
Non-Delegatable Authorities in Capability Systems

Toby Murray Duncan Grove

Command, Control, Communications and Intelligence Division,

Defence Science and Technology Organisation,

PO BOX 1500, Edinburgh, South Australia 5111

toby.murray@comlab.ox.ac.uk, duncan.grove@dsto.defence.gov.au

Abstract

We present a novel technique, known as the non-delegatable authority (NDA), for dis-
tributing authority to unconfined subjects in capability systems that prevents them from
sharing the exact same authority that they have been given with anyone else. This feature
is present in common systems based on access control lists (ACLs) in which one may hand
out a permission without handing out the associated “grant” right, but has been thought
to be impossible to express in capability systems until now. Consequently, we demonstrate
that NDAs may be used to express ACL-like constructs and their basic pattern is directly
applicable for implementing Multi-Level Security and identity-based access controls in the
object-capability model.

The extra complexity introduced by our NDA implementation can be hidden behind con-
structs that allow NDAs to be wielded as if they were ordinary capabilities to the target
resource. These constructs cannot break the non-delegatability constraint and allow NDAs
to be used effectively, although with less efficiency than delegatable authorities.

1 Introduction

It has been argued that the inability of capability systems to prevent delegation by capability
passing hinders security because it increases the burden of trust (as argued in [31]) and makes
it difficult to support mandatory access controls [1] (as argued in [13]), including enforcing con-
finement [10] (as argued in [9]) and the *-property [3] (as argued in [7]). Despite these claims,
working implementations of capability systems able to enforce mandatory access controls (such
as [22]) and confinement (such as [21, 25]) have existed for decades, and recent work has formally
proved that confinement can in fact be guaranteed [26] and that the *-property can indeed be
enforced [18, 27]. However, all of these techniques rely on being able to limit, or confine, the
outward communication channels of untrustworthy subjects. Unfortunately, this assumption is
overly restrictive in certain circumstances. For example, none of these techniques can be applied
to allow one to distribute authority to an unconfined subject already in existence, to whom arbi-
trary outward communications channels might be available, while preventing that authority from
being delegatable. This paper describes a novel technique that addresses this weakness and can
be used alongside the existing mechanisms listed above to tightly control the sharing of authority
in capability-based systems.

Our technique is known as the non-delegatable authority (NDA), and allows some entity A to
give an unconfined entity B authority to access some resource C, while ensuring that B cannot
pass on that exact same authority to any other entity. We present our implementation within
the context of the object-capability model [20], although it can be generalised to many real-world
capability systems including E [15], EROS [25], W7 [23] and the Annex Capability System [8].
The object-capability model accurately captures the semantics of many capability systems (such as
those mentioned previously as well as Dennis and Van Horn’s original supervisor [4]), framing the

1

principles of capability security [4] within the terms of contemporary object-based systems. This
model has also been used as a base for reasoning about authority within capability systems [28].

In the object-capability model, capabilities address objects and provide the sole means by
which objects may interact through method invocation. Here, the object graph also serves as the
access graph since capability possession is the sole requirement for access. The golden rule of the
object-capability model is that “only connectivity begets connectivity” [17]. This rule requires
that capabilities may only be passed between objects that are already connected within the object
graph, perhaps through other intermediate objects. Capabilities may be passed either as method
parameters, or may be returned as the result of an invocation.

The model places no further restrictions on the flow of capabilities. This means that any object
that possesses a capability can freely pass it to any other object that it possesses a capability to,
or to any other object that possesses a capability to it. As previously stated, we refer to this
act as delegation, which enables one object to conveniently pass part of its authority to another.
Proponents of capability systems have argued against the notion that delegation is harmful for
security. Instead, they posit that it is a feature that necessarily enhances security [29], as it enables
the natural implementation of systems that preserve the principle of least authority [19], refined
from the principle of least privilege [24]. It has also been asserted that preventing delegation is
not only harmful for security but also unnecessary [5]. This theory rests on the premise that
no conventional access control system can prevent certain types of authority sharing amongst
unconfined subjects. The following section explores this idea in order to lay the foundations for
an examination of the possible value that non-delegatable authorities might provide.

1.1 Authority Sharing

We explicitly acknowledge that there are hard limits to the extent to which the sharing of authority
by unconfined subjects can be controlled in conventional access control systems such as those
employing capabilities [4] and access control lists [11]. Specifically, in none of these systems can
an unconfined subject be prevented from sharing part of its authority with any other with whom
it has a bidirectional communications link1. If one particular subject is given access to a resource,
it can always share its authority with other subjects by acting as a proxy [6]. While proxying and
delegation both constitute sharing of authority, they are not the same.

A proxy is by definition interposed between the subject and the resource, meaning that they
can at any time revoke the subject’s authority by refusing to proxy and generally interfere with
the subject’s access to the resource. Figure 1(a) depicts Alice sharing her authority with Bob to
access the target resource Carol by proxying. When proxying, Alice cannot ever give Bob the
exact same level of authority that she possesses over Carol, so Alice always retains more authority
than Bob. On the other hand, if Alice delegates her authority over Carol to Bob by passing him
her capability, she gives Bob direct access to Carol. Unlike when proxying, Alice cannot interfere
with this access and Bob is given exactly the same authority over Carol that Alice has. Figure 1
depicts the difference between proxying and delegating.

Bob Alice Carol

(a) When proxying, Alice retains more au-
thority than Bob

Alice

Bob

Carol

(b) When delegating, Alice and Bob
share identical authority

Figure 1: The difference between proxying and delegating

1Note that in the object-capability model, a bidirectional communications link is not necessary. An outward
communications link (i.e. a capability to another object) can be used to bootstrap a bidirectional channel.

2

An NDA provides a means of distributing authority to unconfined subjects while ensuring that
the only way it can be shared is analogous to proxying. Its purpose is to prevent an unconfined
subject from being able to share exactly the same authority that they have been given with anyone
else.

1.2 The Value of Non-Delegatable Authority

One possible use for non-delegatable authorities is to guard against unreliable software that might
be prone to exploitation by an attacker. Consider a scenario where Alice is granted non-delegatable
authority to access Carol. In order to share this authority with Bob, Alice must act in a manner
analogous to proxying, actively collaborating with Bob at each invocation. If Alice is collaborating
only because Bob has confused her into doing so (perhaps because Bob has exploited a vulnerability
in Alice’s code) then Alice must remain confused in order for Bob to retain access. On the other
hand, if Alice is able to share her authority with Bob by delegating, she need only be confused into
delegating once. In this case Bob has effectively stolen her capability and will retain the authority
to access Carol regardless of whether Alice remains confused. In particular, if the vulnerability in
Alice’s code is subsequently patched, Bob will still retain access. If Alice is only able to share by
proxying, however, then patching the vulnerability also revokes Bob’s authority to access Carol.
As such, the value of non-delegatability increases with the likelihood of confusion and unreliability.
We return to this theme in Section 3, in which we show by example how non-delegatable authorities
can render capability-stealing attacks useless.

Non-delegatable authorities can also be used to prevent unintended rights amplification [17].
Rights amplification occurs when a subject uses two capabilities together in order to obtain more
authority than the sum of the authority provided by each individually. Consider the scenario
where Alice and Bob each hold one half of a pair of capabilities, which when used together cause
rights amplification. Alice cannot achieve rights amplification unless she holds both capabilities
simultaneously. Preventing Bob from delegating his capability to Alice makes it impossible for Al-
ice to achieve rights amplification. The same applies in reverse to Bob. Hence, rights amplification
is impossible when both Alice and Bob are prevented from delegating to one another.

Informally, preventing an unconfined subject from delegating and thus forcing it to proxy
also makes it unreasonable for that subject to deny responsibility for, or knowledge of, how their
authority is used by others with whom they choose to share it. The very impossibility of preventing
sharing altogether makes it imperative that subjects can be held to account for how their authority
is used on their behalf. Other mechanisms for maintaining accountability in the face of sharing
include the Logger pattern described in [29]. In contrast to the Logger pattern, when forced to
proxy because they cannot delegate, subjects have the chance to actively intercede to ensure that
their authority is being used appropriately. Thus, the value of non-delegatability might be two-
fold: when giving Alice a non-delegatable authority, we not only reduce the degree to which we
must trust her, but also the degree to which Alice must trust anyone else with whom she chooses
to share it.

The idea that non-delegatable authority increases accountability is not surprising given that it
pervades many real-world applications for which audit and accountability are primary concerns.
Examples include financial policies that require spending to be approved by a particular officer,
originator controlled release [14] policies that require all access to data to be approved by its
originator, the Lockean non-delegation doctrine arguing that “the legislative neither must nor can
transfer the power of making laws to anybody else, or place it anywhere but where the people
have” [12] (quoted in [30]), as well as numerous other policies that specifically limit the authority
to delegate. For these reasons, being able to express non-delegatable authorities in the object-
capability model naturally increases its scope and applicability.

1.3 Sources of Authority

If capability possession were the only source of authority that the object-capability model provided,
then it would be impossible to construct non-delegatable authorities. The reason for this is simple:

3

if all authority flowed from the capabilities one possessed, then all authority could be delegated
since all capabilities can be delegated. If one believes that method invocation is the only way to
exercise authority, then it appears natural to conclude that capabilities must be the sole source
of authority. However, our contribution is to recognise that there is another way to exercise
authority within the object-capability model, leading to another source of authority. In certain
object-capability implementations this authority cannot be delegated. In these systems we may
harness this source of authority to build general purpose non-delegatable authorities.

1.4 Authority by Method Return

This new source of authority is made visible by recognising the influence an object may have over
its invoker. Depending on the behaviour of the invoker, which is defined by its code, this influence
can be significant. Some objects can wield authority over their invoker by the simple act of what
they return in response to method calls. It is straightforward to reason that if when one object
A invokes another B causing B to invoke C, that A has wielded authority to invoke C. By the
same logic, we argue that if B’s response to an invocation by A causes A to invoke C, that B has
wielded authority to invoke C. When an invoked object influences the behaviour of its invoker,
causing the invoker to exercise some of its own authority, this authority has been wielded by the
invoked object.

Importantly, in many object-capability systems the general authority to reply is not delegat-
able. Examples include systems such as W7 [23] and the Annex Capability System [8] that never
reify this authority, making it impossible to delegate. Other examples include systems such as
E [15] and EROS [25] that reify the authority to reply only to the current invocation in the form
of a “use once” capability. In these systems, an object has no means to delegate the authority
to reply to all such invocations. The only way it may share this authority is by re-delegating
the “use once” reply capability each time it is invoked. Under these circumstances, an object is
forced to actively collaborate at each invocation in order to share its authority, thereby acting in
a manner analogous to a proxy. Hence, even in these systems, the general authority to reply is
not delegatable.

2 Implementing Non-Delegatable Authorities

NDA

Bob

Carol

Figure 2: NDA gives Bob non-delegatable authority to invoke Carol

Figure 2 depicts an object, NDA, that has access to both Bob and Carol. Alice (not depicted)
wishes to give Bob non-delegatable authority to invoke methods on Carol. She has constructed
NDA and given Bob a capability to it that he can use to access Carol. When invoked, NDA
invokes Bob whose response explicitly influences NDA and may cause NDA to invoke Carol.
Bob’s response also influences the method that NDA invokes on Carol and the parameters that
are passed. In order to allow Bob to wield authority effectively, NDA expects him to return 2
items from the invocation. The first denotes the method that NDA is to invoke on Carol, the
second is a list of parameters that NDA will pass to Carol. NDA then invokes the given method
on Carol, passing it the parameters that Bob has specified. In order to allow Bob to receive the

4

results of his invocation, NDA can invoke Bob after it has invoked Carol, passing the results back
to Bob as parameters to the invocation.

Usually, it is expected that Bob will invoke NDA in the first instance when he wishes to invoke
Carol, although this need not be the case. NDA’s purpose is to ensure that no matter who invokes
NDA, Bob will still have control over the invocation of Carol and the first look at the returned
results. Therefore, no matter how far Bob passes his NDA capability, he can never give anyone else
the same authority to access Carol that he has. NDA prevents Bob from being able to delegate his
authority to access Carol even if he delegates his authority to access NDA, because NDA always
keeps Bob interposed. Put another way, NDA ensures that Bob can only share his authority over
Carol in a manner that is analogous to proxying.

A possible implementation for NDA is shown in Figure 3. All code examples throughout this
paper appear in the object-capability language E [15] and assume that objects are co-located. E
was chosen because it is the most mature and unambiguous formalism available for describing
object-capability design patterns. Readers unfamiliar with E may refer to Appendix A, which
contains an overview of the subset of E used in this paper.

def makeNDA(subject, target) :any {

def nda() :any {

nda passes a reference to itself when it invokes the subject

def [methodName, args] := subject.getNDAInvoc(nda)

null method name means ’subject’ is unwilling to invoke ’target’

if (methodName != null){

call ’methodName’ on ’target’, passing ’args’

def response := E.call(target, methodName, args)

nda passes itself again, when invoking the subject

subject.recvNDAResponse(nda, response)

}

}

return nda

}

Figure 3: An implementation of NDA

Using this implementation, Alice can construct a non-delegatable authority for Bob to ac-
cess Carol by calling nda := makeNDA(bob, carol). When invoked, NDA first invokes the
getNDAInvoc() method on Bob to get the method name and parameters to invoke on Carol.
If the method name is non-null, then the method is invoked on Carol before returning the results
to Bob by calling the recvNDAResponse() method. NDA passes a reference to itself when invoking
Bob to allow Bob to infer the authority he is wielding when he returns a non-null method name,
and to allow Bob to tie the response back to the original invocation.

Our NDA implementation necessarily increases the level of complexity. As such, we need
constructs that hide the extra complexity if it is going to be practical. The next section provides
examples of appropriate constructs that can be used to achieve this purpose.

2.1 Wielding Non-Delegatable Authorities

Continuing with the previous example, for Bob to make effective use of NDA, his getNDAInvoc()
method must be implemented so that it only responds with a non-null method name if he actually

5

wishes to invoke a method on Carol at the present time. Bob should also be able to wield many
different NDAs without becoming confused. Bob may achieve this by maintaining an invocation
map. This is a mapping from NDA objects to invocation requests, where an invocation request is
a pair: (method name, method parameters). When wishing to invoke a method using a particular
NDA nda, Bob adds a mapping nda→ (methodName, params) to the invocation map and then
invokes nda. When Bob’s getNDAInvoc() method is invoked, it simply checks the invocation map
for whether there is a mapping for the NDA object passed in. If so, it returns the invocation but
otherwise returns a null method name.

Bob may also maintain a response map from NDA objects to invocation responses, where
an invocation response is simply a capability to the values returned from an invocation. When
invoked, Bob’s recvNDAResponse() method checks whether there is an invocation mapping for the
NDA object nda passed in and if so, adds a mapping nda→ response to the response map before
removing the corresponding mapping from the invocation map. Once Bob’s original invocation of
NDA returns, Bob simply checks the response map in order to access the response returned from
the invocation.

Figure 4 depicts a possible partial implementation for Bob, including his getNDAInvoc() and
recvNDAResponse() methods, as just described.

Using this implementation, Bob can then wield NDA, denoted nda, to call a method methodName

on Carol with the list of arguments args and bind the name results to the response, as follows:

add invocation mapping for ’nda’

ndaInvocs[nda] := makeNDAInvoc(methodName, args)

invoke ’nda’

nda()

retrieve response from response map

results := ndaReturns[nda]

Trying to add more than one invocation mapping for a single NDA invocation will overwrite
the original mapping. Also, trying to invoke NDA without adding a new invocation mapping
will cause getNDAInvoc() to return null method names, preventing any invocation on the target
object. For these reasons, the above three steps should always be performed together.

Of course, Bob can create an object to handle the three steps, ensuring that they are al-
ways performed together while providing a convenient interface for wielding an NDA. A possible
implementation for this object, which we call an NDAWrapper, appears in Figure 5.

Bob can wield an NDAWrapper as if it were a regular capability to the target object. For
example, suppose Alice has given Bob an NDA, denoted nda, for him to access Carol. Bob
can invoke Carol’s incr() and decr() methods, which increment and decrement their argument
respectively, as follows:

def ndaWrapper := makeNDAWrapper(nda)

if (ndaWrapper.incr(4) != 5){

handle error ...

}

if (ndaWrapper.decr(9) != 8){

handler error ...

}

At all times Bob remains interposed, preventing him from delegating his authority to invoke
Carol, despite the fact that Bob can invoke NDAwrapper as if it were a direct reference to Carol and
delegate his capability to NDAWrapper. Passing NDAWrapper is analogous to sharing authority
by proxying and Bob can never give any other subject the same authority that he has over Carol.

Bob has more authority than any other object to whom he may pass NDAWrapper simply
because of who he is. Even if Bob gives every capability that he possesses to some other object

6

def makeBob() :any {

var ndaInvocs := [].asMap().diverge() # invocation map

var ndaReturns := [].asMap().diverge() # response map

def makeNDAInvoc(methodName, args) :any {

def ndaInvoc {

to getMethodName() :any { return methodName }

to getArgs() :any { return args }

}

return ndaInvoc

}

def bob {

... code for Bob’s other methods ...

to getNDAInvoc(nda) :any {

see if this ’nda’ maps to any invocation

if (ndaInvocs.maps(nda)){

def invoc := ndaInvocs[nda]

return [invoc.getMethodName(), invoc.getArgs()]

}

return [null, null]

}

to recvNDAResponse(nda, response) :void {

if no invocation exists for this ’nda’, ignore the response

if (ndaInvocs.maps(nda)){

ndaReturns[nda] := response # add response mapping

ndaInvocs.removeKey(nda) # remove invocation mapping

}

}

}

return bob

}

Figure 4: Partial implementation of Bob

Dennis, he still wields more authority over Carol than what Dennis ever could. While this is
precisely the purpose of an NDA as we explained earlier in section 1.1, it also highlights the
fact that Bob now wields authority that comes to him on the basis of his identity, as well as
the capabilities he possesses. We explore this issue further in Section 3 in which we discuss the
implementation of two forms of identity-based access control.

2.2 Costs of Non-Delegatable Authorities

Each invocation on NDAWrapper results in two invocations on the subject, one invocation on
NDA and one invocation on the target. Hence, the NDAWrapper adds four times the ordinary
overhead of a direct delegatable reference to the target. This overhead might be acceptable for
object references that do not cross machine boundaries but is likely to add significant latency if the
objects are widely distributed. Another cost for distributed environments is decreased reliability,
since the subject (Bob) cannot access the target (Carol) unless the NDA is reachable2. The choice

2We presume that the NDAWrapper is co-located with the subject and is therefore reachable.

7

def makeBob {

var ndaInvocs := [].asMap().diverge() # invocation map

var ndaReturns := [].asMap().diverge() # response map

... other definitions as above ...

def makeNDAWrapper(nda) :any {

def ndaWrapper {

match any method called

match [methodName, args] {

ndaInvocs[nda] := makeNDAInvoc(methodName, args)

nda()

ndaReturns[nda] # implicit return

}

}

return ndaWrapper

}

... definition for bob as above ...

}

Figure 5: NDAWrapper implementation

of whether to place the NDA at the site of the subject or the target has obvious implications for
performance and reliability. Unfortunately, these are the costs that must be paid for the advantages
of being able to express and enforce non-delegatability while hiding its inherent complexity.

2.3 Sharing Non-Delegatable Authorities

Bob has two choices when wishing to usefully share his non-delegatable authority to Carol. Passing
NDA is unlikely to be useful unless Bob also passes capabilities to his invocation and response
maps. Instead, Bob can achieve the same result by passing a capability to NDAWrapper, which
is not only simpler but more reliable. On the other hand, Bob may choose to create a new NDA
to NDAWrapper, in which case he is passing non-delegatable authority to his non-delegatable
authority to Carol. We refer to this as NDA chaining.

NDA chaining might be particularly useful for distributing authority throughout a natural hi-
erarchy, since the NDA chain implicitly models the chain of command. For example, suppose Bob
is Alice’s subordinate and that Bob is responsible for managing Dennis. The chain of command
is Dennis, Bob, Alice. Bob chooses to create a new NDA nda2 for Dennis to his NDAWrapper
ndaWrapper and passes Dennis nda2. Dennis creates a new NDAWrapper ndaWrapper2 to en-
able him to wield nda2 effectively. The chain of invocations that will occur when ndaWrapper2

is invoked are: ndaWrapper2 invokes nda2, nda2 invokes Dennis, nda2 invokes ndaWrapper,
ndaWrapper invokes nda, nda invokes Bob, nda invokes Carol. The advantage is that if Den-
nis chooses to share his authority to Carol using either technique, that he is still held accountable
when it is exercised because he remains within the chain of invocation. Thus, NDA chaining fa-
cilitates auditing. Unfortunately, chaining NDAs necessarily decreases performance and potential
reliability.

3 Identity-Based Access Controls

The NDA works because it binds the authority to invoke methods on the target object (Carol)
directly to its holder (Bob). This binding is provided by two properties of the object-capability

8

system: (1) that when NDA invokes its capability to Bob, that Bob is actually the object that gets
invoked and not some other, and (2) that Bob cannot pass on the general right to reply to all such
invocation to any other object, thereby forcing him to actively collaborate each time NDA invokes
him in order to share his authority to invoke Carol. Binding an authority to some particular object
enables the implementation of identity-based access controls, such as access control lists [11] and
credentials.

We now describe how both might be implemented using NDAs and the underlying principle
of authority by method return. In doing so we do not wish to suggest that either example is
an improvement over existing credential or ACL systems, but only that it is indeed possible to
express these concepts within the object-capability model. To our knowledge, this has never been
demonstrated before.

3.1 Expressing ACL-like Controls

In our example, the NDA gives Bob more authority than he can share simply because of who he
is. It can be thought of as an identity-based access control that allows only Bob general access
to invoke Carol. In this sense, it is similar to an ACL that specifies that (only) Bob is allowed to
invoke any method on Carol3. As with an ACL, Bob may share the authority to invoke Carol by
acting in a manner analogous to a proxy but cannot delegate it to anyone else.

Suppose NDA was extended, however, to replace the single reference to Bob with a list of
references to subjects. When invoked, NDA would take a single parameter denoting the subject
that wishes to wield authority to invoke Carol. At this point, NDA would check that this subject
was in the list and if so, invoke it in the same way that it invoked Bob before. This would provide
the implementation for an ACL-like control that specifies that all of the subjects in the list can
invoke any method on Carol.

NDA can be extended further so that for each subject in the list, NDA also maintains a list of
methods that that subject is allowed to call. NDA now behaves as before, except that when the
subject returns the result of the getNDAInvoc() method, NDA checks that the method name is
on the list of methods that this subject is allowed to call and if not, does not invoke Carol. NDA
now behaves as an ACL-like control that specifies a set of subjects that can access Carol, and
for each subject specifies the methods they are allowed to invoke. As such, NDAs can be used to
implement fine-grained ACL-like access controls for individual objects.

3.2 Expressing Credentials

As a final demonstration of the practicality of the NDA pattern, we now consider a real-world
example applicable to the Annex [8] pervasive computing testbed. The Annex system comprises
a number of devices, each of which hosts their own object-capability implementation in which
password capabilities [2] provide a universal capability representation. Each Annex user is assigned
their own device, which is irreversibly bound to their identity.

Annex requires users to be able to prove their security clearance before being able to access
sensitive or classified services. For example, when Bob attaches his device to a SECRET net-
work router R, he must first prove to R that he is SECRET-cleared before it will forward his
traffic. Bob’s clearance is very much like a non-delegatable authority, except that it does not
refer to any specific object that Bob is to access. Instead, a security clearance is a general state-
ment about Bob’s trustworthiness. Like an NDA, it is inextricably bound to Bob, to whom it
gives authority. The similarity between the user’s clearance and an NDA allows us to implement
clearance-embodying objects, called credentials, using the same idea employed by the NDA.

Credentials are issued and hosted by a security authority (SA). Every device has a SA capability
that they can use to verify the authenticity of credentials. Bob can prove to R that he is SECRET-
cleared by passing it a capability to his credential object. R can then query SA to verify the
authenticity of Bob’s credential and to learn whether Bob is SECRET-cleared. To prevent some

3In this imaginary ACL, we presume that Bob does not also possess the “grant” right and is hence unable to
share his authority to invoke Carol, except by proxying.

9

device that is not SECRET-cleared learning that Bob is SECRET-cleared, SA will only divulge
whether one credential object carries at least the same clearances as another. For R to learn
that Bob is SECRET cleared it has to pass its own credential capability to SA along with Bob’s,
at which point it can infer whether Bob is cleared at least as high as R. Credentials support
methods such as getUserName() and getDeviceID(). This final method returns the unique
identifier assigned to the user’s device at its time of manufacture. This identifier is the only piece
of information required to route network traffic to the device, and allows one to infer its (current)
network address [8].

Just like the NDA object in our example, Bob’s credential object also has a capability that
points to Bob. This capability addresses an object on Bob’s device, known generally as the
UserProxy, since it is responsible for acting as a proxy for Bob. The credential object supports a
method getUserProxy() to retrieve this capability.

Router

Security Authority

Bob's Device

User
Proxy

Bob
Cred.

R

SA

 (3)

(2)

(4) (5)

(6)Bob (1)

Figure 6: Gaining access to a classified network

The process for Bob gaining access to R is depicted in Figure 6 where arrows represent capa-
bilities and numbers denote invocations on the corresponding capability. Bob begins by (1) in-
voking the accessNetwork() method of his UserProxy object, passing it a capability to R. This
capability could have been given to Bob over a number of different distribution channels, includ-
ing being sent on router advertisements. Bob’s UserProxy responds by (2) invoking R, passing
it a capability to Bob’s credential object. R then (3) invokes SA to check the validity of the
credential and whether Bob has adequate clearance before (4) invoking its getDeviceID() and
(5) getUserProxy() methods. R now has enough information to determine Bob’s current network
address as well as a capability to Bob’s UserProxy object. R then (6) invokes Bob’s UserProxy
object, asking it if Bob wishes to access the network. R should pass a capability to itself with this
invocation, which Bob’s UserProxy should compare against the original capability that it invoked.
This invocation is analogous to the getNDAInvoc() invocation that NDA makes on Bob in our
previous example. If Bob’s UserProxy object responds affirmatively, then R gives Bob access to
the network by adding a firewall rule allowing traffic to and from Bob’s network address.

The use of the NDA pattern in this final example prevents an attacker who steals all of Bob’s
capabilities from being able to access the SECRET network on Bob’s credentials. We noted in
the previous section that the NDA prevents Bob from being able to pass on his exact authority,
even if he gives away all of his capabilities. Employing the same pattern here to provide Bob with
authority not embodied in his capabilities naturally prevents this attack from succeeding. The
NDA pattern binds the authority implied by Bob’s SECRET clearance to his identity, so it can
only be stolen by impersonating Bob. Given that no conventional identity-based access control
systems can function in the face of successful impersonation and the infeasibility of impersonation,
we consider this to be outside of our threat model.

10

4 Conclusion

We have presented a means for constructing non-delegatable authorities that can be applied in
certain object-capability systems. Our technique, known as the NDA, is built upon the general
notion of authority by method return and relies on this not being delegatable. NDAs enable
authority to be distributed, even to unconfined subjects, in such a way that the recipient is unable
to share the exact same authority that they have been given with any other subject. This extends
the expressiveness of the object-capability model by allowing one to describe and enforce security
policies that were previously thought impossible, even by capability proponents [16]. These include
those based on the notion of non-delegation and those that grant authority based on a subject’s
identity.

NDAs provide an alternative between having to distribute authority to untrusted subjects
without any means to prevent it from being delegated and having to rule out delegation in general.
Both of these choices can be counterproductive for security. Instead, our NDA mechanism allows
one to make an appropriate choice about how to distribute authority without having to sacrifice
security.

Acknowledgments

We would like to thank the anonymous reviewers for their comments and insights. We would
also like to thank Chris North, Chris Owen, Mark Miller and Kevin Reid who provided valuable
feedback on early drafts of this paper. Any errors or omissions that remain are our own.

References

[1] James P. Anderson. Computer security technology planning study, Volume 2. Technical
Report ESD-TR-73-51, Electronic Systems Division, Air Force Systems Command, Hanscom
Field, Bedford MA 01730, October 1972.

[2] M. Anderson, R. D. Pose, and C. S. Wallace. A password capability system. The Computer
Journal, 29(1):1–8, 1986.

[3] David E. Bell and Leonard J. LaPadula. Secure computer system: Unified exposition and
MULTICS interpretation. Technical Report MTR-2997 Rev. 1, The MITRE Corporation,
Bedford MA 01730, March 1976.

[4] Jack B. Dennis and Earl C. Van Horn. Programming semantics for multiprogrammed com-
putations. Communications of the ACM, 9(3):143–154, March 1966.

[5] James E. Donnelley. Managing domains in a network operating system. In Proceedings of the
Local Networks and Distributed Office Systems Conference, May 1981.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[7] Li Gong. A secure identity-based capability system. In Proceedings of the 1989 IEEE Sym-
posium on Security and Privacy, pages 56–65, 1989.

[8] Duncan Grove, Toby Murray, Chris Owen, Chris North, Jeremy Jones, M. R. Beaumont, and
B. D. Hopkins. An overview of the Annex system. To appear in Proceedings of the 23rd
Annual Computer Security Applications Conference (ACSAC ’07), 2007.

[9] Paul A. Karger. Improving security and performance for capability systems. Technical Report
149, University of Cambridge Computer Laboratory, 1988. (PhD dissertation).

11

[10] Butler Lampson. A note on the confinement problem. Communications of the ACM,
16(10):613–615, 1973.

[11] Butler Lampson. Protection. ACM Operating Systems Review, 8(1):18–24, January 1974.

[12] John Locke. The Second Treatise on Government. 1691.

[13] Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C. Taylor, S. Jeff
Turner, and John F. Farrell. The inevitability of failure: The flawed assumption of security
in modern computing environments. In Proceedings of the 21st National Information System
Security Conference, pages 303–314, 1998.

[14] Catherine J. McCollum, Judith R. Messing, and LouAnna Notargiacomo. Beyond the pale
of MAC and DAC: Defining new forms of access control. In Proceedings of the 1990 IEEE
Symposium on Security and Privacy, pages 190–200, May 1990.

[15] Mark Miller, Marc Stiegler, Tyler Close, Bill Frantz, Ka-Ping Yee, Chip Morningstar,
Jonathan Shapiro, Norm Hardy, E. Dean Tribble, Doug Barnes, Dan Bornstien, Bryce Wilcox-
O’Hearn, Terry Stanley, Kevin Reid, and Darius Bacon. E: Open source distributed capabil-
ities, 2001. see http://www.erights.org.

[16] Mark S. Miller. Communicating conspirators. see http://www.erights.org/elib/

capability/conspire.html.

[17] Mark S. Miller, Chip Morningstar, and Bill Frantz. Capability-based financial instruments.
In Proceedings of Financial Cryptography 2000, February 2000. see http://www.erights.

org/elib/capability/ode/index.html.

[18] Mark S. Miller and Jonathan S. Shapiro. Paradigm regained: Abstraction mechanisms for
access control. In 8th Asian Computing Science Conference (ASIAN03), pages 224–242,
December 2003.

[19] Mark S. Miller, Bill Tulloh, and Jonathan S. Shapiro. The structure of authority: Why
security is not a separable concern. In Multiparadigm Programming in Mozart/Oz: Proceedings
of MOZ 2004, LNCS 3389, 2005.

[20] Mark Samuel Miller. Robust Composition: Towards a Unified Approach to Access Control and
Concurrency Control. PhD thesis, Johns Hopkins University, Baltimore, Maryland, USA, May
2006.

[21] S. A. Rajunas, N. Hardy, A. C. Bomberger, W. S. Frantz, and C. R. Landau. Security in
KeyKOS. In IEEE Symposium on Security and Privacy, 1986, pages 78–85, 1986.

[22] Susan A. Rajunas. The KeyKOS/KeySAFE system design. Technical Report SEC009-01,
Key Logic, Inc., March 1989. see http://www.cis.upenn.edu/∼KeyKOS.

[23] Jonathan A. Rees. A security kernel based on the lambda-calculus. Technical Report AI
Memo No. 1564, MIT, 1996.

[24] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1208–1308, September 1975.

[25] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: A fast capability
system. In SOSP ’99: Proceedings of the Seventeenth ACM Symposium on Operating Systems
Principles, pages 170–185, 1999.

[26] Jonathan S. Shapiro and Samuel Weber. Verifying the EROS confinement mechanism. In
Proceedings of the IEEE Symposium on Security and Privacy, 2000, pages 166–176, 2000.

12

[27] Alfred Spiessens. Patterns of Safe Collaboration. PhD thesis, Université catholique de Lou-
vain, Louvain-la-Neuve, Belgium, February 2007.

[28] Fred Spiessens and Peter Van Roy. A practical formal model for safety analysis in capability-
based systems. In TGC 2005, LNCS 3705, pages 248–278, 2005.

[29] Marc Stiegler. A picturebook of secure cooperation, 2004. see http://www.skyhunter.com/

marcs/SecurityPictureBook.ppt.

[30] Nick Szabo. The origins of the non-delegation doctrine. see http://szabo.best.vwh.net/

delegation.pdf.

[31] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W. Felten. Extensible security
architectures for Java. In Proceedings of the Sixteenth Symposium on Operating Systems
Principles, pages 116–128, 1997.

13

A An Overview of E

In this appendix we include an overview of the subset of E used in this paper. E is a dynamically
typed, lexically scoped object language. The def keyword is used to define an immutable variable
and the var keyword is used to define a mutable variable:

def five := 5

var num := 5

num := num + 1

E has no concept of a class like other object-oriented languages such as Java. Instead, the
entire definition of an object is given at instantiation. The following code defines an object point,
with two methods, getX() and getY(), each of which can return an object of any type. The
values x and y (below) must be in the lexical scope for the code to be correct.

def point {

to getX() :any { return x }

to getY() :any { return y }

}

An object with a single method run is called a function. The following shorthand defines the
object makePoint with a single method run(x, y), which returns a new point object.

def makePoint(x, y) :any {

def point {

to getX() :any { return x }

to getY() :any { return y }

}

return point

}

The shorthand makePoint(3,4) is equivalent to writing makePoint.run(3,4). We can now
create a new point, myPoint, with coordinates (3,4) as follows:

def myPoint := makePoint(3,4)

When defining an object, the match keyword can be used to define a method that matches an
arbitrary invocation. The expression E.call can be used to send an arbitrary invocation to an
object. For example, the following code defines an object, proxy, which forwards its invocations
to the object target.

def proxy {

match [methodName, args] {

E.call(target,methodName,args)

}

}

E has primitive support for lists and maps. The expression [] creates a new empty immutable
list. The diverge() method can be applied to an immutable list (or map) to return a mutable list
(or map) whose initial contents match the contents of the immutable list (or map). For example,
the following code defines a mutable list myList of two elements, 3 and 4.

def myList := [3, 4].diverge()

An empty mutable map can be created using the expression [].asMap().diverge(). New
mappings are added using the following convenient syntax.

def myMap := [].asMap().diverge()

myMap[0] := 1 # have 0 map to 1

myMap[1] := 2 # have 1 map to 2

Mappings may be queried with similar convenience. The expression myMap[0] would evaluate
to 1 above. Similarly, myMap[1] would evaluate to 2.

14

