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Abstract

We present a compositional verification technique for systems that exhibit both
probabilistic and nondeterministic behaviour. We adopt an assume-guarantee ap-
proach to verification, where both the assumptions made about system components
and the guarantees that they provide are regular safety properties, represented by
finite automata. Unlike previous proposals for assume-guarantee reasoning about
probabilistic systems, our approach does not require that components interact in a
fully synchronous fashion. In addition, the compositional verification method is ef-
ficient and fully automated, based on a reduction to the problem of multi-objective
probabilistic model checking. We present asymmetric and circular assume-guarantee
rules, and show how they can be adapted to form quantitative queries, yielding lower
and upper bounds on the actual probabilities that a property is satisfied. Our tech-
niques have been implemented and applied to several large case studies, including
instances where conventional probabilistic verification is infeasible.

1 Introduction

Many computerised systems exhibit probabilistic behaviour, for example due to the use of
randomisation (e.g. in distributed communication or security protocols), or the presence
of failures (e.g. in faulty devices or unreliable communication media). The prevalence of
such systems in today’s society makes techniques for their formal verification a necessity.
This requires models and formalisms that incorporate both probability and nondetermin-
ism. Although efficient algorithms for verifying such models are known [2, 7] and mature
tool support [11, 6] exists, applying these techniques to large, real-life systems remains
challenging, and hence techniques to improve scalability are essential.

In this paper, we focus on compositional verification techniques for probabilistic and
nondeterministic systems, in which a system comprising multiple interacting components
can be verified by analysing each component in isolation, rather than verifying the much
larger model of the whole system. In the case of non-probabilistic models, a successful
approach is the use of assume-guarantee reasoning. This is based on checking queries
of the form 〈A〉M 〈G〉, with the meaning “whenever component M is part of a system
satisfying the assumption A, then the system is guaranteed to satisfy property G”. Proof
rules can then be established that show, for example, that if 〈true〉M1 〈A〉 (process M1

satisfies assumption A in any environment) and 〈A〉M2 〈G〉 hold, then the combined
system M1‖M2 satisfies G. For probabilistic systems, compositional approaches have also
been studied, but a distinct lack of practical progress has been made. In this paper, we
address this limitation, presenting the first fully-automated technique for compositional
verification of systems exhibiting both probabilistic and nondeterministic behaviour, and
illustrating its applicability and efficiency on several large case studies.

We use probabilistic automata [19, 20], a well-studied formalism that is naturally suited
to modelling multi-component probabilistic systems. Indeed, elegant proof techniques
have been developed and used to manually prove correctness of large, complex randomised
algorithms [17]. Several branching-time preorders (simulation and bisimulation) have
been proposed for probabilistic automata and have been shown to be compositional (i.e.
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preserved under parallel composition) [20], but such branching-time equivalences are often
too fine to give significant practical advantages for compositional verification.

A coarser linear-time preorder can be obtained through trace distribution (proba-
bility distributions over sequences of observable actions) inclusion [19]; however, it is
well known that this relation is not preserved under parallel composition [18]. Various
attempts have been made to characterise refinement relations that are preserved, e.g.
[19, 14]. An alternative direction is to restrict the forms of parallel composition that are
allowed. One example is the formalism of switched probabilistic I/O automata [5], which
places restrictions on the scheduling between parallel components. Another is [8] which
uses a probabilistic extension of Reactive Modules, restricted to synchronous parallel
composition. A limitation of all these approaches is that the relations used, such as trace
distribution inclusion and weak probabilistic simulation, are not efficiently computable.

We propose an assume-guarantee verification technique for probabilistic automata,
that has no restrictions on the parallel composition permitted between components, al-
lowing greater flexibility to model complex systems. To achieve this, we represent both
the assumptions made about system components and the guarantees that they provide
as safety properties. In the context of probabilistic systems, safety properties capture a
wide range of useful properties, e.g. “the maximum probability of an error occurring is
at most 0.01” or “the minimum probability of terminating within k time-units is at least
0.75”.

We represent safety properties using finite automata and show that verifying assume-
guarantee queries reduces to the problem of multi-objective model checking for proba-
bilistic automata [10], which can be implemented efficiently using linear programming.
Another key benefit of using finite automata in this way is illustrated by the (non-
probabilistic) assume-guarantee verification framework of [15]. There, not only is the
verification of queries fully automated, but the assumptions themselves (represented as
finite automata) are generated automatically using learning techniques. This opens the
way for applying learning techniques to compositional verification in the probabilistic
case.

We use our definitions of probabilistic assume guarantee reasoning to formulate and
prove several assume-guarantee proof rules, representing commonly occurring patterns of
processes. We also discuss how to employ quantitative reasoning, in particular obtaining
lower and upper bounds on the actual probability that a system satisfies a safety property.
The techniques have been implemented in a prototype tool and applied to several large
case studies. We demonstrate significant speed-ups over traditional, non-compositional
verification, and successfully verify models that cannot be analysed without compositional
techniques.

Related work. In addition to the compositional techniques for probabilistic systems
surveyed above [5, 8, 14, 17, 18, 19, 20], we mention several other related pieces of work.
In particular, our approach was inspired by the large body of work by Giannakopoulou,
Pasareanu et al. (see e.g. [15]) on non-probabilistic assume guarantee techniques. We also
build upon ideas put forward in [10], which suggests using multi-objective verification to
check probabilistic assume-guarantee queries. Also relevant are: [9], which presents an
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assume/guarantee framework using probabilistic contracts for non-probabilistic models;
[3], which presents a theoretical framework for compositional verification of quantitative
(but not probabilistic) properties; and [16], which uses probabilistic automata to model
the environment of non-probabilistic components.

2 Background

We begin by briefly reviewing probabilistic automata and techniques for their verification.
We also introduce safety properties, in the context of probabilistic systems, and discuss
multi-objective model checking.

In the following, we use Dist(S) to denote the set of all discrete probability distribu-
tions over a set S, ηs for the point distribution on s ∈ S, and µ1×µ2 ∈ Dist(S1×S2) for
the product distribution of µ1 ∈ Dist(S1) and µ2 ∈ Dist(S2).

2.1 Probabilistic automata

Probabilistic automata [19, 20] are a modelling formalism for systems that exhibit both
probabilistic and nondeterministic behaviour.

Definition 1 A probabilistic automaton (PA) is a tuple M = (S, s, αM , δM , L) where S
is a set of states, s ∈ S is an initial state, αM is an alphabet, δM ⊆ S×(αM∪{τ})×Dist(S)
is a probabilistic transition relation and L : S → 2AP is a labelling function, assigning
atomic propositions from a set AP to each state.

In any state s of a PA M , a transition, denoted s
a−→ µ, where a is an action label

and µ is a discrete probability distribution over states, is available1 if (s, a, µ) ∈ δM . In
an execution of the model, the choice between the available transitions in each state is
nondeterministic; the choice of successor state is then made randomly according to the
distribution µ. A path through M is a (finite or infinite) sequence s0

a0,µ0−−−→s1
a1,µ1−−−→· · ·

where s0 = s and, for each i > 0, si
ai−→ µi is a transition and µi(si+1) > 0. The sequence

of actions a0, a1, . . . , after removal of any “internal actions” τ , from a path π is called a
trace and is denoted tr(π).

To reason about PAs, we use the notion of adversaries (also called schedulers or
strategies), which resolve the nondeterministic choices in a model, based on its execu-
tion history. Formally an adversary σ maps any finite path to a sub-distribution over
the available transitions in the last state of the path. Adversaries are defined in terms
of sub-distributions because they can opt to (with some probability) take none of the
available choices and remain in the current state. For this reason, they are are sometimes
called partial adversaries. Occasionally, we will distinguish between these and complete
adversaries, in which all the distributions are total.

We denote by PathσM the set of all paths through M when controlled by adversary
σ, and by AdvM the set of all possible adversaries for M . Under an adversary σ, we

1Markov decision processes, another commonly used model, are PAs with the restriction that action
labels are unique amongst the available transitions for each state.
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define a probability space PrσM over the set of paths PathσM , which captures the (purely
probabilistic) behaviour of M under σ.

To reason about probabilistic systems comprising multiple components, we will need
the notions of parallel composition and alphabet extension:

Definition 2 (Parallel composition of PAs) If M1 = (S1, s1, αM1 , δM1 , L1) and M2 =
(S2, s2, αM2 , δM2 , L2) are PAs, then their parallel composition, denoted M1‖M2, is given
by the PA (S1×S2, (s1, s2), αM1∪αM2 , δM1‖M2

, L) where δM1‖M2
is defined such that (s1, s2) a−→

µ1×µ2 if and only if one of the following holds:

• s1
a−→ µ1, s2

a−→ µ2 and a ∈ αM1 ∩ αM2

• s1
a−→ µ1, µ2 = ηs2 and a ∈ (αM1\αM2) ∪ {τ}

• s2
a−→ µ2, µ1 = ηs1 and a ∈ (αM2\αM1) ∪ {τ}

and L(s1, s2) = L1(s1) ∪ L2(s2).

Definition 3 (Alphabet extension) For any PA M = (S, s, αM , δM , L) and set of
actions Σ, we extend the alphabet of M to Σ, denoted M [Σ], as follows: M [Σ] =
(S, s, αM ∪ Σ, δM [Σ], L) where δM [Σ] = δM ∪ {(s, a, ηs) | s∈S ∧ a∈Σ\αM}.

We also require the notion of projections. First, for any state s = (s1, s2) of M1‖M2, the
projection of s onto Mi, denoted by s�Mi , is si. We extend this notation to distributions
over the state space S1×S2 of M1‖M2 in the standard manner. Next, for any path π
of M1‖M2, the projection of π onto Mi, denoted π�Mi , is the path obtained from π by
projecting each state of π onto Mi and removing all the actions not in αMi together with
the subsequent states.

Definition 4 (Projections of adversaries) Let M1 and M2 be PAs and σ an adver-
sary of M1‖M2. The projection of σ onto Mi, denoted σ�Mi, is the adversary on Mi

where, for any finite path π of Mi:

σ�Mi(π)(a, µ) =
∑
{|Pr(π′)·σ(π′)(a, µ′) | π′ ∈ PathσM1‖M2

∧ π′�Mi=π ∧ µ′�Mi=µ|} .

Compositional reasoning about PAs, and in particular adversary projections, necessitates
the use of partial, rather than complete, adversaries. In particular, even if an adversary
σ of M1‖M2 is complete, the projection σ�Mi onto one component may be partial.

2.2 Model checking for PAs

The verification of PAs against properties specified either in temporal logic or as automata
has been well studied. In this paper, both the states and transitions of PAs are labelled
(with sets of atomic propositions and actions, respectively) and we formulate properties
that refer to both types of labels. For the former, we will express properties in linear
temporal logic (LTL), and for the latter, we will use safety properties represented by
deterministic finite automata.
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LTL verification. For an LTL formula ψ, PA M and adversary σ ∈ AdvM :

PrσM (ψ) def= PrσM{π ∈ PathσM | π |= ψ}

where π |= ψ denotes satisfaction according to the standard semantics of LTL. Verifying
an LTL specification ψ against M typically involves checking that the probability of
satisfying ψ meets a probability bound for all adversaries. This reduces to computing the
minimum or maximum probability of satisfying ψ:

Prmin
M (ψ) def= infσ∈AdvM PrσM (ψ) and Prmax

M (ψ) def= supσ∈AdvM PrσM (ψ) .

The complexity of this computation is polynomial in the size of M and doubly exponential
in the size of ψ [7]. In practice, the LTL formula ψ is small and, for simple, commonly
used cases such as ♦ap (“eventually ap”) or �ap (“globally ap”), model checking is
polynomial [2]. Furthermore, efficient implementations of LTL verification exist in tools
such as PRISM [11] and LiQuor [6].

Safety properties. A regular safety property A represents a set of infinite words, denoted
L(A), that is characterised by a regular language of bad prefixes, finite words of which
any extension is not in L(A). More precisely, we will define a regular safety property A
by a (complete) deterministic finite automaton (DFA) Aerr = (Q, q, αA, δA, F ), compris-
ing states Q, initial state q ∈ Q, alphabet αA, transition function δA : Q × αA → Q
and accepting states F ⊆ Q. The DFA Aerr defines, in standard fashion, a regu-
lar language L(Aerr ) ⊆ (αA)∗. The language L(A) is then defined as L(A) = {w ∈
(αA)ω | no prefix of w is in L(Aerr )}.

Given a PA M , adversary σ ∈ AdvM and regular safety property A with αA ⊆ αM ,
we define the probability of M under σ satisfying A as:

PrσM (A) def= PrσM{π ∈ PathσM | tr(π)�αA ∈ L(A)}

where w�α is the projection of word w onto a subset α of its alphabet. We then define
Prmin

M (A) and Prmax
M (A) as for LTL above.

Definition 5 (Probabilistic safety properties) A probabilistic safety property 〈A〉>p
comprises a regular safety property A and a rational probability bound p. We say that a
PA M satisfies the property, denoted M |= 〈A〉>p, if the probability of satisfying A is at
least p for any adversary:

M |= 〈A〉>p ⇔ ∀σ∈AdvM . PrσM (A) > p ⇔ Prmin
M (A) > p .

Safety properties can be used to represent a wide range of useful properties of probabilistic
automata. Examples include:

• “the probability of an error occurring is at most 0.01”
• “event A always occurs before event B with probability at least 0.98”
• “the probability of terminating within k time-units is at least 0.75”
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Figure 1: Two probabilistic automata M1,M2 and the DFA for a safety property G

The last of these represents a very useful class of properties for timed probabilistic sys-
tems, perhaps not typically considered as safety properties. Using the digital clocks
approach of [12], verifying real-time probabilistic systems can often be reduced to analy-
sis of a PA with time steps encoded as a special action type. Such requirements are then
naturally encoded as safety properties.

Example 1. Figure 1 shows two PAs M1 and M2. Component M1 represents a controller
that powers down devices. Upon receipt of the detect signal, it first issues the warn signal
followed by shutdown; however, with probability 0.2 it will fail to issue the warn signal.
M2 represents a device which, given the shutdown signal, powers down correctly if it first
receives the warn signal and otherwise will only power down correctly 90% of the time.
We consider a simple safety property G “action fail never occurs”, represented by the
DFA Gerr also shown in Figure 1. Composing the two PAs in parallel and applying model
checking, we have that Prmin

M1‖M2
(G) = 0.98. Thus, M1‖M2 |= 〈G〉>0.98.

Safety verification. Using standard automata-based techniques for model checking PAs
[7], verifying correctness of probabilistic safety properties reduces to model checking the
product of a PA and a DFA:

Definition 6 (PA-DFA product) The product of a PA M=(S, s, αM , δM , L) and DFA
Aerr=(Q, q, αA, δA, F ) with αA ⊆ αM is given by the PA M⊗Aerr = (S×Q, (s, q), αM , δ′, L′)
where:

• (s, q) a−→ µ×ηq′ if s a−→ µ and q′ = δA(q, a) if a ∈ αA and q′ = q otherwise;

• L′(s, q) = L(s) ∪ {errA} if q ∈ F and L′(s, q) = L(s) otherwise.

Proposition 2.1 For PA M and regular safety property A, we have:

Prmin
M (A) = 1− Prmax

M⊗Aerr (♦errA) .

Thus, using [2], satisfaction of the probabilistic safety property 〈A〉>p can be checked in
time polynomial in the size of M⊗Aerr . Note that maximum reachability probabilities,
and therefore satisfaction of probabilistic safety properties, are independent of whether
complete or partial adversaries are considered.
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Multi-objective model checking. In addition to traditional probabilistic model check-
ing techniques, the approach presented in this paper requires the use of multi-objective
model checking [10]. The conventional approach described above allows us to check
whether, for all adversaries (or, dually, for at least one adversary), the probability of
some property is above (or below) a given bound. Multi-objective queries allow us to
check the existence of an adversary satisfying multiple properties of this form. In par-
ticular, consider k predicates of the form PrσM (ψi) ∼i pi where ψi is an LTL formula,
pi ∈ [0, 1] is a rational probability bound and ∼i∈ {>, >}. Using the techniques in [10],
we can verify whether:

∃σ∈AdvM . ∧ki=1 (PrσM (ψi) ∼i pi)

by a reduction to a linear programming (LP) problem. Like for (single-objective) LTL
verification, this can be done in time polynomial in the size of M (and doubly exponential
in the sizes of ψi). In fact, [10] also shows that this technique generalises to checking
existential or universal queries over a Boolean combination of predicates for which ∼i∈
{>, >,6, <}. In all cases, if an adversary which satisfies the predicates exists, then it
can also easily be obtained.

Finally, through a trivial extension of this approach (and without increasing the com-
plexity), we can formulate quantitative multi-objective queries. For example, given a
conjunction of the above predicates Ψ = ∧ki=1PrσM (ψi) ∼i pi, and an additional LTL
formula ψ0, we can compute the maximum probability of ψ0 that is achievable whilst
also satisfying Ψ:

Prmax
M (ψ0 |Ψ) def= sup{PrσM (ψ0) |σ ∈ AdvM ∧Ψ)} .

3 Compositional Verification for PAs

We now describe our approach for compositional verification of probabilistic automata.
We first define the basic underlying ideas and then present several different proof rules.
For clarity, we present the simplest of these rules in some detail and then discuss some
generalisations and extensions.

We extend the notion of assume-guarantee reasoning to PAs using probabilistic assume-
guarantee triples of the form 〈A〉>pAM 〈G〉>pG , where 〈A〉>pA and 〈G〉>pG are probabilis-
tic safety properties and M is a PA. Informally, the meaning of this is “whenever M is
part of a system satisfying A with probability at least pA, then the system will satisfy G
with probability at least pG”. Formally:

Definition 7 (Assume-guarantee semantics) If 〈A〉>pA and 〈G〉>pG are probabilistic
safety properties, M is a PA and αG ⊆ αA ∪ αM , then

〈A〉>pAM 〈G〉>pG ⇔ ∀σ∈AdvM [αA] .
(

PrσM [αA](A)>pA → PrσM [αA](G)>pG
)
.

The use of M [αA], i.e. M extended to the alphabet of A, in this definition is required for
the case where the property G includes actions that are not in M .
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Figure 2: DFA for safety property A and the product PA M2⊗Aerr⊗Gerr (see Figure 1)

We write 〈true〉M 〈G〉>pG to denote the absence of any assumption, i.e. the query
〈true〉M 〈G〉>pG is equivalent to M |= 〈G〉>pG which, as described above, is standard
model checking [2]. In the general case, we check the satisfaction of a probabilistic
assume-guarantee triple using multi-objective PA model checking:

Proposition 3.1 (Assume-guarantee model checking) Let M be a PA, 〈A〉>pA, 〈G〉>pG
be probabilistic safety properties and M ′ = M [αA]⊗Aerr⊗Gerr . The probabilistic assume-
guarantee triple 〈A〉>pAM 〈G〉>pG holds if and only if:

¬∃σ′∈AdvM ′ .
(

Prσ
′
M ′(�¬errA)>pA ∧ Prσ

′
M ′(♦errG)>1−pG

)
which can be checked in time polynomial in |M ′| by solving an LP problem [10].

We now present, using the definitions above, several assume-guarantee proof rules to
allow compositional verification.

An asymmetric proof rule. The first rule we consider is asymmetric, in the sense
that we require only a single assumption about one component. Experience in the non-
probabilistic setting [15] indicates that, despite its simplicity, rules of this form are widely
applicable.

Theorem 3.2 If M1,M2 are probabilistic automata and 〈A〉>pA , 〈G〉>pG probabilistic
safety properties such that αA ⊆ αM1 and αG ⊆ αM2 ∪ αA, then the following proof
rule holds:

〈true〉M1 〈A〉>pA
〈A〉>pAM2 〈G〉>pG
〈true〉M1 ‖M2 〈G〉>pG

(ASym)

Theorem 3.2 means that, given an appropriate assumption 〈A〉>pA , we can check the
correctness of a probabilistic safety property 〈G〉>pG on M1‖M2, without constructing
and model checking the full model. Instead, we perform one instance of (standard)
model checking on M1 (to check the first condition of rule (ASym)) and one instance of
multi-objective model checking on M2[αA]⊗Aerr (to check the second). If Aerr is much
smaller than M1, we can expect significant gains in terms of the verification performance.

Example 2. We illustrate the rule (ASym) on the PAs M1,M2 and property 〈G〉>0.98

from Example 1. Figure 2 (left) shows a DFA Aerr representing the safety property A
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“warn occurs before shutdown”. We will use the probabilistic safety property 〈A〉>0.8 as
the assumption about M1 in (ASym).

Checking the first condition of (ASym) amounts to verifying M1 |= 〈A〉>0.8, which
can be done with standard probabilistic model checking. To complete the verification, we
need to check the second condition 〈A〉>0.8M2 〈G〉>0.98, which, from Proposition 3.1, is
achieved though multi-objective model checking on the product2 M2⊗Aerr⊗Gerr . More
precisely, we check there is no adversary under which the probability of remaining within
states not satisfying errA is at least 0.8 and the probability of reaching an errG state is
above 1−0.98 = 0.02. The product is shown in Figure 2 (right), where we indicate states
satisfying errA and errG by highlighting the accepting states a2 and q1 of DFAs Aerr

and Gerr . By inspection, we see that no such adversary exists, so we can conclude that
M1‖M2 |= 〈G〉>0.98. Consider, however, the adversary σ which, in the initial state, chooses
warn with probability 0.8 and shutdown with probability 0.2. This satisfies �¬errA with
probability 0.8 and ♦errG with probability 0.02. Hence, 〈A〉>0.8M2 〈G〉>pG does not hold
for any value of pG > 1−0.02 = 0.98.

Proof of Theorem 3.2. We give below the proof of Theorem 3.2. This requires the
following lemma, which is a simple extension of [19, Lemma 7.2.6, page 141].

Lemma 3.3 Let M1,M2 be PAs, σ ∈ AdvM1‖M2
, Σ ⊆ αM1‖M2

and i = 1, 2. If A and B
are regular safety properties such that αA ⊆ αMi and αB ⊆ αMi[Σ], then

(a) PrσM1‖M2
(A) = Pr

σ�Mi
Mi

(A) and (b) PrσM1‖M2
(B) = Pr

σ�Mi[Σ]

Mi[Σ] (B) .

Note that the projections onto Mi[Σ] in the above are well defined since the condition
Σ ⊆ αM1‖M2

implies that M1‖M2 = M1[Σ]‖M2 = M1‖M2[Σ].

Proof 3.4 (of Theorem 3.2) The proof is by contradiction. Assume that there ex-
ist PAs M1 and M2 and probabilistic safety properties 〈A〉>pA and 〈G〉>pG such that
〈true〉M1 〈A〉>pA and 〈A〉>pAM2 〈G〉>pG hold, while 〈true〉M1‖M2 〈G〉>pG does not. From
the latter, it follows that there exists an adversary σ ∈ AdvM1‖M2

such that PrσM1‖M2
(G) <

pG. Now, since 〈true〉M1 〈A〉>pA and σ�M1 ∈ AdvM1, it follows that:

Pr
σ�M1
M1

(A) > pA ⇒ PrσM1‖M2
(A) > pA by Lemma 3.3(a) since αA ⊆ αM1

⇒ Pr
σ�M2[αA]

M2[αA] (A) > pA by Lemma 3.3(b) since αA ⊆ αM2[αA]

⇒ Pr
σ�M2[αA]

M2[αA] (G) > pG since 〈A〉>pAM2 〈G〉>pG
⇒ PrσM1‖M2

(G) > pG by Lemma 3.3(b) since αG ⊆ αM2[αA]

which contradicts the assumption that PrσM1‖M2
(G) < pG. ut

2In this example, αA = {warn, shutdown} ⊆ αM2 so M2[αA] = M2.
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Generalising the proof rule. Next, we state two useful generalisations of the above
proof rule. First, using 〈A1, . . . , Ak〉>p1,...,pk to denote the conjunction of probabilistic
safety properties 〈Ai〉>pi for i = 1, . . . , k, we have:

〈true〉M1 〈A1, . . . , Ak〉>p1,...,pk

〈A1, . . . , Ak〉>p1,...,pkM2 〈G〉>pG
〈true〉M1 ‖M2 〈G〉>pG

(ASym-Mult)

Definition 7 extends naturally to k assumptions, replacing αA with ∪ki=1αAi and the
single probabilistic safety property on the left-hand side of the implication with the
conjunction. In similar fashion, by adapting Proposition 3.1, model checking of the query
〈A1, . . . , Ak〉>p1,...,pkM 〈G〉>pG reduces to multi-objective model checking on the product
M [∪ki=1αAi ]⊗Aerr

1 ⊗ · · ·⊗Aerr
k ⊗Gerr .

Secondly, we observe that, through repeated application of (ASym), we obtain a rule
of the following form for n components:

〈true〉M1 〈A1〉>p1

〈A1〉>p1 M2 〈A2〉>p2

· · ·
〈An−1〉>pn−1 Mn 〈G〉>pG
〈true〉M1 ‖ · · · ‖Mn 〈G〉>pG

(ASym-N)

A circular proof rule. One potential limitation of the rule (Asym) is that we may
not be able to show that the assumption A1 about M1 holds without making additional
assumptions about M2. This can be overcome by using the following circular proof rule:

Theorem 3.5 If M1,M2 are PAs and 〈A1〉>p1, 〈A2〉>p2 and 〈G〉>pG probabilistic safety
properties such that αA2 ⊆ αM2, αA1 ⊆ αM1∪αA2 and αG ⊆ αM2∪αA1, then the following
circular assume-guarantee proof rule holds:

〈true〉M2 〈A2〉>p2

〈A2〉>p2 M1 〈A1〉>p1

〈A1〉>p1 M2 〈G〉>pG
〈true〉M1 ‖M2 〈G〉>pG

(Circ)

An asynchronous proof rule. This rule is motivated by the fact that, often, part of
a system comprises several asynchronous components, that is, components with disjoint
alphabets. In such cases, it can be difficult to establish useful probability bounds on
the combined system if the fact that the components act independently is ignored. For
example, consider the case of n independent coin flips; in isolation, we have that the
probability of any coin not returning a tail is 1/2. Now, ignoring the independence of the
coins, all we can say is that the probability of any of them not returning a tail is at least
1/2. However, using their independence, we have that this probability is at least 1−1/2n.
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Theorem 3.6 For any PAs M1,M2 and probabilistic safety properties 〈A1〉>pA2
, 〈A2〉>pA1

,
〈G1〉>pG1

and 〈G2〉>pG2
such that αM1∩αM2 = ∅, αG1 ⊆ αM1∪αA1 and αG2 ⊆ αM2∪αA2,

we have the following asynchronous assume-guarantee proof rule:

〈A1〉>pA1
M1 〈G1〉>pG1

〈A2〉>pA2
M2 〈G2〉>pG2

〈A1, A2〉>pA1
,pA2

M1‖M2 〈G1 ∨G2〉>pG1
+pG2

−pG1
·pG2

(ASync)

where the disjunction of safety properties G1 and G2 is obtained by taking the intersection
of the DFAs Gerr

1 and Gerr
2 .

4 Quantitative Assume-Guarantee Queries

Practical experience with probabilistic verification suggests that it is often more useful
to adopt a quantitative approach. For example, rather than checking the correctness of
a probabilistic safety property 〈G〉>pG , it may be preferable to just compute the actual
worst-case (minimum) probability Prmin

M (G) that G is satisfied. In this section we consider
how to formulate such quantitative queries in the context of assume-guarantee reasoning.
For simplicity, we restrict our attention here to the rule (ASym) for fixed PAs M1 and
M2, and property G. Similar reasoning applies to the other rules presented above.

Maximal lower bounds. Rule (ASym) allows us to establish lower bounds for the
probability Prmin

M1‖M2
(G), i.e. it can be used to prove, for certain values of pG, that

Prmin
M1‖M2

(G) > pG. We consider now how to obtain the highest such lower bound, say
p?G. First, we note that, from Definition 7, it is clear that the highest value of pG for
which 〈A〉>pAM2 〈G〉>pG holds will be obtained by using the maximum possible value of
pA. For rule (ASym) to be applicable, this is equal to Prmin

M1
(A), since for any higher

value of pA the first condition will fail to hold. Now, by Proposition 3.1, and letting
M ′ = M2[αA]⊗Aerr ⊗Gerr , the value p?G can be obtained through multi-objective model
checking as follows:

p?G = 1−Prmax
M ′ (♦errG |Ψ) where Ψ = PrσM ′(�¬errA) > pA.

Parameterised queries. Let us assume that component M1 is parameterised by a
variable x in such a way that varying x changes the probability of M1 satisfying the
assumption A. For example, increasing the value of x might increase the probability
PrM1(A), but simultaneously worsen some other performance measure or cost associated
with M1. In this situation, it is desirable to establish a trade-off between the probability
of M1‖M2 satisfying G and the secondary ‘cost’ of M1. Our use of multi-objective model
checking for compositional verification offers two choices here. Firstly, we can pick a
suitable threshold for PrM1‖M2

(G) and then compute the lowest value of PrM1(A) which
guarantees this, allowing an appropriate value of x to be chosen. Alternatively, we can
consider the so-called Pareto curve: the set of achievable combinations of PrM1‖M2

(G)
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and PrM1(A), which will present a clear view of the trade-off. For the latter, we can use
the techniques of [10] for approximate exploration of the Pareto curve.

Upper bounds. Since application of (ASym) gives lower bounds on Prmin
M1‖M2

(G), it is
desirable to also generate upper bounds on this probability. This can be done as follows.
When checking condition 2 of (ASym), using multi-objective model checking, we also
obtain an adversary σ ∈ AdvM2[αA]⊗Aerr that satisfies 〈A〉>pA and gives the minimum
(i.e. worst-case) probability of satisfying G. This can then be projected onto M2, giving
an adversary σ2 which achieves the worst-case behaviour of the single component M2

with respect to G satisfying 〈A〉>pA . Furthermore, from σ2, we can easily construct a PA
Mσ2

2 that represents the behaviour of M2 under σ2.
Finally, we compute the probability of satisfying G on M1‖Mσ2

2 . Because Mσ2
2 is

likely to be much smaller than M2, there is scope for this to be efficient, even if model
checking M1‖M2 in full is not feasible. Since M1‖Mσ2

2 represents only a subset of the
behaviour of M1‖M2, the probability computed is guaranteed to give an upper bound on
Prmin

M1‖M2
(G). We use σ2 (which achieves the worst-case behaviour with respect to G),

rather than an arbitrary adversary of M2, in order to obtain a tighter upper bound.

5 Implementation and Case Studies

We have implemented our compositional verification approach in a prototype tool. Recall
that, using the rules given in Section 3, verification requires both standard (automata-
based) model checking and multi-objective model checking. Our tool is based on the
probabilistic model checker PRISM [11], which already supports LTL model checking of
probabilistic automata. Model checking of probabilistic safety properties, represented by
DFAs, can be achieved with existing versions of PRISM, since DFAs can easily be encoded
in PRISM’s modelling language. For multi-objective model checking, we have extended
PRISM with an implementation of the techniques in [10]. This requires the solution of
Linear Programming (LP) problems, for which we use the ECLiPSe Constraint Logic
Programming system with the COIN-OR CBC solver, implementing a branch-and-cut
algorithm. All experiments were run on a 2GHz PC with 2GB RAM. Any run exceeding
a time-limit of 24 hours was disregarded.

We demonstrate the application of our tool to two large case studies. The first is
the randomised consensus algorithm of Aspnes & Herlihy [1]. The algorithm allows N
processes in a distributed network to reach a consensus and employs, in each round, a
shared coin protocol parameterised by K. The PA model is based on [13] and consists of
an automaton for each process and for the shared coin protocol of each round. We analyse
the minimum probability that the processes decide by round R. The compositional
verification employs R−2 uses of the Async rule to return a probabilistic safety property
satisfied by the (asynchronous) composition of the shared coin protocols for the first
R−2 rounds. This is then used as the assumption of an Asym rule for the subsystem
representing the processes.

The second case study is the Zeroconf network configuration protocol [4]. We use the
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Case study Non-compositional Compositional
[parameters] States Time (s) Result† LP size Time (s) Result†

consensus
(2

processes)
[R K]

3 2 5,158 1.6 0.108333 1,064 0.9 0.108333
3 20 40,294 108.1 0.012500 1,064 7.4 0.012500
4 2 20,886 3.6 0.011736 2,372 1.2 0.011736
4 20 166,614 343.1 0.000156 2,372 7.8 0.000156
5 2 83,798 7.7 0.001271 4,988 2.2 0.001271
5 20 671,894 1,347 0.000002 4,988 8.8 0.000002

consensus
(3

processes)
[R K]

3 2 1,418,545 18,971 0.229092 40,542 29.6 0.229092
3 12 16,674,145* time-out - 40,542 49.7 0.041643
3 20 39,827,233* time-out - 40,542 125.3 0.024960
4 2 150,487,585 78,955 0.052483 141,168 376.1 0.052483
4 12 1,053,762,385* mem-out - 141,168 396.3 0.001734
4 20 2,028,200,209* mem-out - 141,168 471.9 0.000623

zeroconf
[K]

2 91,041 39.0 2.0e-5 6,910 9.3 3.1e-4
4 313,541 103.9 7.3e-7 20,927 21.9 3.1e-4
6 811,290 275.2 2.6e-8 40,258 54.8 2.5e-4
8 1,892,952 592.2 9.5e-10 66,436 107.6 9.0e-6

zeroconf
(time

bounded)
[K T ]

2 10 665,567 46.3 5.9e-5 62,188 89.0 2.1e-4
2 14 106,177 63.1 2.0e-8 101,313 170.8 8.1e-8
4 10 976,247 88.2 3.3e+0 74,484 170.8 3.3e+0
4 14 2,288,771 128.3 7.0e-5 166,203 430.6 3.1e-4

* These models can be constructed, but not model checked, in PRISM.

† Results are maximum probabilities of error so actual values are these subtracted from 1.

Table 1: Experimental results, comparing with non-compositional verification

PA model from [12] consisting of two components, one representing a new host joining
the network (parameterised by K, the number of probes it sends before using an IP
address), and the second representing the environment, i.e. the existing network. We
consider two properties: the minimum probability that a host employs a fresh IP address
and that a host is configured by time T . In each case the compositional verification uses
one application of the Circ rule.

Table 1 shows experimental results for these case studies. We present the total
time required for both compositional verification, as described in this paper, and non-
compositional verification using PRISM (with the fastest available engine). Note that,
in each case, we use the quantitative approach described in Section 4 and give actual
(bounds on) probabilities computed. To give an indication of the size of the models con-
sidered, we give the number of states for the full (non-compositional) models and the
number of variables in the LP problems used for multi-objective model checking in the
compositional case.

In summary, we see that the compositional approach is faster in the majority of
cases. Furthermore, it allows verification of several models for which it is infeasible with
conventional techniques. For the cases where compositional verification is slower, this is
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due to the cost of solving a large LP problem, which is known to be more expensive than
the highly optimised techniques used in PRISM. Furthermore, LP solution represents
the limiting factor with respect to the scalability of the compositional approach. We
expect that improvements to our technique can be made that will reduce LP problem
sizes and improve performance. Finally, we note that the numerical values produced
using compositional verification are generally good; in fact, for the consensus case study,
the bounds obtained are precise.

6 Conclusions

We have presented a compositional verification technique, based on assume-guarantee
rules, for probabilistic automata. Properties of these models are represented as prob-
abilistic safety properties, and we show how verifying the resulting assume-guarantee
queries reduces to the problem of multi-objective model checking. We also show how
this can be leveraged to provide a quantitative approach to compositional verification. In
contrast to existing work in this area, our techniques can be implemented efficiently and
we demonstrate successful results on several large case studies.

There are several interesting directions for future work. In particular, we plan to ex-
periment with the use of learning techniques to automatically produce the assumptions
required for compositional reasoning. We also intend to further develop our composi-
tional proof rules and investigate to what extent they are complete. Finally, we plan to
expand the range of properties that can be verified, including for example reward-based
specifications.
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Appendix.

We include here proofs ommitted from the main text.

Proof .1 (of Proposition 3.1) Consider any PA M , probabilistic safety properties 〈A〉>pA
and 〈G〉>pG, and let M ′ = AdvM [αA]⊗Aerr⊗Gerr . By definition of ⊗ (see Definition 6)
we can construct a bijective function f : AdvM [αA] → AdvM ′ such that:

PrσM [αA](B) = 1− Prf(σ)
M ′ (♦errB) for B ∈ {A,G} . (1)

Now using Definition 7 we have:

〈A〉>pAM 〈G〉>pG ⇔ ∀σ∈AdvM [αA].
(

PrσM [αA](A)>pA → PrσM [αA](G)>pG
)

⇔ ∀σ∈AdvM [αA].
(

Prf(σ)
M ′ (♦errA)61−pA → Prf(σ)

M ′ (♦errG)61−pG
)

⇔ ∀σ′∈AdvM ′ .
(

Prσ
′
M ′(♦errA)61−pA → Prσ

′
M ′(♦errG)61−pG

)
⇔ ¬∃σ′∈AdvM ′ .

(
Prσ

′
M ′(�¬errA)>pA ∧ Prσ

′
M ′(♦errG)>1−pG

)
where the second step follows from (1), the third since f is a bijection. ut

Proof .2 (of Theorem 3.5) The proof is by contradiction, therefore assume that there
exist PAs M1 and M2, regular safety properties A1, A2 and G and probability bounds
p1, p2 and pG such that 〈A1〉>p1 M2 〈G〉>pG, 〈A2〉>p2 M1 〈A1〉>p1 and 〈true〉M2 〈A2〉>p2

hold, while 〈true〉M1‖M2 〈G〉>pG does not. From the latter, it follows that there exists
an adversary σ ∈ AdvM1‖M2

such that PrσM1‖M2
(G) < pG. Using the fact that both

〈true〉M2 〈A2〉>p2 and 〈A2〉>p2 M1 〈A1〉>p1 hold, we can apply Theorem 3.2 to show that
〈true〉M1‖M2 〈A1〉>p1 holds, and hence:

PrσM1‖M2
(A1) > p1

⇒ Pr
σ�M2[αA1

]

M2[αA1
] (A1) > p1 by Lemma 3.3(b) since αA1 ⊆ αM2[αA1

]

⇒ Pr
σ�M2[αA1

]

M2[αA1
] (G) > pG since 〈A1〉>p1 M1 〈G〉>pG

⇒ PrσM1‖M2
(G) > pG by Lemma 3.3(b) since αA1 ⊆ αM2[αA1

]

which contradicts the assumption that PrσM1‖M2
(G) < pG. ut

Proof .3 (of Theorem 3.6) The proof is by contradiction. Suppose there exist PAs M1

and M2 where αM1∩αM2 = ∅, regular safety properties A1, A2, G1 and G2 and probability
bounds pA1, pA2, pG1 and pG2 such that 〈A1〉>pA1

M1 〈G1〉>pG1
and 〈A2〉>pA2

M2 〈G2〉>pG2

hold while
〈A1, A2〉>pA1

,pA2
M1‖M2 〈G1 ∨G2〉>pG1

+pG2
−pG1

·pG2
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does not. Therefore, letting αA = αA1 ∪ αA2, by Definition 7 there exists an adversary σ
of (M1‖M2)[αA] such that

Prσ(M1‖M2)[αA](A1) > pA1 (2)
Prσ(M1‖M2)[αA](A2) > pA2 (3)

Prσ(M1‖M2)[αA](G1 ∨G2) < pG1 + pG2 − pG1 ·pG2 . (4)

As G1 and G2 are safety properties, we have:

Prσ(M1‖M2)[αA](G1 ∨G2) = 1− Prσ(M1‖M2)[αA] ‖ (Gerr
1 ‖Gerr

2 )

(
♦(errG1∧errG2)

)
. (5)

Next, since αA = αA1 ∪ αA2 and the parallel composition operator is commutative and
associative, using Definition 3 it follows that:

(M1‖M2)[αA] ‖ (Gerr
1 ‖Gerr

2 ) =
(
M1[αA1 ]‖Gerr

1

)
‖
(
M2[αA2 ]‖Gerr

2

)
from which, using the fact that αM1 ∩ αM2 = ∅, we can derive the equality:

Prσ(M1‖M2)[αA] ‖ (Gerr
1 ‖Gerr

2 )

(
♦(errG1∧errG2)

)
= Pr

σ�M1[αA1
]

M1[αA1
]‖Gerr

1
(♦errG1) · Pr

σ�M2[αA2
]

M2[αA2
]‖Gerr

2
(♦errG2) . (6)

Since 〈A1〉pA1
M1 〈G1〉>pG1

and 〈A2〉pA2
M2 〈G2〉>pG2

hold, using (2) and (3) together with
Definition 3 we have that:

Pr
σ�M1[αA1

]

M1[αA1
]‖Gerr

1
(♦errG1) 6 1−pG1 and Pr

σ�M2[αA2
]

M2[αA2
]‖Gerr

2
(♦errG2) 6 1−pG2

which combined with (6) yields:

Prσ(M1‖M2)[αA] ‖ (Gerr
1 ‖Gerr

2 )

(
♦(errG1∧errG2)

)
6 (1−pG1) · (1−pG2) .

Finally, substituting this result into (5) gives the inequality:

Prσ(M1‖M2)[αA](G1 ∨G2) > 1− (1−pG1) · (1−pG2) = pG1 + pG2 − pG1 ·pG2

which contradicts (4), and hence completes the proof. ut
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