
Aximo: Automated Axiomatic Reasoning for
Information Update

Simon Richards1,2

School of Electronics and Computer Science, University of Southampton

Mehrnoosh Sadrzadeh3

Laboratoire Preuves Programmes et Systèmes, Université Paris Diderot- Paris 7

Abstract

We present an algorithm for proving epistemic properties of dynamic scenarios in multi-agent systems and an
implementation of it as the C++ program Aximo. The program consists of a rewrite system and a recursive
reasoner, and we prove that its decision procedure is sound with regard to the algebraic axiomatics of
dynamic epistemic logic. We study the termination and complexity of the program and show its applicability,
by proving properties of honest and also newer dishonest versions of the the muddy children puzzle as well
as a coin toss scenario.

Keywords: Automation, Rewrite system, Algebraic axiomatics, Information update, Dynamic epistemic
logic.

1 Introduction

One of the applications of modal logic is reasoning about information of agents in
multi-agent systems in the context of epistemic logics [7]. This field of application
has been extended to update of information of agents in the context of dynamic
epistemic logics [1,3,5]. In these applications, one reasons about information of
interacting agents who communicate with each other and get their information
updated as a result. Dynamic epistemic logic (DEL) reasons about information of
these agents, the communication actions between them, and the changes induced to
the information by the actions. One of the novelties of DEL is its ability to reason
about honest as well as dishonest agents and their actions. It does so by using a

1 Support from EPSRC grant EP/D000033/1 at Southampton University is acknowledged by both authors.
2 Email: sgr104@ecs.soton.ac.uk
3 Email: mehrs@comlab.ox.ac.uk

Electronic Notes in Theoretical Computer Science 231 (2009) 211–225

1571-0661/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.02.037

mailto:sgr104@ecs.soton.ac.uk
mailto:mehrs@comlab.ox.ac.uk
http://www.elsevier.com/locate/entcs

modality that stands for a possibly wrong belief, this is the belief that is caused by
the cheating and lying actions of dishonest agents.

Kripke structures provide relational semantics for modal logics. One advantage
of these models, other than being intuitive, is that their frame conditions directly
give rise to axioms of a Hilbert-style proof system, e.g. a transitive frame gives
rise to axiom 4: the so called positive introspection axiom of knowledge. Although
semantics of DEL is based on Kripke structures, not all of its modal axioms are
obtained from its frame conditions. This is because the semantics of DEL involves
higher level operations that act on the Kripke structures themselves. But if one
thinks in the spirit of Stone duality and moves to an algebraic semantics, the axioms
corresponding to these operations can be treated on the same level as the axioms
corresponding to the modalities, that is as operations on the base algebra. As
a result, one directly obtains an axiomatics to reason about information flow in
multi-agent systems. It was this line of thought that led to the algebraic axiomatics
of DEL, referred to as an epistemic system [2,9]. Epistemic systems subsume the
existing relational models of DEL, but are more general in the sense that they do not
rely on a Boolean setting and model epistemic and dynamic modalities as adjoint
pairs.

However, the sequent calculus developed for the algebraic axiomatics of Epis-
temic systems in [2,9], lacks a cut-elimination theorem, thus this paper presents, for
the first time, an algorithm for proving properties of interactive multi-agent scenar-
ios encoded in epistemic systems and an implementation of this algorithm as the
program Aximo [8] written in C++. The input language of Aximo is a restriction of
the terms of an epistemic system and its algorithm implements a rewrite system and
a reasoner. The rewrite system is based on the axioms of the algebra and reduces
an input inequality to a set of atomic ones. The reasoner uses recursion over the
assumptions of the scenario and completes the proof of the input property. The
termination of the program follows from the finite number of inequalities generated
by the rewrite engine and termination of the finite number of recursive calls. We
prove that the program is sound with regard to epistemic systems. As test cases, we
present and analyze the proofs of properties of honest and newer dishonest versions
of the muddy children puzzle as well as a coin toss scenario.

Aximo came out of the Masters’ project of the first author in Computer Software
Engineering, under supervision of the second author. We need to compare its effi-
ciency with that of DEMO [6], which is a model checker based on the Kripke semantics
of DEL. We believe that the domain of application of Aximo can be extended to
proving properties of security protocols (both classical and quantum), by modu-
larly adding their relevant axioms (e.g. hashes and signatures, non-local quantum
co-relations), thus re-use the existing dynamic epistemic machinery underneath.

2 The Algebra

We recall the definition of the algebraic semantics of dynamic epistemic logic
from previous work [2,9]. It consists of a triple (M,Q, {appA}A∈A) where Q =

S. Richards, M. Sadrzadeh / Electronic Notes in Theoretical Computer Science 231 (2009) 211–225212

(Q,
∨

, •, τ,�,⊥) is a quantale, M = (M,
∨

,�,⊥) is its right module via the
action − · − : M × Q → M , and {appA}A∈A is a family of endomorphisms
appA = (appM

A : M → M,appQ
A : Q → Q satisfying

τ ≤ appQ
A(τ) (1)

appQ
A(q • q′) ≤ appQ

A(q) • appQ
A(q′) (2)

appM
A (m · q) ≤ appM

A (m) · appQ
A(q) (3)

We define the stabilizer of Q in M as follows

Stab(Q) = {m ∈ M | ∀q ∈ Q, m · q ≤ m}

For each action of Q we define a kernel in M as follows

∀q ∈ Q, ker(q) = {m ∈ M | m · q = ⊥}

We recall the axioms for the action of Q on M

(
∨
i

mi) · q =
∨
i

(mi · q), m · (
∨
i

qi) =
∨
i

(m · qi)

m · (q • q′) = (m · q) · q′, m · τ = m

Since the action preserves all joins of M , it has a Galois right adjoint on M denoted
by − · q � [q]− and defined as

m · q ≤ m′ iff m ≤ [q]m′

The appA endomorphisms are join preserving on M and Q, hence they also have
Galois right adjoints denoted by appM

A (−) � �M
A − and appQ

A(−) � �
Q
A− and

defined as

appM
A (m) ≤ m′ iff m ≤ �M

A m′

appQ
A(q) ≤ q′ iff q ≤ �

Q
A q′

2.1 Interpretation of the Algebra

Elements of the module are interpreted as logical propositions and the partial order
of the module as the logical entailment between propositions. Elements of the
quantale are interpreted as communication actions and the join on the quantale
stands for the non-determinstic choice of actions. Hence the order of the quantale
is the order of non-determinism. The composition of quantale • is the sequential
composition of actions. The action of the quantale on the module m · q is the
update of information in m by action q. Its right adjoint is indeed the weakest
precondition of Hoare logic and the dynamic modality of PDL and DEL with the
following reading

• [q]m is all the propositions that become true after applying action q to proposition
m. We read it as ‘after doing action q proposition m holds’.

S. Richards, M. Sadrzadeh / Electronic Notes in Theoretical Computer Science 231 (2009) 211–225 213

Each appA map denotes the appearance of agent A as follows

• appM
A (m) is all the propositions that appear to agent A as true where as in reality

proposition m is true. We read it as ‘the appearance of agent A of proposition
m’.

• appQ
A(q) is all the actions that appear to agent A as happening where as in reality

action q is happening. We read it as ‘the appearance of agent A of action q’.

The Galois right adjoint in each case is the epistemic modality denoting not nec-
essarily truthful knowledge or in a context where no wrong knowledge is allowed
possibly wrong belief :

• We read �M
A m as ‘agent A knows that proposition m holds’.

• We read �
Q
A q as ‘agent A knows that action q is happening’.

The set Stab(Q) is interpreted as the set of facts. These are elements of the module
that are stable under any update. The reason for stability is that our actions are
epistemic and do not change the facts of the world. If a fact is true before an
action, it will stay true afterwards. The kernel of each action is its co-precondition
or co-content, that is the set of states to which it cannot apply.

Example 2.1 Consider a coin tossing scenario with two agents 1 and 2, where
agent 1 tosses a coin and covers it. None of the agents know on what face the coin
has landed. This scenario in encoded in an epistemic system (M,Q, {appA}A∈A)
with states sH , sT ∈ M , agents 1, 2 ∈ A, and facts fH , fT ∈ Stab(Q). State sH

is the state in which the coin has landed heads and fact fH is the fact saying ‘the
coin is heads’. We thus have sH ≤ fH and similarly sT ≤ fT for the state in which
the coin is tails and its corresponding fact. Since both of the agents are uncertain
about the face of the coin, we have app1(sH) = app1(sT) = sH ∨ sT and similarly
for 2. Suppose now that 1 uncovers the coin and publicly announces that it is
heads. This is the action aH ∈ Q that appears as it is to all the agents since it
is public app1(aH) = app2(aH) = aH . Since aH is the announcement of heads,
it cannot apply to the states that satisfy tails, that is fT ≤ ker(aH). We want
to prove that after the announcement of heads, agent 2’s uncertainty gets waived
and he gets to know the fact that the coin is heads, that is sH ≤ [aH]�2fH . By
dynamic adjunction this inequality holds iff we have sH · aH ≤ �2fH . By epistemic
adjunction this is iff app2(sH · aH) ≤ fH , by axiom (3) of epistemic systems it
is enough to prove app2(sH) · app2(aH) ≤ fH . Now we replace the app2(sH) and
app2(aH) with their assumed values and obtain (sH ∨ sT) · aH ≤ fH , which is
equivalent to (sH · aH) ∨ (sT · aH) ≤ fH by join preservation of the action of Q on
M . By definition of disjunction, we have to prove sH · aH ≤ fH and sT · aH ≤ fH .
The first one follows from our assumption that sH ≤ fH , order preservation of
update sH · aH ≤ fH · aH , and stability of facts fH · aH ≤ fH . The second follows
since sT ≤ fT ≤ ker(aH) and thus sT · aH = ⊥ ≤ fH .

In a similar fashion, if agent 1 does a lying action aH and announces heads when
he sees tails, we prove that agent 1 acquires wrong knowledge, that is sT ≤ [aH]�2fH

by assuming app1(aH) = aH where as app2(aH) = aH and ker(aH) = fH .

S. Richards, M. Sadrzadeh / Electronic Notes in Theoretical Computer Science 231 (2009) 211–225214

3 The Program

3.1 Input/Output

Assumptions of a scenario are either read from a text input file for the input file.
or asked from the user and assigned interactively. These assumptions include, state
variables s ∈ AtSt, action variables a ∈ AtAc, and fact variables f ∈ AtFt, atomic
inequalities about which states satisfy which facts s ≤ f , appearance to agents of
states and actions, which are sets of states and actions respectively, and kernels of
actions. Appearances have the following form

appA(s) = {s1, · · · , sn}, appA(a) = {a1, · · · , an}

Kernels are generated via the following syntax

k ::= f | �Af | k ∗ k

The inequality to be verified about the scenario is of the form l ≤ r and is generated
via the following syntax

l ::= s | l.a | l1 ∗ l2

r ::= f | � r | r1 ∗ r2

a ::= a1 ∨ a2

∗ ::=∧ | ∨
� ::= �A | [a]

The language presented here is a slight variation of what is used by the program
where states, facts, and actions are enumerated, dynamic modality [a] is denoted by
d(i) and epistemic modality �A by e(j). Aximo processes the input inequality and
the assumptions and returns a ‘passed’ or ‘failed to prove’ answer. While computing,
the computation steps are broadcasted to the console, so that e.g. the user can find
out what was problematic in case of a ‘failed to prove’ answer.

3.2 Algorithm and Complexity

After verifying that the input inequality is of the correct form, the program proceeds
by processing the input inequality. This is done via two sets of rewrite rules: on
inequalities and on the left and right hand side expressions of inequalities. The rules
for inequality rewriting are as follows

S. Richards, M. Sadrzadeh / Electronic Notes in Theoretical Computer Science 231 (2009) 211–225 215

Inequality rewriting rules:

l1 ∧ l2 ≤ r1 ∨ r2 �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l1 ≤ r1 or
l1 ≤ r2 or
l2 ≤ r1 or
l2 ≤ r2 .

(1)

l1 ∨ l2 ≤ r1 ∧ r2 �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

l1 ≤ r1 and
l1 ≤ r2 and
l2 ≤ r1 and
l2 ≤ r2 .

(2)

l ≤ � r �

{
l · a ≤ r � = [a]
appA(l) ≤ r � = �A

(3)

The rules for expression rewriting are as follows

Expression rewriting rules:

�(r1 ∗ r2) � (�r1) ∗ (�r2) (4)
(l1 ∗ l2) · a1 · · · an � (l1 · a1 · · · an) ∗ (l2 · a1 · · · an) (5)

l · (a1 ∨ a2) � (l · a1) ∨ (l · a2) (6)
[a1 ∨ a2] r � [a1] r ∨ [a2] r (7)

appA(l1 ∗ l2) � appA(l1) ∗ appA(l2) (8)
appA(l · a1 · · · an) � appA(l) · appA(a1) · · · appA(an) (9)

The appearances of atomic states and actions and the kernels of atomic actions are
rewritten to their inputed value via the following 3 expression rewriting rules

Rewriting using the input:

appA(s) � s1 ∨ · · · ∨ sn (10)
appA(a) � a1 ∨ · · · ∨ an (11)
ker(a) � k (12)

The decision procedure has two steps: (I) elimination of the ∗ and � connectives
from the input inequality using the above rules, the resulting inequalities are written
to either the ‘and’ or the ‘or’ list, (II) recursive elimination of the inequalities of
these lists using the assumptions, i.e. facts satisfied by states and kernels of actions.
A ’passed’ or ‘failed to prove’ message is returned based on the fullness of the lists.
This procedure is briefed below

S. Richards, M. Sadrzadeh / Electronic Notes in Theoretical Computer Science 231 (2009) 211–225216

(I) Eliminate ∗ and � connectives

(i) repeat until all ∗’s are eliminated, write to ’and’ - ’or’ lists
(a) eliminate the ∗’s outside scope of a � or − · a by 1,2
(b) push the ∗’s inside scope of a � or −·a to outside by 4-7

(ii) eliminate the �’s by 3

(iii) push the ∗’s and − · a’s inside scope of appA to outside b 8,9

(iv) eliminate appA by repeating: 10,11; do (i).(a); write to ’or’
list

At the end of this step all the inequalities will be of the following atomic form

s · a1 · · · an ≤ f

(II) Eliminate inequalities
• For each inequality in the ‘and’ list do
(i) if s ≤ f in assumptions then eliminate,

(ii) else repeat

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

recursively call s ≤ ker(a1)
recursively call s · a1 ≤ ker(a2)
· · ·
recursively call s · a1 · · · an−1 ≤ ker(an)

• If the ‘and’ list is empty return ‘passed’.
• else repeat (II) for ‘or’ list, return ’passed’ after 1st elim-

ination,
• If nothing gets eliminated from ‘or’ list, return ’failed to

prove’.

A simple calculation provides us with the maximum number of atomic inequalities
that are generated from an input inequality by following the above procedure. This
is equal to

W × W ′ × W ′′

where W = Disj×Conj for Disj the number of disjuncts in the input inequality and
Conj the number of conjuncts of input inequality. For k maximum cardinality of
the appearance sets of the states and actions, n the number of epistemic modalities
of the input inequality and m the number of actions plus dynamic modalities of
the input inequality, we have W ′ = (kn)(m+1). For n′ the maximum number of
epistemic modalities of the kernels of actions of the generated atomic inequalities,
we have W ′′ =

∑m
i=0(k

n′
)i as the sum of the number of inequalities generated by

recursion for the kernel of actions. Since dynamic modalities are not allowed in the
kernel of actions, the recursive calls are all terminating. As a result, the procedure
described above is terminating and will always provide the user with an answer.
A ‘failed to prove’ answer means that the program could not prove that the input
inequality follows from the assumptions provided by the user.

S. Richards, M. Sadrzadeh / Electronic Notes in Theoretical Computer Science 231 (2009) 211–225 217

Example 3.1 In a scenario where either no one cheats or no one suspects the
cheating actions, the number of inequalities in W ′ and W ′′ reduce to kn and (kn′

)×m

respectively. This is because in either case the sets of appearances of actions of the
scenario is a singleton. If the cheating action is suspected by at most w alternative
actions by all the agents, these numbers become k2n and wm×n′

, respectively.

Start

An optional stage which uses the rules of distributivity in
conjunctions and disjunctions to rearrange the expression into
a form which can be more easily enumerated into candidate
solutions (for example, by grouping conjunctions together).

O1: Rerarrangement of Expression

An optional stage in which the original expression is
broken down into anumber of candidate expressions
(only one of which needs to be solved) based on the

conjunctions/disjunctions present. This stage is required for
complex conjunctions/disjunction support to be present.

Appearance symbols are evaluated by a recursive process
that gets the respective appearance of states/ations for a
given agent (done by calling the axiom/assumption store).

Where appearances have returned multiple states or actions,
the expression is split into a number of sub-expressions
covering all possible constructions that can be made.

States from the left hand side of expressions are checked to
see if they satisfy the facts on the right hand side (by calling
the axiom/assumption store). In the case of a positive result,

the sub-expression is eliminated.

For each remaining sub-expression, a new expression is
constructed consisting of the state on the left hand side, and

the kernel of the first action on the right hand side. An attempt
is then made to solve this (recursively). If the process

suceeds, the sub-expression can be eliminated. If it fails the
action is added to the left hand side of the new expression and

the kernel of the following action is used for the right hand
side. This process continues until either the sub-expression is

eliminated, or all actions have been iterated through, (in
which case the sub-expression cannot be eliminated).

If all sub-expressions were eliminated, then the process
returns a positive result to indicate that the current

expression was provable.

Modalities are removed from the right hand side of the
expression by adjusting the left hand side accordingly.

Dynamic Modalities become action symbols, and
epistemic modalities become appearances.

1: Modality Elimination

2: Appearance Evaluation

3: Enumeration into Sub-Expressions

4: Elimination by Facts

5: Elimination by Kernels

6: Result Checking

O2: List Candidate Solutions

A
Axioms and assumptions of the scenario are stored outside of

the main algorithm in a separate class. This class is probed
throughout the reduction/solving process for needed information,

and can easily be subclassed such that responses can be
obtained in different ways (generated mathematically,

ask the user, etc.).

A: Axioms/Assumptions Store

A

A

A

Finish

S

S

High Level Flow chart of Aximo

3.3 Data Structures

Internally, inequalities are stored as a pair of classes each representing a list, for
symbols on the left and right hand sides of the inequality, respectively. These are
pointed to from an encapsulating class which is used to provide inequality-wide func-
tionality and handle the inequality from a single pointer. By using two seperate list
classes, modifications and function calls can be made on each side of the inequality
independantly from the other, reducing difficulty of implementation. The solving
process uses a list of lists to keep track of it’s progress. Each item in the first list
represents the various candidate solutions, with the entry itself being a list to all the

S. Richards, M. Sadrzadeh / Electronic Notes in Theoretical Computer Science 231 (2009) 211–225218

sub-inequalities present in that particular candidate. It is worth noting that the size
of these lists can be quite dynamic, expanding as new candidates/sub-inequalities
are created, and shrinking as sub-inequalities are successfully eliminated.

3.4 Semantics

Given an epistemic system E = (M,Q, {appA}A∈A), we interpret the expressions of
Aximo via the following pair of maps

[[−]]M : L → M, [[−]]Q : La → Q

where L is the set of expressions generated from the syntax of Aximo and La is the
action-only expressions generated by the syntax of actions. These maps are defined
in a routine fashion by induction as follows for x ∈ {l, r}

[[s]]M = s, [[a]]Q = a, [[f]]M = f

[[[a] r]]M =
[
[[a]]Q

]
[[r]]M , [[�Ar]]M = �A[[r]]M

[[l · a1 · · · an]]M = [[l]]M · [[a1]]Q • · · · • [[a1]]Q

[[x1 ∗ x2]]M = [[x1]]M ∗ [[x2]]M , [[a1 ∨ a2]]Q = [[a1]]Q ∨ [[a2]]Q

Theorem 3.2 Soundness. For a set S of assumption inequalities, an epistemic
system E in which S holds, and a pair of interpretation maps ([[−]]M , [[−]]Q), we
have that if Aximo returns a ‘passed’ answer to an inequality then the inequality
holds in E.

Proof. Assume Aximo has returned ‘passed’ to an inequality l ≤ r generated by
its syntax, we show that [[l]]M ≤ [[r]]M . The proof has two steps: (1) Aximo’s
rewrite rules are truth preserving, and (2) Aximo’s procedure on atomic inequalities
is sound, that is if it passes s · a1 · · · an ≤ f then [[s · a1 · · · an]]M ≤ [[f]]M . The
former is straightforward, the latter is done by induction on the number of actions
in an atomic inequality. In the induction base case there are no actions and Aximo
passes s ≤ f if it is in S. This implies [[s]]M ≤ [[f]]M since inequalities of S also
hold in E , and by stability of facts and definition of interpretation maps it follows
that [[s · a1 · · · an]]M ≤ [[f]]M . For the induction step, assume Aximo has passed
s · a1 · · · ak ≤ f , we need to show [[s · a1 · · · ak]]M ≤ [[f]]. By the antecedent either
s ≤ f is passed or else any of s ≤ ker(a1) or s · ai ≤ ker(ai+1) for some 1 ≤ i ≤
k − 1 are passed. The consequence follows from the first case by the base case of
induction and from the second case by the induction hypothesis, for example, if
s ≤ ker(a1) is passed then [[s]]M ≤ [[ker(a1)]]M holds, thus by definition of kernel
we have [[s]]M · [[a1]]M = ⊥ and it follows that [[⊥ · a2 · · · ak]]M = ⊥ ≤ [[f]]M . �

Remark 3.3 Since ’failed to prove’ in Aximo is defined by not being ‘passed’, the
contrapositive of the above theorem says that for a set of assumptions S, if the

S. Richards, M. Sadrzadeh / Electronic Notes in Theoretical Computer Science 231 (2009) 211–225 219

interpretation of an inequality generated by syntax of Aximo does not hold in an
epistemic system in which S holds, then Aximo returns a ‘failed to prove’ answer to
it.

Remark 3.4 State and action Kripke structures, in the sense of [1], are formed
from the assumption inequalities in S: the states of the state Kripke structure are
the set of states mentioned in S and the accessibility relations between them are
obtained by taking the union of products of images of the appearance maps with
the singleton set of the state under consideration. A similar method on actions
and their appearances provides us with a Kripke structure for actions. Applying
the construction detailed in [2,9] provides us with a Boolean epistemic system that
trivially satisfies S.

4 Test Cases

The first test case is our simple coin toss example with cheating and lying actions.
The second test case is the milestone puzzle of muddy children and a versions of it
with lying children.

Coin-Toss:
Recall the coin toss scenario from example 2.1. Initially, each agent thinks either
the coin is heads fH or tails fT . In the case of an honest announcement of heads
by agent 1, the program rewrites sH ≤ [aH]�2fH as follows

sH ≤ [aH]�2fH �3 sH · aH ≤ �2fH �3 app2(sH · aH) ≤ fH �9

app2(sH) · app2(aH) ≤ fH �10 (sH ∨ sT) · app2(aH) ≤ fH �11

(sH ∨ sT) · aH ≤ fH �5 sH · aH ∨ sT · aH ≤ fH �2

{
sH · aH ≤ fH and
sT · aH ≤ fH

At this point we have two inequalities in the ‘and’ list. The program eliminates
the first one since sH ≤ fH is in the assumptions of scenario. For the second one
sT ≤ fH is not in the assumptions so the program recurses on sT ≤ ker(aH). This
gets re-written to sT ≤ fT by rule (12) and since sT ≤ fT is an assumption of the
scenario, it gets eliminated from the list. So the program folds back and eliminates
sT ≤ ker(aH) from the ‘and’ list, now the list is empty and it returns ‘passed’.

The lying announcement is dealt with similarly. The output screen for the in-
equality sT ≤ [aH]�AfH is presented below, where sH , sT , fH , fT are represented
respectively by s(0), s(1), f(0), f(1), the lying action is a(2) and the honest an-
nouncement action is a(0). The epistemic modalities �2 is denoted by e(2) and the
dynamic modality [aH] by d(2).

S. Richards, M. Sadrzadeh / Electronic Notes in Theoretical Computer Science 231 (2009) 211–225220

Enter expression: s(0)〈= d(2)e(1)f(0)
Solving- s(1)〈= d(2)e(1)f(0)
Rearrangement/Optimisation-s(1)〈= d(2)e(1)f(0)
Candidate Solutions- s(1)〈= d(2)e(1)f(0)
Attempting to Solve Candidate- s(1)〈= d(2)e(1)f(0)
Candidate Enumerated-s(1)〈= d(2)e(1)f(0)
Dynamic Modalities Removed-s(1)a(2)〈= e(1)f(0)
Epistemic Modalities Removed- app(1|s(1))app(1|a(2))〈= f(0)
Apearances Evaluated-s(0, 1)a(2)〈= f(0)
Further Enumeration-s(0)a(2)〈= f(0), s(1)a(2)〈= f(0)
Parts Remaining After Elimination by Axioms-s(1)a(2)〈= f(0)
Parts Remaining After Elimination by Known Solution- s(1)a(2)〈= f(0)
Performing Elimination by Action Kernels Trying- s(1)〈= kernel(a(2))
-as- s(1)〈= f(1) - Solving s(1)〈= f(1)
- Rearrangement/Optimisation- s(1)〈= f(1)
- Candidate Solutions- s(1)〈= f(1)
- Attempting to Solve Candidate- s(1)〈= f(1)
- Candidate Enumerated- s(1)〈= f(1)
- Dynamic Modalities Removed- s(1)〈= f(1)
- Epistemic Modalities Removed- s(1)〈= f(1)
- Apearances Evaluated- s(1)〈= f(1)
- Further Enumeration-s(1)〈= f(1)

- Parts Remaining After Elimination by Axioms- - *none*
- --Expression Passed--
Parts Remaining After Elimination by Action Kernels- *none*
--Expression Passed--
Try another expression? Enter Y/N:

A sample output screen of Aximo

In the above screen, the assumptions are read from an input file. An alternative
would be to ask them from the user interactively, for instance the program asks ‘does
s(0) ≤ f(0) and if the user enters ‘yes’, it eliminates it. Similarly, the program asks
the user ‘what is the appearance of state 0 to agent 1 and rewrites the appearance
expression to the disjunction of the values entered by the user, which are separated
by commas.

Complexity wise, our calculations show that to verify nested knowledge properties
like s ≤ [a′]�i · · ·�jfH for i, j ranging over the agents present in a coin toss scenario
and a′ any action, we obtain a better complexity bound as shown below:

Agents App. of actions No. cases

honest singleton 2n

cheating with no suspicion singleton 2n

cheating with suspicion | appi(a′) |= w 2n × w

Muddy children with lying:
The puzzle goes like this: n children are playing in the mud and k ≥ 1 of them have
dirty foreheads. Each child sees other children’s foreheads but cannot see his own.
Their father announces ‘at least one of you is dirty’, and asks ‘do you know if you are
dirty?’. The children look around and simultaneously reply no! We prove that after
k − 1 rounds of no answers, all the dirty children get to know that they are dirty.
The children are denoted by numbers A = {i | 1 ≤ i ≤ n}. The states are denoted

S. Richards, M. Sadrzadeh / Electronic Notes in Theoretical Computer Science 231 (2009) 211–225 221

by sβ for β ⊆ A where each sβ represents the state in which the children in β are
dirty and the children not in β are clean. The appearance to each child of each state
is appi(sβ) = sβ∪{i}∨sβ\{i}, that is the choice of two states: in one he is dirty and in
another one he is clean. The facts are {f∅}∪{f(i) | 1 ≤ i ≤ n}∪{f ′(i) | 1 ≤ i ≤ n},
where f∅ stands for ’no child is dirty’, f(i) stands for ’child i is dirty’, and f ′(i)
stands for ’child i is clean’. Each state satisfies its corresponding fact, that is
sβ ≤ f(i) for all i ∈ β and sβ ≤ f ′(i) for all i /∈ β. The actions include father’s
original announcement a and the children’s simultaneous no answers (all encoded in
the same action) a′. These actions are public announcements, so their appearances
to each child is identity, that is appi(a) = a and appi(a′) = a′. The kernel of a is
f∅. The kernel of the no answers a′ is

∨n
i=1 �if(i), that is the state in which some

child knows that he is dirty. We input the following to the program for 1 ≤ i ≤ k

s{1,2,··· ,k} ≤ [a] [a′] · · · [a′]︸ ︷︷ ︸
k−1

�if(i)

The program does the following rewriting

s{1,2,··· ,k} ≤ [a] [a′] · · · [a′]| {z }
k−1

�if(i) �3 s{1,2,··· ,k} · a ≤ [a′] · · · [a′]| {z }
k−1

�if(i) �3

s{1,2,··· ,k} · a · a′ ≤ [a′] · · · [a′]| {z }
k−2

�if(i) �3 · · · �3 s{1,2,··· ,k} · a · a′ · · · a′| {z }
k−1

≤ �if(i) �3

appi(s{1,2,··· ,k} · a · a′ · · · a′| {z }
k−1

) ≤ f(i) �9 appi(s{1,2,··· ,k}) · appi(a) appi(a
′) · · · appi(a

′)| {z }
k−1

≤ f(i)

�10 (s{1,2,··· ,k} ∨ s{1,2,··· ,k}\{i}) · appi(a) appi(a
′) · · · appi(a

′)| {z }
k−1

≤ f(i) �11 · · · �11

(s{1,2,··· ,k} ∨ s{1,2,··· ,k}\{i}) · a a′ · · · a′| {z }
k−1

≤ f(i) �5

s{1,2,··· ,k} · a a′ · · · a′| {z }
k−1

∨s{1,2,··· ,k}\{i} · a a′ · · · a′| {z }
k−1

≤ f(i) �2

8>><
>>:

s{1,2,··· ,k} · a a′ · · · a′| {z }
k−1

≤ f(i) and

s{1,2,··· ,k}\{i} · a a′ · · · a′| {z }
k−1

≤ f(i)

The first inequality of the list gets eliminated since s{1,2,··· ,k} ≤ f(i) is in the as-
sumptions. For the second inequality the program does k − 1 recursive calls with
the kernels of actions, and only the last call, that is s{1,2,··· ,k}\{i} ·a a′ · · · a′︸ ︷︷ ︸

k−2

≤ ker(a′)

gets eliminated from the list and results in a ‘passed’ answer.
For a lying version, assume after k − 1 rounds of no answers, the dirty children

lie in round k by still announcing that they do not know that they are dirty, as a
result the clean children get confused and wrongly think that they are dirty. The
inequality to be verified is

s{1,2,··· ,k} ≤ [a] [a′] · · · [a′]︸ ︷︷ ︸
k−1

[a′′]�jf
′(j)

where k + 1 ≤ j ≤ n and a′′ is the lying action of dirty children with appearance
identity to the dirty children but an honest no answer to the clean children, i.e.

S. Richards, M. Sadrzadeh / Electronic Notes in Theoretical Computer Science 231 (2009) 211–225222

appi′(a′′) = a′. The proof is very similar to the honest case.
For a demo of a number of muddy children scenarios, see the webpage of

Aximo [8], under Muddy Children Demonstration Version under Download.

5 Challenges and Future Work

Theoretical challenges. (1) The decision procedure can be optimized by find-
ing invertible versions of our non-invertible rules, e.g. 1,2 4, and by turning the
expression rewriting rules into inequality rewriting ones. (2) The language can be
made more expressive by adding negation and its corresponding rules, e.g. those
of a Boolean or a Heyting algebra. (3) The complexity can be improved by cutting
down on recursive calls to kernels and instead use stability theorems, for instance,
the one developed in previous work [4], which expresses stability under update with
any action that has a positive content.

Practical challenges. (1) In order to stop Aximo from looping indefinitely, we only
allow epistemic modalities in the kernels of actions. A natural generalization would
be to relax this and instead use loop checking. (2) There are overlaps between the
sub-inequalities generated from by the rewrite system, in order to avoid repetition,
we aim to make the program memorize those. (3) The main algorithm in Aximo
relies heavily on list manipulation and contains a lot of dynamic memory allocation,
making it more suitable to a language such as Digital Mars D which supports list
handling and garbage collection at the compiler/language specification level, thus
improving overall performance, e.g. porting the algorithm to D would not reduce
its accessibility to developers.

Comparison. DEMO is a model checker [6] based on the underlying Kripke semantics
of DEL. Its input is the initial kripke structure of the scenario and the kripke
structures of the actions involved. Its main task is computing the update product
of these structures, as introduced in [1], and then browsing it to model check a
dynamic epistemic property. We defer a formal comparison of Aximo and DEMO to
future work and only hint to the fact that since Aximo is based on a non-Boolean
propositional setting and moreover has an interactive mode of entering assumptions,
it stores less information about states than DEMO.

Acknowledgement

We thank Samson Abramsky, Corina Ĉırstea, Vincent Danos and Ross Duncan for
invaluable discussions, comments, and questions.

References

[1] A. Baltag and L.S. Moss, ‘Logics for epistemic programs’, Synthese 139, 2004.

[2] A. Baltag, B. Coecke and M. Sadrzadeh, ’Epistemic actions as resources’, Journal of Logic and
Computation 17(3), 555-585, 2007.

S. Richards, M. Sadrzadeh / Electronic Notes in Theoretical Computer Science 231 (2009) 211–225 223

[3] J. van Benthem, ’One is a Lonely Number’, Technical Report PP-2002-27, ILLC, Amsterdam, 2002, to
appear in P. Kopke, ed., Colloquium Logicum, Munster, 2001, AMS Publications.

[4] C. Cirstea and M. Sadrzadeh, ’Coalgebraic Epistemic Update without Change of Model’, Lecture Notes
in Computer Science 4624, pp. 158-172, June 2007.

[5] W. van Der Hoek and M. Wooldridge, ’Time, Knowledge, and Cooperation: Alternating-Time Temporal
Epistemic Logic’, COORDINATION 2002.

[6] Jan van Eijck, CWI, Amsterdam http://homepages.cwi.nl/~jve/demo/DEMO.pdf.

[7] R. Fagin, J. Y. Halpern, Y. Moses and M. Y. Vardi. Reasoning about Knowledge. MIT Press, 1995.

[8] S. Richards and M. Sadrzadeh, Aximo, downloadable from
http://www.charcoalfeathers.net/research/projects/aximo, August 2007.

[9] M. Sadrzadeh, ’Actions and Resources in Epistemic Logic’, Ph.D. Thesis, University of Quebec at
Montreal, 2005, www.ecs.soton.ac.uk/~ms6/all.pdf.

S. Richards, M. Sadrzadeh / Electronic Notes in Theoretical Computer Science 231 (2009) 211–225224

http://homepages.cwi.nl/~jve/demo/DEMO.pdf
www.ecs.soton.ac.uk/~ms6/all.pdf

Appendix

no

yes
The expression

was not solveable.

The expression
was solvable.

Finish
Are there any

expressions left
in the list?

6

6

next expression

n
o

yes

Remove the
current expression

from the list.

Was the new
expression
solvable?

1

Call the algorithm

recursively with the
new expression.

A

A

A

A

Axioms/Initial assumptions.
Can be hard-coded

or inputted as required

Construct a new
expression from the

temporary LHS, using
kernel of the action

for the RHS.

Add the actionto
the temporary
left hand side.

Create a temporary
LHS using the state
from the expression.

Select the next
action in the
expression.

Select the next
expression in

the list.

5

5

Elimination
By Kernels

n
o

next expression

yes Remove the
current expression

from the list.

Does the state

satisfy the fact?

Check the state
satisfies the fact, by

looking at the
initial axioms.

For each expression
in the list.

Extract the fact
from the RHS.

Extract the state
from the LHS.

4

Elimination
By Facts

4

next expression

Select the next
expression in

the list.

Create a new list
to hold a set of
expressions.

Add the
expression
 to the list.

For each symbol on
the left hand side:

State symbol
holds more

than 1 state?

no - next symbol

state

action

yes

yes

Type of
symbol?

Create a duplicate of
the expression at the

end of the list for
each held action.

Action symbol
holds more

than 1 action?

Create a duplicate of
the expression at the

end of the list for
each held state.

Remove the
current expression

from the list.

Modify the related
symbol in each new

expression to contain
one each of the actions.

Modify the related
symbol in each new

expression to contain
one each of the states.

3

Enumration Into
Sub-Expressions

3

a
p
p
e
a
ra

n
c
e

Replace appearance
symbol with the
evaluated reult.

Recursivley call the
pointed symbol to

evaulate itself.

next symbol

state/action
Return state/action
appearance for the
agent by using the
initial assumptions.

Symbol type
pointed to?

n
o

yes

next symbol

Appearance
symbol?

Skip/do nothing.

For each symbol on
the left hand side:

2

Appearance
Evaluation

next symbol
2

Break.
(fact symbol sould
be the last symbol)

Add a matching
action as the last

symbol on the
left hand side.

d
y
n
a
m

ic
m

o
d
a
lity

fact symbol

Replace each LHS
symbol 'L' with an

appearance symbol
pointing to L and the
agent of the modality.

epistemic
modality

Remove the
symbol from the
right hand side

1

Modality
Elimination

1

Type of
symbol?

For each symbol on
the right hand side:

Obtain the expression to
be evaluated as a list of

symbols.
Start

S. Richards, M. Sadrzadeh / Electronic Notes in Theoretical Computer Science 231 (2009) 211–225 225

	Introduction
	The Algebra
	Interpretation of the Algebra

	The Program
	Input/Output
	Algorithm and Complexity
	Data Structures
	Semantics

	Test Cases
	Challenges and Future Work
	Acknowledgement
	References

