséme crucial concepts.



Definition 2.3 A morphismu € C(A, B) unitaryif u* o u = id4 andu o u* = idg. An endomorphism € C(A, A) is a
projectorif p = p! = p o p. A projector ispureif moreoverTr’/ (p) = id;.

Remarks. Note that the abstract trace operators, given above, eequitonoidal structure ifi. The interactions between
the dagger with the monoidal structure, and in particuldhwie duals, has been recognized and analyzed in [1, 35A36].
dagger-monoidatategory(C, ®, I, 1) is a dagger-category with a monoidal structure where albboaal isomorphisms, that
form the monoidal structure, are unitary. When the monastiaicture is strict, this boils down to the requirement that
symmetryc: A® B — B ® A is unitary.

In the string diagrams, the morphismf* is represented by flipping the bgkaround its horizontal axis. The morphism
boxes thus need to be made asymmetric to record this flippiff85], a corner of the box is filled; in [7], a corner is cut off

2.2.3 Abstract conjugates and reals

Since the dagger and the duality funct¢rs)f, (—)* : C°? — C commute, their composite defines thenjugationioof
(=)« : C°? — C, which mapsf to f. = f*f = f¥. In the category of complex Hilbert spaces, the conjugaitof
corresponds is induced by the conjugation of the complextaim In the category of real Hilbert spaces, it degenenaties
the identity functor.

Definition 2.4 A morphismf is said to berealif f = f. (or equivalentlyf* = f*).

Remarks. Pursuing the Hilbert space intuitions, the arrofwsnd 1 are sometimes thought of as each other’s adjoints. On
the other hand, in a completely different sense, the duaabejl and A* are each other’s adjoints, if the monoidal category
is vewed as a bicategory with one object.

2.2.4 Inner products and entanglement

The dagger-monoidal structure has been proposed as a fraakfew categorical semantics of quantum computation [1, 35
It turns out that this modes structure suffices for derivirapgnimportant notions:

e inner product

(=|=)a : C(A) xC(A) — C(I) 3)
(12h 4y — (I&Ab_U)

e partial inner product
: C(A) xC(AB) — (C(B) 4)

B
A

T4 AT%AB) — (1% aBYeB B
( ) — ( )

o weakly entangled vectofse C(A ® A), such that for alb € C(A) holds
(as M = a ()

Furthermore, an abstract version of strong entanglemaerbealefined as self-duality.

Definition 2.5 A vectorn € C(X ® X) is said to be (strongly) entangled (), *) : X - X is a duality, i.e. satisfies
MeoX)(Xon =X=(Xo9")(noX),and thusX* = X.

Proposition 2.6 For every objectX in a dagger-monoidal categoy holds (a) < (b) < (c), where



(@) n € C(X ® X) is weakly entangled
(b) n* € C(X ® X, I) internalizes the inner product, da|b) = n* o (a. @ b)

() n € C(X ® X) is strongly entangled.

The three conditions are equivalentifjenerate€, in the sense that whenevgs = ga for all « € C(X), thenf = g.

A proof can be conveniently built from transformations among thegidiagrams of the conditions:

Gt - L0 - T

2.3 Notation and terminology

To describe relations on finite sets, we often find it convetrte use von Neumann'’s representation of ordinals, whetd)
is the empty set, and = {0, 1,...,n — 1}. Moreover, the pairéi, j) € n x n are often abbreviated tg € n x n.

When space is constrained and confusion unlikely, we oflide the tensors and writd f X X instead ofA ® f @ X ® X.

loofs and embeddings. Many categorical constructions lead to functors where bjeat part is the identity. They are often
called Identity-Onthe-Objects-Functors. | call thexofs If the reader finds this abbreviation objectionable, shedleome
to unfold each of its occurrences, and read out the full ghras

In a similar development, the functors that are full andhfiait are often called Full-and-Faithful-Functors. | cadlem
embeddingsThe reader may notice that every functor can be factoredaintioof followed by an embedding.

3 Polynomials and abstraction

In this section we formalize the program transformatioredeel to implement a classical function in a quantum compliter
aprogram is an arrow in a category, a program transformegisimply a functor out of it. But the problem with transforrgi

a classical program into a quantum program is that clasdatal can be copied and deleted, whereas quantum data cannot.
So the program transformation must map classical data $sick data, distinguished within a quantum universe. \WWhas

this mean? When the classical progrégftx, y) was transformed into the corresponding quantum prodvafa, y) in the
Introduction, the classical inputs were denoted by theabées:, y, and mapped to the basis vector varialieg). The fact

that the classical inputs can be copied and deleted wasreas a syntactical property of the variables.

If the data over which a program will compute are denoted bijatates, then the program itself is a polynomial in some
suitable algebraic theory. More precisely, a program islastractionover the as-yet-undetermined input data, and a com-
putation is arapplicationof the program. More generally, a program transformatiantoaviewed as aubstitutioninto a
polynomial. So we need functorial semantics of polynomimistructions, and of the abstraction and substitutionatjmars.

In the framework of cartesian (closed) categories, suchatrivent goes back to Lambek and Scott’'s seminal work [22, 23]
It was extended to monoidal categories in [30]. Here we ekieto dagger-monoidal categories.

3.1 Polynomial constructions

Adjoining an indeterminate to a ring R leads to the ring of polynomial®[z]. Its universal property is that every ring
homomorphisny : R — S extends to a unique ring homomorphigm: R[z] — S for each choice of € S to whichz
is mapped.
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The same construction applies to other algebraic theoeigs; one could form polynomial groups, or polynomial tz8.
Categorically, for an arbitrary algebraic the@fya polynomiall-algebraA[z] can be viewed as the coproduct in the category
of T-algebras of th@-algebraA and the free-algebra over one generator, denated

The polynomial construction also applies to algebraicstnes over categories, such as cartesian, monoidalaatonomous;
polynomial categories can be built for any algebraic thédigver the category of categories. The polynomial categidsy

is then the fred’-category obtained by freely adjoining a single generattwr the7-categorys; i.e. as the coproduct &
and the freél’-category generated by, However, categories are generated over graphs, rathesé#is, so the question is
what kind of a graph should be. There seem to be two minimal choices:

(a) « is an object: a graph with one node and no edges; or

(b) z is an arrow: a graph with two nodes and an edge between them.

While case (a) leads to the constructions which do not irestiie arrows, and thus largely boil down to the polynomialcon
structions of universal algebra, case (b) involves genyicetegorical aspects. These new aspects are isolatedsosnas
thatonlynew arrows are adjoined %, andnonew objects. More precisely, an indeterminate arrowé B is freely adjoined
between the extant objects B of S. In other wordsS[A % B] can be viewed as the following pushout

A B
/ N
3\\\ B
S[AZ B]

in the category of-categories.

Lambek was the first to use polynomial categories in his prtetation of typed\-calculus in cartesian closed categories [22].
The approach was elaborated in the book [23], from whichgmateal semantics branched in many directions. The terms
containing a variable of type X were represented as the arrows of the polynomial cateSjaryX |, built by adjoining to a
cartesian closed categafyan indeterminate arrow - X, whereX is an object ofS. The universal property 6§z : X]

is the same as before: every structure preserving functorS — L extends to a unique structure-preserving functor
F, : S[z] — L by mappingl = X to1 % FX in L.

Just like a polynomial ring, the catego$jz : X| can be constructed syntactically. However, the cartedizsed structure
allows a more effective and more familiar presentatio® pf: X .

Theorem 3.1 [22, 23]LetS be a cartesian categoryy € S an object andS[z: X] the free cartesian category generated by
Sand1l % X. Then the inclusion functard : S — S[z: X] has a left adjoint, thabstractiorfunctorab : S[z: X] —
S:A—-XxA



(x,id)

A xxat B Slz:X](A, ad(B)) pydsays

I ()

ko)

xxA-L.B S(ab(A), B) XxA—=2 . p
andS[z: X] is equivalent with the Kleisli category for the comongdx (—) : S — S.

WhensS is cartesian closed, thefifz: X] is cartesian closed too. The Kleisli category for the contbRax (—): S — S
is isomorphic with the Kleisli category for the mon@gd)* : S — S. The abstraction functor can now be viewed agat
adjoint of the inclusiorad : § — S[z: X]

ATBNux 5B S[r:X](ad(A),B)  A%9B
AL, px S(A,ab(B)) PESELCNNSY

This latter adjunction provides a categorical model of siyrtgped lambda-calculus.

Notion of abstraction. Function abstraction is what makes programming possiblee first example of program ab-
straction were probably Gddel's numberings of primitieeursive functions [14]. Gddel's construction demonstighat
recursive programs, specifying entire families of compates (of the values of a function for all its inputs), can bered

as data. Von Neumann later explicated this as the fundai@maiple of computer architecture. Kleene, on the othée s
refined the idea of program abstraction into the fundaméenama of recursion theory: the s-m-n theorem [19]. Church,
finally® proposed the formal operations of function abstraction@atd application as the driving force of all computation
[6]. This proposal became the foundation of functional pamgming. Lawvere’s observation that Church'sbstraction
could be interpreted as an adjunction transposition [24] aa&ritical step towards categorical semantics of comjoutat
Theorem 3.1 spells out this observation in terms of polyraboategories. Besides the familisabstraction, which uses the
right adjoint of the inclusiond : S — S[x:X] to transpose a polynomial into a function which outputs figms

o(z): A— B
\e.p(z) : A — BX

the theorem points to an analogous abstraction operatit@hwises théeft adjoint to the inclusiond : S — S[z:X], and
transposes polynomials inbadexedfamilies of functions

o(z): A— B
kr.p(x): X xA— B

This form of abstraction does not require higher-order $yf@and lifts from cartesian to monoidal categories [30]. Hea t
present paper, we extend such abstraction operations toidadrcategories with enough structure to support the basic
forms of quantum programming. — In this way, the usual quamnpuogramming constructions can be viewed as a form of
functional programming in Hilbert spaces.

But what kind of functional programming is it?

The fundamental assumption of functional programmingas &l data can be copied and deleted. Theorem 3.1 shows that
this implies a canonical abstraction operation.

The fundamental assumption of quantum programming is tiraeglata —the quantum data— cannot be copied or deleted;
but they can be entangled. Entanglement is then developed mowerful computational resource. In-between the dhetia t
can be copied and deleted, and the data that can be entatigeglis a rich structure of diverse abstraction operatitras

we shall now explore. The idea is that quantum programmimgbea’semantically reconstructed” a set of techniques for
combining and interfacing quantum entanglement and dakabstractions.

3Although Church’s paper appeared three years earlier thaank’s, Church’s proposal is the final step in the concémtereelopment of function
abstraction as the foundation of computation.
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3.2 Abstraction in monoidal categories

Given a monoidal category and a chosen object in it, we want to freely adjoin a variable arralv= A and build the
polynomial monoidal categorg|x : X]. Like before,C[z:X] can be built syntactically, as the free symmetric monoidal
category over the graph spanned®andl = A, factored by the equations between the arrow§.ofAlthough this is
not a very effective description, it does show that the polyial categonC[x: X] can in this case be quite complicated
Moreover, in contrast with the cartesian (closed) caseintiasionad : C — C[z:X] does not have an adjoint in general,
and thus does not support abstraction. The task is now tmexkte polynomial construction to support abstraction. We
follow, refine and strengthen the results from [30].

Definition 3.2 Let C be a monoidal category, anfl’ a set of well typed equations between some polynomial ariows
C[z:X]. Amonoidal extensiors the monoidal categor§[z: X ; E] = C[z:X]/E obtained by imposing the equatioAson
Clx:X], together with all equations that make it into a monoidaktatry. Every monoidal extension comes with the obvious
ioofad : C — Clz:X; E].

A substitution functobetween monoidal extensions is a (strict) monoidal BofC[z: X ; E] — C[y:Y; D).

We denote b¥xtc the category of monoidal extensiongefwith the substitution functors between them.

Definition 3.3 A (monoidal) abstractionver a monoidal extensioad : ¢ — C[z:X; E] is the adjunctiorab - ad such
thatab(A ® B) = ab(A) ® B, and the unit of the adjunctioh : Id — ad o ab satisfiesh4 = x @ A. We denote bybs.
the subcategory dixte spanned by the monoidal extensions that support abstractio

Notation and terminology. Since the abstraction notatiab < ad : ¢ — C[z:X; E] is generic, we often elide the
structure and refer to an abstractiorCas: X; EJ.

Theorem 3.4 The categornfAbs: of monoidal abstractions is equivalent with the categdgyof commutative comonoids in
C. Each abstraction is isomorphic with the Kleisli adjunctifor the comonad induced by the corresponding comonoid.

Proof (sketch). Given a commutative comondil, A, T) in C, we construct the abstractiab < ad : C — C[z:X; E] as
follows. Let

E = Eamn
be the set of equations

rRr®---x = Alox forn=0,1,2...
~—_——

n times

wherea™ : X — X®" is defined inductively:

0

A= 2

=idx A=A

Al
AT = (A x X® ) oAl

This determines the extensiad : ¢ — C[z: X; E]. Using the symmetry, it follows that every polynomialz) € Clx:
X; E] must satisfy the equation

4E.g.,Rel[z] is not a locally small category.
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‘ [

Settingkz.¢o(x) = @, define

ab:Clz:X;E] — C
A — XA
o) — (X @rz.p(@))o(a®A) (6)

The adjunction correspondence, wilth B) = B, is now

_ Cetewa)

C(ab(A),B),\%/C[:C:X;E] (A,ad(B))
(kz. p(x)) o (x @A) = p(x)  (B-rule
kz. (fo(z®A)) =f (n-rule

The other way around, given an abstractiord ad : C — C[x:X; E], the conditions from Def. 3.3 imply tha{4) = 20 A
andab(A) = X ® A. With the transpositiorx as above, the comonoid structure must be

& T3
ZF = K. s

The arrow part of the claimed equivalentbs: ~ C follows in one direction from the fact that any comonoid honuo-
phismf : Y — X induces a unique ioof" : C[z:X] — C[y:Y], mappingy(x) to Fp(x) = o(f o y). Since every
structure-preserving functdr is easily seen to be induced by the comonoid homomorplfismky. Fz in this way, the
bijective correspondendkbs (Clz: X],Cly:Y]) = C« (X,Y) is established.

The isomorphisnC[z : X] = C|x), whereCx; is the Kleisli category for the comonoil, is obtained by viewing the
transpositiongz.(—) and(—) o (x ® A) as functors. More precisely, this isomorphism is realizgthie following ioofs:

K :Clz:X]| — Cix) H:Cix) — Clr:X]
p(a) — K. p(z) fr—=tfo(z@A)

The fact thatH o K = id is just theS-rule; the fact that’ o H = id is then-rule. Proving the functoriality of< and
H, and the fact that they commute with the abstraction strectb 4 ad : C — C[z: X; E] and the Kleisli adjunction
V 4G : C — Cxj Is an instructive exercise. O

Remarks. (&) The upshot of the preceding theorem is that the set oftiemsa® in C[z: X; E] determines the comonoid
structureg(a, T) over X ; andvice versathe comonoid structurg, T) determines the equatiofis= E s Ty, as in the above
proof. Just like we often speak of a "comondid and leave the actual structufa, T) implicit, we shall often elide?, and
write C[z : X, or evenC[z], whenever the rest of the structure is clear from the contéi shall also blur the distinction
between the comonoi@X, a, T) and the corresponding comonad, and denote botiX byvriting C;x; for the X-Kleisli
category, the&?X! for the X -Eilenberg-Moore category.
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(b) The extension process can be iterated to consfifuctX, y:Y] = Clz: X][y:Y] = Cix gy, OrC[z,y: X = Cxgx]-

(c) The category’, of commutative comonoids is the cofree cartesian categeey the monoidal category [13]. The
equivalence of categories established in 3.4 can be exddndin equivalence of 2-categories. The 2-celldld; are the
monoidal natural transformations. The 2-cellsaf can be obtained by dualizing the notion of natural transéiroms
between the monoid homomorphisms. And the monoid homonmmshare functors between categories with one object, so
the usual notion of natural transformation just needs totermalized. The reader may find it interesting to work this o

(d) Recall (or see 2.1.2) that the tensor uniarries a canonical structure of a commutative comonoigoiAthg a variable
I % Ileads taCy:I] = C, becauseyy = y ® y and the coherence conditions imply= id;.

Corollary 3.5 In every extensio@[z: X | that supports monoidal abstraction holds = © ® x and T2 = id;.

Proof. The first equation follows by postcomposing withthe equatiorn = xz. x ® z, which is the definition ofa in
Clx:X], and applying thg-rule. The second one is obtained by precomposirgxx. id; with z and applyng thg-rule.OJ

Corollary 3.6 If the extensiorf [z: X | supports abstraction, theX is generated by the tensor udit As a consequence, a
weakly entangled vector € C[z: X (X ® X) is always strongly entangled.

Proof. By definition, generatesX in C if wheneverfa = ga forall a € C(X), thenf = g, forany f,g € C(X,Y). But
the n-rule implies thatfz = gx implies f = g. Hence the first claim. Furthermore, the same fact can be tasskow
that condition (a) implies condition (c) in Prop. 2.6. Egoing back to the proof of 2.6, condition (c) can be obtaingd b
composing the diagram for condition (a) and its daggerr &fantiatings to . Condition (c) then follows by abstracting
overz. O

3.2.1 Substitutions

But what does the variablein the extensioi€[z] actually represent? What kind of vectors carshbstitutedor it?
Definition 3.7 A Substitutiorfor « in C[z:X] is a monoidal functo€[z:X] — C.

Corollary 3.8 Substitution€[z: X] — C are in one-to-one correspondence with the comonoid homphiens/ — X,
whereX is the comonoid that induces the abstractio[r: X ] as in Thm. 3.4.

Remark. Only the vectors: € C(X) that happen to be comonoid homomorphisms can thus be subdtiorz € Clz:
X](X), leading to. In the categoifyHilb of finitely-dimensional Hilbert spaces, such vectors tuhto form a basis of the
spaceX.

3.2.2 Bases

Definition 3.9 A basis vectowith respect to a comonoidX, A, T) in C is a comonoid homomorphism frafni.e. an arrow
8 : 1 — X satisfyinga = S ® and T3 = id;.

- Ll

= ©

o) 4
Thebasisof a comonoid is the set of its basis vectors.

In Hopf algebra theory, our basis vectors are sometimesdsdit-like elementsWe shall see in the next section that, for
a special family of comonoids that we call classical streesuthe bases tend to form categories equivalent to thgargte
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of sets. The basis vectors of a tyfein a monoidal categorg are just the data that can be copied and deleted by a given
comonoid structure oX .

Examples. Consider the monoidal categaffgel, x, 1) of sets and relations. Every sEthas a standard comonoid structure
X1 = (X, a, 1), induced by the cartesian structure of sets:

a(z) = {ax} () = {0}

On the other hand, any monof&, +, o) over the same underlying set induces a nonstandard coméfoid (X, +,0),
wherer : B — A denotes the converse relatiommof A — B, and thus

+u) = {vw|u=v+w} o(u) = {o}

These different comonoids induce different monoidal esimmsRel[z: X'; ] andRel[z: X; E»], with different abstraction
operations. Both extensions have the same objects, andleesame arrows, but these arrows compose in different ways.
Viewed in the Kleisli form, both categories consist of rigas in the formX x A — B. But the compositeX x A =% C

of X x A5 BandX x B 2 will respectively be

(r;s$)i(u,a,¢) <= 3b. r(u,a,b) A s(u,b,c)
(r;$)2(u,a,¢) <= Jbovw. r(w,a,b) As(v,b,c)

ANu=v+w

As a consequence, each case allows substitution of difféaesis vectors. With respect to the standard comongid=
(X, a,T), the basis vectors are just the singleton relatipis € Rel(X). The variabler in Rel[z: X; E;] thus denotes an
indeterminate element of the st On the other hand, with respect to the comon®id= (X, +,0), there is only one basis
vectorfs € Rel(X), which is the subset oX' consisting of the invertible elements with respect to theaid (X, +, 0). The
variablez in Rel[z: X ; E»] thus denotes this one vectfre Rel(X), since there is nothing else that can be substituted.for

4 Daggers and classical structures

This section adds the dagger functor, and the dualitiesetontbnoidal framework of abstraction (cf. 2.2.2). The alrstoa
now leads to classical structures, which were introducgd]iasclassical structures

4.1 Dagger-monoidal abstraction

Definition 4.1 LetC be a dagger-monoidal category, attla set of equations between some parallel arrows in the dagger
monoidal polynomial catego{z: X]. Adagger-monoidal extensigsthe dagger-monoidal categogyz: X ; E] = C[z: X]/E,
obtained by imposing the equatiofson C[z: X], together with all equations that make it into a dagger-mdabcategory.

As all such constructions, it comes with the obvious &iof C — Clx:X; E].

A substitution functobetween the dagger-monoidal extensions is a monoidalfivefC[z:X; E] — Cly:Y’; D] which
preserves the dagger, i.€.(y*) = (F)*.

We denote by-Extc the category of dagger-monoidal extensiong ofvith the substitution functors between them.

Definition 4.2 A dagger monoidal abstracti@mver a dagger monoidal extensiaed : C — C[z:X; E] is the adjunction
ab - ad, which satisfies the requirements of Definition 3.3, and maepreserves the dagger, in the sense #hap(z)* =

(ab.gp(x))*.
We denote by-Abs. the subcategory af-Exte where the abstraction is supported. Its objects are oftdiedabstractions.

5Their origin in the abstraction operations was not adddtsere.

14



Thm. 3.4 established the correspondence between mondbistahetions oveX and the comonoid structures carried Ky

The next theorem extends this correspondence to daggeridabicategories: a monoidal abstraction corresponding to a
comonoid structure preserves the dagger if and only if treési{Icategory, induced by the comonoid, is (equivalenhjiihe
dagger monoidal extension itself.

Theorem 4.3 LetC be a dagger-monoidal category and : C — C[z: X; E] a dagger-monoidal extension. Suppose that
it admits a monoidal abstractioab - ad (as in Def. 3.3), with the induced comondill, A, T) (as in Thm. 3.4) . Then the
following statements are equivalent:

(a) ab +ad : C — C[z:X; E] is a dagger-abstraction, i.ab.o(z)! = (ab.o(z))*

(b) zisreal, i.e.x* =2t

ot

(c) ab 4 ad: C — C[z:X; E] is isomorphic with the Kleisli adjunction 4 G : C — Cix;

The following conditions provide further equivalent chetexizations of (a-c), this time expressed in terms of thiperties
of the comonoid X, a, T) and its dual monoid X, v, unt), wherev = a* and 1 = 7.

(i) n=na01ande = T o vmakeX = X* self-dual

/T\

QHB

(i) (X@v)o(neX)=a=(vaX)o(Xan)
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Remark. Condition (iii) is theFrobenius conditionanalyzed in [5, 4, 20, 7]. Condition (ii) is Lawvere’s earliversion of
the same [25]. In each of the last three conditions, the cotatinity assumption makes one of the equations redunddm. T
equivalence of (i-iii), however, holds without this comratitity.

Proof. (a=-b) Using the definition (6) ofb, condition (a) implies thall = (ab.:zc)jt = abat = (X ®@kz.2t) o (A®X),

or graphically

from which (b) follows by precomposing both sides with® X ) and postcomposing witf .

(b=+i) Dualizing (b) givesr = =, = z**, i.e.

-y

from which (i) follows, because therule impliesthatf o (z ® A) = go (2 R A) = f =g

Combining (b) and its dual gives

(i=-ii) On one hand, iX is self-dual, thenX ® X is self-dual too, because

L e
X
then B

£

E E
) - X_ n
1 n

On the other hand, (i) also implies that = v*, and sincexn = v* holds by definition, we have

£ 13
%_ AN v\ —
n n

(ii=-iii) Using (ii) to expandh at the first step, and to collapse it at the last step, we get

=
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(iii =) follows in a way obvious from the diagrams, by precompodiregirst equation of (iii) with. ® X and postcomposing
it with X ® T; and by precomposing the second equation Wtt» 1 and postcomposing it with @ X.

(i=-c) Using the self-duality ofY, the dagger ol x is defined by

Since this impliessz. ¢(z)f = (kz. o(z))*, it follows that the isomorphisri[z : X] = Cx], defined in the proof of
Thm. 3.4, preserves the dagger.

(c=-a) Since the dagger preservation under the isomorpliismX| = C;x) means that the daggerdiy; must be as above,
it follows

By (6), the left-hand side isb. ¢(z)*, whereas the right-hand side(isb. go(:v))i. Hence (a). O

Definition 4.4 A Frobenius algebria a monoidal categorg is a structure(X, v, A, 1, T) such that

e (X,v,1)isamonoid,
e (X, A, T)Iis acomonoid, and

e the equivalent conditions (i-iii) of Thm. 4.3 are satisfied.

A dagger-Frobenius algebiraa dagger-monoidal categoi§is a Frobenius algebra where = a* and 1. = T+,
Thm. 4.3 can now be summarized as follows.

Corollary 4.5 The category of dagger-monoidal abstractiané\bs¢ is equivalent with the categoiya of commutative
dagger-Frobenius algebras and comonoid homomorphisr@s in

Summary. The upshot of Thm. 4.3 is thus that a monoidal extensipn: X], induced by a commutative comonald
which also happens to be a dagger-Frobenius algebra, issadg a dagger-monoidal extension. The immediate canpll
is the following.

Corollary 4.6 The substitution§[x: X] — C of the basis vectors with respect to a Frobenius algelrpreserve not only
the tensors and their unit, but also the daggers.

Furthermore, since the basis vectors of the Frobenius edg€tare substituted for the variable which must be real, it is
natural to expect, and easy to prove that

Corollary 4.7 The basis vectors with respect to a dagger-Frobenius akyabg always real.

Remark. This last statement may sound curious. There are many camgitors in a complex Hilbert space, and each of
them may participate some basis. However, after a changestdf they may become real; and some vectors that were réal wil
cease to be real. The notion of reality depends on the chbloasis. However, just like people, the basis vectors thérase
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always satisfy their own notion of reality: they are in thenfiog; = (1,0,0,...,0),8: = (0,1,0,...,0),...,8, =
(0,0,...,0,1).

4.2 Classical structures

It turns out that Frobenius algebras with additional prtipsmprovide a purely algebraic characterization of theahof a
basis, e.g. in a Hilbert space. More generally, in an abistpagantum universe, we can thus distinguish classical gatst
by means of algebraic operations. We begin by describingdid@ional property needed for this.

Lemma 4.8 LetC[z,y : X| be a dagger-monoidal extension induced by the Frobeniusbaég( X, v, A, 1, T). Then the
following conditions are equivalent:

(@) voa=1idy
(b) vie®z) ==
©) (zly)? = (zly)
and they imply
(d) (z|z) =id;
The equivalence of (a) and (b) is also valid for monoidal gatées, with no dagger.

Proof. (a=b) v(z ® ) = vaz = z, using Cor. 3.5.

(b=c) (zly) =atoy=atovo(y®y) =ztoato(yoy) = (et (yoy) = (st oy) ® (z¥ o y) = (zly)?, i.e.

)

(cza)ztovonoy=(rt@zh)(yay) = (ztoy) @ (2t oy) = (z|y) = 2t oy, and then use the-rule.
(b=-d) Since by Thm. 4.3 = z*, and by Cor. 3.5z = id;, we han:c|:v) =zle = To =id;.

8

O

Definition 4.9 A classical structuris a commutative dagger-Frobenius algebra satifsyinga).8f classical extensioaf C
is a dagger-monoidal extensi@hz: X ] induced by a classical structure, i.e. satisfying 4.8(b-c)

Remark. Lemma 4.8(b) and Thm. 4.3 together say that a monoidal eteds$x : X] of a dagger monoidal catego€y

is a classical extension if and only the variablés real and idempotent, i.ec = 2, = xz e x, wherea e b = v(a ® b) is
the convolution, mentioned in 2.1.5. Lemma 4.8(c) saystti@tdempotence of is equivalent with the idempotence of the
inner productx|y) of any two variables of typ& . (Idempotence with respect to which monoid? Recall from 3¢eic5 that
the convolution, the composition, and the tensor of scalkiaduce the same monoid, singe ¢t = s ot = s ® ¢ holds for
all s,t € C(I).)

Note that, by they-rule, (x|y) = (x|z) = y = z. It follows that the monoid of scalars in a polynomial exiens’ [z, y, z: X|
must have freshly adjoined elementsy £ y # 2. Another interesting point is that the implicati¢n|a) = (x|b) = a = b,
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valid in C[z : X], is preserved under the substitutigomtly, provided that the basis vectors generdteif (5|a) = (G|b)
holds for all basis vectors, thena = b. Elaborating this, one could formulate the suitable sowsdrand completeness
notions and for reasoning with polynomials and classicalcstires, but we shall not pursue this thread.

Corollary 4.10 The category3-Absc: C 1-Absc of classical abstractions @f is equivalent with the categoG of classical
structures and comonoid homomorphismegin

Note that the categorgs is a cartesian subcategory of the categdgyof commutative comonoids. While the forgetful
functorCx — C was couniversal for all monoidal functors from cartesiategaries taC, the forgetful functoCz — C is
couniversal for the conservative functors among them. Kaetaeess properties 6%z, induced by the various properties of
C, were analyzed in [4]. I€ is compact [18] and right exact with biproducts, thnturns out to be a pretopos. In any case,
if C represents a quantum univer§g,can be thought of as the category of classical data.

4.2.1 Orthonormality of bases

Definition 3.9 stipulated an abstract notion of a basis wéspect to a comonoid. The notion of a classical structure now
characterizes just those comonoids whose basesrtm@normal in the sense of the following

Definition 4.11 Avectora € C(A) isnormalizedf (a|b) = id;. A pair of vectors:, b € C(A) is orthogonalf (a|b)? = (a|b).
A set of vectors isrthonormalvhen each element is normalized, and each pair orthogonal.

Lemma 4.8 and Cor. 3.8 imply that

Proposition 4.12 The basis set of every classical structure is orthonormal.

4.2.2 Succinct classical structures

The following lemma shows that being a classical structuegiroperty of a comonoid (or of a monoid), rather than aoloki
structure.

Lemma 4.13 The monoid and the comonoid part of a classical structuremeine each other: e.g(X,v, A, 1,71) and
(X, v,n9, 1, To) are classical structures, thexy = A andT; = Ta.

Since (X, v, A, 1,T) is completely determined b{X, v, 1) (and by (X, a, T)), it is justified to speak succinctly of the
classical structuréX, v, 1) (and of the classical structuf&’, a, T)).

Proof. Itis enough to prove; o v = A5 o v, because this amd o A; = idx give

Al = A1 OVOA] = A0V OA] = Ag

$!

Here is a diagrammatic proaf; o v = A5 o v:

2-5 -
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4.2.3 Classifying classical structures

Proposition 4.14 [10] In the categoryFHilb, ®, C, 1) of finitely-dimensional complex Hilbert spaces and lineaps the
classical structures correspond to the orthonormal bagaté usual sensdHilbg is equivalent with the categoRSet of
finite sets and functions.

Proposition 4.15 [31] In the category(Rel, x, 1, (A—/)) of sets and relations, the classical structures are justiipeoducts
(disjoint unions) of abelian group®el; is equivalent with the categoBet of sets and functions.

Each classical structur® in Rel decomposes as a disjoint uniéh = >, ; X; where each restrictioQX;, v;, 1;) of
(X, v, 1) is an abelian group. A classical structure drthus consists of (1) a partmoX Z s X; and (2) an abelian
group structure on eacki;. These partitions and group structures, and even the sixeavé, however indistinguishable by
the morphisms oRelz, because any two classical structures with the same nuwihbkcomponents are isomorphic.

Bases inRel. The basis induced by the classical structdre= . _; X; is in the formB(X) = {X;};c;. While the
bases with the same number of elements are indistingusiraRtlz, they are the crucial resource for quantum computation
in Rel. The bases induced by thectangularstructureg=,,, A, T), will be particularly useful, where

En = Y Zn={ij|0<i,j<n-—1}
a(ij) = {(ik,it) | j=k+ 1}

T = {i0]0<i<n—1}
B(E,) = {Bi={ij}l0<ij<n-1}

4.3 Bases for Simon’s algorithm

Any bitstring functionf : Z5* — Z%, considered in Simon’s algorithm, can be viewed as a momplfis FSet,,(m,n) in
the category of finite powersets and all functions betweemtht is easy to see that this is a cartesian closed categibiny,
+ as the cartesian prod@cfThe program transformation from the functigro the corresponding Hilbert space unitéfy

is formalized as follows
f(z) = fox € FSety[z:m](n)

f'(@,y) = (,y ® f(z)) € FSety[z, y:m + n](m + n)
Usle, y) = B %) € FHilb ||z, ) 20| (BS)

whereB = C2. The unitaryUy is thus the image of’ along the functor
B ¢ FSety[w, yim + n] — FHilb [z, y):B%™ ]

which maps finite sets to the tensor power8ofSinceB®™ = C2™), any functionf : 2 — 2" in Set,, is mapped to a
linear operatoB®/ : B¥™ — B" in FHilb, represented by the matrix = (F};),. . ,.. WhereF;; = 1 wheneverf(j) = i,
otherwiseF;; = 0. This determines a functdiSet, — FHilb. It is extended to a substitutidfbet,, [z, y:m + n] —
FHilb [|z,y) :B®(m+”>] by stipulating that the variablas y are mapped to the variables y).

The functionf € FSet,(m,n) has a simpler, though nonstandard interpretation in theyelggemonoidal category
(Rely,, ®,1,1), whereRel,(m,n) = Rel(2™,2") andm ® n = m x n. The dagger is still just the relational converse.
Like before, we define

E@(*)

: FSet,[z,y:m +n] — Rel, [|:p y): '—*®(m+n):|

6FSet,, is opposite to the Kleisli category for thep-monad. Along the discrete Stone dualiiGet,, is thus dual to the category of free finite atomic
Boolean algebras. Since Boolean algebras are primal, éwecgion between them can be expressed as a polynomial.

“The tensonn ® n = m x n is functorial in each argument, but it is not a bifunctor. $&4] for a discussion about such structures. This has no
repercussions for us, since the definition of the fungt8—), spelled out explicitly below, makes no use of the arrow pérb.
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this time over the rectangular structure

= =25, = {00,01,10,11}
A(i0) = {(i0,40), (i1,41)}  a(il) = {(i0,i1), (i1,i0)}
T = {00, 10}

B(E) = {Bo = {00,01}, 8, = {10,11}}

Note that this comonoid structure lifts frofRel, x, 1) to (Rel,,, ®, 1) becaus&€ @ = = 22 @2? = 22%2 = 2242 = 22 x 22 =
= x E. It furthermore lifts to anyE®™, since the commutative (co)monoid structures always exigithe tensor powers.

Since the underlying set &®™ is 2(2™), any functionf : 2™ — 2" in Set,,, is mapped to a relatiog®f : =™ —
Z¥" in Rel,, represented by the matriX = (Fj;),..,. WhereF;; = 1 wheneverf(j) = 4, otherwiseF;; = 0. The
functor is extended into a substitutiGet, [z, y :m + n] — Rel,, [|z, y) :E®(m+">} like before. Mapping the polynomial

f'(x,vy), constructed above, along this functor, we get a polynomiéthry relationY ;|z,y) = 2®/'(@¥) on E®(m+n) jn
Rely, [|z, y):E€(m*+™)]. This polynomial can be viewed as a family of unitary relationdexed over the basis (™ +");

and each member of the family is a permutatiorgsii™+ = 2(2"""),

5 Complementarity
5.1 Complementary classical structures

Definition 5.1 A vectora € C(X) is unbiasedor complementary) with respect to a classical structUkg A, T) if aa €
C(X ® X) is strongly entangled (in the sense of Sec. 2.2.4). Twoicksructures are complementary if every every basis
vector with respect to one is complementary with respedig¢mther one, andice versa

Remark. In the framework of Hilbert spaces, this definition is eqlevd to the standard notion of complementary bases,
used for describing the quantum uncertainty relations f&], Coecke, Duncan and Edwards [8, 9] have characterized
complementary vectors in terms of their representatiohssgc. 2.1.5 (2)). The first part of the following propositisays

that our definition is equivalent to theirs.

Proposition 5.2 With respect to a classical structufé, the representative C(X,X)ofbeC(X)is

(a) unitary if and only ifb is unbiased;

(b) a pure projector i is a basis vector.

The converse of (b) holds whenever the basis vectors gengrat

Recall from Sec. 2.2.2 that the usual definitions of projecémd unitaries lift to dagger-categories: a unitary israaoenor-
phismu such that:t = »~', whereas a projectorsatisfiep = p* = pop. For a pure projector oveY we moreover require
Tr(p) = e o (X ® p) o = id;. The assumption that a set of vectdrs C(X) generates an objeéf means that for any
f # g € C(X,Y) there must be a basis vectoe T" such thatfa # ga.

Proof of 5.2. (a) Sincev is commutative, by the definition @fin (2), b} = (v(b® X)) = (X ® bt) a. The composites
bo bt andbf o b can thus be viewed as the left-hand side and the right-hded$ithe following diagram.

N | A
JATAN JATAN <AV
N bi = =
&/ ViV ZAVAN
[AV4 N
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Both side diagrams can be transformed into the middle on@plyimg the Frobenius condition 4.3(iii). Thus
bobf =idy <= (X@bv)(ab®X)=idy <= blob=idy
But by Defn. 2.5, the middle equation just says thais strongly entangled, i.e. thais unbiased. Hence the claim.

(b) To begin from the easiest, first note tﬁ?i(g) =id; <= Tb=1idy, becausd‘r = Tb:
AN
~m | =
N4/
N/ 7

Secondly, we want to show that= b <= b* = b}, iLe.

H=¥ = b =f‘

The right-hand equation says thais real, which is a property of every basis vector, according 4.7. The implication
from left to right is obtained by postcomposing both sidethefleft-hand equation with. The implication from right to left
is obtained by tensoring b¥ on the right both sides of the right-hand equation, and thhengmposing them with. The
left-hand equation is then obtained using 4.3(ii).

To complete the proof, we show thab = b ® b implies sbob = by the following diagram:

5.2 Transforms

A given basis of a Hilbert space can be mapped into a compl@mneane using a Fourrier transform. This is done in all
HSP-algorithms: the basis vectors are entangled into ongl@mentary vector, and the unitalyy is then evaluated over
that vector, thus computing all values pfn one sweep.

In order to complete the implementation of Simon'’s algaritin Rel,,, we need a pair of complementary basesI6f+m),

As mentioned above, the classical structures tift from Rel to Rel,. And in Rel in general, for a given classical structure
X = ngm le in Rel, a complementary vector is a sgtC X such thaty; = v N le is a singleton for every < m.
Another classical structut® = ", . X7 over the same set is thus complementary if and onK/}iﬁ X? is a singleton for

all j <m,k < n. SinceX' andX? are partitions, it follows that alf X} = n and all#X? = m. SoX must decompose to

m groups of order, and ton groups of order. In order to have an invertible transform from one basis twtlaer, we need

m = n. Unless we are interested in the various forms of entangiesmgendered by the various group structures, we can
thus restrict attention to rectangular structures from 4ex3. A simple transform mapping the basis vectors0bf into a
complementary basis is

Hg . Eg — Eg
iy s Ji

Using H = H, to transformH®™ . 2®m . =®m we can now produce the superposition of all the basis vectors
representing the inputs of the functigh: Z3* — Z% from Simon’s algorithm. The other way around, theimage
of any basis vector is the superposition of the complemegrtasis of=®™. We can thus define the unitary polynomial
(H®™ ®id) o Yy|z,y) o (H®™ ® id) onE(m+1) in Rel,, [|z,y) : E¥(m+™)] and evaluate it on the vectt, 0) = L €
Rel, (E¥(m+m)), to get the outcoms|z,y) € Rely, [|z,y) : E¥(m+™)] (220m+n)) To complete the execution of Simon’s
algorithminRel,,, we just need to measure this outcome.
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6 Measurements

So far, we have seen that the classical data in a quantumrsejvepresented by a dagger-monoidal categorgan be
characterized as just those data that can be annotated yrtables irC|x, y, . . .], i.e. those data that support the abstraction
operationsz. Quantum programs are thus viewed as polynomial artefasy, . ..) € Clz,y,...]. In this respect, quantum
programs are similar to classical programs: they specdy sbme operations should be applied to some input dataysiwa
classical, denoted by the variables. Semantics of comipuntat captured through abstractions and subsitutionsgreino
execution, in particular, corresponds to substitutingesorput data for the variables, and evaluating the resudtpgessions.

In classical computation, such evaluations yield the oistpln quantum computation, however, there is more: theuistp
need to beneasured The view of quantum programs as polynomials in dagger-ritahcategories needs to be refined to
capture measurements. In the simplest case, a measureithiémrwout to be just a projector i [z : X].

Definition 6.1 A morphismX ® A % AinC onis anX-actionA if ao (X ®a) = aov. An X -action isnormalif moreover

ao(LxA)=ida.
A A
Sa] ] 4
pcu i B
A A
X'x A x! x! 14

An X -equivariang homomorphism froki® A < Ato X ® B 2, Bisan arrowf € C(A, B) suchthatfoa = So(X® f).
The category o -actions andX -equivariang homomorphisms is denot&d}.

The full subcategory aformal X -actions isC!*! — ¢1X},

Remark. Normal X-actions are the Eilenberg-Moore algebras for the maXiagd (—) : C — C. Equivalently, they are
also actions of the monoidl, and this terminology tends to lead to less confusion.

Lemma 6.2 Let (X, A, T) be a classical structurex(z) : A — A an endomorphism i€z : X] anda = kx. a(z) :
X ® A — Aits abstraction.

(a) The following conditions are equivalent:
(i) a(z) =alz)oa(z), i.e.a(z) is idempotent
(i) o (X ®a)=aov,ie «aisanX-action
(i) ao(X ®a)o(a®A) = q,i.e. aisidempotent as an endomorphism.iin Cx;.
(b) On the other hand, the following conditions are also eglent:
() a(z) = a(z),i.e. az) is self-adjoint
(i) a=(e®A)oat

A A A
- & ]
X A X A
(i) (X®a)o(a®A)=(veA)o (X ®at)

X A X A

P IS AN
N2/ Nt ]
X A X A
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Theproofs of the above equivalences are easy exercises with classioature. The equivalence (b}iii) can be viewed,
and proven, in analogy with Thm. 4.3§iiii).

Definition 6.3 LetX be a classical structure ii. An X-measuremerverA € C is a projectora(z) : A — AinClz:X],
i.e. a self-adjoint idempotent(r) = a(x)* = a(x) o a(x).

A homomorphisnf : a(x) — [(x), wherea(z) is an X-measurement ovet and 3(x) is an X-measurement oveB, is
anarrow f € C(A, B) such thatf o a(x) = 8(z) o f. The category of measurements in the classical stru¢tiite, 7) is
denoted by {z: X }.

Remark. Substituting a basis vecter € B(X) into a measurement(z) € Clz : X|(A, A) yields a projector(y) €
C(A, A). The intuition is that this projector corresponds to an thiezome of the measurement

It is easy to see that{z:X} is a dagger-monoidal category. The following two proposii show that this notion of a
measurement is equivalent with the one from [7].

Theorem 6.4 Let X be a classical structure, andl(z) : A — A an endomorphismi@[z:X]. Then (a) < (b) < (c).

(@) a(x): A — Ais ameasurement

(b) @ = Kkz. ) : XA — Alis anX-action such thatvo (z ® A) = (2 ® A) o o

o4

(c) ais an X-action satisfying the following equivalent conditions

() (X®a)o(a®A) = atoa = (VR A)o (X ®at)

X A X A
I I
N4 o]
X A X A

(i) foa=(X®a)o(c®A)o (X ®at)

A

The converse (c=- (a) A (b) holds if theX -action« is normal. When this is the case, then also
aocat = ida
A
o]
x|
Nt ]

A A
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Remarks. The two equations in Thm. 6.4(i) imply each other by appltimg dagger. They also imply that

e X®A% Aisaretractoff ® X 2 X inthe category of{ -actions, along the restriction’ : a — v, and that
b3
e A%, X ® Aisaretract ofYf = X ® X in the category of{ -coactions, along the retraction: A — a*.

The Frobenius condition is the special case of both (i) ajds{hcea andv are just special actions.

Proof. (a <= b) follows directly from Lemma 6.2. Part (a) of the lemma saya th{z) is idempotent if and only if is an
X-action. Part (b) says tha{x) is self-adjointif and only ifv = (e® A)oat, which is equivalenttavo (z®) = (2t ® A)oat
by then-rule, using Thm. 4.3(b).

(a==ii) is proved as follows:

X A X A XA
Nt ] Nt ] _ v _
o] L
x A Nt | Nt |
X X A
X A A X A
AN Y o]
= > = U~= = L]
A/ Nt
Nt ] o ] b's A
X A X A
using Lemma 6.2, and the commutativity of
(ii=>i) is a variation on the same theme:
X A X A o A
Nef ] o] _ —
= L1 = = =
o] et ] R
X A X A
X A
X A X A X A
_ A _ A _ \Y4
— ‘ — —
&, N8,/
I
Nt ] Nt ]
X A X A X A

Finally, if the X -action« is normal, then postcomposing (i) with® A gives condition 6.2(b), and hence (a).

a oot =idy is left as an exercise. [l

Proposition 6.5 The categoryg {z: X } of measurements oveéf is equivalent with the catego/~} of X -actions.
6.1 Measuring the outcome

In general, the measurement outcome corresponding to & bestor is the pure projector that represents it. In order to
perform the measurement in the first componerfijof, ) from sec. 5, we use a partial representation of this vector.

Lemma 6.6 o, (z) = (v, ®id,,) o S|z, y) is a measurement a8 (™+7) in Rel,, [|y):Z2®"|{|z) :Z®™}.

Substituting the basis vectors forin o, (=) gives the projectors 0E®(™+™), from which the information about the period
cis extracted like before.
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7 Conclusions and future work

Simon’s algorithm required three operations:

abstraction: to represent classical functions and classical data in atgoauniverse;
transform to a complementary basis: to entangle classical data and make use of quantum pasailel

measurement: to extract the classical outcomes of quantum computation.

The abstraction operations shape the classical interfaicgeantum computers. Our analysis of the general abstracti
operations uncovered a rich structure, that may be of istdreyond quantum computation. Are there other compuiation
resources, besides entanglement, that provide expohsp&adup when suitably combined with the general abstracti
operations?

The other two operations that we formalized are typicallgrfum. Complementary bases provide access to entangleasent
the main resource of quantum computation, and thus enablegum parallelism. The varied interactions among the wfie
classical structures and with measurements give rise towéladth of quantum algorithms that remain to be explored.

Our abstract model uncovered some abstract entanglemeciises, and made them available for quantum computation i
non-standard mathematical models. The algorithmic caresgzes of this semantical result need to be carefully egglor
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