
Aspect-Oriented Programming with Type Classes

Martin Sulzmann
School of Computing, National University of Singapore

S16 Level 5, 3 Science Drive 2, Singapore 117543

sulzmann@comp.nus.edu.sg

Meng Wang
School of Computing, National University of Singapore

S16 Level 5, 3 Science Drive 2, Singapore 117543

wangmeng@comp.nus.edu.sg

Abstract
We study aspect-oriented programming (AOP) in the context of the
strongly typed language Haskell. We show how to support AOP via
a straightforward type class encoding. Our main result is that type-
directed static weaving of AOP programs can be directly expressed
in terms of type class resolution – the process of typing and translat-
ing type class programs. We provide two implementation schemes.
One scheme is based on type classes as available in the Glasgow
Haskell Compiler. The other, more expressive scheme, relies on an
experimental type class system. Our results shed new light on AOP
in the context of languages with rich type systems.

1. Introduction
Aspect-oriented programming (AOP) is an emerging paradigm
which supports the interception of events at run-time. The essen-
tial functionality provided by an aspect-oriented programming lan-
guage is the ability to specifywhatcomputation to perform as well
aswhento perform the computation. A typical example is profiling
where we may want to record the size of the function arguments
(what) each time a certain function is called (when). In AOP ter-
minology, what computation to perform is referred to as theadvice
and when to perform the advice is referred to as thepointcut. An
aspectis a collection of advice and pointcuts belonging to a certain
task such as profiling.

There are numerous works which study the semantics of aspect-
oriented programming languages, for example consider [2, 13, 26,
27, 29]. Some researchers have been looking into the connec-
tion between AOP and other paradigms such as generic program-
ming [30]. To the best of our knowledge, we are the first to study
the connection between AOP and the concept of type classes, a type
extension to support ad-hoc polymorphism [25, 12], which is one
of the most prominent features of Haskell [15].

In this paper, we make the following contributions:

• We introduce an AOP extension of Haskell, referred to as AOP
Haskell, with type-directed pointcuts. Novel features of AOP
Haskell include the ability to advise overloaded functions and
refer to overloaded functions in advice bodies.

• We define AOP Haskell by means of a syntax-directed transla-
tion scheme where AOP programming idioms are directly ex-
pressed in terms of type classes. Thus, typing and translation of
AOP Haskell can be explained in terms of typing and translation
of the resulting type class program.

• We consider two possible implementation schemes. One scheme
is based on type classes as supported by the Glasgow Haskell
Compiler (GHC) [5]. We critically rely on multi-parameter type
classes and overlapping instances. This scheme has restrictions
in case we advise type annotated functions (Section 4).

• We show that these restrictions can be lifted by using a more
flexible form of type classes as proposed by Stuckey and the
first author [19]. We provide the type-directed translation rules

from the more flexible AOP Haskell system to a simple target
language. We establish concise results such as type soundness,
type inference and coherence of the translation. These results
can be directly related to existing results for type classes (Sec-
tion 5).

We continue in Section 2 where we give an introduction to type
classes. Section 3 gives an overview of the key ideas behind our
approach of mapping AOP to type classes. We conclude in Sec-
tion 6 where we also discuss related work.

2. Background: Type Classes
Type classes [12, 25] provide for a powerful abstraction mechanism
to deal with user-definable overloading also known as ad-hoc poly-
morphism. The basic idea behind type classes is simple. Class dec-
larations allow one to group together related methods (overloaded
functions). Instance declarations prove that a type is in the class, by
providing appropriate definitions for the methods.

Here are some standard Haskell declarations.

class Eq a where (==)::a->a->Bool
instance Eq Int where (==) = primIntEq -- (I1)
instance Eq a => Eq [a] where -- (I2)

(==) [] [] = True
(==) (x:xs) (y:ys) = (x==y) && (xs==ys) -- (L)
(==) _ _ = False

The class declaration in the first line states that every typea in
type classEq has an equality function==. Instance (I1) shows
that Int is in Eq. We assume thatprimIntEq is the (primitive)
equality function amongInts. The common terminology is to
express membership of a type in a type class via constraints. Hence,
we say that thetype class constraintEq Int holds. Instance (I2)
shows thatEq [a] from the instanceheadholds if Eq a in the
instancecontextholds. Thus, we can describe an infinite family of
(overloaded) equality functions.

We can extend the type class hierarchy by introducing new sub-
classes.

class Eq a => Ord a where (<)::a->a->Bool -- (S1)
instance Ord Int where ... -- (I3)
instance Ord a => Ord [a] where ... -- (I4)

The above class declaration introduces a new subclassOrd which
inherits all methods of its superclassEq. For brevity, we ignore the
straightforward instance bodies.

In the standard type class translation approach we represent each
type class via a dictionary [25, 6]. These dictionaries hold the ac-
tual method definitions. Each superclass is part of its (direct) sub-
class dictionary. Instance declarations imply dictionary construct-
ing functions and (super) class declarations imply dictionary ex-
tracting functions. Here is the dictionary translation of the above
declarations.
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type DictEq a = (a->a->Bool)
instI1 :: DictEq Int
instI1 = primIntEq
instI2 :: DictEq a -> DictEq [a]
instI2 dEqa =
let eq [] [] = True

eq (x:xs) (y:ys) = (dEqa x y) &&
(instI2 dEqa xs ys)

eq _ _ = False
in eq

type DictOrd a = (DictEq a, a->a->Bool)
superS1 :: DictOrd a -> DictEq a
superS1 = fst
instI3 :: DictOrd Int
instI3 = ...
instI4 :: DictOrd a -> DictOrd [a]
instI4 = ...

Notice how the occurrences of== on line (L) have been replaced
by some appropriate dictionary values. For example, in the source
program the expressionxs == ys gives rise to the type class con-
straintEq [a]. In the target program, the dictionaryinstI2 dEqa
provides evidence forEq [a] wheredEqa is the (turned into a
function argument) dictionary forEq a andinstI2 is the dictio-
nary construction function belonging to instance (I2).

The actual translation of programs is tightly tied to type inference.
When performing type inference, we reduce type class constraints
with respect to the set of superclass and instance declarations. This
process is known astype class resolution(also known as context
reduction). For example, assume some program text gives rise to
the constraintEq [[[a]]]. We reduceEq [[a]] to Eq a via
(reverse) application of instance (I2). Effectively, this tells us that
given a dictionaryd for Eq a, we can build the dictionary forEq
[[a]] by applyinginstI2 twice. That is,instI2 (instI2 d)
is the demanded dictionary forEq [[a]]. Notice that given the
dictionary d’ for Ord a, we can build the alternative dictionary
instI2 (instI2 (superS1 d’)) for Eq [[a]].

In the above, we only use single-parameter type classes. Other addi-
tional type class features include functional dependency [10], con-
structor [9] and multi–parameter [11] type classes. For the transla-
tion of AOP Haskell to Haskell we will use multi-parameter type
classes and overlapping instances, yet another type class feature,
as supported by GHC [5]. As we will see, GHC-style type classes
have some limitations. Instead, we will later use a more flexible
form of type classes which are an instance of our own general type
class framework [19].

3. The Key Ideas
3.1 AOP Haskell

AOP Haskell extends the Haskell syntax [15] by supporting top-
level aspect definitions of the form

N@advice #f1,...,fn# :: C => t = e

whereN is a distinct label attached to each advice and the pointcut
f1,...,fn refers to a set of (possibly overloaded) functions. Com-
monly, we refer tofi’s asjoinpoints. Notice that our pointcuts are
type-directed. Each pointcut has a type annotationC => t which
follows the Haskell syntax. We refer toC => t as thepointcut type.
We will apply the advice if the type of a joinpointfi is an instance
of t such that constraintsC are satisfied. The advice bodye fol-
lows the Haskell syntax for expressions with the addition of a new
keywordproceed to indicate continuation of the normal evalua-
tion process. We only support “around” advice which is sufficient
to represent “before” and “after” advice.

In Figure 1, we give an example program. In the top part, we pro-
vide the implementation of an insertion sort algorithm where ele-

import List(sort)

insert x [] = [x]
insert x (y:ys)

| x <= y = x:y:ys
| otherwise = y : insert x ys

insertionSort [] = []
insertionSort xs =

insert (head xs) (insertionSort (tail xs))

-- sortedness aspect
N1@advice #insert# :: Ord a => a -> [a] -> [a] =
\x -> \ys ->

let zs = proceed x ys
in if (isSorted ys) && (isSorted zs)

then zs else error "Bug"
where

isSorted xs = (sort xs) == xs
-- efficiency aspect
N2@advice #insert# :: Int -> [Int] -> [Int] =
\x -> \ys ->

if x == 0 then x:ys
else proceed x ys

Figure 1. AOP Haskell Example

ments are sorted in non-decreasing order. At some stage during the
implementation, we decide to add some security and optimization
aspects to our implementation. We want to ensure that each call to
insert takes a sorted list as an input argument and returns a sorted
list as the result.

In our AOP Haskell extension, we can guarantee this property
via the first aspect definition in Figure 1. We make use of the
(trusted) library functionsort which sorts a list of values. The
sort functions assumes the overloaded comparison operator<=
which is part of theOrd class. Hence, we find the pointcut typeOrd
a=>[a]->[a]->[a]. The keywordproceed indicates to continue
with the normal evaluation. That is, we continue with the call
insert x ys. The second aspect definition provides for a more
efficient implementation in case we callinsert on list ofInts. We
assume that only non-negative numbers are sorted which implies
that0 is the smallest element appearing in a list ofInts. Hence, if
0 is the first element it suffices to cons0 to the input list. Notice
there is an overlap among the pointcut types forinsert. In case
we callinsert on list of Ints we apply both advice bodies in no
specific order unless otherwise stated. For all other cases, we only
apply the first advice.

A novel feature of AOP Haskell is that advice bodies may refer to
overloaded functions. See the first advice body where we make use
of the (overloaded) equality operator== whose type isEq a => a
-> a -> a. In Haskell, theEq class is a superclass ofOrd. Hence,
there is no need to mention theEq class in the pointcut type of the
advice definition. Besides ordinary function, we can advise

• overloaded functions,

• polymorphic recursive functions, and

• functions appearing in advice and instance bodies.

We will see such examples later in Section 3.4 and 4.2.

3.2 Typing and Translating AOP Haskell with Type Classes

Our goal is to embed AOP Haskell into Haskell by making use
of Haskell’s rich type system. We seek a transformation scheme
where typing and translation of thesourceAOP Haskell program is
described by the resultingtargetHaskell program.
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insert x [] = [x]
insert x (y:ys)
| x <= y = x:y:ys
| otherwise=
y : (joinpoint N1 (joinpoint N2 insert)) x ys --(1)

insertionSort [] = []
insertionSort xs =
(joinpoint N1 (joinpoint N2 insert)) --(2)
(head xs) (insertionSort (tail xs))

-- translation of advice
class Advice n t where
joinpoint :: n -> t -> t
joinpoint = id -- default

data N1 = N1
instance Ord a => Advice N1 (a->[a]->[a]) where -- (I1)
joinpoint N1 insert =
\x -> \ys -> let zs = insert x ys

in if (isSorted ys) && (isSorted zs)
then zs else error "Bug"

where
isSorted xs = (sort xs) == xs

instance Advice N1 a -- (I1’) default case

data N2 = N2
instance Advice N2 (Int->[Int]->[Int]) where -- (I2)
joinpoint N2 insert = \x -> \ys ->

if x == 0 then x:ys
else insert x ys

instance Advice N2 a -- (I2’) default case

Figure 2. GHC Haskell Translation of Figure 1

The challenge we face is how to intercept calls to joinpoints and re-
direct the control flow to the advice bodies. In AOP terminology,
this process is known as aspect weaving. Weaving can either be
performed dynamically or statically. Dynamic weaving is the more
flexible approach. For example, aspects can be added and removed
at run-time. For AOP Haskell, we employ static weaving which
is more restrictive but allows us to give stronger static guarantees
about programs.

Our key insight is that type-directed static weaving can be phrased
in terms of type classes based on the following principles:

• We employ type class instances to represent advice.

• We use a syntactic pre-processor to instrument joinpoints with
calls to overloaded “weaving” function.

• We explain type-directed static weaving as type class resolu-
tion. Type class resolution refers to the process of reducing type
class constraints with respect to the set of instance declarations.

In Figure 2, we transform the AOP Haskell program from Figure 1
to Haskell based on the first two principles. We use here type
classes as supported by GHC.

Let us take a closer look at how this transformation scheme works.
First, we introduce a two-parameter type classAdvice which
comes with a methodjoinpoint. Each call toinsert is replaced
by

joinpoint N1 (joinpoint N2 insert)

We assume here the following order among advice:N2 ≤ N1. That
is, we first apply the adviceN1 before applying adviceN2. This
transformation step requires to traverse the abstract syntax tree

and can be automated by pre-processing tools such as Template
Haskell [18].

Each advice is turned into an instance declaration where the type
parametern of theAdvice class is set to the singleton type of the
advice and type parametert is set to the pointcut type. In case the
pointcut type is of the formC => ..., we set the instance context
to C. See the translation of adviceN1. In the instance body, we
simply copy the advice body where we replaceproceed by the
name of the advised function. For each adviceN, we addinstance
Advice N a where the body of this instance is set to the default
case as specified in the class declaration. The reader will notice
that for each advice we create two “overlapping” instances. That is,
the instance heads overlap, hence, we can potentially use either of
the two instances to resolve a type class constraint which may yield
to two different results. We come back to this point shortly.

The actual (static) weaving of the program is performed by the type
class resolution mechanism. GHC will infer the following types for
the transformed program.

insert :: forall a.
(Advice N1 (a -> [a] -> [a]),
Advice N2 (a -> [a] -> [a]),
Ord a) =>
a -> [a] -> [a]

insertionSort :: forall a.
(Advice N1 (a -> [a] -> [a]),
Advice N2 (a -> [a] -> [a]),
Ord a) =>
a -> [a] -> [a]

EachAdvice type class constraint results from a call tojoinpoint.
GHC does not resolveAdvice N1 (a -> [a] -> [a]) because
we could either apply instance (I1) or the default instance (I1’)
which may yield to an ambiguous result. We say that GHC ap-
plies a “lazy” type class resolution strategy. However, if we use
insert or insertionSort in a specific monomorphic context we
can resolve “unambiguously” the above constraints.

Let us assume we applyinsertionSort to a list ofInts. Then,
we need to resolve the constraints

(Advice N1 (Int -> [Int] -> [Int]),
Advice N2 (Int -> [Int] -> [Int]), Ord Int)

GHC applies the “best-fit” strategy and resolvesAdvice N1 (Int
-> [Int] -> [Int]) via instance (I1),Advice N2 (Int ->
[Int] -> [Int]) via instance (I2) andOrd Int is resolved us-
ing a pre-defined instance from the Haskell Prelude [15]. Effec-
tively, this means that at locations (1) and (2) in the above program
text, we intercept the calls toinsert by first applying the body of
instance (I1) followed by applying the body of instance (I2)

In case, we applyinsertionSort to a list ofBools, we need to
resolve the constraints

(Advice N1 (Bool -> [Bool] -> [Bool]),
Advice N2 (Bool -> [Bool] -> [Bool]), Ord Bool)

The instance (I1) is still the best-fit forAdvice N1 (Bool ->
[Bool] -> [Bool]). However, instead of instance (I2) we ap-
ply the default case to resolveAdvice N2 (Bool -> [Bool] ->
[Bool]). Hence, at locations (1) and (2) we apply the body of in-
stance (I1) followed by the body of the default instance for advice
(I2). Ord Bool is resolved using a pre-defined instance from the
Haskell Prelude.

Figure 3 summarizes our approach of typing and translating AOP
Haskell. In Section 4.1, we formalize AOP Haskell as a domain-
specific extension of Haskell using GHC style type classes. Unfor-
tunately, the system as described so far has some short-comings
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AOP Haskell

⇓ •turn advice into instances
•instrument joinpoints

Haskell+Type Classes

⇓ •type class resolution
•further compilation steps

Executable

Figure 3. AOP Haskell Typing and Translation Scheme

f :: [a] -> Bool
f [] = True
f (x:xs) = f [xs]

N@advice ]f] :: [[Bool]] -> Bool = \x -> False

Figure 4. Advising Polymorphic Recursive Functions

in case joinpoints are enclosed by type annotations. The short-
comings are due to the way type classes are implemented in GHC.
We can solve the problem by using an alternative type class system.
Next, we will first examine the problem with GHC type classes and
then we consider the alternative type class system.

3.3 Short-comings using GHC Style Type Classes

Let us assume we provide explicit type annotations to the functions
in Figure 1.

insert :: Ord a => a -> [a] -> [a]
insertionSort :: Ord a => [a] -> [a]

The trouble is that if we keepinsert’s annotation in the resulting
target program, we find some unexpected (un-aspect like) behavior.
GHC’s type class resolution mechanism will “eagerly” resolve the
constraints

Advice N1 (a -> [a] -> [a]),
Advice N2 (a -> [a] -> [a])

arising from

joinpoint N1 (joinpoint N2 insert)

by applying instance (I1) onAdvice N1 (a -> [a] -> [a])
and applying the default instance (I2’) onAdvice N2 (a -> [a]
-> [a]). Hence, will never apply the adviseN2, even if we call
insert on list ofInts.

The conclusion is that we must either remove type annotations
in the target program, or appropriately rewrite them during the
translation process. For example, in the translation we must rewrite
insert’s annotation to

insert :: (Advice N1 (a -> [a] -> [a]),
Advice N2 (a -> [a] -> [a]), Ord a) =>
a -> [a] -> [a]

At first look, this does not seem to be a serious limitation (rather
tedious in case we choose to rewrite type annotations). However,
there are type extensions which critically rely on type annotations.
For example, consider polymorphic recursive functions which de-
mand type annotations to guarantee decidable type inference [8]. In
such cases we are unable to appropriately rewrite type annotations
if we rely on GHC type classes to encode AOP Haskell.

Let us consider a (contrived) program to explain this point in more
detail. In Figure 4, functionf makes use of polymorphic recursion
in the second clause. We callf on list of lists whereas the argument
is only a list. Functionf will not terminate on any argument other
than the empty list. The advice definition allows us to intercept all

f :: [a] -> Bool
f [] = True
f (x:xs) = (joinpoint N f) [xs]

class Advice n t where
joinpoint :: n -> t -> t
joinpoint = id -- default case

data N = N
instance Advice N ([[Bool]]->Bool) where

joinpoint N = \x -> False
instance Advice N a

Figure 5. GHC Haskell Translation of Figure 4

calls tof on list of list of Bools to ensure termination for at least
some values.

To translate the above AOP Haskell program to Haskell with GHC
type classes we cannot omitf’s type annotation becausef is a
polymorphic recursive function. Our only hope is to rewritef’s type
annotation. For example, consider the attempt.

f :: Advice N a => [a] -> Bool
f [] = True
f (x:xs) = (joinpoint N f) [xs]

The call tof in the function body gives rise toAdvice N [a]
whereas the annotation only suppliesAdvice N a. Therefore, the
GHC type checker will fail. Any similar “rewrite” attempt will lead
to the same result (failure).

A closer analysis shows that the problem we face is due to the
way type classes are implemented in GHC. In GHC, type classes
are translated using the dictionary-passing scheme [6] where each
type class is represented by a dictionary containing the method
definitions. In our case, dictionaries represent the advice which
will be applied to a joinpoint. Let us assume we initially call
f with a list of Bools. Then, the default advice applies and we
proceed withf’s evaluation. Subsequently, we will callf on a list
of list of Bools. Recall thatf is a polymorphic recursive function.
Now, we wish that the adviceN applies to terminate the evaluation
with result False. The problem becomes now clear. The initial
advice (i.e. dictionary) supplied will need to be changed during the
evaluation of functionf We cannot naturally program this behavior
via GHC type classes.

3.4 More Flexible Type Classes for AOP Haskell

The solution we propose is to switch to an alternative type class
translation scheme to translate advice. Instead of dictionaries we
pass around types and select the appropriate method definitions
(i.e. advice) based on run-time type information. Then, we can ap-
ply the straightforward AOP to type class transformation. In an in-
termediate step, the program from Figure 4 translates to the pro-
gram in Figure 5. Whereas GHC fails to type check and compile
the program in Figure 5, we can type check and compile this pro-
gram under a type-passing based type class resolution scheme. The
formal details are described in Section 5.4. The resulting program
is given in Figure 6. We use a target language extended with a form
of type case similar to intensional type analysis [7]. Based on the
run-time type information, we call the appropriate advice.

3.5 Outline of The Rest of The Paper

In the upcoming section, we show how to express a “light-weight”
form of AOP using GHC multi-parameter type classes and over-
lapping instances. Programming in AOP Haskell light has some
restrictions. In case joinpoints are enclosed by type annotations,
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f = Λ a. \ys:[a] ->
case ys of

[] -> True
(x:xs) -> (joinpoint N ([[a]]->Bool)

(f [a])) [xs]

joinpoint = Λ n. Λ a. typecase (n,a) of
(N,[[b]]->Bool) -> \f -> \x -> False
(N, ) -> \f -> f

Figure 6. Type-Passing Type Class Resolution Applied to Figure 5

we must remove these annotations which is not possible in case of
polymorphic recursive functions.

In Section 5, we show how to lift these restrictions by employing a
type-passing type class translation scheme. The type class system
necessary to describe “full” AOP Haskell is an instance of the
general type class framework proposed by Stuckey and the first
author [19]. In particular, we can derive strong results for AOP
Haskell such as type inference and coherence via reduction from
known results for type classes.

4. AOP Haskell Light in GHC
We consider an extension of GHC with top-level aspect definitions
of the form

N@advice #f1,...,fn# :: C => t = e

We omit to give the syntactic description of Haskell programs
which can be found elsewhere [15]. We assume that type anno-
tationC => t and expressione follow the Haskell syntax (with the
addition of a new keywordproceed which may appear ine). We
assume that symbolsf1,...,fn refer to the names of (top-level) func-
tions and methods (i.e. overloaded functions). See also Section 3.1.

As motivated in Section 3.3, we impose the following condition on
the AOP extension of GHC.

DEFINITION 1 (AOP Haskell Light Restriction).We demand that
each joinpointf is not enclosed by a type annotation, advice or
instance declaration.

Notice that instance declarations “act” like type annotations. In the
upcoming translation scheme we will translate advice declarations
to instance declarations. Hence, joinpoints cannot be enclosed by
advice and instance declarations either.

Next, we formalize the AOP to type class transformation scheme.
We will conclude this section by providing a number of programs
written in AOP Haskell light.

4.1 Type Class-Based Transformation Scheme

Based on the discussion in Section 3.2, our transformation scheme
proceeds as follows.

DEFINITION 2 (AOP to Type Class Transformation Scheme).Let
p be an AOP Haskell program. We perform the following transfor-
mation steps onp to obtain the programp′.

Advice class:We add the class declaration

class Advice n t where
joinpoint :: n -> t -> t
joinpoint _ = id

Advice bodies: Each AOP Haskell statement

N@advice #f1,...,fn# :: C => t = e

is replaced by

data N = N
instance C => Advice N t where

joinpoint _ f = e’
instance Advice N a -- default case

wheree’ results frome by substitutingproceed by the fresh
namef.

Joinpoints: For each functionf and for all adviceN1, ...,Nm where
f appears in their pointcut we replacef by

joinpoint N1 (... (joinpoint Nm f)...)

being careful to avoid name conflicts in case of lambda-bound
function names. We assume that the order among advice is as
follows:Nm ≤ ... ≤ N1.

To compile the resulting program we rely on the following GHC
extensions (compiler flags):

• -fglasgow-exts

• -fallow-overlapping-instances

The first flag is necessary because we use multi-parameter type
classes. The second flag enables support for overlapping instances.

FACT 1. Type soundness and type inference for AOP Haskell light
are established via translation to GHC-style type classes.

We take it for granted that GHC is type sound and type inference is
correct. However, it is difficult to state any precise results given the
complexity of Haskell and the GHC implementation. In Section 5,
we will formally develop type soundness and type inference for a
core fragment of AOP Haskell.

An assumption which we have not mentioned so far is that we can
only advise function names which are in scope. That is, pointcuts
and joinpoints must be in the same scope. We will explain this point
by example in the next (sub)section.

Another issue is that in our current type class encoding of AOP
we do not check whether advice definitions have any effect on
programs. For example, consider

f :: Int
f = 1

N@advice #f# :: Bool = True

where the advice definitionN is clearly useless. We may want to re-
ject such useless definitions by adding the following transformation
step to Definition 2.

Useful Advice: Each AOP Haskell statement

N@advice #f1,...,fn# :: C => t = e

generates

f1’ :: C => t
f1’ = f1
...
fn’ :: C -> t
fn’ = fn

in p’ wheref1’, ...,fn’ are fresh identifiers.

FACT 2. We find that definitionsf1’,...,fn’ are well-typed iff the
types off1,...,fn are more specific than the pointcut typeC=>t.

In case of our above example, we generate

f’ :: Bool
f’ = f

which is ill-typed. Hence, we reject the useless adviceN.
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accF xs acc = accF (tail xs) (head xs : acc)
reverse :: [a] -> [a] -> [a]
reverse xs = accF xs []
append :: [a] -> [a] -> [a]
append xs ys = accF xs ys

N@advice ]accF] :: [a] -> [a] -> [a] =
\xs -> \acc -> case xs of

[] -> acc
-> proceed xs acc

Figure 7. Advising Accumulator Recursive Functions

module CollectsLib where

class Collects c e | c -> e where
insert :: e -> c -> c
test :: e -> c -> Bool
empty :: c

instance Ord a => Collects [a] a where
insert x [] = [x]
insert x (y:ys)

| x <= y = x:y:ys
| otherwise = y : (insert x ys)

test x xs = elem x xs
empty = []

Figure 8. Collection Library

4.2 AOP Haskell Light Examples

We take a look at a few AOP Haskell light example programs. We
will omit the translation to (GHC) Haskell which can be found
here [20]. We also discuss issues regarding the scope of pointcuts
and how to deal with cases where the joinpoint is enclosed by an
annotation.

Advising recursive functions.Our first example is given in Fig-
ure 7. We provide definitions ofappend andreverse in terms of
the accumulator functionaccF. We deliberately left out the base
case of functionaccF. In AOP Haskell light, we can catch the base
case via the adviceN. It is safe here to give append and reverse
type annotations, although, the joinpoint is then enclosed by a type
annotation. The reason is that only one adviceN applies here.

Advising overloaded functions. In our next example, we will
show that we can even advise overloaded functions. We recast the
example from Section 3.1 in terms of a library for collections.
See Figures 8 and 9. We use the functional dependency declara-
tion Collects c e | c->e to enforce that the collection typec
uniquely determines the element typee. We use the same aspect
definitions from earlier on to advise functioninsertionSort and
the now overloaded functioninsert. As said, we only advise func-
tion names which are in the same scope as the pointcut. Hence,
our transformation scheme in Definition 2 effectively translates the
code in Figure 9 to the code shown in Figure 2. The code in Figure 8
remains unchanged.

Advising functions in instance declarations.If we wish to advise
all calls toinsert throughout the entire program, we will need
to place the entire code into one single module. Let us assume we
replace the statementimport CollectsLib in Figure 9 by the
code in Figure 8 (dropping the statementmodule CollectsLib

module Main where

import List(sort)
import CollectsLib

insertionSort [] = []
insertionSort xs =

insert (head xs) (insertionSort (tail xs))

N1@advice ]insert] :: Ord a => a -> [a] -> [a] =
\x -> \ys ->

let zs = proceed x ys
in if (isSorted ys) && (isSorted zs)

then zs else error "Bug"
where

isSorted xs = (sort xs) == xs

N2@advice ]insert] :: Int -> [Int] -> [Int] =
\x -> \ys -> if x == 0 then x:ys

else proceed x ys

Figure 9. Advising Overloaded Functions

N1@advice ]f] :: [Int] -> Int =
\xs -> (head xs) + (proceed (tail xs))

N2@advice ]head] :: [Int] -> Int =
\xs -> case xs of

[] -> -1
-> proceed xs

Figure 10. Advising functions in advice bodies

where of course). Then, we face the problem of advising a function
enclosed by a “type annotation”. Recall that instance declarations
act like type annotations and there is now a joinpointinsert
within the body of the instance declaration in scope. Our automatic
transformation scheme in Definition 2 will not work here. The
resulting program may type check but we risk that the program
will show some unaspect-like behavior. The (programmer-guided)
solution is to manually rewrite the instance declaration during the
transformation process which roughly yields the following result

...
instance (Advice N1 (a->[a]->[a]),

Advice N2 (a->[a]->[a]),
Ord a) => Collects [a] a where

insert x [] = [x]
insert x (y:ys)
| x <= y = x:y:ys
| otherwise =

y : ((joinpoint N2 (joinpoint N1 insert)) x ys)
...

To compile the transformed AOP Haskell light program with GHC,
we will need to switch on the following additional compiler flag:

• -fallow-undecidable-instances

We would like to stress that type inference for the transformed
program is decidable. The “decidable instance check” in GHC is
simply conservative, hence, we need to force GHC to accept the
program.

Advising functions in advice bodies.Given that we translate ad-
vice into instances, it should be clear that we can also advice func-
tions in advice bodies if we are willing to “guide” the translation
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type T = [Int] -> Int
data N1 = N1
instance Advice N2 T => Advice N1 T where

joinpoint N1 f =
\ xs -> ((joinpoint N2 head) xs) + (f (tail xs))

data N2 = N2
instance Advice N2 T where

joinpoint N2 head =
\xs -> case xs of

[] -> -1
-> head xs

Figure 11. GHC Haskell Translation of Figure 10

Types t ::= a | t → t | T t̄
Type Scheme σ ::= t | ∀ā.C ⇒ t
Type Classes tc ::= TC t
Constraints C ::= tc1 ∧ ... ∧ tcn

Expressions e ::= proceed | x | λx.e | e e |
let

x :: C ⇒ t
x = e in e

Pointcut pc :: x1, ..., xn

Advice adv ::= N@advice ]pc] :: C ⇒ t = e
Classes cl ::= class TC ā where m :: C ⇒ t
Instances inst ::= instance C ⇒ TC t̄ where m = e
Programs p ::= adv ; cl ; inst ; e

Figure 12. AOP Mini Haskell Syntax

scheme. In Figure 10, we give such an example and its (manual)
translation is given in Figure 10. We rely again on the “undecid-
able” instance extension in GHC.

The last example makes us clearly wish for a system where we
do not have to perform any manual rewriting. Of course, we could
automate the rewriting of annotations by integrating the translation
scheme in Definition 2 with the GHC type inferencer. However,
the problem remains that we are unable to advise polymorphic
recursive functions. Recall the discussion in Section 3.3. Hence,
we seek for a more principled AOP extension of Haskell.

Next, we formally define the semantics and type inference for an
AOP extension of a core fragment of Haskell. We make use of
more flexible type classes to translate AOP programming idioms.
Thus, we obtain a more principled and powerful system where
we can also advise polymorphic recursive functions and verify
important formal results such as type inference and coherence of
the translation.

5. AOP Mini Haskell
We first define the syntax of AOP Mini Haskell. We use the term
“Mini” to indicate that we only consider a core fragment of Haskell.
Then, we develop some technical machinery necessary to concisely
describe the type-directed translation rules from AOP Mini Haskell
to a simple target language. We use a type-passing scheme to
translate type classes and advice. We conclude this section by
stating some formal results.

5.1 Syntax

In Figure 12, we give the syntax of AOP Mini Haskell. We use
the following conventions. We writēo as a short-hand to denote
a sequence of objectso1, ..., on. We assume a distinct type class
True representing the always true constraint. We write∀ā.t as a
short-hand for∀ā.True ⇒ t. For simplicity, we ignore case ex-

pressions and assume that let-defined (possibly recursive) functions
carry type annotations. We also assume that each class declara-
tion introduces a type class with a single method only. In exam-
ple programs we may make use of pattern matching syntax which
can be expressed via primitives such ashead : ∀a.[a] → a and
tail : ∀a.[a] → [a] which are recorded in some initial environment
Γinit.

Before we define the semantics of AOP Mini Haskell, we first
define the semantics of type classes. We also define a subsumption
relation among types which is defined in terms of the type class
semantics.

5.2 Type Class Semantics

We explain the meaning of type classes in terms of Stuckey’s
and the first author’s type class framework [19]. The idea is to
translate class and instance declarations into Constraint Handling
Rules (CHRs) [4]. CHRs serve as a meta specification language to
reason about type class relations.

For example, the instance declaration from Figure 8

instance Ord a => Collects [a] a

translates to the CHR

Collects [a] a <==> Ord a

Logically, the symbol<==> stands for bi-implication while the
operational reading is to replace (i.e. rewrite) the constraints on
the left-hand side by those on the right-hand side. In contrast to
Prolog, we only perform matching butnot unification during rule
application.

The advantage of CHRs is that we can more concisely describe
advice without having to resort to overlapping instances. Recall that
in AOP Haskell light the advice declaration

N1@advice #insert# :: Ord a => a -> [a] -> [a] = ...

from Figure 1 translates to the overlapping instances

instance Ord a => Advice N1 (a->[a]->[a])
instance Advice N1 a

We then relied on GHC’s “lazy” and “best-fit” type class resolution
strategy to faithfully encode AOP.

In AOP Mini Haskell, we use CHRs with explicit guard constraints
to express type class relations implied by advice declarations. For
example, for the above example we generate the following CHRs.

Advice N1 (a->[a]->[a]) <==> Ord a
Advice N1 b <==> b /= (a->[a]->[a]) | True

The first CHR fires if we encounter a joinpoint of type(t->[t]->[t])
which means that adviceN1 applies. The second CHR contains a
guard constraint and therefore only applies to joinpoints which are
not instances of(t->[t]->[t]). In this case adviceN1 does not
apply. Hence, in the type class translation we use the default in-
stance. The upshot of using CHRs with guard constraints is that
they enable us to give a more concise (type class) description of
advice including precise results (see upcoming Section 5.5).

We formalize the syntax and semantics of CHRs. We assume that
fv(o) computes the free variables of some objecto. For the mo-
ment, we are only concerned with the logical semantics of CHRs.
We postpone the definition of the operational semantics until we
discuss type inference.

DEFINITION 3 (CHR Syntax and Logical Semantics).For our pur-
poses, CHRs are of the form

TC t ⇐⇒ t 6= t′ | TC1 t1 , ...,TCn tn

Logically, we interpret the above as the first-order formula

∀.ā.((∃b̄.t 6= t′) ⊃ (TC t ↔ ∃c̄.(TC1 t1 ∧ ... ∧ TCn tn)))
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whereā = fv(t), b̄ = fv(t′) − ā and c̄ = fv(t1, ..., tn) − ā. The
above formula simplifies to∀ā.(TC t ↔ ∃c̄.(TC1 t1 ∧ ... ∧ TCn tn))
in case we omit the guard constraint.

The full set of CHR is much richer and provides support for im-
provement conditions as implied by the functional dependency in
Figure 8. We refer the interested reader to [3, 22] for details.

5.3 Subsumption

In the upcoming type-directed translation scheme, we employ a
subsumption relation to compare types with respect to theprogram
logic P . We assume thatP contains the set of CHRs derived from
type class declarations.

DEFINITION 4 (Subsumption).Let P be a program logic and
∀ā.C ⇒ t and∀a′.C′ ⇒ t′ be two types. We define

P ` (∀ā.C ⇒ t) ≤ (∀a′.C′ ⇒ t′)

iff P ∧ C′ |= ∃ā.(C ∧ t = t′). We assume that there are no name
clashes amonḡa anda′.

The statementP ∧ C′ |= ∃ā.(C ∧ t = t′) holds if for any model
M of P ∧C′ (in the first-order sense) we find that∃ā.(C ∧ t = t′)
holds inM .

The important point to note is that the subsumption check turns into
an entailment check among constraints. We postpone a discussion
of how to operationally check for subsumption until we consider
type inference.

5.4 Type-Directed Translation Scheme

We give the type-directed translation rules from AOP Mini Haskell
to a simple target language. We slightly deviate from the scheme
shown in Figure 3. Instead of first transforming AOP constructs to
type class constructs and then translating type classes, we imme-
diately translate AOP and type class constructs to the target lan-
guage. It will be obvious how to split the upcomingdirect transla-
tion scheme into a two-step translation scheme.

Figure 13 describes the target language. In the translation, we
will write letrec x = E1 in E2 as syntactic sugar forlet x =
(rec f in [f/x]E1) E2 wheref is a fresh identifier. Multiple bind-
ing groupslet x1 = E1, ..., xn = Enin E can also be desugared
into let x = E′in E′′ for some appropriateE′ andE′′. We also
use type case, type application and type abstraction to support a
type-passing type class resolution strategy. Again, these constructs
are only syntactic sugar for value case, value application and value
abstraction, assuming that types are represented by values. See the
syntactic category TValue. We could easily switch to a “real” typed
target language [7, 21] with no change in results.

We interpret target expressions in an untyped denotational seman-
tics. The semantic equations are straightforward. For example,+
and

P
denote coalesced sums andV → V is the continuous func-

tion space. In general, we leave injection and projection operators
for sums implicit. The valueW is the error element,K is the set
of value constructors andfix refers to the fix-point operator. In the
rule for case expressions, we writeη(v) = ηvi(vi) to denote that
the valueη(v) is matched againstvi for some (local) value bind-
ing ηvi . We writeη · ηvi to denote composition of value bindings.
In the second semantic (type) equation from the bottom, we write
Γtarget

init ` K : µ′1 → . . . → µ′n → T µ1 . . . µm to denote a valid
Hindley/Milner typing judgment.

Figure 14 specifies the translation of AOP Mini Haskell programs
to target expressions in terms of five judgments of the form:

1. Programs:p ` E.

2. Preprocessing:p ` Γ, P, J .

3. Expressions:C, Γ ` e : t ; E.

TType tt ::= a | tt → tt | T tt
TTypeScheme σt ::= tt | ∀ā.tt
TValue v ::= a | v → v | T v̄
Target E ::= x | v | E E | λx.E | let x = E in E |

rec f inE | case v of [v̄i → Ei]i∈I

V = W⊥ + V → V +
P

K∈K (K V1 . . .Varity(K))⊥

η : Var → V
[[]] : Target → (Var → V) → V
[[]]t : TTypeScheme → V

[[x]]η = η(x)

[[λx.E]]η = λu.[[E]]η[x := u]

[[E E′]]η = if [[E]]η ∈ V → V
then ([[E]]η) ([[E′]]η)
elseW

[[let x = E in E′]]η = [[E′]]η[x := [[E]]η]

[[
case v of
[vi → Ei]i∈I

]]η = if η(v) = ηv1(v1)then[[E1]](η · ηv1)
...
if η(v) = ηvn(vn)then[[En]](η · ηvn)
elseW
(whereI = {1, ..., n})

[[rec f in E]]η = fix(λv.[[E]]η[f := v])

[[µ1 → µ2]]t =
{ f ∈ V → V |x ∈ [[µ1]]t ⇒ f x ∈ [[µ2]]t }

[[T µ1 . . . µm]]t =
{⊥} ∪S{K [[µ′1]]t . . . [[µ′n]]t |

Γtarget
init ` K : µ′1 → . . . → µ′n → T µ1 . . . µm}

[[∀ā.t]]t =T
µ̄[[[µ/a]t]]t

where for monotypesµ we require thatfv(µ) = ∅ and Γtarget
init

contains the set of value constructors used in this context.

Figure 13. Target Language

4. Instances:Γ ` adv ; jp = E.

5. Advice:Γ ` instTC ; m = E.

From the previous (sub)section, we assume the subsumption judg-
mentP ` σ1 ≤ σ2 and the model-theoretic entailment relation
P |= C.

The first judgment drives the translation process. In the premise
of rule (Prog), we call the second judgment to collect the setΓ
of method declarations implied by class declarations, the setP
of CHRs implied by instance and advice declarations and the set
J of pairs of function name and advice. As said, we omit the
intermediate step where we first translate advice declarations into
type class declarations. We directly translate advice declarations
into CHRs using guard constraints to resolve the overlap among the
adviceN and the default case. We assume thatAdvice is a special
purpose type class (advice) constraint and for each adviceN we
find a valueN of (singleton) typeN in the initial environment
Γinit.

Then, we call the fourth and fifth judgment to translate the ad-
vise and instances. We writeinstTC to denote a sequence of in-
stance declarations which refer to type classTC in their instance
“head”. The result is sequence of binding groupsjp = E′, m1 =
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p ` E

(Prog)

adv ; cl ; instTC1 , ..., instTCn ` Γ, P, J

Γ ∪ Γinit ` adv ; jp = E′

Γ ∪ Γinit ` instTCi ; mi = Ei for i = 1, ..., n

C, Γ ∪ Γinit ` e : t ; E

P |= C

adv ; cl ; instTC1 , ..., instTCn ; e ` let jp = E′, m1 = E1, ..., mn = En in E

p ` Γ, P, J

instance C ⇒ TC t̄ where m = e ` {TC t̄ ⇐⇒ C} inst ` P1 inst ` P2

inst, inst ` P1 ∪ P2

P = {Advice N t ⇐⇒ C,Advice N t ⇐⇒ a 6= t | True}
N@advice ]f1, ..., fm] :: C ⇒ t = e ` P, {(f1, N), ..., (fm, N)}

adv ` P1, J1 adv ` P2, J2

adv, adv ` P1 ∪ P2, J1 ∪ J2

b̄ = fv(C, t)− ā

class TC ā where m :: C ⇒ t ` {m : ∀ā, b̄.TC ā ∧ C ⇒ t}
cl ` Γ1 cl ` Γ2

cl, cl ` Γ1 ∪ Γ2

adv ` Pa, J cl ` Γ inst ` Pi

adv ; cl ; inst ; e ` Γ, Pa ∪ Pi, J

C, Γ ` e : t ; E

(Abs)
C, Γ ∪ {x : t1} ` e : t2 ; E

C, Γ ` λx.e : t1 → t2 ; λx.E
(App)

C, Γ ` e1 : t2 → t1 ; E1 C, Γ ` e2 : t2 ; E2

C, Γ ` e1 e2 : t1 ; E1 E2

(Let)

C′1, Γ ∪ {x : ∀ā.C1 ⇒ t1} ` e1 : t′1 ; E1

P ` (∀b̄.C′1 ⇒ t′1) ≤ (∀ā.C1 ⇒ t1) ā = fv(C1, t1) b̄ = fv(C′1, t
′
1)− fv(Γ)

C, Γ ∪ {x : ∀ā.C1 ⇒ t1} ` e2 : t2 ; E2

C, Γ ` let
x :: C1 ⇒ t1
x = e1

in e2 : t2 ; letrec x = Λā.E1in E2

(Var-JP)
(f :: ∀ā.C′ ⇒ t′) ∈ Γ J(f) = {(f, N1), ..., (f, Nm)}

t′′ = [t/a]t′ C = [t/a]C′ ∧Advice N1 t ′′ ∧ ... ∧Advice Nm t ′′

C, Γ ` f : t′′ ; jp N1 t ′′ (...(jp Nm t ′′(f t))...)

(Var-∀Elim)
(x : ∀ā.C′ ⇒ t′) ∈ Γ J(x) = ∅

C ∧ [t/a]C′, Γ ` x : [t/a]t′ ; x t

Γ ` adv ; jp = E

(Advice)

C′i, Γ ∪ {f : ti} ` [f/proceed]ei : t′i ; Ei f fresh
P ` (∀bi.C

′
i ⇒ t′i) ≤ (∀ci.Ci ⇒ ti) bi = fv(C′i, t

′
i)− fv(Γ) ci = fv(Ci, ti) for i ∈ I

Γ ` [Ni@advice ]pci] :: Ci ⇒ ti = ei]i∈I ; jp = Λn.Λa.typecase (n, a) of

�
(Ni, ti) → λf.Ei

(Ni, ) → λf.f

�

i∈I

Γ ` instTC ; m = E

(Inst)
C′i, Γ ` ei : t′i ; Ei (m : ∀ā, b̄.TC ā ∧ C ⇒ t) ∈ Γ di = fv(ti)

P ` (∀ci.C
′
i ⇒ t′i) ≤ (∀di, b̄.TC ti ∧ [ti/a]C ⇒ [ti/a]t) ci = fv(C′i, t

′
i)− fv(Γ) for i ∈ I

Γ, [instance Ci ⇒ TC ti where m = ei]i∈I ; m = Λā.typecase ā of [ti → Λb̄.Ei]i∈I

Figure 14. Mini AOP Haskell Translation Scheme
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E1, ..., mn = En defining the joinpoint and type class methods.
Finally, we call the third judgment to translate the expressione.
The conditionP |= C ensure that all type class and advise con-
straints arising frome are resolved.

The third judgment for translating expressions uses a constraint
componentC to infer the type class and advise constraints arising
out of the program text. It should be clear that we could easily
refine our formulation and infer also type equations (also known
as unification constraints) in rules (Abs) and (App) on the expense
of a more noisy presentation.

In rule (Var-∀Elim), we build an instance ofx’s type scheme for
a given type. We write[t/a] to denote a substitution mapping
variablesai to typesti. Rule (Var-JP) works similarly. In addition,
we intercept the call tof and instrument the program text with
calls to the advice defined forf . We writeJ(f) as a short-hand for
{(f ′, N) ∈ J | f = f ′}. Recall that source typest are reflected in
the target language as expressionsv, but, we writet for simplicity.

In rule (Let), we deal withclosedtype annotated function defini-
tions. That is, we quantify over the set of variables inC ⇒ t. In
the translation of the body of the let functions, we may refer to
the let function. Hence, we support (possibly polymorphic) recur-
sive functions. We use the subsumption check to test whether the
inferred type∀b̄.C′1 ⇒ t′1 subsumes the annotated∀ā.C1 ⇒ t1
with respect to the program logicP . In a type-passing translation
scheme it suffices to check for “logical” subsumption. The target
translation ofx = e1 is therefore simplyx = Λā.E1. Under a
dictionary-passing scheme we would need a “constructive” sub-
sumption check which must yield a proofc (i.e. coercion) to turn
the target expressionΛb̄.E1 of type∀b̄.C′1 ⇒ t′1 into a target ex-
pressionΛā.(Λb̄.E1)(c ā) of the expected type∀ā.C1 ⇒ t1.

Rules (Inst) and (Advice) translate instance and advice declara-
tions. Thetypecase statement is syntactic sugar forcase. We call
the third judgment to translate the advice and instance bodies into
target expressions. Both rules are very similar which is no surprise
given that we could explain advise in terms of type classes. As in
case of let statements, we verify that the inferred type subsumes
the annotated type. In case of instances, we check that the inferred
type subsumes the declared type of the method where the type class
parameters̄a are instantiated byti.

For example, we can apply our translation scheme to the program
in Figure 4 which yields the target program in Figure 6.

In a practical implementation, we might want to use the standard
dictionary-passing scheme for the type class part and only use the
type-passing scheme for translating the advice. In fact, we could
use generalized algebraic data types [16] to encode the type-passing
scheme to enable an integration of our translation scheme into the
typed intermediate language of a compiler such as GHC.

5.5 Results

The following results are (mostly) immediate consequences of re-
sults found in [24, 19].

5.5.1 Type Soundness

We writeη |= Γ if η(x) ∈ [[σt]]t for each(x : σt) ∈ Γ.

THEOREM 1 (Type Soundness).Let p ` E such thatη |= Γinit.
Then,[[E]]η 6= W.

The above results follows directly from Theorem 2 in [24]. In
case we included functional dependencies in our description, we
additionally require consistency [22] to maintain type soundness.

5.5.2 Type Inference

To obtain a decidable type inference algorithm, we will need al-
gorithms to decideP |= C and subsumption which boils down

to decidingP ∧ C′ |= ∃ā.(C ∧ t = t′). From [19], we know that
P∧C′ |= ∃ā.(C∧t = t′) can be rephrased asP∧C′∧t = t′ |= C
which effectively means that underP , C′ ∧ t = t′ entailsC writ-
tenC′ ∧ t = t′ ⊃ C. W.l.o.g.t andt′ refer to variables assuming
that we enrich the constraint language with type equations. We can
safely “remove” these type equations via unification [17]. None of
the CHRs contains type equations on the right-hand side. Hence, to
decide subsumption it suffices to decideP |= C1 ⊃ C2 whereC1

andC2 contain type class constraints. There is an implicit quantifier
∀ā scoping overC1 ⊃ C2 whereā = fv(C1, C2). We will leave
this quantifier implicit. Notice thatP is a closed formula. Hence,
our task is to devise an algorithm to decideP |= C1 ⊃ C2 which
will supply us with an algorithm to decideP |= C as well.

In [19], we showed how to reduceP |= C1 ⊃ C2 to CHR solving.
We apply CHRs onC1 andC1 ∧ C2 and check whether we reach
the same canonical normal form. The only slight complication
here is that we use CHRs with guard constraints which were only
briefly covered in [19]. For example, consider the translation of
the program in Figure 1 where we assume thatinsert carries
the type annotationinsert :: Ord a => a -> [a] -> [a].
In the translation ofinsert, the subsumption check boils down
to checking

P |= Ord a ⊃ Advice N2 (a → [a] → [a]) (∗)
where

P =

(
Advice N2 (Int → [Int ] → [Int ]) ⇐⇒ True,
Advice N2 a ⇐⇒ a 6= (Int → [Int ] → [Int ]) True,
Ord Int ⇐⇒ True

)

We ignore here adviceN1 and include the CHR representing the
Haskell Preludeinstance Ord Int. The trouble is that none of
the CHRs applies toAdvice N2 (a → [a] → [a]). The first CHR
does not apply because we use matching and not unification when
firing CHRs. The second CHR does not apply because of the guard
constraint. Although, logically the statement (*) clearly holds.

Our solution is to simply perform a case analysis. In essence, we
perform solving by search. In casea = Int , we verify (*) by re-
solvingOrd a toTrue via the third CHR andAdvice N2 (a → [a] → [a])
resolves toTrue via the first CHR. Hence, (*) holds fora = Int .
In casea 6= Int , Advice N2 (a → [a] → [a]) resolves toTrue
via the second CHR. In summary, we have verified (*) by case
analysis.

We formalize this observation. First, we repeat the CHR operational
semantics.

DEFINITION 5 (CHR Operational Semantics).A CHR

TC t ⇐⇒ t 6= t′ | TC1 t1 , ...,TCn tn

applies to a constraintC if we findTC t ′′ ∈ C such thatφ(t) = t′′

and φ(t) and φ(t′) are not unifiable for some substitutionφ. We
assume that we rename CHRs before application to avoid name
clashes. In such a situation, we write

C ½ C − TC t ′′ ∪ {TC1 φ(t1 ), ...,TCn φ(tn)}
to denote the constraint rewriting step using the above rule. We
treat constraints as sets of type class constraints and writeC−tc to
denote the constraint resulting fromC wheretc has been removed.

We writeC ½∗ C′ to denote exhaustive application of CHRs on
initial constraintC yielding thefinal constraintC′ on which no
further CHRs are applicable.

The entailment checking algorithm is given in Figure 15. By con-
struction, we know thatAdvice constraints only appear on the
right-hand side of the entailment. In case (1), we can directly apply
the first CHR which belongs to the advice declaration. Case (2) ap-
plies if t andt′ are not unifiable. Then, we can directly apply the

10 2006/10/3



entail(P C1 ⊃ C2) =
if ∃Advice N t ′ ∈ C &&
{Advice N t ⇐⇒ C ,Advice N a ⇐⇒ a 6= t True} ∈ P

then if ∃φ.φ(t) = t′ -- (1)
then entail(P C1 ⊃ (C2 −Advice N t ′ ∪ φ(C′)))
elseif ¬∃φ.φ(t) = φ(t′) -- (2)
then entail(P C1 ⊃ (C2 −Advice N t ′))
else let φ be the mgu of t and t′; -- (3)

entail(P φ(C1 ⊃ (C2 −Advice N t ′ ∪ C′)));
entail(P φ(C1 ⊃ (C2 −Advice N t ′)))

else C1 ½∗ C′1; -- (4)
C2 ½∗ C′2;
if C′1 = C′2 then return else abort

Figure 15. Entailment Checking Algorithm

second CHR which belongs to the “default” advice. In case (3), we
build the most general unifier (mgu) amongt andt′ and perform a
case analysis by considering the possibility that both CHRs are ap-
plicable. Case (4) is the “standard” case where use the entailment
procedure from [19] and check whether the canonical normal forms
of C1 andC1 ∧ C2 are equivalent.

The important result is that theentail procedure retains all the
nice properties we know from [19]. We say thatp is acomplete and
decidableAOP Mini Haskell program if the set of CHRs resulting
from instance declarations is terminating and the left-hand side of
CHRs are non-overlapping. We need both properties to guarantee
completeness and decidability for the “standard” case.

LEMMA 1. Let p be a complete and decidable program such that
p ` , P, andC1 andC2 be two constraints. Then, we find the
following results:

1. The procedureentail(P C1 ⊃ C2) is decidable.

2. entail(P C1 ⊃ C2) succeeds, iffP |= C1 ⊃ C2.

For the above to hold, it is crucial that (by construction) there are
no “cyclic” CHRs with guard constraints of the form

Foo [a] ⇐⇒ a 6= Int Foo a

We can therefore guarantee that in cases (1), (2) and (3) we
will make progress and eventually reach the “standard” case (4).
Also note that CHRs resulting from advice declarations are non-
overlapping by construction because of the guard constraint.

We immediately obtain the following result.

THEOREM 2 (Type Inference).Letp be a complete and decidable
program. Then, type inference is decidable.

We might hope to obtain a completeness result. However, there
are well-known incompleteness problems in case of “nested” type
annotations and type classes. We refer [23] for details. There is
another source of incompleteness which is due to “ambiguous”
programs. We will discuss this issue in the context of coherence
which is our next topic.

5.6 Coherence

We would like to guarantee that regardless of the typing of the
program the semantics of the target program is always the same.
This property is known as coherence [1]. In the type class world,
it is a well-known problem that we might lose coherence because
of ambiguous programs. Think of the classic Show/Read example.
The same problem arises in case of aspects in AOP Mini Haskell.

For example, consider

f :: [a] -> Int

f _ = 1
N@advice #f# :: [[Bool]] -> Int = \x -> 2
main :: Bool
main = f undefined

Our pointcuts are type directed. However, we cannot unambigu-
ously decide whether we apply adviceN or the “default” advice.
The problem becomes clear in the translation which shows that
(jp N f) undefined has typeBool under the constraintAdvice
N (a->Bool). Type variablea does not appear in the result type.
Hence, we can freely choosea.

The solution employed for type classes is to reject ambiguous pro-
grams. We will follow this path for AOP Mini Haskell. Under this
condition we can guarantee coherence as we will shortly see. A
side-effect of rejecting ambiguous programs is that we lose com-
pleteness of type inference. Here are two (incomparable) annota-
tions which make the program from above unambiguous.

main :: Bool
main = f (undefined::[[Bool]])

and

main :: Bool
main = f (undefined::[Int])

The conclusion is that in case we reject ambiguous programs we
can only guarantee aweakform of completeness. That is, in case
the principal derivation of a program is unambiguous, type infer-
ence will succeed. For the above example, type inference will fail
because we reject ambiguous programs. Notice that the principal
derivation for the above program is ambiguous. However, in the
above we find that the program can be given two incomparable, un-
ambiguous derivations. Hence, we cannot hope for astrongcom-
pleteness result which guarantees that type inference with the ad-
dition of the unambiguity check succeeds if there exists an unam-
biguous derivation.

To state the coherence result concisely, we will first need to for-
mally define unambiguity and a more general relation among type
derivation. The following definitions can be found in similar form
in [19].

We sayC, Γ ` e : t ; E is unambiguousiff fv(C) ⊆ fv(Γ, t).

We say a derivationD is unambiguous iff all judgmentsC, Γ ` e :
t ; E in the derivation tree are unambiguous.

We sayC1, Γ ` e : t1 is more generalthanC2, Γ ` e : t2 iff
P ` (∀ā.C1 ⇒ t1) ≤ (∀b̄.C2 ⇒ t2) whereā = fv(C1, t1) −
fv(Γ) and b̄ = fv(C2, t2) − fv(Γ). In such a situation, we write
C1, Γ ` e : t1 ≤ C2, Γ ` e : t2.

We say a derivationD1 with final judgmentC1, Γ ` e : t1 is more
generalthan a derivationD2 with final judgmentC2, Γ ` e : t2 iff
for all judgmentsC′1, Γ

′ ` e′ : t′1 in D1 andC′2, Γ
′ ` e′ : t′2 in

D2 which are at the same position in the derivation tree we have that
C′1, Γ

′ ` e′ : t′1 ≤ C′2, Γ
′ ` e′ : t′2. Recall that the translation

judgments for expressions are syntax-directed.

We say that a derivationD1 with final judgmentC1, Γ ` e : t1 is
principal iff there is no other more general derivationD2 with final
judgmentC2, Γ ` e : t2.

THEOREM 3 (Coherence).Letp be a complete and decidable pro-
gram such that the (1) principal derivation ofp is unambiguous, (2)
p ` E1, (3) p ` E2 and (4)η |= Γinit. Then,[[E1]]η = [[E2]]η.

The above follows directly from Theorem 15 in [19].

6. Conclusion and Related Work
There is a large amount of works on the semantics of aspect-
oriented programming languages, for example consider [2, 13, 26,
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27, 29] and the references therein. There have been only a few
works [2, 14] which aim to integrate AOP into ML style lan-
guages. These impressive works substantially differ from ours. For
instance, the work described in [2] supports first-class pointcuts and
dynamic weaving whereas our pointcuts are second class and we
employ static weaving. None of the previous works we are aware
of of considers the integration of AOP and type classes. In some
previous work, the second author [29, 28] gives a a static weaving
scheme for a strongly typed functional AOP language via a type-
directed translation process. However, there are no formal type in-
ference and coherence results.

The main result of our work is that static weaving for strongly
typed languages can be directly expressed in terms of type class
resolution – the process of typing and translating type class pro-
grams. We could show that GHC type classes as of today can
provide for a light-weight AOP extension of Haskell (Section 4).
We critically rely on GHC’s overlapping instance which imply
a lazy and best-fit type class resolution strategy. We provided a
number of programming examples in AOP Haskell light.1 Pro-
gramming in AOP Haskell light has the restriction that we are
unable to advice polymorphic recursive functions. The restriction
is due to the dictionary-passing translation scheme employed in
GHC (Section 3.3). Therefore, we formalized a more principled
and expressive AOP extension for a core fragment of Haskell, re-
ferred to as AOP Mini Haskell. Instead of overlapping instances we
use guarded CHRs to represent advice and instead of a dictionary-
passing scheme we use a type-passing scheme to translate AOP
programs. Type class resolution is achieved via CHR solving by
search. This is one of the main technical achievements of this work.
We could state concise type soundness, type inference and coher-
ence results for AOP Mini Haskell (Section 5). We believe that this
system can serve as a foundational framework to study aspects and
type classes.

In future work, we plan to investigate to what extent our results
apply to other languages which support type classes. We also want
to look into effect-full advice which we can represent via monads in
Haskell. The study of more complex pointcuts is also an interesting
topic for future work.
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