
Probabilistic Automata with Parameters

Rastislav Lenhardt

Supervisors: Dr James Worrell, Dr Joël Ouaknine

Oriel College, Oxford, 2009

Submitted in partial fulfilment of the requirements for the

Degree of Master of Science

in

Mathematics and the Foundations of Computer Science

at the

University of Oxford

ii

Acknowledgements

I am grateful to my supervisors James Worrell and Joël Ouaknine for the

great topic and invaluable guidance, support, discussions and suggestions

during my work on the dissertation.

I would also like to thank Stephan Kreutzer a lot for guiding me through

this master’s program.

Finally I appreciate Engineering and Physical Sciences Research Coun-

cil, Konto Orange (Orange foundation), Nadácia Tatrabanky (Tatrabanka

foundation) and Nadácia SPP (SPP foundation) for helping me finance my

studies at Oxford.

iii

Abstract

Probabilistic automata were introduced by Rabin in early 1960s. We ex-

tend this concept by allowing transition probabilities among the states to

be parametric. Two main decision problems are considered: the language

equivalence and bisimulation of probabilistic automata.

One of our main results is a new one sided error Monte Carlo randomized

polynomial-time algorithm for the universal equivalence. On the other hand

for the existential equivalence we show that it is NP-Hard and for the first-

order logic equivalence it is PSPACE-Hard. But in both cases it is still

decidable.

We present also the polynomial time algorithm for the universal bisimu-

lation and show that the existential bisimulation is NP-Complete.

Keywords: probabilistic automata, parameters, language equivalence,
bisimulation

Contents

1 Introduction 1

2 Probabilistic Automata 4
2.1 Definitions . 4
2.2 Properties . 6
2.3 Tzeng’s algorithm . 7
2.4 Probabilistic automata with parameters 11

3 Equivalence of PA is P-Complete 13

4 Universal equivalence 18
4.1 Preliminaries . 18
4.2 1MC randomized polynomial time algorithm 19
4.3 Derandomization of the algorithm 25

5 Existential equivalence 26
5.1 Existential equivalence is NP-Hard 26
5.2 Decidability and hardness of the problem 28

6 First-order logic equivalence 36
6.1 Collins algorithm overview . 37
6.2 First-order logic equivalence is PSPACE-Hard 38

7 Bisimulation of Probabilistic Automata 40
7.1 Partition refinement algorithm for testing bisimulation 42
7.2 Universal parametric case . 43
7.3 Existential parametric case . 45

8 Summary and future work 50

A Elimination of non-free variables 53

iv

Chapter 1

Introduction

The concept of finite state machine was first used to model processes. Soon

it became very popular and used a lot everywhere. It is especially useful as

a model for design and verification of algorithms and hardware.

Rabin and Scott introduced new extended version of deterministic finite

automata and presented solutions to many basic decision problems [RS59].

First they added the non-determinism and then in 1963 Rabin introduced in

[Rab63] the concept of probabilistic automata. Nowadays they are used a lot

in natural language processing, string processing, compilers, verification and

modelling of the non-deterministic systems.

A probabilistic automaton is a finite state automaton with probabilistic

transitions among the states. We can say that it lies somewhere between

completely deterministic finite automata (DFA) and non-deterministic finite

automata (NFA). So it is reasonable to expect that decision problems for

probabilistic automata will be at least as hard as for DFA, which are in fact

just special case of the probabilistic automata with transition probabilities 0

and 1 only, and they might be easier than for NFA.

The most prominent decision problem, considered in the major part of

this thesis, is the language equivalence. It asks if two automata accept the

same language (in the case of probabilistic automata we ask if any string

is accepted with the equal probability by both automata). There is a large

gap between DFA and NFA. There is a polynomial-time algorithm for DFA

1

CHAPTER 1. INTRODUCTION 2

equivalence problem (it was shown it is NLOG SPACE-Complete [CH92]).

On the other hand NFA equivalence is PSPACE-Complete [GJ90]. Now we

know that the language equivalence problem for probabilistic automata is in

the complexity much closer to DFA. In early nineties W.G. Tzeng presented

a polynomial-time algorithm [Tze92] based on finding basis of all reachable

probability distributions over the states.

Another decision problem we consider is bisimulation. It is stronger than

the language equivalence, because we are not interested only in the accepted

language, but also in the structure. It is one of the best tools to minimize

number of states in automaton which accepts the same language. There is

O(n log n) Hopcroft algorithm [Hop71] to transform DFA to minimal DFA.

Since there is a unique minimal DFA automaton, we can use this algorithm

also to check the language equivalence. On the other hand if we want to find

minimal NFA it is much harder, it is PSPACE-Complete problem [JR93]

[RS97]. In case of probabilistic automata, there is O(mn2) algorithm [Bai96]

and an even faster O(m log n) algorithm [DHS+03] for probabilistic bisimu-

lation.

The next interesting problem is the language emptiness. For both DFA

and NFA we can simply perform breadth first search to decide the problems.

It was shown that they are NLOG SPACE-Complete [Jon75]. The same

method can be used to decide if there is a string accepted by probabilistic

automaton with non-zero probability. However when we ask if there is a

string accepted with the probability greater than (where 0 < < 1), the

so called threshold problem (it is natural extension of the language emptiness

for probabilistic automata), it is undecidable [Wor08]. It is discussed with

the implications in Chapter 2.

Outline

In Chapter 2 we define probabilistic automata and also introduce its para-

metric extension. After that we present Tzeng’s algorithm for the language

equivalence of probabilistic automata with slightly improved time complexity.

In the next chapter we give a proof that this decision problem is PTIME-

CHAPTER 1. INTRODUCTION 3

Complete and since it is widely believed that PTIME-Complete problems are

inherently sequential, it is probably not parallelizable effectively.

Next we consider universal, existential and first-order logic equivalence of

probabilistic automata with parameters in Chapters 4, 5 and 6. In short, the

universal problem asks if probabilistic automata are equivalent for all feasible

values of parameters, the existential problem asks if there exist feasible values

of parameters such that automata are equivalent and the first-order logic

problem asks if the given first order logic statement about the equivalence of

probabilistic automata is true.

In Chapter 4 we present for universal equivalence a new one-sided error

Monte Carlo randomized algorithm that is asymptotically as fast as Tzeng’s

algorithm for non-parametric automata. It is based on polynomial identity

testing and if we fix number of parameters we can derandomize it to get

polynomial-time deterministic algorithm.

Next we show that existential and first-order logic equivalence are much

harder in Chapters 5 and 6. They are still decidable, but we present reduc-

tions which prove that they are respectively NP-Hard and PSPACE-Hard.

We give special attention to existential equivalence over the rationals, i.e.

if there exist rational feasible values of parameters such that automata are

equivalent. We give a proof that it is as hard as an open extended tenth

Hilbert problem which asks if a polynomial with integer coefficient has a

rational root.

In Chapter 7 we examine bisimulation of probabilistic automata. After

recalling the non-parametric algorithm, we give a new polynomial time algo-

rithm in the universal case. We also show an NP algorithm in the existential

case and prove that this problem is NP-Complete so we cannot hope to do

much better.

We conclude with the summary of results and suggestions for future work.

In the whole thesis we assume that all basic arithmetic operations, i.e.

+, −, ∗, /, over ℚ are performed in constant time. We also assume that all

constants used in input automata are rational numbers.

Chapter 2

Probabilistic Automata

Probabilistic automata are machines with finitely many states and probabilis-

tic transitions among them. Any input string x is accepted with a certain

probability.

In this chapter we define more precisely what Probabilistic automata are

and introduce necessary notation with the aim to make it as consistent as

possible with [Tze92]. We show the basic properties of these automata and

very important Tzeng’s algorithm. Moreover we define parametric extension

of Probabilistic automata.

2.1 Definitions

Definition 2.1. A vector is stochastic if all its entries are non-negative and

sum to 1.

Definition 2.2. A matrix is stochastic if all its row vectors are stochastic.

Definition 2.3. Let span be the function mapping a set of vectors to the

vector space generated by them.

Let ∣x∣ be the length of string x, � be an empty string and �(i, j) be the

set of all i× j dimensional stochastic matrices.

Definition 2.4. A probabilistic automaton U is a 5-tuple (S,Σ,M, �, F),

where S = {s1, s2, . . . sn} is a finite set of states, Σ is an input alphabet, M

4

CHAPTER 2. PROBABILISTIC AUTOMATA 5

is a transition function from Σ into �(n, n), � is an initial distribution over

states, and F ⊆ S is a set of accepting states.

The value M(�)[i, j] is the probability that automaton moves from the

state si to the state sj after reading � ∈ Σ. We can extend the domain of

function M from Σ to Σ∗: M(x�) = M(x)M(�) for x ∈ Σ∗ and � ∈ Σ. Note

that then M(�) is the identity matrix.

We represent final states by n dimensional row vector �F such that �F [i] =

1 iff si ∈ F and 0 otherwise.

Definition 2.5. The state distribution induced by string x ∈ Σ∗ is

PU(x) = �M(x)

In other words PU(x)[i] is the probability that U moves to si after reading

string x with the initial distribution �.

The probability for U to accept x ∈ Σ∗ is therefore PU(x)(�F)T . If

we want, we can represent initial state of the automaton by setting � =

(1, 0, . . . , 0).

Definition 2.6. The language accepted by probabilistic automaton U is

LU = {(x, PU(x)(�F)T) : x ∈ Σ∗}

Example 2.1. Consider an automaton with two states on Σ = {0, 1} with

the initial distribution � = (1, 0) and transition matrices:

M(0) =

(
1 0

1/2 1/2

)
M(1) =

(
1/2 1/2

0 1

)

What is the state distribution after reading string x = �1�2 . . . �n, where

�i ∈ Σ? It is (1− p, p), where p = 0.�1�2 . . . �n in binary.

Definition 2.7 (Language equivalence). Probabilistic automata U1 and U2

are said to be language equivalent (for short, we use only equivalent in the

rest of the text) if for all strings x ∈ Σ∗ the two automata accept x with the

CHAPTER 2. PROBABILISTIC AUTOMATA 6

same probability, i.e.

PU1(x)(�F1)
T = PU2(x)(�F2)

T for all x ∈ Σ∗

Language inclusion

We show later in this chapter the algorithm to solve the language equivalence

problem. The language inclusion problem is more problematic.

Definition 2.8 (Language inclusion). Language accepted by automaton U1

is said to be the subset of language accepted by automaton U2 if

PU1(x)(�F1)
T ≤ PU2(x)(�F2)

T for all x ∈ Σ∗

Let L be the language of probabilistic automaton which accepts each

string with the probability . Then the language inclusion problem LU ≤ L

is equivalent to the threshold problem (natural extension of the language

emptiness for probabilistic automata).

Definition 2.9. The threshold problem is: given probabilistic automaton U

and 0 < < 1, does there exist a string x ∈ Σ∗ such that it is accepted with

probability greater than , i.e. PU(x)(�F)T > ?

It was shown that the threshold problem is undecidable [Wor08] and so

also the language inclusion is undecidable.

2.2 Properties

Lemma 2.1. Probabilistic automata U1 and U2 are equivalent if for all

strings x of length at most n1 + n2 − 1 the two automata accept x with equal

probability.

Proof. This was shown in [Paz71]. We can also see it from the Tzeng’s

algorithm described below since we can have at most n1 + n2 internal nodes

and we have to have at least one internal node corresponding to a string of

length 0, one to a string of length 1, etc.

CHAPTER 2. PROBABILISTIC AUTOMATA 7

Corollary 2.2. Lemma 2.1 implies that the equivalence problem is in the

complexity class coNP .

2.3 Tzeng’s algorithm

The algorithm was shown in [Tze92]. The basic idea is to combine two input

automata into one, find the basis of a span of reachable state distributions

and then to check now only for basis that the same proportion is in the

accepting states in both automata.

Definition 2.10. Let U1 = (S1,Σ,M1, �1, F1) and U2 = (S2,Σ,M2, �2, F2)

be two probabilistic automata with n1 and n2 states. We define combination

of automata U1⊕U2 to have set of states the disjoint union of S1 and S2. Its

transition function is

MU1⊕U2(x) =

(
M1(x) 0n1×n2

0n2×n1 M2(x)

)

so we have MU1⊕U2(x�) = MU1⊕U2(x)MU1⊕U2(�). We also define

PU1⊕U2(x) = [�1, �2]MU1⊕U2(x)

Now we can reformulate equivalence of two Probabilistic automata U1

and U2 to be if and only if

∀x ∈ Σ∗, PU1⊕U2(x)[�F1 ,−�F2]
T = 0

Definition 2.11. Let H(U1, U2) = {PU1⊕U2(x) : x ∈ Σ∗}.

Lemma 2.3. Let V be a basis for span(H(U1, U2)). Then probabilistic au-

tomata U1 and U2 are equivalent if and only if ∀v ∈ V, v[�F1 ,−�F2]
T = 0.

Proof. It follows from the fact that each state distribution (for any input

string x) is a linear combination of basis vectors.

CHAPTER 2. PROBABILISTIC AUTOMATA 8

Note that V has at most n1 + n2 elements, because the dimension of

span(H(U1, U2)) is at most n1 + n2. So if we are able to find basis V of

span(H(U1, U2)) in polynomial time then we can solve the equivalence prob-

lem for probabilistic automata in polynomial time.

Description of the algorithm

Without loss of generality we consider Σ = {0, 1}. We define a binary

tree T , such that its nodes are strings x ∈ Σ∗. Its root is node(�) and

each node(x) has two children: node(x0) and node(x1). Moreover, for each

node(x) we have corresponding state distribution induced by string x on

automata: PU1⊕U2(x).

We find the basis V of span(H(U1, U2)) by pruning the tree T . Initially V

is empty. We visit nodes of T in breadth-first search. If a state distribution for

the visited node is linearly independent of V we add it to the set V . Otherwise

we prune the subtree of the visited node. We terminate when all nodes are

either visited or pruned. We prove in the next part that the resulting set V

forms a basis of span(H(U1, U2)). If we choose another method of traversing

we will get other basis, but it will not affect the results. Finally, at the end

of the Algorithm 2.3.1 we check if the condition from Lemma 2.3 holds.

Correctness

Let T ′ be the tree formed by visited (i.e. not pruned) nodes of T . T ′ has at

most n1 + n2 internal nodes (the nodes whose corresponding state distribu-

tions are in V), because ∣V ∣ ≤ n1 +n2 and at most n1 +n2 + 1 leaves (nodes,

where subtrees were pruned, because corresponding state distributions were

linearly dependent with V).

We prove that vectors in the resulting set V forms a basis of span(H(U1, U2)).

Let Vi = {PU1⊕U2(xy) : node(x) is a leaf, ∣y∣ = i}. So set V0 contains state

distributions corresponding to all the leaves (of T ′) and sets Vi for i ≥ 1

contains all the state distributions of nodes of T which have distance i from

a leaf.

CHAPTER 2. PROBABILISTIC AUTOMATA 9

Algorithm 2.3.1 Tzeng’s algorithm for equivalence of probabilistic au-
tomata
Require: U1 = (S1,Σ,M1, �1, F1), U2 = (S2,Σ,M2, �2, F2)

1: Set V to be the empty set
2: Set Q to be the empty queue
3: Add node(�) to Q
4: while Q is not empty do
5: take node(x) from the queue Q
6: if PU1⊕U2(x) ∕∈ span(V) then
7: add node(x0) to Q
8: add node(x1) to Q
9: add vector PU1⊕U2(x) to V

10: end if
11: end while
12: if ∀v ∈ V, v[�F1 ,−�F2]

T = 0 then
13: return ’yes’
14: else
15: return ’no’
16: end if

Note that

span(V ∪
∞∪
i=0

Vi) = span(PU1⊕U2(x) : x ∈ Σ∗) = span(H(U1, U2))

We will prove that ∀i ≥ 0, Vi ⊆ span(V) by induction.

The base case V0 ⊆ span(V) follows from the algorithm. Let V =

{v1, . . . vr}. Suppose that Vi ⊆ span(V) and for any x such that node(x)

is a leaf and for any y such that ∣y∣ = i and for any � ∈ Σ we have:

PU1⊕U2(xy�) = PU1⊕U2(xy)MU1⊕U2(�) = (
r∑
i=1

civi)MU1⊕U2(�) =

=
r∑
i=1

ci(viMU1⊕U2(�)) ∈ span(V ∪ V0) = span(V)

as required.

CHAPTER 2. PROBABILISTIC AUTOMATA 10

leaf
 01

leaf
 10

leaf
 11

leaf
 000

leaf
 001

v1

v2
 0

v3
 1

v4
 00

Figure 2.1: Example of tree T ′

Complexity

The vector PU1⊕U2(x�) for node(x�) is computed using the value for its

parental node using the fact that PU1⊕U2(x�) = PU1⊕U2(x)MU1⊕U2(�). It can

be done in time O((n1 + n2)2) O(n1 + n2) times contributing overall by time

O((n1 +n2)3). To verify if a set of n1 +n2 vectors is linearly independent, we

can use Gaussian elimination or check if the matrix is singular. We can do

it in time O((n1 + n2)3). We need to verify linear independence O(n1 + n2)

times, so the overall complexity will be O((n1 + n2)4).

We improved this complexity result from [Tze92] to O((n1 +n2)3). When

we use Gaussian elimination then by reusing the previously computed trian-

gular form, even if we need to verify linear independence O(n1 + n2) times,

the overall complexity will stay O((n1 + n2)3).

Remark 2.1. Tzeng’s algorithm works perfectly well also if some transition

weights are outside of the range [0, 1], negative or not sum to 1.

CHAPTER 2. PROBABILISTIC AUTOMATA 11

2.4 Probabilistic automata with parameters

Informally, we allow transition probabilities among states to be parametric.

We allow them to be linear functions (with rational coefficients) of parame-

ters. For example 3 + 2y1 − 1
2
y3.

Definition 2.12. A probabilistic automaton with parameters U is a 5-tuple

(S,Σ,M, �, F), where S = {s1, s2, . . . sn} is a finite set of states, Σ is an

input alphabet, M is a transition function from Σ into �(n, n), � is an initial

distribution over states, and F ⊆ S is a set of accepting states. Transition

probabilities defined by a transition function M can be linear functions (with

rational coefficients) of parameters y = (y1, . . . yk) such that −1 ≤ yi ≤ 1.

With each probabilistic automaton with parameters U , we have associated

a matrix A and a vector b such that Ay ≤ b is a set of constraints for

parameters y that are directly implied by

∙ bounds on parameters: −1 ≤ yi ≤ 1

∙ the necessity of transition probabilities being between 0 and 1

∙ the necessity of transition matrices M(�) being stochastic, i.e. the

outgoing probabilities for any state s after reading any input symbol �

must sum to 1.

Note that in condition −1 ≤ yi ≤ 1 we can exchange 1 for any other

constant C without changing the power of the automaton. We introduce

these bounds on parameters to make things simpler.

We could also allow extending constraints forced by the automata by

some additional external constraints of the form cyT ≤ d, where c is a row

vector and d is a constant. It would not alter any results and it is possible

to encode them straight into automata.

Definition 2.13. Let U be a probabilistic automaton with parameters. We

denote by U(y) a non-parametric probabilistic automaton which we get from

U by plugging in the values of parameters y.

CHAPTER 2. PROBABILISTIC AUTOMATA 12

Example 2.2. We show an example of Probabilistic automaton with param-

eters U (see Figure 2.2) and all the necessary constraints for parameters. In

our case S = {q1, q2, q3, q4}, Σ = {�}, � = (1, 0, 0, 0), F = {q3} and

M(�) =

⎛⎜⎜⎜⎜⎝
0 y 0 1/2 + z − y
0 0 1/2 + y 1/2− y
0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠
Probability of accepting an empty string � and string � is 0 and proba-

bility of accepting string �� . . . � for ∣�� . . . �∣ ≥ 2 is y(1/2 + y).

We have the following constraints:

− 1 ≤ y, z ≤ 1

0 ≤ 1/2 + y ≤ 1

0 ≤ 1/2− y ≤ 1

0 ≤ y ≤ 1

0 ≤ 1/2 + z − y ≤ 1

y + 1/2 + z − y = 1

y + 1− y = 1

It can be seen that they are equivalent to 0 ≤ y ≤ 1/2 and z = 1/2.

q3

1

q1

q2
y

q4
1/2+z-y

1/2+y

1/2-y 1

Figure 2.2: Example of Probabilistic automaton with parameters

Chapter 3

Equivalence of Probabilistic

Automata is P-Complete

In this chapter we consider probabilistic automata without parameters and

show that the problem of their equivalence is P-Complete. It is widely be-

lieved that P-Complete problems are inherently sequential, i.e. not in the

classes NCk of problems that can be solved by parallel RAMS in polynomial

time, and so this problem is probably not parallelizable effectively.

Theorem 3.1. The equivalence problem for Probabilistic Automata is P-

Complete.

Proof. Since we have a polynomial-time algorithm which solves this problem,

it is in the complexity class P. Recall that if one problem is P-Hard and is

LOGSPACE reducible to the second problem then the second problem is

also P-Hard. To prove P-Hardness of equivalence of Probabilistic Automata

we show a LOGSPACE reduction from the monotone boolean circuit value

problem, mCVP for short, which is well known to be P-Complete (see for

example [GR88]).

Definition 3.1. A monotone boolean circuit is a directed acyclic graph that

contains input nodes with indegree 0 and internal nodes with indegree 2.

There is exactly one output node, with outdegree 0. Input nodes are assigned

boolean values (i.e. either 0 or 1) and all internal nodes are labelled with ei-

ther ∨ or ∧ which describes the operation (either disjunction or conjunction)

13

CHAPTER 3. EQUIVALENCE OF PA IS P-COMPLETE 14

which is used to compute the value of this node from two input values. The

value of output node is the output value of the circuit.

For example see Figure 3.1, where description of nodes is in the form “#

index of node, label of node”.

#7, 0

#5, v

#2, ^ #3, v

#6, 1

#4, 0

#1, ^

Figure 3.1: An instance of mCVP

Definition 3.2. The monotone boolean circuit value problem is asking if the

output of a given circuit is 1.

Let us consider an instance of mCVP in the form as in [SJ01]. Let V =

{1, . . . n} be a set of nodes. For every node let l(i), r(i) to be nodes such that

in our graph there are edges l(i) → i and r(i) → i. Let an input instance

of mCVP consists of number of nodes n and of values l(i), r(i) and label(i)

(i.e. one of 0, 1,∨,∧) for each node i.

CHAPTER 3. EQUIVALENCE OF PA IS P-COMPLETE 15

Reduction

Our goal is to construct from an instance of mCVP a probabilistic automaton

U1 which is equivalent to probabilistic automaton U2 which accepts anything

with probability 0 if and only if the output value of mCV P is 0.

We construct probabilistic automata from an instance of mCVP in the

following way:

∙ The input alphabet is Σ = {�}. From now on when we say transition

we mean transitions after reading an input symbol �.

∙ The set of states of automaton U1 is S1 = {si, ei ; for 1 ≤ i ≤ n} ∪
{qbad}. So we have one start state si and one end state ei for each node

i ∈ V .

∙ For input nodes i we define transition probability si → ei to be

– 0 if label(i) = 0

– 1 if label(i) = 1

∙ For non-input nodes i with label(i) = ∨ we define the following transi-

tion probabilities:

– 1/2 for transition si → sl(i)

– 1/2 for transition si → sr(i)

– 1 for transition el(i) → ei

– 1 for transition er(i) → ei

∙ For non-input nodes i with label(i) = ∧ we define the following transi-

tion probabilities:

– 1 for transition si → sl(i)

– 1 for transition el(i) → sr(i)

– 1 for transition er(i) → ei

∙ All non-defined transitions from any state go to a special state qbad

CHAPTER 3. EQUIVALENCE OF PA IS P-COMPLETE 16

∙ Let k be an output node. Then ek is the only one accepting state and

the whole initial distribution is in state sk.

∙ We construct automaton U2 such that it accepts any string with prob-

ability 0. For example it can have just one non-accepting state.

Correctness

First note that the above reduction is LOGSPACE. We prove by induction

(from the bottom to the top of an mCVP instance) that the probability of

getting from a state si to a state ei (after one or more transitions) is zero if

and only if the evaluated value of node i of mCVP is 0.

If label(i) ∈ {0, 1} then the statement is true.

If label(i) = ∨ then, by the construction above, the probability of getting

from the state si to the state ei is non zero if and only if probability of getting

from sl(i) to el(i) is non zero or if probability of getting from sr(i) to er(i) is

non zero, which is by induction exactly when at least one of the states l(i)

and r(i) is evaluated to 1.

Similarly if label(i) = ∧ then, by the construction above, the probability

of getting from the state si to the state ei is non zero if and only if probability

of getting from sl(i) to el(i) is non zero and if probability of getting from sr(i)

to er(i) is non zero, which is by induction exactly when both of the states l(i)

and r(i) are evaluated to 1.

Let k be an output node. It follows that probability of getting from the

only initial state sk to the only accepting state ek is 0 if and only if the

evaluated value of the output node (so also the circuit) is 0. Moreover since

automaton U2 does accept any string with probability 0, it is if and only if

automata U1 and U2 are equivalent.

CHAPTER 3. EQUIVALENCE OF PA IS P-COMPLETE 17

e 1

s 1

s 2

1

s 4

1

e 2

s 3

1

s 5

1/2

s 6

1/2

e 3

1

s 7

1/2 1/2

e 7

0

e 6

1

e 5

1

1 1

1

1

e 4

0

1

Figure 3.2: Reduction to automaton U1 from mCVP in Figure 3.1

Chapter 4

Universal equivalence of

probabilistic automata with

parameters

Universal equivalence of probabilistic automata with parameters U1 and U2

is a decision problem asking if for all feasible values of parameters y =

(y1, y2, . . . , yk) by plugging them into automata we get equivalent proba-

bilistic automata, i.e. if

LU1(y) = LU2(y) for all feasible values of y

4.1 Preliminaries

Theorem 4.1. Probabilistic automata with parameters U1 and U2 are equiv-

alent for all feasible values of parameters y = (y1, y2, . . . , yk) if and only if

Q(y) =
∑

x∈Σ∗,∣x∣≤n1+n2−1

(PU1(x)(�F1)
T − PU2(x)(�F2)

T)2 = 0

for all feasible values of parameters y.

Proof. Fix an instantiation of parameters. According to Lemma 2.1 proba-

bilistic automata U1 and U2 are equivalent if and only if any string x of length

18

CHAPTER 4. UNIVERSAL EQUIVALENCE 19

at most n1+n2−1 is accepted by both of them with equal probability. In other

words, it is true when for any such string x it is true that PU1(x)(�F1)
T −

PU2(x)(�F2)
T = 0 for all feasible parameters y. Note that if this is true

for all such strings x then also the whole
∑

x∈Σ∗,∣x∣≤n1+n2−1(PU1(x)(�F1)
T −

PU2(x)(�F2)
T)2 is equal to 0. On the other hand, if there is a string x′ such

that PU1(x
′)(�F1)

T−PU2(x
′)(�F2)

T ∕= 0 then (PU1(x
′)(�F1)

T−PU2(x
′)(�F2)

T)2 >

0. It follows that the whole sum is then also positive.

Theorem 4.2. (Schwartz-Zippel Theorem) Let Q(y1, . . . yk) ∈ F [y1, . . . , yk]

be a multivariate polynomial of total degree d over the field F . Fix any finite

set S ⊆ F , and let r1, . . . rk be chosen independently and uniformly at random

from S. Then

ℙ[Q(r1, . . . rk) = 0∣Q(y1, . . . yk) ∕≡ 0] ≤ d

∣S∣

Proof. Proof can be found for example in the textbook [MR95].

4.2 1MC randomized polynomial time algorithm

Our algorithm 4.2.1 for equivalence of probabilistic automata with parame-

ters is based on the polynomial identity testing. Theorem 4.1 tells us that

automata U1 and U2 are equivalent iff the given polynomial Q(y) = 0 for all

feasible parameters y. So we can randomly sample feasible values of y (we

show later how to do this) and then perform polynomial identity test.

Let y′′ be randomly sampled feasible value of parameters y. The prob-

lem is that we cannot evaluate the polynomial Q(y′′) directly as it has an

exponential number of terms in general. However we can run in polynomial-

time Tzeng’s algorithm for equivalence of probabilistic automata instead,

which can determine if for the given y′′ the two automata are equivalent, i.e.

whether polynomial Q(y′′) = 0.

CHAPTER 4. UNIVERSAL EQUIVALENCE 20

Algorithm 4.2.1 1MC randomized polynomial time algorithm for equiva-
lence of probabilistic automata with parameters

Require: U1 = (S1,Σ,M1, �1, F1), U2 = (S2,Σ,M2, �2, F2)
Require: Ay ≤ b are constraints on parameters y from U1, U2

1: if LinearProgramming(Ay ≤ b,minimize y1) has no feasible solution
then

2: return ’constraints on parameters are inconsistent’
3: end if
4: y′ ← feasible solution of LinearProgramming(Ay ≤ b,minimize y1)
5: Set V to be an empty set
6: V ← neighbour vertices of vertex y′ by using the method in Simplex

algorithm
7: Set R to be an integer array of the same size as V
8: for all R[i] ∈ R do
9: R[i]← random number between 0 and 4(∣S1∣+ ∣S2∣), inclusive

10: end for
11: y′′ ← y′ +

∑
iR[i](V [i]− y′)

12: Set U ′1 to be U1 given that parameter values are y′′

13: Set U ′2 to be U2 given that parameter values are y′′

14: if ProbabilisticAutomataWitℎoutParametersEquivalent(U ′1, U
′
2) then

15: return ’equivalent’
16: else
17: return ’not equivalent’
18: end if

4.2.1 Sampling

In this section we show how we can sample efficiently random feasible pa-

rameter values y′′.

Recall that y = (y1, y2, . . . , yk) and consider a matrix A and a vector b,

which contain all linear constraints on parameters from both automata U1

and U2 in the form Ay ≤ b. Let L be the subset of the k-dimensional Eu-

clidean space spanned by the variables y1, . . . , yk, which contains all feasible

solutions of the system of linear inequalities Ay ≤ b. Then 0 ≤ dim(L) ≤ k

(number of free variables is at most k). It can be lower than k if there are

some dependencies across variables (for example 2y1 = 1− y3 or y2 = 0.25).

Note that L is a convex polytype since it is an intersection of half-spaces.

Set m = dim(L) and relabel the variables such that y1, y2, . . . ym are free

CHAPTER 4. UNIVERSAL EQUIVALENCE 21

variables (a variable is free if its value is not determined by setting the values

of previous variables) and then ym+1, . . . yk are non-free variables. There is a

deterministic way how to determine these dependencies across variables (see

Appendix A for details). We can find these dependencies across variables

step by step to rewrite the whole system of inequalities and polynomial Q(y)

only in variables y1, . . . , ym.

Theorem 4.3. Polynomial Q(y1, y2, . . . ym) = 0 for all feasible values y1, . . . , ym

if and only if Q(y1, y2, . . . ym) ≡ 0 (i.e. for all y1, . . . , ym).

Proof. It follows directly from the fact that if two polynomials Q1, Q2 ∈
ℝ[y1, . . . ym] are equal on a convex m-dimensional polytype C ⊂ ℝm then

they are equal on the whole space ℝm.

Corollary 4.4. There is a deterministic exponential time algorithm which

can decide if two probabilistic automata with parameters are equivalent.

Proof. First we eliminate non-free variables (see Appendix A) and then we

check if the polynomial Q(y1, . . . ym) ≡ 0 by expanding it and comparing the

coefficients.

Linear Programming and Simplex algorithm overview

Definition 4.1. An instance of Linear Programming (LP) consists of a set

of linear inequalities Ay ≤ b and the objective function f(y) = cTy for some

vector c ∈ ℝn. The goal is to find the solution of Ay ≤ b with minimal value

of the objective function.

There are three possible outcomes when solving an instance of Linear

Programming:

1. LP has an optimal solution

2. LP has no solutions

3. LP has solutions, but none is optimal (when f is unbounded on Ay ≤ b)

Lemma 4.5. In our algorithm 4.2.1 only first two outcomes are possible.

CHAPTER 4. UNIVERSAL EQUIVALENCE 22

Proof. It follows from the definition of Probabilistic Automata with parame-

ters, from the constraints on variables: −1 ≤ yi ≤ 1. Therefore L is bounded

and also values of f on it.

The short overview of Simplex algorithm follows. The detailed reference

with careful explanation and proofs can be found for example in [CLRS01].

Simplex algorithm

∙ The set of feasible solutions of the system of linear inequalities forms

a convex polytype as it can be seen for example in Figure 4.11.

∙ The objective function cTy = v is a hyperplane which we move as we

try to minimize v. Therefore the minimum is certainly achieved in one

of the vertices (but it does not not have to be at this vertex only).

∙ The algorithm first finds a feasible solution which is also a vertex of

the polytype.

∙ Then it tries to move to one of the neighbouring vertices, where the

objective function is minimal. This process is called Pivoting. Alge-

braically it means trying to increase (or decrease) one variable at a time

in the system of linear inequalities while maintaining the feasibility of

the solution.

∙ Once the algorithm cannot improve objective function by going to

neighbouring vertex it returns the best solution so far. This is al-

right, because on a convex region local optimum of a linear objective

function is always also the global optimum.

Efficient sampling

Suppose we have a convex polytype P = {y ∈ ℝn : Ay ≤ b}. We can find

one of its vertices (call this vertex v) by running any algorithm for Linear

1This picture is part of Wikimedia Commons, a freely licensed media file repository

CHAPTER 4. UNIVERSAL EQUIVALENCE 23

Figure 4.1: Multidimensional convex polytype during Simplex algorithm

Programming. Let V be a set of neighbour vertices of vertex v, the same

set of neighbour vertices as considered by simplex algorithm during Pivoting.

Let C be a ”corner”, i.e. the convex polytype determined by the vertex v

and its neighbouring vertices in V . We refer to these defined objects (P , V ,

C, v) in the following theorem.

Theorem 4.6. The subspace spanned by the convex polytype P is the same

subspace as that spanned by C.

Proof. Clearly, the subspace spanned by C is a subset of the space spanned

by P . Now consider any point p ∈ P ∖C. From the convexity of P the whole

segment pv lies inside P . Let cv be a segment which is intersection of pv

and C. If c ∕= v then the point p is part of the span of C since vector pv

is just prolonged vector cv, which is part of the span. Otherwise c = v and

it implies that p should be a neighbour of v, which is a contradiction with

p ∈ P ∖ C.

So we can sample points y′′ randomly as you can see in Algorithm 4.2.1

from the subspace spanned by a vertex v and vertices in V .

The advantage of this sampling is that it captures all the dependencies

across variables. So by applying Theorem 4.3 we have that Q(y′′) is zero on

P iff it is zero on the whole subspace of ℝk spanned by v and V .

CHAPTER 4. UNIVERSAL EQUIVALENCE 24

4.2.2 Error probability

Consider the polynomial Q(y) from Theorem 4.1. And let n = n1 + n2 be

overall number of states of both automata. We consider only words of length

less than n and so total degree of Q(y) is less than 2n. In our Algorithm

4.2.1 the fixed subset from which we sample has size at least 4n (Except

the degenerate case, when dim(L) = 0, i.e. when there exists only one fea-

sible solution to the system of linear inequalities Ay ≤ b. In that case it

is sufficient to plug it in and we obtain the answer with no error probabil-

ity). Therefore if automata are not equivalent, according to Schwartz-Zippel

Theorem (Theorem 4.2), the probability of error is

ℙ[Q(y′′) = 0∣∃ feasible y : Q(y) ∕= 0] <
2n

4n
=

1

2

On the other hand if automata are equivalent then the algorithm always

correctly answers that they are equivalent.

4.2.3 Complexity

To find the vertex v, the basic feasible solution of LP problem, we can use

one of the fastest known Linear Programming algorithms. For example Kar-

makar’s algorithm (see [Kar84]) runs in time O(k3.5), where k is number of

variables. Then we can determine neighbours of v in O(n) time using Pivot-

ing and Tzeng’s algorithm for equivalence of probabilistic automata without

parameters run in O(n3) time. So the overall time complexity of the Algo-

rithm 4.2.1 is O(n3 + k3.5). Usually k =O(n) then the time complexity is

simply O(n3.5).

4.2.4 Repeating of the algorithm

By constant number of repetitions of the Algorithm 4.2.1 we can decrease its

error probability under any positive constant.

By repeating it log∗ n times we get algorithm with time complexity O(n3.5 log∗ n)

with error probability → 0 as n→∞.

CHAPTER 4. UNIVERSAL EQUIVALENCE 25

4.3 Derandomization of the algorithm

We already showed in Corollary 4.4 how we can solve deterministically uni-

versal equivalence. Another possible approach is to derandomize algorithm

4.2.1. Instead of sampling randomly from the given set, we can test if a

polynomial is zero at sufficiently many points in the set. Schwartz-Zippel’s

Theorem tells us that if a polynomial is not identically zero then it can be

zero in at most half of the sampled points. So if we check one more than half

of them and the polynomial is zero in all of them we can be sure that the

polynomial is a zero polynomial.

Suppose that we have k parameters, i.e. a k-variate polynomial. For

each point we can run polynomial time Tzeng’s algorithm to determine if the

polynomial is zero at that point. It follows that if we fix k to be a constant we

have a deterministic polynomial time algorithm solving universal equivalence

of Probabilistic automata with parameters in time O(n3(4n+ 1)k).

Chapter 5

Existential equivalence of

probabilistic automata with

parameters

The existential equivalence of probabilistic automata with parameters U1 and

U2 is a decision problem asking if there exist feasible values of parameters y =

(y1, y2, . . . , yk) such that by plugging them into automata we get equivalent

probabilistic automata, i.e. if

∃ feasible values of y, LU1(y) = LU2(y)

5.1 Existential equivalence is NP-Hard

Theorem 5.1. The existential equivalence problem is NP-Hard.

Proof. The basic idea is to encode 3SAT into our automata. First we encode

equalities yi(1 − yi) = 0 which forces all parameters to be either 0 or 1 and

then we encode any 3SAT formula into automata in such a way that the

3SAT is satisfiable if and only if there exist feasible parameters such that the

constructed automata are equivalent. The in detail construction of automata

follows.

∙ As input we have a 3SAT formula which consist fromm clauses C1, . . . Cm.

26

CHAPTER 5. EXISTENTIAL EQUIVALENCE 27

Each clause is a conjunction of 3 literals, but some literals can be

present in more clauses (in both positive way or in negation). So we

have t ≤ 3m literals.

∙ Our two automata U1 and U2 will have the same finite input alphabet

Σ = {a1, a2, . . . am, b1, . . . bt}.

∙ Both automata will have two special states. The state having the whole

initial distribution: qinit (in U1 and q′init in U2) and the state qbad (in U1

and q′bad in U2) where all remaining transition probabilities not defined

elsewhere will go. For example if we define transition probability from

the state q0 to other states after reading an input symbol ’a’ to be 0.75

together then with the remaining probability of 0.25 the automaton will

move to state qbad. All these special states are not accepting and being

in state qbad (or q′bad) the automaton will stay there with probability 1

after reading any input symbol.

∙ Now we encode equalities yi(1 − yi) = 0 which forces all parameters

(literals from 3SAT) to be either 0 or 1.

For each literal yi we will have two new states: non-accepting q(i,1) and

accepting q(i,2) in U1 with transition probability after reading input

symbol bi being yi from state qinit → q(i,1) and probability 1− yi from

state q(i,1) → q(i,2).

In U2 we will not have any new states, so after input being bibi U2

will move from the state q′init directly to q′bad and so accepts bibi with

probability 0. Therefore to have automata U1 and U2 equivalent, yi(1−
yi) must be 0, i.e. yi must be either 0 or 1.

∙ In the last step we encode the whole formula into U1. For each clause

Ci we have three new states q[i,1], q[i,2] and q[i,3]. Only the third of them

is accepting.

For input symbol ai we now define transition probabilities qinit → q[i,1],

q[i,1] → q[i,2] and q[i,2] → q[i,3] according to literals in clause Ci. If the

first literal is positive, say yℎ, then the transition probability qinit →

CHAPTER 5. EXISTENTIAL EQUIVALENCE 28

q[i,1] will be 1 − yℎ. If it is negative then the transition probability

will be yℎ. We define similarly also transition probability q[i,1] → q[i,2]

according to the second literal and transition probability q[i,2] → q[i,3]

according to the third literal in Ci.

Automaton U2 does not accept anything and so automata U1 and U2 are

equivalent if only if for all clauses there is no assignment of transition

probabilities which allows qinit → q[i,1] → q[i,2] → q[i,3], i.e. if there is no

clause which is not satisfiable.

For clarification see example in Figure 5.1 for formula (y1 ∨ y2 ∨ ¬y3) ∧
(¬y1 ∨ y2 ∨ y4).

5.2 Decidability and hardness of the problem

Lemma 5.2 (Existential Theory of the Reals).

The sentence (∃X1) . . . (∃Xk)F (X1, . . . , Xk), where F (X1, . . . , Xk) is a quan-

tifier free formula with coefficients in a real closed field R, is decidable. There

is a PSPACE algorithm for this problem.

Proof. A good reference containing the solution to this problem is Chapter

13 in [BPR06].

Theorem 5.3. The existential equivalence problem is decidable. It is in the

complexity class PSPACE.

Proof. We reduce the problem to the Existential theory of the reals described

in Lemma 5.2, which is well known to be in PSPACE. First we construct

the polynomial Q(y) as in Theorem 4.1.

Let F ′(y) be a quantifier free boolean formula which contains all inequal-

ities for parameters, which are forced by automata (i.e. implied by the fact

that transition probabilities must be between 0 and 1,inclusive, and sum to

1 for each state and input symbol).

Now we would like to use Lemma 5.2 for the formula F (y) = Q(y)∧F ′(y),

but the problem is that the polynomial Q(y) has exponentially many terms.

CHAPTER 5. EXISTENTIAL EQUIVALENCE 29

q(1,2)

q(2,2)

q(3,2)

q(4,2)

q[1,3]

q[2,3]

q_init

q(1,1)

’b1’, y1

q(2,1)

’b2’, y2

q(3,1)
’b3’, y3

q(4,1)

’b4’, y4

q[1,1]

’a1’, 1-y1

q[2,1]

’a2’, y1

’b1’, 1-y1

’b2’, 1-y2

’b3’, 1-y3

’b4’, 1-y4

q[1,2]
’a1’, 1-y2

q[2,2]
’a2’, 1-y2

’a1’, y3

’a2’, 1-y4

Figure 5.1: Example of encoding 3SAT formula (y1∨y2∨¬y3)∧(¬y1∨y2∨y4)
into automaton U1

CHAPTER 5. EXISTENTIAL EQUIVALENCE 30

We can fix this problem by checking each term in a sum individually (only

in conjunction with F ′(y)), since the whole sum Q(y) is zero if and only if

each term is 0.

Theorem 5.4. The existential equivalence problem is at least as hard as the

problem of comparing sum of square roots of integers with an integer.

Definition 5.1. The problem of comparing sum of square roots of integers

with an integer is a decision problem such that given non-negative integers

g1, . . . gk and g, is
√
g1 + . . .+

√
gk ≤ g?

Classifying the complexity of this problem is a famous open problem in

computational geometry. It arises when we compare the length of polygonal

paths in Euclidean space. It is not known to be in NP (nor to be NP-Hard).

According to [Tiw92] and [CMSC09] PSPACE is the smallest well studied

complexity class that provably contains this problem.

Proof. To solve this problem by using existential equivalence of probabilistic

automata we will use similar technique as in Theorem 5.1 to wire (encode)

equalities into our automata.

First note that the following lines are equivalent:

√
g1 + . . .+

√
gk ≤ g (5.1)√

g1

g2
+ . . .+

√
gk
g2
≤ 1 (5.2)

∃ℎ ≥ 0,

√
g1

g2
+ . . .+

√
gk
g2

+ ℎ = 1 (5.3)

Let q1, . . . qk ∈ ℚ be such that qi = gi/g
2. With first k input symbols

we define equalities q′i
2 = qi and with another input symbol we define the

equality
∑k

i=0 q
′
i + ℎ = 1. Now automata U1 and U2 are equivalent if and

only if the equality 5.3 holds.

Definition 5.2. A multivariate K-polynomial is a multivariate polynomial

such that if it has a real root then it has a real root in the multidimensional

ball of radius ≤ K for K ∈ ℝ+.

CHAPTER 5. EXISTENTIAL EQUIVALENCE 31

Note that each multivariateK-polynomial is also a multivariate L-polynomial

for all L greater than K. Moreover, for each multivariate polynomial there

exists K ∈ ℝ+ such that it is a multivariate K-polynomial.

Remark 5.1. We can change a multivariate L-polynomial QL(y) to a multi-

variateK-polynomialQK(y) by the following transformation (scaling): QK(y) :=

QL(L
K
y). The set of real roots of both polynomials is the same.

Lemma 5.5. For each multivariate polynomial Q(y) we can effectively find

K ∈ ℝ+ such that Q(y) is a multivariate K-polynomial.

Proof. To find suchK we can use Cylindrical Algebraic Decomposition (CAD)

algorithm described in the next chapter. We run CAD which gives us finite

partition of the space and then K is the maximum of the distances of the

outer most cells of the partition from the origin.

Theorem 5.6. The existential equivalence problem is at least as hard as

deciding if a multivariate K-polynomial has a root for any fixed K ∈ ℝ+.

Proof. First we scale an input polynomial and then we construct a Proba-

bilistic automata for which exist feasible values of parameters such that they

are equivalent if and only if the input polynomial has a root.

Scaling

We can scale the input polynomial using the fact from Remark 5.1 to get

a multivariate 1
2
-polynomial. So we can assume that the polynomial either

does not have any real roots or it has a root y = (y1, . . . yk), where ∣y∣ ≤ 1
2

(so then also ∣yi∣ ≤ 1
2
).

We assume that an input polynomial is given as a valid string which

consists of characters 0, 1, . . . , 9,), (, +, −, ∗, ˆ and variables yi. We limit

only exponentiation in the way that nesting of exponents is forbidden and

variables cannot be in the exponent.

Example 5.1. Examples of a bad input: (y1 + 4)y2 , ((2 ∗ y1)3 + 1)4.

Example of a good input: (y1 + 4 + y2)17 − (y1 ∗ y1 + 5) ∗ (y1 − y2)6 + y3
2.

CHAPTER 5. EXISTENTIAL EQUIVALENCE 32

Now we perform another transformation which ensures that any valid

part of an input polynomial Q(y) is in absolute value at most 1/2. Let L be

an upper bounds for an absolute value of the polynomial. We can get it by

changing all minus signs to plus signs and interchanging all variables with

1 (we have bounds on variables 1/2 so we can do it) and all constants less

than 1 also by 1. Then by evaluating the part of the input polynomial we

get certainly the upper bound not only for it, but also for any sub part of it.

We can prove it by induction since at each polynomial we can look as at the

sum or product of two shorter polynomials, and by adding or multiplying two

expressions greater than 1 the result of the operation is greater than both of

them.

Now by dividing Q(y) by 2L we get that the overall value of the poly-

nomial is in the absolute value ≤ 1/2. The question is how to incorporate

this division by 2L into all parts of Q(y) to get this property for any sub

part. We can do it in a recursive way. Each valid part Q′(y) of the input

polynomial is also a polynomial and has one of the following forms:

∙ Q′(y) is a constant or a variable

∙ Q′(y) is a sum of two shorter polynomials: Q1(y) +Q2(y)

∙ Q′(y) is a power of the shorter polynomial: (Q1(y))k

∙ Q′(y) is a product of two shorter polynomials: Q1(y)Q2(y)

In the first two cases we just divide sub parts by 2L, in the third case we

can divide them by k
√

2L. In the last case the simplest way is to divide both

of them by 2L. However it causes few problems as we need to divide the

whole polynomial by the same number to preserve the same roots. We can

easily fix it during popping out of (on the way out of) recursion. In case

of Q′(y) = Q1(y) + Q2(y) we check by what we divided Q1(y) and by what

Q2(y) and make it equal by the additional dividing of the one which was

divided less so far.

CHAPTER 5. EXISTENTIAL EQUIVALENCE 33

Construction

We construct probabilistic automata U1 and U2 such that there exist feasible

values of parameters y = (y1, . . . yk) such that U1 and U2 are equivalent if

and only if the input polynomial Q(y) has a root such that −1/2 ≤ yi ≤ 1/2

for all yi (by scaling done above).

Example 5.2. We start with a simple example. Consider a polynomial

Q(y) =

a3︷ ︸︸ ︷
(y1y2 + 1/7)

a4︷ ︸︸ ︷
(y2 − 1/5)︸ ︷︷ ︸

a1

+ (−4y1)︸ ︷︷ ︸
a2

. We ask if it has a root. It is equiv-

alent to asking if the following system of equations has a solution:

a1 + a2 = 0 (5.4)

a2 = −4y1 (5.5)

a3a4 = a1 (5.6)

a4 = y2 − 1/5 (5.7)

a5 + 1/7 = a3 (5.8)

y1y2 = a5 (5.9)

Similarly as in the example above we can define the set of equalities

for any input polynomial. It is because each polynomial can be written as

a constant or a variable, a sum or a product of two shorter polynomials

or power of shorter polynomial. First we ignore the power operation and

will come back to it later. So basically (except exponentiation for now) we

can write down a polynomial equation as a system of equalities of the form

A+B = C or A ∗B = C by introducing new variables. Note that the input

has length n and we need at most one new variable for each sum or product,

so at most n new variables ai.

To solve this problem by using existential equivalence of probabilistic

automata we will once again use a similar technique as in Theorem 5.1 to

encode equalities into our automata. From the scaling we have all variables

yi and also ai ∈ [−1/2, 1/2], so we must be careful not to limit them in

any other way while encoding equalities to automata. It could be limited by

CHAPTER 5. EXISTENTIAL EQUIVALENCE 34

the fact that each transition probability in automaton is between 0 and 1,

inclusive. Therefore straightforward encoding would not work.

However we encode the equality A+B = C into automata in the following

way:

U1_q2

U2_q2

U1_q1
A+B+1/2

U2_q1
C+1/2

For i-th such equality we have input symbol ci and we accept the string ci

with transition probability A+B+1/2 in Automaton U1 and with transition

probability C + 1/2 in Automaton U2.

And we encode the equality A ∗ B = C into automata in the following

way:

U1_q3

U2_q3

U1_q1 U1_q2
A+1/2 B+1/2

U2_q1 U2_q2
C+A/2+B/2+1/4 1

For i-th such equality we have input symbol di and we accept the string

didi with transition probability (A+ 1/2) ∗ (B + 1/2) in Automaton U1 and

with transition probability C +A/2 +B/2 + 1/4 in Automaton U2. We have

this equality (A + 1/2) ∗ (B + 1/2) = C + A/2 + B/2 + 1/4 if and only if

A ∗B = C for all A,B,C ∈ [−1/2, 1/2].

In the case of exponentiation Ak, we cannot just do it directly through

writing it as a product

k times︷ ︸︸ ︷
A ∗ A . . . ∗ A and then encoding it as above. It would

make our construction exponential and we need to have it in a polynomial

CHAPTER 5. EXISTENTIAL EQUIVALENCE 35

time. However we can fix it by doing iterative squaring. We can do it by

introducing new variables and using the fact that Ak = Ak/2 ∗Ak/2 for k even

and Ak = Ak/2 ∗Ak/2 ∗A for k odd. For this we need O(log k) new variables

for any exponent k. For input of length n is k < 9n and therefore we need

at most O(log 9n)=O(n) new variables. We have less than n exponents in

the input polynomial and so we need only polynomially many new variables

and equations, as required. We encode these equations as in the case of

multiplication A ∗B = C.

Remark 5.2. Consider famous Hilbert’s tenth problem:

“Given a Diophantine equation with any number of unknown quantities

and with rational integral numerical coefficients: To devise a process

according to which it can be determined in a finite number of operations

whether the equation is solvable in rational integers”

It was finally proved in 1970 that this problem, which is equivalent to

asking if a polynomial with integer coefficients has an integer root, is not

decidable. The result for a similar problem asking if such polynomial has a

rational root is, despite the great interest, still an open problem. Taking into

account Lemma 5.5 and encoding of the polynomial into automata using the

technique in Theorem 5.6 we can conclude that if we were able to decide the

problem of Existential equivalence of probabilistic automata with parame-

ters over rationals (i.e. if exist parameters yi ∈ ℚ such that two automata

are equivalent) we would be able to decide if the polynomial (with integer

coefficients) has a rational root.

Chapter 6

First-order logic equivalence of

probabilistic automata with

parameters

First-order logic equivalence of probabilistic automata with parameters U1

and U2 is a decision problem (considering only feasible values of parameters

y = (y1, y2, . . . , yk)) asking if the given first order logic statement about

equivalence of two probabilistic automata is true.

Definition 6.1. Consider atomic formulas:

∙ LU1(y) = LU2(y)

∙ equalities or inequalities of algebraic expressions which contain vari-

ables yi, numbers, brackets, and operations +, −, ∗, / and ˆ

First-order logic equivalence of probabilistic automata with parameters U1 and

U2 is a decision problem asking if the logical sentence, which is a combination

of atomic formulas with boolean connectives and quantifiers, is true.

Example 6.1. The example of the problem is to decide the truth of:

(∃y1)(∀y2)((3y1 ≥ 2y2) ∧ (LU1(y) = LU2(y)))

36

CHAPTER 6. FIRST-ORDER LOGIC EQUIVALENCE 37

Lemma 6.1. Any first-order logic statement about an equivalence of polyno-

mials is decidable.

It follows from the decidability of the first order theory of the reals. Cur-

rently there are many different known algorithms. Some of them have better

theoretical complexity, other have better performance in practice (See [HL91]

for comparison). The complexity class of the algorithms is Double Exponen-

tial. We describe in short an idea of Collins algorithm which is the most

widely used, mainly because of the practical performance.

6.1 Collins algorithm overview

We give an overview of the algorithm based on the overview in [HL91].

A more detailed description of the algorithm is available in [Col75] and

[BPR06].

The algorithm constructs a Cylindrical Algebraic Decomposition (CAD)

of the input polynomials, where a CAD of a set of polynomials in n variables

is a certain finite partitioning of the n-dimensional real space such that in

each cell of the partition polynomials have constant signs. Once a CAD is

constructed, the truth of the input sentence can be determined by checking

its truth value in appropriate cells by examining sample points within these

cells.

A CAD is constructed in three stages:

Projection: The input n-variable polynomials are projected into a
set of (n − 1) variate polynomials in a way that a CAD
of n-space can be built on a CAD of (n− 1)-space. This
continues until univariate projection polynomials are
obtained.

Base stage: A CAD of 1-space is constructed by isolating real roots
of the univariate projection polynomials.

Extension: A CAD of 2-space is constructed by building a stack of
cells over the cells of CAD of 1-space. It continues until
a CAD of n-space is obtained.

CHAPTER 6. FIRST-ORDER LOGIC EQUIVALENCE 38

6.2 First-order logic equivalence is PSPACE-Hard

Theorem 6.2. First-order logic equivalence of probabilistic automata with

parameters is NP-Hard.

Proof. It follows from Theorem 5.1, from NP-Hardness of existential equiv-

alence of probabilistic automata with parameters.

Theorem 6.3. First-order logic equivalence of probabilistic automata with

parameters is decidable and is in the complexity class Double Exponential.

Proof. We reduce the problem to a problem in Lemma 6.1, which is well

known to be in Double Exponential. First we construct the polynomial

Q(y) as in Theorem 4.1 and then we add to our first-order logic prefix all

inequalities for parameters, which are forced by automata (i.e. implied from

the fact that transition probabilities are between 0 and 1, inclusive, and sum

to 1 for each state and input symbol).

Theorem 6.4. First-order logic equivalence of probabilistic automata with

parameters is PSPACE-Hard.

Definition 6.2. Quantified SAT, in short QSAT, is a decision problem if

a given fully quantified (with no free variables) boolean formula evaluates to

true.

Example of QSAT is: ∀x∃y∀z(x ∨ y) ∧ z.

Proof. The QSAT problem is well known to be PSPACE-Complete. We show

reduction of this problem to First-order logic equivalence of probabilistic

automata with parameters.

It is sufficient to take an input QSAT formula and add constraint for each

parameter yi corresponding to a literal: (yi = 0∨ yi = 1) to force them to be

either 0 or 1 and then to ask the question if Probabilistic automaton U1 is

equivalent to itself. Technically, we cannot take QSAT directly as operations

∨ and ∧ are not well defined over the reals. So we can transcribe the formula

using the following two rules, where t stands for transcribing operation :

CHAPTER 6. FIRST-ORDER LOGIC EQUIVALENCE 39

∙ t(yi) goes to yi for any atomic literal (parameter) yi

∙ t(�(y) ∧ (y)) goes to t(�(y))t((y)) = 1

∙ t(�(y) ∨ (y)) goes to 1− (1− t(�(y)))(1− t((y))) = 1

First-order logic equivalence of probabilistic automata with parameters

will answer yes if and only if the first-order logic prefix is true, i.e. when an

input instance of QSAT is true.

Chapter 7

Bisimulation of Probabilistic

Automata

The notion of bisimulation for probabilistic transition systems was introduced

by Larsen and Skou [LS91]. It is a probabilistic version of popular notion

of bisimulation on labelled transition systems. It is mainly used for state

minimization as well as equivalence checking.

A bisimulation is an equivalence relation on two state transition systems,

where one system simulates (matches the moves of) another and the other

way round.

p3 1 q4 1

p1

p2

1

1/2

p4

1/2

1

q1

q2

1/2

q3

1/2

1

q5

1

1

Figure 7.1: Example of automata that are language equivalent, but not bisim-
ilar

Bisimulation is stronger than language equivalence, so it can happen that

40

CHAPTER 7. BISIMULATION OF PROBABILISTIC AUTOMATA 41

two systems are language equivalent, but not bisimilar. On the other hand

two bisimilar systems are always also language equivalent.

First we consider as the transition systems probabilistic automata without

parameters. Consider two probabilistic automata U1 = (S1,Σ,M1, �1, F1)

and U2 = (S2,Σ,M2, �2, F2). Recall that (see Definition 2.10) we can combine

them to the one automaton U1 ⊕ U2. Now we define bisimulation on this

combined automaton.

Let S be set of states of size n and ∼ be an equivalence relation on S.

We denote by s ∼ t that (s, t) ∈ ∼, by S/∼ the set of equivalence classes

with respect to ∼ and by �s the distribution over states such that it is 1 for

the state s and 0 for the other states. Moreover recall that if we have B ⊆ S

then we define �B to be an n dimensional row vector such that �B[i] = 1 iff

si ∈ B and 0 otherwise.

In words, s ∼ t if the sum of transition probabilities from the state s after

reading the input symbol � to the part of partition B is the same as from

the state t for all possible input symbols � and all elements B of partition.

Definition 7.1. Let U1⊕U2 be a combination of two probabilistic automata.

A bisimulation on S = S1 ∪S2 is an equivalence relation ∼ on S such that if

s ∼ t then ∀� ∈ Σ, B ∈ S/∼ we have �sMU1⊕U2(�)�
T
B = �tMU1⊕U2(�)�

T
B and

both s, t ∈ F = F1 ∪ F2 or both s, t ∈ S ∖ F .

Definition 7.2. We say that probabilistic automata U1 and U2 are bisimilar

if there exists a bisimulation ∼ such that [�1,−�2]�TB = 0 for each equivalence

class B ∈ S/∼.

Note 7.1. In Definition 7.2 we could exchange maximum bisimulation by

if there exists bisimulation. It is the same, because bisimulations are closed

under union.

Example 7.1. See Figure 7.1 as the example of two automata that are

language equivalent, but not bisimilar. In that example, Σ has only one

symbol and the whole initial distribution is concentrated in the states p1

and q1, respectively. If the states p4 and q5 became accepting then the two

automata would be bisimilar.

CHAPTER 7. BISIMULATION OF PROBABILISTIC AUTOMATA 42

7.1 Partition refinement algorithm for testing bisim-

ulation

One way to compute the maximum bisimulation on an automaton is by

partition refinement. The idea is to start with trivial partition and then to

refine this partition step by step until a bisimulation is reached. A similar

idea was introduced by Hopcroft [Hop71] for minimizing deterministic finite

automata.

This approach was extended to probabilistic transition systems in [Bai96],

where the algorithm running in time O(n2m) was introduced (n is number

of states and m is number of transitions).

There is an even faster O(m log n) algorithm [DHS+03] for probabilistic

bisimulation (first especially designed for Markov Chains). The algorithm

gains speedup by using splay trees to sort transition weights. Also note that

probabilistic bisimulation applied to Markov Chains is the same concept as

lumpability.

In this section we provide the description of the simpler version of the

O(n2m) algorithm accommodated to the probabilistic automata defined in

this thesis.

Algorithm

We start with the trivial partition X0 = {S ∖ F, F}. In each step we refine

the elements of the partition obtained so far.

Let Es(B, �) = �sMU1⊕U2(�)�B, i.e. Es is a matrix of transition proba-

bilities from the state s, where there is one entry for each combination of

the input symbol � ∈ Σ and element of partition B ∈ Xi (where Xi is the

current partition). Then we split each element of partition B ∈ Xi in such a

way that states s, t ∈ B stay together if and only if Es(C, �) = Et(C, �) for

all blocks C ∈ S/Xi. We say that we obtain the partition Xi+1 as the union

of refinements of elements of partition B ∈ Xi with respect to the relation

CHAPTER 7. BISIMULATION OF PROBABILISTIC AUTOMATA 43

corresponding to Xi. I.e.

Xi+1 =
∪
B∈Xi

B/ ≡Xi

Formally, we define s ≡Xi
t iff Es(C, �) = Et(C, �) for all C ∈ S/Xi and

� ∈ Σ.

Since each refinement increases the number of blocks in the partition,

after at most n − 1 steps the partition cannot be refined any more so we

are finished. The corresponding equivalence relation to the partition Xk is

the maximum bisimulation ∼. It can be shown by induction on i that any

bisimulation on S refines Xi for all i.

Algorithm 7.1.1 Algorithm for testing bisimulation of probabilistic au-
tomata
Require: U1 = (S1,Σ,M1, �1, F1), U2 = (S2,Σ,M2, �2, F2)

1: Set X,PX to be the empty partitions
2: X ← {{si ∈ S ∖ F}, {si ∈ F}}
3: while X ∕= PX do
4: PX ← X
5: X ← REFINE(X)
6: end while
7: if ∀� ∈ Σ, B ∈ X, [�1,−�2]�TB = 0 then
8: return ’yes’
9: else

10: return ’no’
11: end if

Two states are bisimilar if they are in the same part of partition and

we can decide if two probabilistic automata are bisimilar by verifying that

∀� ∈ Σ, B ∈ S/ ∼ we have [�1,−�2]�TB = 0.

7.2 Universal parametric case

Universal bisimulation of probabilistic automata with parameters U1 and U2

is a decision problem if for all feasible values of parameters y = (y1, y2, . . . , yk)

by plugging them into automata we get bisimilar probabilistic automata.

CHAPTER 7. BISIMULATION OF PROBABILISTIC AUTOMATA 44

Recall that introducing parameters brings naturally also all the con-

straints for them. Let Ay ≤ b be the set of constraints from the automata

U1 and U2.

Algorithm

We would like to run the non-parametric algorithm (see Algorithm 7.1.1) with

minor changes. In the non-parametric case, during partition refinement, we

are comparing matrices which contain only numbers. Now if we try to run the

same algorithm we need to compare linear expressions containing parameters

to determine if we need to split any block of the partition.

Fix a block B ∈ S/∼. For each pair of states s, t ∈ B, each block

C ∈ S/∼ and symbol � ∈ Σ we have an equality Es(C, �) = Et(C, �) on

the set of parameters y. Corresponding entries of these matrices are equal

if the probability to transition from the state s to block C after reading � is

the same as the probability to transition from the state t to block C after

reading �.

Consider such linear equality of corresponding entries in Es(C, �) and

Et(C, �). In general we can write it in the form cyT = d, where c is a row

vector and d is a constant. There are two possibilities.

1. Either the equality cyT = d is already implied by the constraints Ay ≤
b. In that case we can say that it always holds and we keep s, t in the

same block.

2. Or the equality is not enforced by the constraints Ay ≤ b. In that

case there are values of parameters y such that two states are not

bisimilar. So we can say that two given states will not be together. Do

we have to add the constraint cyT ∕= d to the set of constraints Ay ≤ b?

Fortunately not; and this keeps our algorithm simple. It is because the

finite number of linear “inequalities” (meant ∕= only) with the system

Ay ≤ b does not help to force any new equality which would not be

forced by Ay ≤ b alone.

To finalize our algorithm, we need to be able to check if the equality

cyT = d is forced by Ay ≤ b or not. We need to do it in polynomial time to

CHAPTER 7. BISIMULATION OF PROBABILISTIC AUTOMATA 45

get the overall polynomial algorithm. We will use Linear Programming to do

it. First we minimize cyT given that Ay ≤ b and then maximize cyT given

that Ay ≤ b. If in both cases we get d then the equality is forced, otherwise

not.

7.3 Existential parametric case

Existential bisimulation of probabilistic automata with parameters U1 and

U2 is a decision problem if there exist feasible (satisfying Ay ≤ b) values of

parameters y = (y1, y2, . . . , yk) such that by plugging them into automata we

get bisimilar probabilistic automata.

In this section we show two NP algorithms for this problem followed

by the proof that this problem is NP − Hard so we cannot hope for any

polynomial time algorithm. However, if we fix the number of parameters

then the second algorithm runs in polynomial time.

Trivial Algorithm

We can try all possible partitions of the set S.

Given a partition X we need to check if the relation induced by it is a

bisimulation and if the condition ∀� ∈ Σ, B ∈ X, [�1,−�2]�TB = 0 holds. We

get bunch of new linear equalities over parameters y. For each pair of states

s, t in the same block B ∈ X, for each � ∈ Σ and for each block C ∈ X we

get equations Es(C, �) = Et(C, �).

When we combine them with the initial constraints on parameters Ay ≤ b

and the whole system has a feasible solution then there exist parameters such

that the automata are bisimilar. We can verify if the whole system has a

feasible solution by Linear Programming.

Note that this algorithm is NP even if the number of parameters k is

fixed since there are exponentially many partitions (in the number of states).

CHAPTER 7. BISIMULATION OF PROBABILISTIC AUTOMATA 46

Faster Algorithm

Once again we would like to run the non-parametric algorithm (see Algorithm

7.1.1), but for all possible value of parameters. If one of the runs is successful

we can conclude that there exist feasible values of parameters such that

automata are bisimilar.

Algorithm 7.3.1 Algorithm EXIST BISIMILAR(k, C,X), where k is
number of parameters, C are constraints, X is a partition of set S

Require: U1 = (S1,Σ,M1, �1, F1), U2 = (S2,Σ,M2, �2, F2)
Require: C = {Ay ≤ b} are constraints on parameters y from U1, U2

Require: BISIMILAR is non-parametric algorithm 7.1.1
Require: CHECK PARTITION determines if two automata are bisimi-

lar for a given partition, using the method described in Trivial algorithm
Require: COMBINE substitute the equation to constraints
Require: REFINE NE does one step of partition refinement with assump-

tion that none of non-trivial possible equalities from partition X holds
1: if k = 0 then
2: return BISIMILAR(C)
3: end if
4: for all non-trivial possible equalities cyT = d from partition X do
5: CC ← COMBINE(C, cyT = d)
6: if EXIST BISIMILAR(k − 1, CC,X) then
7: return ’yes’
8: end if
9: end for

10: NX ← REFINE NE(X)
11: if X = NX then
12: if CHECK PARTITION(X) then
13: return ’yes’
14: end if
15: else
16: if EXIST BISIMILAR(k, C,NX) then
17: return ’yes’
18: end if
19: end if
20: return ’no’

Of course there are infinitely (usually even uncountably) many possible

values of parameters, so we cannot examine all of them. Fortunately for large

CHAPTER 7. BISIMULATION OF PROBABILISTIC AUTOMATA 47

sets of them the algorithm behaves identically. In the non-parametric case,

during partition refinement, we are comparing matrices which contain only

numbers. Now if we try to run the same algorithm we need to compare linear

expressions containing parameters to determine if the states stay together or

have to be separated. So for each non-trivial (non trivial is if c is not a zero

vector) linear equation cyT = d which we need to test, we have two options.

Either it holds or not.

If it holds we can get rid of one parameter, substitute it everywhere to

both automata (so also to all constraints) and call recursively the algorithm

with the input that contains one parameter less. Finally for zero parameters

we can run the non-parametric algorithm.

If none of the equations holds then we can do the refinement step in our

algorithm with the knowledge that none of those non-trivial equations holds.

As in non-parametric algorithm it makes sense to repeat this process only

if after refinement step we do not get the same partition again (so at most

n− 1 times). Then we can check it for this partition as in Trivial algorithm

(by Linear Programming).

This algorithm is clearly exponential. Now consider the case that the

number of parameters k is fixed. Let d be the size of Σ. Then non-parametric

algorithm runs in time O(ndn3). Linear programming runs in time O(k3.5),

but as we can have many input equations and k is constant, it is better to

bound it by O(n). If T(n) is the time complexity of the algorithm then we

have T(0)=O(ndn3) and T(n)≤ (n − 1)dn3 T(n − 1)+O(n). So we have

T(n)=O((dn4)k+1) and therefore for the fixed number of parameters we have

the polynomial time algorithm. In practice the performance of this algorithm

could be improved a lot by pruning inconsistent cases sooner. E.g. equations

can be not consistent with the constraint so far so it does not make sense to

do the computation which assumes they hold.

NP-Completeness

Theorem 7.1. The problem to decide if there exist feasible values of param-

eters y = (y1, y2, . . . , yk) such that by plugging them into automata U1 and

CHAPTER 7. BISIMULATION OF PROBABILISTIC AUTOMATA 48

U2 we get bisimilar probabilistic automata is NP −Hard.

Proof. We do a reduction from 3SAT . We construct two probabilistic au-

tomata in such a way that there exist feasible parameters y such that they

are bisimilar if and only if the corresponding 3SAT formula can be satisfied.

So suppose we have 3SAT formula ' with k variables and n clauses. For

each proposition variable yi in ' we have the corresponding parameter yi

in our automata. The construction has two main parts. First we force the

parameters to be only 0 or 1, i.e. for no other values would the automata

be bisimilar. Then we force each clause to be satisfied. So then there exist

parameters y such that automata are bisimilar if and only if the input 3SAT

formula can be satisfied.

For each parameter we have a corresponding input symbol �i. Figure 7.2

illustrates the gadget we use to force each parameter to be 0 or 1.

a3

a4

1

b3

b4

1

a1

a2y_i
1-y_i

y_i

1-y_i

1

b1

b2y_i
1-y_i

1

0

1

Figure 7.2: To keep automata bisimilar we force yi to be 0 or 1

We construct automata such that among the states in Figure 7.2, only

a1 and b1 has non-zero probability p in the initial distribution. Note that

automaton U1 accepts string �i�i with the probability py2
i and automaton

U2 with the probability pyi. Recall that if automata are not equivalent then

they cannot be bisimilar. Therefore the only chance for them to be bisimilar

is if y2
i = yi. It is true only for yi ∈ {0, 1}. We can check that these parts are

bisimilar easily. For yi = 1 it is clear. If yi = 0, running the algorithm 7.1.1

CHAPTER 7. BISIMULATION OF PROBABILISTIC AUTOMATA 49

we get a partition {a1, a2, a4, b1, b4}, {b2}, {a3, b3} for which it can be easily

verified that automata are bisimilar.

Now we just need to encode constraints that will force each clause to be

satisfied. If the sum of the parameters corresponding to literals in the clause

(by which we mean that for variable yi from 3SAT we have parameter yi in

automata or 1− yi if it is negated in the clause) is at least 1 then the clause

is satisfied.

Since the formula is in 3-CNF, the maximum sum is 3, but since the

transition probabilities are limited to be between 0 and 1, inclusive, we would

sum thirds of values of parameters and check if it is at least 1/3.

So for the ith clause of the form (yj∨yk∨yl) we make transition probability

from the new state si to the state ei with probability (yj + yk + yl)/3 + ui,

where ui ≤ 2/3. We can do the same in both automata (so we do not break

bisimulation, but only add new constraints) and since we do not define any

other possible transitions from si, we must have (yj+yk+yl)/3+ui = 1. Now

we add the constraint ui ≤ 2/3 and we are done. We add this constraint,

by setting transition probabilities from the new state ui to the states u′i and

u′′i to be ui + 1/3 and 2/3 − ui respectively. Once again we add it to both

automata to not to break bisimulation.

If the literal yk is negated in the clause, we use 1 − yk instead. So for

example for the clause (yj ∨ yk ∨¬yl) the transition probability is (yj + yk +

(1− yl))/3 + u.

Corollary 7.2. The problem to decide if there exist feasible values of param-

eters y = (y1, y2, . . . , yk) such that by plugging them into automata U1 and

U2 we get bisimilar probabilistic automata is NP − Complete.

Proof. It follows from Theorem 7.1 and NP algorithms solving this problem

described above.

Chapter 8

Summary and future work

We conclude with a summary of the results and discussion of possible future

work. An overview of the results is in Table 8.1. The underlined results are

our new results first presented here.

In the language equivalence problem of probabilistic automata our main

contributions consist of showing PTIME-Completeness of the equivalence

problem for non-parametric automata and design of 1MC randomized al-

gorithm for deciding universal equivalence for parametric automata. This

algorithm is very fast with the error probability going to zero for n (the

number of states of automata) going to infinity so it can be very useful for

the practical applications.

For the existential equivalence of probabilistic automata we showed not

only that the problem is NP-Hard, but also that it is as hard as the problem

of whether the sum of square roots of a given family of integers is less than an

integer, or the problem of whether the multivariate K-polynomial has a root.

For both these problems there are no known better than PSPACE algorithms.

Therefore we expect the existential equivalence problem to be classified some-

where between NP-Hard and PSPACE-Hard or even as PSPACE-Complete

problem. This opens the space for future work. One possible way to proceed

is if we were able to find more effectively K such that an input multivariate

polynomial has a real root if and only if it has a real root less than K (the

distance from the origin was less than K). Then we would be able to show

50

CHAPTER 8. SUMMARY AND FUTURE WORK 51

that the existential equivalence is as hard as the existential theory of the

reals.

Problem Best known algorithm Hardness of the problem

Non-parametric Equivalence O(n3) PTIME-Complete

Universal Equivalence 1MC randomized PTIME-Hard
O(n3 + k3.5)

Existential Equivalence over ℝ PSPACE NP-Hard

Existential Equivalence over ℚ not known extended Hilbert
to be decidable tenth problem -Hard

FOL Equivalence Double Exponential PSPACE-Hard

Non-parametric Bisimulation O(dn4)

Universal Bisimulation O(dn4k3.5)

Existential Bisimulation O((dn4)k+1) NP-Complete

Table 8.1: Summary of the results

For the first-order logic equivalence we proved that it is a PSPACE-Hard

problem, so we cannot even hope for faster than PSPACE algorithm. In spite

of the hardness of both the existential and the first-order logic equivalence,

the positive thing is that both are solvable. Moreover recently there has been

a lot of effort to make the implementations of algorithms for the existential

(respectively first-order) theory of the reals as fast as possible. So in practice

and for smaller automata it could be useful.

Concerning bisimulation of probabilistic automata, our main contribu-

tions are in creating a polynomial time algorithm for deciding universal bisim-

ulation of parametric automata and an NP algorithm for deciding existential

CHAPTER 8. SUMMARY AND FUTURE WORK 52

bisimulation. However, if we fix the number of parameters then existential

bisimulation algorithm runs in polynomial time. Our algorithms are based

on the non-parametric bisimulation algorithm which is not asymptotically

optimal. There exist faster algorithms for that problem mentioned in Chap-

ter 7 which are based on clever use of splay trees. There is possible future

work in adapting those ideas also to algorithms for universal and existential

parametric bisimulation. Moreover especially in the existential bisimulation,

we can hope for improvements in faster implementation by pruning the cases

that do not lead to the solution. However, there is some trade off as we need

to run the linear programming to decide if we can prune.

Appendix A

Elimination of non-free variables

from the system of linear

inequalities

Our goal is to find dependencies across variables from the system of linear

inequalities. We will consider only non-strict inequalities (in standard form,

i.e. described in the form something ≤ 0). Moreover we assume that there

exists a solution to the system (it can be checked by Linear Programming).

Example A.1.

x+ y + 4 ≤ 0 (A.1)

−x− y − 4 ≤ 0 (A.2)

y − 1 ≤ 0 (A.3)

We can immediately see from the first two inequalities that x + y + 4 =0

and so we have dependency and we can eliminate one of the variables. For

example, after eliminating y (by using the fact that y = −4− x), we get the

53

APPENDIX A. ELIMINATION OF NON-FREE VARIABLES 54

following set of linear inequalities:

0 ≤ 0 (A.4)

0 ≤ 0 (A.5)

−x− 5 ≤ 0 (A.6)

If we had additional inequality x+ 5 ≤ 0 at the beginning we would be able

to find also the dependency x = −5.

Remark A.1. By eliminating non-free variables we get the dimension of the

polytype specified by the set of linear inequalities.

We try to find one dependency at a time. If we find one then we plug

this dependency into the system, as in the example above, and start solving

the problem again for less variables. If there are no more dependencies we

terminate.

Suppose that we have the system of linear inequalities with k variables

y1, . . . yk. Let there be a dependency for variable y1 (without loss of gener-

ality). Then there must ∃d2, . . . dk, dk+1 ∈ ℝ such that y1 + d2y2 + d3y3 +

. . .+ dkyk + dk+1 = 0, or equivalently we must have as a consequence of our

system of linear inequalities the following two inequalities:

y1 + d2y2 + d3y3 + . . .+ dkyk + dk+1 ≤ 0

−(y1 + d2y2 + d3y3 + . . .+ dkyk + dk+1) ≤ 0

This can be achieved only if there are two disjoint subsets of linear in-

equalities such that there exists a positive linear combination (it preserves

inequality) of inequalities from one subset which is equal to negation of a

positive linear combination of inequalities from the second subset. In our

example it was 1(x+ y + 4) ≤ 0 and −(1(−x− y − 4)) ≤ 0.

We can check this property easily by considering all possible pairs of

disjoint subsets of the whole system. If we fix these two subsets then we get

the system of linear equalities since the constant in front of each variable must

be the same in both positive linear combinations from the subsets. We get

APPENDIX A. ELIMINATION OF NON-FREE VARIABLES 55

additional conditions (inequalities) from the fact that all linear combinations

must be positive. We can once again use Linear programming to check if

there is a feasible solution to this newly created system.

Consider one more time our example. Let the first subset be just equation

x+ y + 4 ≤ 0 and the second subset be just equation −x− y − 4 ≤ 0. Then

we ask if ∃c1, c2 ∈ ℝ+ such that

c1(x+ y + 4) = −c2(−x− y − 4)

So we get equations c1x = c2x, c1y = c2y and 4c1 = 4c2 which are equivalent

to c1 = c2. We can see easily that for example c1 = c2 = 1 is the solution

and so we found the dependence.

List of Figures

2.1 Example of tree T ′ . 10

2.2 Example of Probabilistic automaton with parameters 12

3.1 An instance of mCVP . 14

3.2 Reduction to automaton U1 from mCVP in Figure 3.1 17

4.1 Multidimensional convex polytype during Simplex algorithm . 23

5.1 Example of encoding 3SAT formula (y1 ∨ y2 ∨ ¬y3) ∧ (¬y1 ∨
y2 ∨ y4) into automaton U1 . 29

7.1 Example of automata that are language equivalent, but not

bisimilar . 40

7.2 To keep automata bisimilar we force yi to be 0 or 1 48

56

Bibliography

[Bai96] Christel Baier. Polynomial time algorithms for testing proba-

bilistic bisimulation and simulation. In CAV ’96: Proceedings of

the 8th International Conference on Computer Aided Verification,

pages 50–61, London, UK, 1996. Springer-Verlag.

[BPR06] Saugata Basu, Richard Pollack, and Marie-Franoise Roy. Algo-

rithms in Real Algebraic Geometry. Springer, 2nd edition, 2006.

[CH92] Sang Cho and Dung T. Huynh. The parallel complexity of finite-

state automata problems. Inf. Comput., 97(1):1–22, 1992.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein. Introduction to Algorithms. McGraw-Hill Book

Company, The MIT Press, 2001.

[CMSC09] Qi Cheng, Xianmeng Meng, Celi Sun, and Jiazhe Chen. Bounding

the sum of square roots via lattice reduction, 2009.

[Col75] George E. Collins. Quantifier elimination for real closed fields by

cylindrical algebraic decompostion. Automata Theory and Formal

Languages 2nd GI Conference Kaiserslautern, May 20-23, 1975,

1975.

[DHS+03] Salem Derisavi, Holger Hermanns, William H. Sanders,

William H. S, and Ers A. Optimal state-space lumping in markov

chains, 2003.

57

BIBLIOGRAPHY 58

[GJ90] Michael R. Garey and David S. Johnson. Computers and In-

tractability; A Guide to the Theory of NP-Completeness. W. H.

Freeman & Co., New York, NY, USA, 1990.

[GR88] Alan Gibbons and Wojciech Rytter. Efficient parallel algorithms.

Cambridge University Press, Cambridge, UK, 1988.

[HL91] Hoon Hong and Collins L. Comparison of several decision algo-

rithms for the existential theory of the reals. Technical report,

1991.

[Hop71] J. E. Hopcroft. An n log n algorithm for minimizing states in a

finite automaton. technical report cs-71-190. Stanford University,

1971.

[Jon75] N. D. Jones. Space bounded reducibility among combinatorial

problems. J. Computer and System Sci., pages 68–75, 1975.

[JR93] Tao Jiang and B. Ravikumar. Minimal nfa problems are hard.

SIAM J. Comput., 22(6):1117–1141, 1993.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear pro-

gramming. Combinatorica, 4(4):373–395, 1984.

[LS91] K. G. Larsen and A. Skou. Bisimulation through probabilistic

testing. Information and Computation, 94:1–28, 1991.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algo-

rithms. Cambridge University Press, Cambridge, UK, 1995.

[Paz71] Azaria Paz. Introduction to Probabilistic Automata. Academic

Press, New York, USA, 1971.

[Rab63] M. O Rabin. Probabilistic automata. Information and Control

6, pages 230–245, 1963.

[RS59] M. O Rabin and D Scott. Finite automata and their decision

problems. IBM journal of research and development, 1959.

BIBLIOGRAPHY 59

[RS97] Grzegorz Rozenberg and Arto Salomaa. Handbook of Formal Lan-

guages. Springer, 1997.

[SJ01] Zdenek Sawa and Petr Jancar. P-hardness of equivalence test-

ing on finite-state processes. Lecture Notes in Computer Sci-

ence, SOFSEM 2001: Theory and Practice of Informatics, Vol-

ume 2234/2001:326–335, 2001.

[Tiw92] Prasoon Tiwari. A problem that is easier to solve on the unit-cost

algebraic ram. J. Complex., 8(4):393–397, 1992.

[Tze92] Wen-Guey Tzeng. A polynomial-time algorithm for the equiva-

lence of probabilistic automata. SIAM J. COMPUT., 21(2):216–

227, 1992.

[Wor08] James Worrell. Model checking and decision procedures for prob-

abilistic automata and markov chains. In QEST, 2008.

	Introduction
	Probabilistic Automata
	Definitions
	Properties
	Tzeng's algorithm
	Probabilistic automata with parameters

	Equivalence of PA is P-Complete
	Universal equivalence
	Preliminaries
	1MC randomized polynomial time algorithm
	Derandomization of the algorithm

	Existential equivalence
	Existential equivalence is NP-Hard
	Decidability and hardness of the problem

	First-order logic equivalence
	Collins algorithm overview
	First-order logic equivalence is PSPACE-Hard

	Bisimulation of Probabilistic Automata
	Partition refinement algorithm for testing bisimulation
	Universal parametric case
	Existential parametric case

	Summary and future work
	Elimination of non-free variables

