
Reachability in Parametric Counter Automata?

Christoph Haase??, Stephan Kreutzer, Joël Ouaknine, and James Worrell

Oxford University Computing Laboratory, UK

Abstract. Counter automata are a fundamental class of infinite-state
systems. They consist of a finite set of control locations, transitions be-
tween them and a finite set of counters over the positive integers. At
each transition, a counter can be tested for zero or incremented by some
integer value.

In this paper, we extend counter automata to parametric counter au-
tomata by allowing the counters to be updated by integer-valued param-
eters. The reachability problem asks whether there is an instantiation
of the parameters such that there is a run between two given configu-
rations of such an automaton. Our main result is that this problem is
NP-complete for the class of parametric counter automata with only one
counter, and that this is the only sub-class for which this problem is in
general decidable. The NP-completeness result is shown by a reduction
to quantifier free Presburger arithmetic with divisibility.

1 Introduction

Counter automata are a fundamental computational model, known to be equiv-
alent to Turing machines [20], and there has been considerable interest in sub-
classes of counter machines for which reachability is decidable, such as Petri
nets, one-counter automata and flat counter automata [5, 19]. As originally con-
ceived by Minsky, counters are updated either by incrementation or decrementa-
tion instructions. However, for many applications of counter machines, including
modeling computer programs, it is natural to consider more general types of up-
dates, such as adding integer constants to a counter [2, 5, 15] or adding integer
parameters [3, 14]. Parametric automata are used in various synthesis problems,
and to model open programs, whose behavior depends on values input from the
environment [1]. In [23] parameters are also used to model resources (e.g., time,
memory, dollars) consumed by transitions. The reachability problem for para-
metric counter automata asks whether there exist values of the parameters such
that a given configuration is reachable from another given configuration.

In this paper we show NP-completeness of the reachability problem for one-
counter automata in which counters can be updated by adding integer constants,

? This paper is an extended version of the paper “Reachability in succinct and para-
metric one-counter automata” by the same authors which appeared in the proceed-
ings of the 20th International Conference on Concurrency Theory.

?? Corresponding author. Email: christoph.haase@comlab.ox.ac.uk

where the latter are encoded in binary. We also show decidability of reachabil-
ity for parametric one-counter automata by reduction to existential Presburger
arithmetic with divisibility [16]. We defer consideration of the complexity of the
latter problem to the full version of this paper.

Related work. The verification literature contains a large body of work on
decidability and complexity for various problems on restricted classes of counter
automata. The work that is closest to our own is that of Demri and Gascon on
model checking extensions of LTL over one-counter automata [8]. They consider
automata with one integer-valued counter, with updates encoded in unary, and
with sign tests on the counter. They show that reachability in this model is NL-
complete. Determining the complexity of reachability when updates are encoded
in binary is posed as an open problem by Demri in [7], Page 61, Problem 13.
Since this last problem assumes an integer-valued counter with sign tests, it is
more general than the one considered in our Theorem 2, and it remains open.

Also, there is an interesting link between reachability in one-counter au-
tomata and the compressed word problem for compressed regular expressions. A
compressed word is given by a straight-line program and a compressed regular
expression is a regular expression that allows for compressed words as primitives
instead of only single alphabet symbols. The compressed word problem is to
decide whether some compressed word is contained in the language defined by
a compressed regular expression. It is shown by Plandowski and Rytter in [21]
that this problem is NP-complete over a unary alphabet. The case of a non-
unary alphabet is left open. It is not difficult to see that the compressed word
problem over a unary alphabet can be rephrased as a reachability problem for
one-counter automata in which all counter updates are positive integers. Thus,
our main result generalises the result from [21], but does however not contribute
to the open case of non-unary alphabets.

Another work closely related to our own is that of Ibarra, Jiang, Tran and
Wang [14], which shows decidability of reachability for a subset of the class of
deterministic parametric one-counter automata with sign tests. The decidability
of reachability over the whole class of such automata is stated as an open problem
in [14]. Note that although we do not allow negative counter values and sign tests,
we allow nondeterminism. Thus our Theorem 2 is incomparable with this open
problem.

2 Preliminaries

In this section, we establish the foundations for the remainder of the paper.
We start with introducing the most general model of counter automata and
their reachability problem. We recall some decidability and undecidability results
known from the literature and continue with introducing parametric counter au-
tomata. It turns out that even in restricted subclasses the reachability problem
for parametric counter automata with more than one counter is in general unde-
cidable. This motivates the consideration of parametric counter automata with
only one counter, for which we show that the reachability problem is NP-hard.

The main result of this paper, the NP upper bound, will be shown in the next
section.

In the following, let N denote the set of natural numbers including 0 and Z
be the set of integers. Given a set S, we denote by #S the cardinality of S.

Definition 1. Let k ∈ N and let Op := {add(z) : z ∈ Z} ∪ {zero} be a set of
counter operations. A k-counter automaton A = 〈Q, qin , F,∆, λ〉 is a five tuple
consisting of a finite set Q of control locations, an initial location qin ∈ Q, a
set F ⊆ Q of final locations, a transition relation ∆ ⊆ Q×Q and a transition
labeling function λ : ∆→ Opk. Counter automata are the family of all k-counter
automata for k ≥ 1.

In this definition, we assume all numbers to be encoded in their standard bi-
nary encoding. A k-counter automaton is called zero-test free if λ(δ) ∈ {λ(δ)} ∩
{add(z) : z ∈ Z}k for every δ ∈ ∆. The size of a counter automaton is the
cardinality of its set of control locations plus the number of symbols used to
write down the integer increments. A configuration C of a k-counter automa-
ton A is a tuple (q,Nk) consisting of a control location q, which we refer to
as the location component of C, and an assignment of a value to each of the
k counters. Denote by CA the set of all configurations of A. The k-counter au-
tomaton A induces a transition system (CA,→A), where →A⊆ CA × CA such
that ((q, c1, . . . , ck), (q′, c′1, . . . , c

′
k)) ∈→A if and only if

– (q, q′) ∈ ∆,
– λ(q, q′) = (op1, . . . , opk),
– ci = c′i = 0 if opi = zero,
– ci = c′i − z ≥ 0 if opi = add(z), 1 ≤ i ≤ k.

We call (qin , 0, . . . , 0) the initial configuration. Given configurations C1, C2 ∈
CA, we subsequently use →A in infix notation, i.e., write C1 →A C2 instead
of (C1, C2) ∈→A, and denote by →∗A the transitive closure of →A. A run r
of A in (CA,→A) is a possibly countably infinite sequence of configurations
r : C1 →A C2 →A · · · . By |r| we denote the length of r, i.e. the number of
transitions traversed by r or ∞ if r is infinite, and given 0 < i ≤ |r| + 1, we
denote by r(i) the configuration Ci. Given a finite run r : C1 →A · · · →A Cn
and a possibly infinite run r′ : C ′1 →A C ′2 →A · · · such that Cn = C ′1, the
composition r ·r′ of r and r′ is the run r ·r′ : C1 →A · · · →A Cn →A C ′2 →A · · · .
We say that the configuration C2 is reachable from the configuration C1 if and
only if C1 →∗A C2.

Definition 2. Let A = 〈Q, qin , F,∆, λ〉 be a counter automaton and C1, C2 be
configurations of A. The reachability problem is to decide C1 →∗A C2. The
emptiness problem is to decide whether (qin , 0, . . . , 0) 6→∗A (q, 0, . . . , 0) for all
q ∈ F .

Clearly, reachability is reducible in logarithmic space to non-emptiness and vice
versa. The decidability of the emptiness problem was first considered by Minksy
who showed that it is in general undecidable.

Proposition 1 ([20]). The emptiness problem for k-counter automata is un-
decidable for k ≥ 2.

Minsky’s result left two directions for the identification of decidable fragments
of counter automata. First, it is easily seen that the reachability problem for one-
counter automata (OCA) is decidable, since it can be reduced to reachability in
a pushdown system with a unary stack alphabet, which is decidable, see e.g. [4].
Second, zero-test free counter automata have been considered in the literature,
where they are commonly named vector addition systems with states.

Proposition 2 ([12]). The reachability problem for vector addition systems
with states is decidable.

In this paper, we investigate the decidability and complexity of reachability
for parametric counter automata, which generalise counter automata.

Definition 3. A parametric k-counter automaton (k-PCA) is a six-tuple A =
〈Q, qin , F, P,∆, λ〉. The extra feature compared to counter automata is that Op
additionally allows for adding or subtracting a parametric value from a finite
set of parameters P to the counter, i.e., Op = {add(+p), add(−p) : p ∈ P} ∪
{add(z) : z ∈ Z} ∪ {zero}. Parametric counter automata (PCA) are the family
of all parametric k-counter automata.

A concrete instance of a PCA is obtained by an instantiation I : P → N
which assigns a natural number to each parameter. Given a PCA A, the in-
stantiation A(I) of A with respect to I is obtained from the counter automaton
A by replacing the label of every edge labeled with add(±p) with add(±I(p)).
Let C1, C2 ∈ CA, the reachability problem for a PCA A is to decide whether
there exists an instantiation I such that C1 →∗A(I) C2 in the transition system
(CA(I),→A(I)) induced byA(I). We write C1 →∗A C2 if this is the case. Of course,
the decidability of this problem is already limited by Proposition 1. Hence, there
are two directions which are worth being investigated. On the one hand, we
can restrict ourselves to the case of deciding reachability in the presence of only
one counter. On the other hand, we can ban zero tests on the counters and
thus decide reachability for parametric k-vector addition system with states. It is
however not difficult to prove that the latter problem is in general undecidable.

Theorem 1. The reachability problem for parametric k−vector addition system
with states is undecidable for k ≥ 4.

Proof. We reduce from the emptiness problem for two-counter automata. A two-
counter automaton A is going to be simulated by a parametric four-vector
addition system with states A′ with one parameter. In [18], Lipton showed
ExpSpace-hardness of reachability for vector addition system with states. One
key ingredient he uses in his hardness proof is to impose a parity condition
on pairs of counters which allows him to simulate zero tests on counters. We
subsequently adopt this technique in order to mimic A by A′.

LetA = 〈Q, qin , F,∆, λ〉 be a two-counter automaton. We define a parametric
four-vector addition system with states A′ = 〈Q′, q′in , F, {p}, ∆′, λ′〉, where

add(+tk) zero

add(−tj)

add(+tk)

add(−tj)

add(−1) add(+2) add(−tj)

add(+1)

zero

Fig. 1. Gadgets for testing tj |tk (top) and ¬(tj |tk) (bottom) assuming tj , tk ≥ 0 in an
instantiation.

– Q′ = Q∪̇{qe : e ∈ ∆}∪̇{q′in}
– ∆′ = {(q, qe), (qe, q′) : e = (q, q′) ∈ ∆} ∪ {(q′in , qin)}
– λ′(q′in , qin) = (add(0), add(+p), add(0), add(+p))

– λ′(q, qe) =

(add(z1), add(−z1), add(z2), add(−z2)) if λ(e) = (add(z1), add(z2)), z1, z2 ∈ Z
(add(0), add(−p), add(z2), add(−z2)) if λ(e) = (zero, add(z2)), z2 ∈ Z
(add(z1), add(−z1), add(0), add(−p)) if λ(e) = (add(z1), zero), z1 ∈ Z
(add(0), add(−p), add(0), add(−p)) if λ(e) = (zero, zero)

– λ′(qe, q′) =

(add(0), add(0), add(0), add(0)) if λ(e) = (add(z1), add(z2)), z1, z2 ∈ Z
(add(0), add(+p), add(0), add(0)) if λ(e) = (zero, add(z2)), z2 ∈ Z
(add(0), add(0), add(0), add(+p)) if λ(e) = (add(z1), zero), z1 ∈ Z
(add(0), add(+p), add(0), add(+p)) if λ(e) = (zero, zero).

The counter value ci of i-th counter of A is represented by the counter value
c′2i−1 of A′ for i ∈ {1, 2}. The crucial point is that for any instantiation I, as
soon as we have reached (qin , 0, p, 0, p) in (CA′(I),→A′(I)) starting from the initial
configuration, we have that c′2i−1 +c′2i = p in every configuration whose location
component is from Q on every path in (CA′(I),→A′(I)). That way, when imitating
A by A′, we can ensure that the counter value c2i−1 is zero if and only if we can
subtract p from c′2i, and this is exactly what is done when passing through the
intermediate states qe /∈ Q. Thus, if A is non-empty then both counters c1 and
c2 do not exceed some maximum value on a path witnessing non-emptiness and
this value yields an instantiation I such that (q′in , 0, 0, 0, 0) →∗A′(I) (q, 0, 0, 0, 0)
for some q ∈ F in (CA′(I),→A′(I)). The other direction follows analogously.

In the light of this undecidability result, in the remainder of this paper we
concentrate on parametric one-counter automata (POCA). The main result of
our paper is the following theorem.

Theorem 2. The reachability problem for parametric one-counter automata is
NP-complete.

We are going to show the NP upper bound of the reachability problem in the next
section. The easier part is to show NP-hardness. We reduce from the satisfiability

problem in quantifier free Presburger arithmetic with divisibility (QFPAD), i.e.,
the existential theory 〈N,+,−, |, 0, 1〉. Given a vector of free variables X =
(x1, . . . , xn), a formula ϕ(X) of QFPAD is a Boolean combination of atoms
tj |tk and each ti is a linear polynomial in the variables X. The size of a QFPAD
formula is the number of symbols used to write it down assuming numbers
are encoded in binary. Given a linear polynomial t in X and natural numbers
Z = (z1, . . . , zn) ∈ Nn, denote by t[X/Z] the z ∈ Z obtained from evaluating t
by replacing each xi with zi, 1 ≤ i ≤ n. We define (ti|tj)[X/Z] = true if there
is an integer k ∈ Z such that kti[X/Z] = tj [X/Z] and (ti|tj)[X/Z] = false
otherwise. A QFPAD formula ϕ(X) is satisfiable if there is Z = (z1, . . . , zn) ∈
Nn such that the Boolean formula obtained from substituting each ti|tj with
(ti|tj)[X/Z] evaluates to true.

It was shown by Lipshitz in [16] that the satisfiability problem for QFPAD
is decidable and later that it is NP-complete for a fixed size formula [17]. In our
reduction, we construct for a given formula ϕ(X) a POCA Aϕ with parameters
x1, . . . , xn such that ϕ is satisfiable if and only if the reachability problem for
Aϕ is solvable for two designated configurations. We follow a similar pattern to
[1], in which the same problem is reduced to reachability in two-clock paramet-
ric timed automata. As a preparation, let us first consider literals of the form
tj |tk respectively ¬(tj |tk). By exploiting the fact that division is just repeated
subtraction, Figure 1 sketches two gadgets for testing divisibility respectively
non-divisibility assuming that both terms tj and tk are positive in an instan-
tiation. In the figure, control locations are depicted as circles and transitions
with their labels as arrows between the control locations. The circle with an
incoming edge is the initial location and the double circle is a final location. For
brevity, we represent the sequence of locations and transitions that compute tj
respectively tk by just one arrow. Clearly, whenever we can find an instantiation
such that the final location is reachable from the initial location in Figure 1
then tj divides respectively does not divide tk. By changing the signs of the ti
in Figure 1, similar gadgets can be constructed for the cases where one or both
of tj and tk are negative. Now assume ϕ(X) to be a QFPAD formula in nega-
tion normal. For each literal of ϕ, the POCA Aϕ consists of a control location
that non-deterministically branches into four gadgets like those in Figure 1, one
for each possible guess of the signs of tj and tk. Conjunction in ϕ can then be
simulated in Aϕ by sequential composition of those gadgets, and disjunction by
non-deterministic branching. Finally, we can designate locations q and q′ such
that (q′, 0) is reachable from (q, 0) if and only if ϕ is satisfiable. Obviously, the
size of Aϕ is potentially exponential in the size of ϕ, since summands of the
form ax, a ∈ N in terms of ϕ need to be represented by a+ 1 control locations,
while a is encoded in binary in ϕ. However, in the formula used in [17] to show
that QFPAD satisfiability is NP-hard, every variable has a constant multiplier.
Thus, the following proposition holds.

Proposition 3. The reachability problem for a parametric one-counter automa-
ton of fixed size is NP-hard.

add(0)

add(0)
add(s1)

add(0)

add(0)
add(s2)

add(0)

add(0)
add(sn)

Fig. 2. One-counter automaton for the reduction from SubsetSum.

For brevity, if ϕ(x1, . . . , xk) is a QFPAD formula, we will not always explicitly
declare all of the variables x1, . . . , xn to be free, but only those that are of
particular interest for us. For example, if we want to emphasize that x1 is free
in ϕ, we just write ϕ(x1) instead of ϕ(x1, . . . , xk). Also, we allow for a partly
evaluation of free variables, e.g., write ϕ[x1/z1] for the QFPAD formula obtained
from replacing every occurrence of x1 with z1 in ϕ.

Remark 1. It is worth mentioning that the reachability problem remains NP-
hard for OCA in the presence of no parameters. There is a simple reduction
from the NP-complete SubsetSum-problem [11]. SubsetSum is to decide for a
given finite set S = {s1, . . . , sn} ⊂ N and a target t ∈ N whether there exists
a subset S′ ⊆ S such that

∑
s∈S′ s = t. Figure 2 shows the OCA used for the

reduction. Denote by q its initial and by q′ its final location. On a run from q to
q′ the automaton can non-deterministically choose to whether or not add each
si to the counter, 1 ≤ i ≤ n. Hence a set S′ with the above properties exists if
and only if (q′, t) is reachable from (q, 0). This hardness result heavily depends
on the binary encoding of the numbers in the automaton. In fact, it follows for
example from [9] that the problem is NL-complete if numbers are encoded in
unary.

3 Reachability in Parametric One-Counter Automata

In this section, we are going to show that the reachability problem for POCA
is in NP and thus NP-complete. Before we start with the technical details, let
us prepare ourselves with a high-level introduction to the proof.

Traditionally when deciding reachability for finite-state automata, an algo-
rithm searches for a run of the automaton that connects the two control locations
in question. The decidability of this problem follows from the fact that the length
of such a run is finite and bounded by the number of control locations of the
automaton. This idea can be adopted to OCA. It is for example shown in [9]
that if there is a witnessing run for a reachability problem of an OCA, then
there is a witnessing run whose length is exponentially bounded in the size of
the OCA. However, this approach has no direct correspondence in the setting
of POCA, as illustrated by the following example:

add(+p) zero

add(−1)

For any instantiation of the parameter p with a natural number n, a run wit-
nessing non-emptiness of the instantiated automaton has length n+2 and is thus
not bounded by the size of the automaton.

In order to deal with this problem, we first need to put a different view on
OCA by treating them as weighted directed graphs. A run in (CA,→A) of an
OCA A then corresponds to a path in its corresponding weighted directed graph
GA. The advantage is that a path π in GA can be described in terms of a path
flow. Such a path flow is a function that assigns to each edge the number of times
the edge is traversed by π. An important property is that a path flow has a finite
domain. Conversely, a path flow also induces a set of paths in GA that however
do not necessarily correspond to runs in (CA,→A). We overcome this problem
by showing that if two configurations are reachable then there is a run of A in
(CA,→A) that has a corresponding path inGA which can be described by at most
three path flows of a special type. Afterwards, we dedicate ourselves to POCA.
We show that the question of deciding whether there exists an instantiation I of a
POCA A such that a certain path flow in GA(I) exists can be decided by solving
a system of quadratic Diophantine equations. Solving such systems is in general
undecidable, but the systems we obtain lie in a sub-class which can be shown
to be decidable via a reduction to the satisfiability problem of a corresponding
formula in QFPAD. As stated in the previous section, satisfiability in QFPAD is
NP-complete and together with some technicalities it follows that reachability
for one-counter automata is NP-complete.

We close this section by showing how the developed techniques can be used
to show that deciding emptiness of POCA with Büchi acceptance condition is
co-NP-complete.

3.1 Weighted Graphs and Path Flows

A weighted directed graph is a tuple G = (V,E,w), where V is a finite set of
vertices, E ⊆ V ×V is a finite set of directed edges and w : E → Z assigns a weight
to each edge. In the following, we call weighted directed graphs just weighted
graphs or graphs. The size |G| of a graph G is the cardinality of its vertices
plus the number of symbols it takes to write down the weights of its edges. The
graph Gop , defined as Gop := (V,Eop , wop) with Eop = {(v, u) : (u, v) ∈ E} and
wop(v, u) = −w(u, v), is called the skew transpose of G. Given F ⊆ E, we define
G restricted to F as G/F := (V ∩ {v ∈ V : (v, w) ∈ F or (w, v) ∈ F}, F, w).
A finite sequence of vertices π = v0v1 . . . vn such that v0 = s, vn = t and
(vi, vi+1) ∈ E, 0 ≤ i < n is called an s-t path π of length n, or just a path. We
often write π : s →∗ t to indicate that π is an s-t-path. By |π| we denote the
length of π. The set of edges traversed by π is edges(π) := {(vi, vi+1) : 0 ≤ i < n}.
A graph is called connected if there is an s-t path for all s, t ∈ V . Whenever

s = t, an s-t path is called an s-cycle, or just a cycle. Given paths π : s →∗ t
and π′ : t→∗ u, π · π′ denotes the s-u path obtained from composing π and π′,
similar to the composition of runs. For a given cycle ` : v →∗ v, we define the
cycles `0 = v and `i+1 = `i · ` for i > 0. The weight of a path π : v0 . . . vn is the
sum over the weights of all edges visited in π, i.e.,

weight(π) =
∑

0≤i<n

w(vi, vi+1). (1)

If ` is a cycle such that weight(`) > 0 then we call ` a positive cycle. Like-
wise, we call ` a negative cycle if weight(`) < 0. A graph G contains a pos-
itive respectively negative cycle if there is a path π in G with positive re-
spectively negative weight. A v-cycle ` is chord-free if ` = vv1 . . . vnv and
vi 6= vj for 1 ≤ i 6= j ≤ n. Given G = (V,E,w), if V = {s, t, v1, . . . , vn}
and E = {(s, v1), (v1, v2), . . . , (vn, t)} we call G an s-t path graph. Similarly, if
V = {v, v1, . . . , vn} and E = {(v, v1), (v1, v2), . . . , (vn, v)}, G is called an v-cycle
graph.

It is obvious that paths may in general have finite but potentially unbounded
length. In order to give compact descriptions of paths that capture their essential
properties we introduce the concept of path flows.

Definition 4. Let G = (V,E,w), f : E → N be a function and F := {e ∈
E : f(e) > 0} be the support of f . We call f an s-t path flow if it satisfies the
following Eulerian path conditions:

(i) (a) If s = t then ∑
(v,u)∈E

f(v, u) =
∑

(u,v)∈E

f(u, v) for all u, v ∈ V. (2)

(b) If s 6= t then∑
(v,u)∈E

f(v, u) =
∑

(u,v)∈E

f(u, v) for all u, v ∈ V \ {s, t}, (3)

∑
(s,v)∈E

f(s, v) =
∑

(v,s)∈E

f(v, s)− 1 for all v ∈ V, (4)

∑
(t,v)∈E

f(t, v) =
∑

(v,t)∈E

f(v, t) + 1 for all v ∈ V. (5)

(ii) The sub-graph G/(F ∪ {(t, s)}) is connected.

A path π determines a path flow fπ, where for each edge e = (v′, v′) ∈ E, fπ(e)
is defined to be the number of times vv′ occurs in π. Conversely, the conditions
from Definition 4 ensure that any path flow f induces at least one possible
path. A flow f with support F contains a positive respectively negative cycle if
G/F contains a positive respectively negative cycle. Subsequently, we call the

set in(f) = {v : there is u ∈ V with f(u, v) > 0} the set of nodes with incoming
flow. Just as paths can be sequentially composed, path flows can be composed
by summation: given an s-t path flow f and a t-u path flow f , we define an s-u
path flow f + g by (f + g)(e) = f(e) + g(e) for each edge e ∈ E. An s-t path
flow f induces a path flow fop in Gop , where fop(v, u) = f(u, v). The weight of
a path flow f is defined to be

weight(f) =
∑
e∈E

f(e) · w(e). (6)

Definition 5. Let G = (V,E,w) be a graph and s, t ∈ V . A sequence of path
flows f ′, f1, . . . , fn with supports F ′, F1, . . . , Fn is an s-t cycle decomposition if
G/F ′ is an s-t path graph, G/Fi is a vi-cycle graph for some vi ∈ V, 1 ≤ i ≤ n
and the graph G/(F ∪ {(t, s)}) is connected for F = F ′ ∪

⋃
1≤i≤n F .

Proposition 4. Let G = (V,E,w) be a graph and let z ∈ Z. There is an s-t
path flow f with weight(f) = z if and only if there is an s-t cycle decomposition
f ′, f1, . . . , fn with weight(f ′) +

∑
1≤i≤n weight(fi) = z, 1 ≤ n < #E.

Proof. (⇒) Let F be the support of f . If F = ∅ or G/F is an s-t path graph
then we are done.

Otherwise, let L = {π : π is a chord-free cycle in G/F}. Choose e1 = (v, v′)
such that f(e1) = min{n ∈ N : f(w,w′) = n,ww′ . . . w ∈ L} and let ` =
vv′ . . . v ∈ L be a v-cycle in G/F . Define the v-v path flow f1 such that for any
e ∈ E,

f1(e) :=
{
f(e1) if e ∈ edges(`)
0 otherwise.

and the s-t path flow f ′ such that f = f ′ + f1. Obviously, we have weight(f ′) +
weight(f1) = z. We can then repeatedly apply this procedure to f ′, but at most
#E − 1 times until the support F ′ of f ′ is empty or G/F ′ is an s-t path, and
eventually obtain the required path flows f ′, f1, . . . fn for some 1 ≤ n < E.

(⇐) The fact that G/(
⋃

1≤i≤n Fi∪F ′∪{(t, s)}) is connected guarantees that
f = f ′ + f1 + . . .+ fn is an s-t path flow and weight(f) = z.

Later in this paper, we will be more interested in the supports of s-t cycle
decompositions of a graph G = (V,E,w) and denote by CDS(G, s, t) the set
of all of them. Formally, (F ′, F1, . . . , Fn) ∈ CDS(G, s, t) if F ′, F1, . . . , Fn are
supports of some s-t cycle decomposition as in Definition 5, 1 ≤ n < #E.

3.2 Reachability Criteria

Let A = 〈Q, qin , F,∆, λ〉 be an OCA. In this section, we exclusively consider
zero-test free OCA. Thus we can view A as a weighted graph GA := (V,E,w)
with V := Q, E := ∆ and w(q, q′) := z if λ(q, q′) = add(z), q, q′ ∈ Q, z ∈ Z.
Subsequently, we identify the graph corresponding to A with GA. Just as we can
relate A and GA, we can relate finite runs in (CA,→A) with paths in GA. Given

a finite run r : (q1, c1)→ (q2, c2)→ . . .→ (qn, cn) in (CA,→A), its corresponding
q-q′ path π in GA is π := q1q2 . . . qn.

Let (q, c) and (q′, c′) be configurations of A, a run r : (q, c) →∗ (q′, c′) of
A implies the existence of a corresponding q-q′ path π in GA which in turn
determines a path flow fπ. We regard fπ as a reachability certificate. It is obvious
that a q-q′ path flow f does not necessarily imply the existence of a path π
that corresponds to a run r : (q, c) →∗ (q′, c′) in (CA,→A) for some c, c′ ∈ N.
Informally speaking, one needs to make sure that there is a path π with fπ = f
that does not cause the counter to go below zero in the run it corresponds
to. Hence, in the remainder of this section, we seek for necessary and sufficient
reachability criteria that allow a path flow f to serve as a reachability certificate,
i.e. f can prove the existence of a path corresponding to a run.

Let π = v0v1 . . . vn be a path in a graph G, we define the drop of π as
drop(π) := min{weight(v0 . . . vi) : 0 ≤ i ≤ n}. The following proposition, which
can easily be shown by induction on the length of π, states sufficient and neces-
sary conditions that allow for relating a path to a run.

Proposition 5. Let π be a path in GA. Then there is a run r : (q, c)→∗A (q′, c′)
in (CA,→A) that π corresponds to if and only if drop(π) ≥ −c and weight(π) =
c− c′.

Our first application of this fact is the following proposition, which will later
allow us to give a bounded description of positive and negative cycles.

Proposition 6. Let G = (V,E,w) be a weighted graph, v ∈ V and c ∈ N.

(i) There exists a positive v-cycle ` such that drop(`) ≥ −c if and only if there
exists a positive v-cycle `′ that can be written as `′ = π1 · πk2 · π3 such that
|π1|, |π2|, |π3| ≤ #V , π2 is a positive cycle and drop(π1 ·π2) ≥ −c for some
k ∈ N.

(ii) There exists a negative v-cycle ` such that drop(`) ≥ −c if and only if there
exists a negative v-cycle `′ that can be written as `′ = π1 · πk2 · π3 such that
|π1|, |π2|, |π3| ≤ #V , π2 is a negative cycle and drop(π2 ·π3) ≥ −c for some
k ∈ N.

Proof. (i) (⇒) Let ` be a positive v-cycle with |`| > #V . Without loss of
generality, ` can be written as π1 · π2 · π3 such that π1 : v →∗ w, π2 :
w →∗ w and π3 : w →∗ v for some w ∈ V such that |π1|, |π2| ≤ #V ,
drop(π1 ·π2) ≥ −c, weight(π2) > 0 and any vertex occurs at most once in π1

and π2. Let π′3 be obtained from π3 by deleting all cycles, hence |π′3| < #V .
Let k ∈ N be chosen such that weight(π1)+kweight(π2) ≥ −drop(π3)′ and
kweight(π2) > −(weight(π1) + weight(π′3)). Set `′ = π1 · πk2 · π′3. We have

weight(`′) = weight(π1) + weight(πk2) + weight(π3)
> weight(π1)− (weight(π1) + weight(π3)) + weight(π3)
= 0.

Also, we have

drop(`′) = min{drop(π1 · πk2),weight(π1 · πk2) + drop(π′3)}
≥ min{−c,weight(π1) + kweight(π2) + drop(π3)}
= −c.

(⇐) This direction is trivially true.
(ii) The statement follows by applying the result from (i) to to the cycle `op

in Gop .

The proposition shows that if we are looking for a positive or negative cycle in
a graph, we can prove its existence by a finite number of vertices. We define the
set of v-cycle candidates CC(G, v) to be the set of all vectors (π1, π2, π3) such
that 0 ≤ |π1|, |π2|, |π3| ≤ #V , π1 : v →∗ v′, π2 : v′ →∗ v′, π3 : v′ → v. Obviously,
CC(G, v) is finite and each of its elements and be guessed in time polynomial in
|G|.

We will now seek for criteria of path flows that allow a path flow to prove the
existence of a run. One key concept are vertex decompositions of path flows. Such
a decomposition of some path flow f is a sequence of paths flows f0, . . . , fn−1 that
sum up to f and traverse the vertex vi the last time in path flow fi−1, 1 ≤ i < n.

Definition 6. Let f be an s-t path flow and in(f) = {v1, . . . , vn}. A vertex
decomposition of f is a sequence of paths flows f0, . . . , fn−1 such that

– f0 is an s-v1 path flow,
– fi is a vi-vi+1 path flow,
– f = f0 + f1 + . . .+ fn−1

– if i ≤ j then vi /∈ in(fj), 1 ≤ i < n.

In the next section, we are going to be more interested in the supports of a vertex
decomposition rather than the actual flows. The set of vertex decomposition
supports V DS(G, s, t) is the set of all vectors (F0, v0, v1, . . . , Fn−1, vn−1, vn) such
that there is an s-t path flow f that has a vertex decomposition f0, . . . , fn−1

with each fi being an vi-vi+1 path flow having support Fi, 0 ≤ i < n. It is easily
checked that the set V D(G, s, t) is finite and each of its elements can be guessed
in time polynomial in |G|.

Definition 7. Let G be a graph, f an s-t path flow with support F and c, c′ ∈ N.
Then (G, f, c, c′) fulfills the

(i) type-1 reachability criteria if
– G/F does not contain positive cycles
– weight(f) = c′ − c
– f has a vertex decomposition f0+. . .+fn such that

∑
0≤i≤j weight(fi) ≥

−c, 0 ≤ j ≤ n;
(ii) type-2 reachability criteria if

– G/F does not contain negative cycles
– weight(f) = c′ − c

– fop has a vertex decomposition f0+. . .+fn such that
∑

0≤i≤j weight(fi) ≥
−c′, 0 ≤ j ≤ n;

(iii) type-3 reachability criteria if
– weight(f) = c′ − c
– there is a positive s-cycle ` in G with drop(`) ≥ c
– there is a negative t-cycle `′ in G with drop(`′) ≥ c′

In the remainder of this section, we are now going to show that the type-1,
type-2 and type-3 reachability criteria provide necessary and sufficient conditions
for proving the existence of runs in an automaton.

Proposition 7. Let (q, c) and (q′, c′) be configurations of an OCA A = 〈Q, qin , F,∆, λ〉,
GA the graph corresponding to A and f a q-q′ path flow. We have that

(i) if (GA, f, c, c′) fulfills the type-1 reachability criteria,
(ii) if (GA, f, c, c′) fulfills the type-2 reachability criteria, or

(iii) if (GA, f, c, c′) fulfills the type-3 reachability criteria

then f = fπ for some path π corresponding to a run r : (q, c) →∗A (q′, c′) in
(CA,→A).

Proof. (i) We use the terminology of Definition 7(i). Choose some path πj with
fπj

= fj for 1 ≤ j ≤ n and set π = π0 · π1 · . . . · πn. By assumption, GA/F
does not contain a positive cycle and consequently there is no positive cycle
in π. Hence for two prefixes π1, π2 of π with |π1| ≤ |π2| that both end in
the same vertex, we have weight(π1) ≥ weight(π2). It follows that we can
obtain the drop of π by just considering the segments of π in which each
vertex is visited the last time. We deduce that

drop(π) = min {weight(π0 . . . πj) : 0 ≤ j ≤ n}

= min

 ∑
0≤i≤j

weight(πi) : 0 ≤ j ≤ n

= min

 ∑
0≤i≤j

weight(fi) : 0 ≤ j ≤ n

≥ −c.

By applying Proposition 5, we deduce that a desired run r : (q, c) →∗A
(q′, c′) in (CA,→A) exists.

(ii) This part is just the dual of part (i).
(iii) We use the terminology of Definition 7(iii). Let π be some path induced by

f . Informally speaking, our strategy is to use the cycles ` and `′ in order
to appropriately “pump up” and “pump down” π. Let ω = weight(`) and
ω′ = weight(`′). Choose a such that aωω′ ≥ drop(π) and define π′ = `aω

′ ·
π · (`′)aω. We have drop(π′) ≥ c and weight(π′) = weight(`) + weight(π) +
weight(`′) = weight(π). Hence by Proposition 5, π′ has corresponding run
r : (q, c)→∗A (q′, c′) in (CA,→A).

Before we state the main result of this section, we prove a proposition that
helps us to structure runs.

Proposition 8. Let r : (q, c) →∗A (q′, c′) be a run in (CA,→A) with the corre-
sponding path π in GA = (V,E,w).

(i) If π does not contain any positive cycle then either fπ does not contain any
positive cycles, or there is a path µ = µ1 · µ2 · µ3 in GA corresponding to
a run r′ : (q, c) →∗A (q′, c′) in (CA,→A) such that |µ1| < |π| and µ2 is a
positive cycle.

(ii) If π does not contain any negative cycle then either fπ does not contain
any negative cycles, or there is a path µ = µ1 ·µ2 ·µ3 in GA corresponding
to a run r′ : (q, c)→∗A (q′, c′) in (CA,→A) such that |µ3| < |π| and µ2 is a
negative cycle.

Proof. (i) Suppose that fπ contains a positive cycle `. Let v ∈ V be the first
vertex of ` that occurs in π and let d ∈ N be such that the configuration
(v, d) is first reached by r. We claim that there is a positive cycle at v in GA
that corresponds to a run (v, d)→∗A (v, d′) in (CA,→A) for some d′ > d.
In case ` does not correspond to a such a run starting from (v, d) we argue
as follows. Factor ` as ` = µ1 · µ2 with µ1 : v →∗ w, µ2 : w →∗ v such that
w is the node with the maximum decrement in `, i.e., weight(µ1) = drop(`)
and whence weight(µ1) < −d. Since v is the first vertex of ` visited by π, w
is visited by π sometime after the first visit of v. So there is a v-w path µ3

in GA such that weight(µ3) ≥ drop(µ3) ≥ d > weight(µ1). Consider now
the cycle `′ = µ3 · µ2. It follows that `′ is a positive cycle, since

weight(`′) = weight(µ3) + weight(µ2)
≥ weight(µ1) + weight(µ2)
= weight(`).

Moreover, we have

drop(`′) ≥ drop(µ3) + drop(µ2)
≥ −d+ 0
= −d.

Hence, Proposition 5 implies that `′ corresponds to a run from (v, d) →∗A
(v, d′) in (CA,→A).
Next we observe that the first occurrence of v in π actually lies on a negative
cycle in π. This is because π must visit v in π again, otherwise ` would
not exist in fπ. By assumption all cycles in π are negative. Thus we can
decompose r as r1 · r2 · r3 with

r1 : (q, c)→ (v, d); r2 : (v, d)→ (v, d′′); r3 :→ (q′, c′)

such that there is a positive cycle `′ that corresponds to a run from (v, d),
and with the cycle π2 corresponding to r2 being negative. Let π3 be the
path corresponding to r3.
In order to define the required path µ = µ1 · µ2 · µ3, we reuse an idea from
the proof of Proposition 7(iii). Let ω1 = weight(`′) and ω2 = weight(π2).
Then define µ1 = π1, µ2 = (`′)ω1 and µ3 = (π2)ω2+1 ·π3. Clearly, |µ1| < |π|
and µ2 is a positive cycle, as required. Since the positive cycle µ2 is canceled
out by the negative cycle (π2)ω2 and by applying Proposition 5 we have
that µ corresponds to a run from (q, c) to (q′, c′) in (CA,→A).

(ii) This part is just the dual of part (i).

Proposition 9. There is a run (q, c) →∗A (q′, c′) in (CA,→A) if and only if
there exists a run r : (q, c)→∗A (q′, c′) in (CA,→A) with a corresponding path π
in GA that can be written as π = π1 · π2 · π3 such that there are c1, c2 ∈ N such
that

– if |π1| > 0 then (GA, fπ1 , c, c1) fulfills the type-1 reachability, criteria
– if |π2| > 0 then (GA, fπ2 , c1, c2) fulfills the type-3 reachability criteria; and
– if |π3| > 0 then (GA, fπ3 , c2, c

′) fulfills the type-2 reachability criteria.

Proof. (⇒) If there is a run r : (q, c) →∗A (q′, c′) with a corresponding path π1

such that fπ1 does not contain any positive cycles then fπ1 induces a unique ver-
tex decomposition and hence (G, f, c, c′) fulfills the type-1 reachability criteria.
Hence π = π1 the required path.

Otherwise, let µ = q1 . . . qn be a path in GA corresponding to some run
r : (q, c)→∗A (q′, c′). By repeatedly applying Proposition 8(i) to µ, we can obtain
π1 ·µ′2 ·µ′3 from µ such that π1 : q1 →∗ qi, fπ1 does not contain any positive cycles
and µ′ = µ′2 · µ′3 is a qi-qn path with µ′2 being a positive cycle. If fµ′ does not
contain any negative cycles, by setting π3 = µ′ and c1 = c+ weight(π1), we have
(GA, fπ1 , c, c1) and (GA, fπ3 , c1, c

′) are type-1 respectively type-2 reachability
certificates. It follows that π = π1 · π3 is the required path.

Otherwise, by repeatedly applying Proposition 8(ii) to µ′, we can obtain
µ′′1 · µ′′2 · π3 from µ′ such that π3 : qj →∗ qn, fπ3 does not contain any negative
cycles and π2 = µ′′1 · µ′′2 is a qi-qj path with µ′′2 being a negative cycle. Let
c1 = c+ weight(π1) and c2 = c1 + weight(π2). It follows from Proposition 5 and
8 that µ′2 and µ′′2 witness the existence of a positive respectively negative cycle
with drop(µ′2) ≥ c1 and drop(µ′′2) ≥ c2. Thus (GA, fπ2 , c1, c2) fulfills the type-3
reachability criteria. Similarly as above, (GA, fπ1 , c, c1) and (GA, fπ3 , c2, c) fulfill
the type-1 respectively type-2 reachability certificates and hence π = π1 · π2 · π3

is the required path.
(⇐) This direction follows by appropriately combining the statements from

Proposition 7(i)–(iii).

3.3 Reachability Formulas

Based on the observations on the correspondence between paths in a graph and
runs in an OCA, we subsequently show NP-membership of the reachability

problem for POCA by showing that this problem can be decided by checking
for satisfiability of a polynomial size QFPAD formula.

To this end, we need to introduce the concept of parametric weighted directed
graphs (PWDG). Similar to a graph, a PWDG is a tuple G = (V,E, P,w) with
the only difference that the weight function can additionally map into the set
of parameters P , i.e. w : E → Z ∪ {+p,−p : p ∈ P}. All definitions involving
graphs, such as path flows, are adopted in a straight forward way to the setting of
PWDG. In particular, a zero-test free POCA A induces a corresponding PWDG
GA, which is defined in the obvious way. Given an instantiation I, G(I) denotes
the graph obtained from instantiating the parameters. Throughout this section,
we assume a fixed set of parameters P = {p1, . . . , pk}. Instantiations are going
to be represented in QFPAD formulas by variables Z = (z1, . . . , zk). Given a
QFPAD formula ϕ(Z), we slightly abuse notation and denote by ϕ[Z/I] the
formula ϕ[z1/I(p1), . . . , zk/I(pk)]. Likewise, any assignment of ni to zi induces
a corresponding instantiation.

Given a zero-test free POCAA = 〈Q, qin , F, P,∆, λ〉, control locations q, q′ ∈
Q and natural numbers d, d′ ∈ N, we subsequently provide a set of formu-
las RF (GA, q, q′) such that there is some ϕ(Z, c, c′) ∈ RF (GA, q, q′) such that
ϕ[c/d, c′/d′] is satisfiable if and only if (q, d)→∗A (q′, d′). Each ϕ(Z, c, c′) can be
guessed in time polynomial in |A|, which together with the fact that satisfiability
in QFPAD is NP-complete concludes that reachability for zero-test free POCA
is in NP.

It is not difficult to see that this actually implies that the general reachability
problem for POCA is in NP. Suppose there is an instantiation I such that there
is a run r : (q, d) →∗A(I) (q′, d′). We may assume with no loss of generality that
each transition labeled with zero is traversed at most once in r. Formally, r can
be written as r : (q1, d1) →∗A(I) (q′1, d

′
1) →A(I) (q2, d2) →∗A(I) (q′2, d

′
2) →∗A(I)

. . .→∗A(I) (qn, dn)→∗A(I) (q′n, d
′
n), where q1 = q, q′n = q′, d1 = d, d′n = d′, d′i = 0

and dj = 0 for 1 ≤ i < n, 1 < j ≤ n, 1 ≤ n ≤ #∆. Hence, there are zero-test
free POCA Ai such that (qi, di) →∗Ai(I)

(q′i, d
′
i) and by assumption formulas

ϕi(Z, ci, c′i) ∈ RF (GAi
, qi, q

′
i) such that the conjunction

∧
1≤i≤n ϕi[ci/di, c

′
i/d
′
i]

is satisfiable, assuming with no loss of generality that the ϕi only share variables
from Z in common. Conversely, we can guess the order in which transitions
labeled with zero are traversed in a run witnessing reachability, their induced
zero-test free POCA Ai, the formulas ϕi(Z, ci, c′i) ∈ RF (GAi , qi, q

′
i) and check

for satisfiability of
∧

1≤i≤n ϕi[ci/di, c
′
i/d
′
i] in order to decide a general reachability

problem.

Let us introduce some additional abbreviations to QFPAD that we will be
using in the following. First, we can easily extend QFPAD with the standard
Boolean abbreviations implication (→) and equivalence (↔), where ϕ → ψ ab-
breviates ¬ϕ ∨ ψ and ϕ ↔ ψ stands for ϕ → ψ ∧ ψ → ϕ. Second, let A,B be
linear polynomials in some vectors of variables X. Let y be a fresh variable,
we introduce equivalence and inequalities between polynomials. The following
identities can be easily verified:

A = B ⇐⇒ A|B ∧B|A ∧A+ 1|B + 1 ∧B + 1|A+ 1
A < B ⇐⇒ A+ y + 1 = B

A > B ⇐⇒ −A < −B
A ≤ B ⇐⇒ A < B ∨A = B

A ≥ B ⇐⇒ A > B ∨A = B.

Notice that when applying negation to formulas of the form A ∼ B,∼∈ {<,≤
,≥, >} we rewrite this formula with the complement of ∼, e.g., ¬(A < B) is
rewritten with A ≥ B.

Restricted systems of quadratic Diophantine equations will be our key tool
for checking the existence of instantiations such that a path flow with a certain
weight exists. In particular, in the setting of PWDG Equation (6) allows for
describing the weight of a path flow in terms of a quadratic equation.

Definition 8. Let X = (x1, . . . , xm) and Y = (y1, . . . , yn) be vectors of disjoint
integer variables, and Ai, Bi be linear polynomials in X, 1 ≤ i ≤ n. A restricted
system S of quadratic Diophantine equations is of the form

y1A1 +B1 = 0
y2A2 +B2 = 0

...
ynAn +Bn = 0.

The system S has a solution if and only if there are z′i, zj ∈ N, 1 ≤ i ≤ m, 1 ≤
j ≤ n, such that z′jAj [x1/z1, . . . , xm/zm]+Bj [x1/z1, . . . , xm/zm] = 0, 1 ≤ j ≤ n.

Lemma 1. Let S be a restricted system of quadratic Diophantine equations.
There exists a QFPAD formula ϕ of size polynomial in the size of S such that
ϕ is satisfiable if and only if S has a solution.

Proof. We use the terminology from Definition 8. Since each variable yi only
occurs once in each row, the statement follows by setting

ϕ(X) :=
∧

1≤i≤n

(Ai|Bi ∧ (Ai > 0↔ Bi > 0)) .

Notice that since 0|0 and ¬(0|z) for z ∈ Z \ {0} are tautologies in QFPAD, the
Ai are allowed to be equivalent to the constant polynomial 0.

Remark 2. It immediately follows from a result by Ibarra and Dang [13] that
generalising Definition 8 to allow the same variable yi to appear in two separate
quadratic polynomials leads to an undecidable problem.

Let G = (V,E, P,w) be a PWDG. For every (F ′, F1, . . . , Fn) ∈ CDS(G, s, t),
the set of flow instantiations FI(G, s, t) contains the equiv-satisfiable QFPAD
formula ϕ(Z, c, c′) of the following system Ss,t of restricted quadratic Diophan-
tine equations

weight(π′)− x′ = 0
y1weight(`1)− x1 = 0

...
ynweight(`n)− xn = 0

x′ + x1 + . . .+ xn − c′ + c = 0,

where π′ is the only s-t path in G/F ′ and `i is a cycle in G/Fi, 1 ≤ i ≤ n.

Proposition 10. Let G = (V,E, P,w) be a PWDG and s, t ∈ V . For all in-
stantiations I and d, d′ ∈ N, we have the following:

(a) For all ϕ(Z, c, c′) ∈ FI(G, s, t), if ϕ[Z/I, c/d, c′/d′] is satisfiable then there
exists an s-t path flow f in G(I) with weight(f) = d′ − d.

(b) If there exists an s-t path flow f in G(I) with weight(f) = d′ − d then
there exists some ϕ(Z, c, c′) ∈ FI(G,F, s, t) such that ϕ[Z/I, c/d, c′/d′] is
satisfiable.

Proof. (a) Let ϕ[Z/I, c/d, c′/d′] be satisfiable and derived from (F ′, F1, . . . , Fn) ∈
CDS(G, s, t) with the respective path π′ and cycles `1, . . . , `n. Since Ss,t has
a solution, there are y1, . . . , yi such that y′weight(π′)+

∑
1≤j≤i yiweight(`i) =

d′ − d. Hence for e ∈ E, define f ′(e) = 1 if e ∈ F ′ and f ′(e) = 0 otherwise,
and fj(e) = yj if e ∈ Fi and fi(e) = 0 otherwise. It follows from Proposition
4 that f = f ′ +

∑
1≤j≤i fi is the required flow with weight(f) = d′ − d.

(b) Let f be a flow with support f and weight(f) = d′ − d in G(I). By Propo-
sition 4, there exists an s-t-cycle decomposition f ′, f1, . . . , fn with sup-
ports F ′, F1, . . . , Fi, 1 ≤ i ≤ #E such that weight(f) = weight(f = f ′ +∑

1≤j≤i fi), Consequently, there are y1, . . . , yi such that weight(f) = weight(f ′)+∑
1≤j≤i yjweight(fj) = d′ − d. Hence, there is ϕ(Z, c, c′) ∈ FI(G, s, t) such

that ϕ[Z/I, c/d, c′/d′] is satisfiable.

We now define QFPAD formulas that are satisfiable whenever a graph does
not contain any positive respectively negative cycles.

Proposition 11. Let G = (V,E, P,w) be a PWDG. There exist singleton sets
PC(G) and NC(G) such that for any instantiation I,

(i) for ϕ+(Z) ∈ PC(G), ϕ+[Z/I] is satisfiable if and only if G(I) does not
contain any negative cycle; and

(ii) for ϕ−(Z) ∈ NC(G), ϕ−[Z/I] is satisfiable if and only if G(I) does not
contain any positive cycle.

Proof. (i) In order to show the statement we provide a polynomial-time al-
gorithm that checks for the non-existence of negative cycles in a weighted
graph. By loop-unraveling we can then translate this algorithm into the
required QFPAD formula.
Consider Algorithm 1, a variant of the celebrated Bellman-Ford algorithm,
which is a polynomial-time algorithm that computes the shortest path in
weighted graphs with the ability to detect negative cycles, see e.g. [6].
Given a weighted graph G, for each v ∈ V Algorithm 1 works on variables
d0
v, . . . , d

|V |−1
v which are all assumed to be initialised with 0. The intention

of the div is to store the minimal weight of a path to v in G of length at
most i. Since we are exclusively interested in finding negative cycles, we
have div ≤ 0 and div ≤ di+1

v when the algorithm has terminated for all
v ∈ V, 0 ≤ i < |V | − 1. At the beginning, the algorithm loops |V | − 1 times
and updates in each round the div for each v ∈ V . If there is a node v′ ∈ V
and an incoming edge (v′, v) such that di−1

v′ + w(v′, v) < di−1
v then div is

set to di−1
v′ + w(v′, v) for some v′ ∈ V . Otherwise div is set to di−1

v . In the
last round of the loop, the algorithm checks whether there is a node v ∈ V
such that d|V |−1

v can be decreased. If this is the case then there exists a
cycle whose weight sums up below zero and the algorithm returns false.
Otherwise G does not a negative cycle and the algorithm eventually exits
the loop and returns true.
It is now not hard to see that the following formula translates Algorithm
1 into a polynomial size Presburger formula with additional free variables
div, 0 ≤ i < |V |, v ∈ V and P :

ϕ− :=
∧
v∈V

d0
v = 0 ∧

∧
∧

1≤i<|V |

∧
v∈V

∧
(v′,v)∈E

 ∧
(v′′,v)∈E

di−1
v′′ + w(v′′, v) ≥ di−1

v′ + w(v′, v)

→
→ ((di−1

v′ + w(v′, v) < di−1
v → div = di−1

v′ + w(v′, v)) ∧
∧((di−1

v′ + w(v′, v) ≥ di−1
v → div = di−1

v)))) ∧

∧
∧
v∈V

∧
(v′,v)∈E

d
|V |−1
v′ + w(v′, v) ≥ d|V |−1

v .

It follows that ϕ[p1/z1, . . . , pk/zk] is satisfiable only for values z1, . . . , zk ∈
Z such that I(pi) = zi, 1 ≤ i ≤ k and G(I) does not contain any positive
cycles.

(ii) This is just the dual of part (i).

Given a G = (V,E, P,w), we are now going to introduce sets of QFPAD
formulas RC1(G, s, t), RC2(G, s, t) and RC3(G, s, t), s, t ∈ V . The set RC1 will
be used to decide the existence of path flows that fulfill the type-1 reachabil-
ity criteria. Thus RC1 contains formulas ϕ(Z, c, c′) such that for any instan-
tiation I and d, d′ ∈ N, if ϕ[Z/I, c/d, c′/d′] is satisfiable then there is an s-t

Algorithm 1 Variant of the Bellman-Ford algorithm for checking that the
weighted graph G = (V,E,w) does not contain a negative cycle.
Input: G = (V, E, w)

for i = 1 to |V | do
for all v ∈ V do

di
v := di−1

v

for all (v′, v) ∈ E do
if di−1

v′ + w(v′, v) < di−1
v && i < |V | then

di
v := di−1

v′ + w(v′, v)
end if
if di−1

v′ + w(v′, v) < di−1
v && i = |V | then

return false
end if

end for
end for

end for
return true

path flow f such that (G(I), f, d, d′) fulfills the type-1 reachability criteria. Con-
versely, if (G(I), f, d, d′) fulfills the type-1 reachability criteria then there is some
ϕ(Z, c, c′) ∈ RC1(G, s, t) that is satisfiable. Similar conditions hold for the for-
mulas in the sets RC2 and RC3.

For each (F0, s0, s1, . . . , Fm−1, sm−1, sm) ∈ V DS(G, s, t) with F :=
⋃

0≤i<m Fi,
each ϕi(Z, ci, c′i) ∈ PF (G/Fi, si, si+1), 0 ≤ i < m and ϕ− ∈ NC(G/F), we have
ϕ(Z, c, c′) ∈ RC1(G, s, t) with

ϕ :=
∧

0≤i<m

ϕi ∧ ϕ− ∧
∧

0≤j<m

∑
0≤i≤j

c′i − ci ≥ −c ∧
∑

0≤i<m

c′i − ci = c′ − c. (7)

The set RC2(G, s, t) is defined analogously for capturing type-2 reachability
criteria.

Last, we define the set of QFPAD formulas for capturing type-3 reacha-
bility criteria. Given G = (V,E, P,w) and s, t ∈ V , for every ϕf (Z, cf , c′f) ∈
PF (G, s, t), for every (π1, π2, π3) ∈ CC(G, s) and (π′1, π

′
2, π
′
3) ∈ CC(G, t) such

that π1 = v0v1 . . . vl1 , π2 = vl1 . . . vl, π
′
1 = v′0v

′
1 . . . vl′1 and π2 = v′l′1

. . . v′l′ , there
is ϕ(Z, c, c′) ∈ RC3(G, s, t) with

ϕ :=
∧

0≤j≤l

∑
0≤i<j

w(vivi+1) ≥ −c ∧
∑
l1≤i<l

w(vivi+1) > 0 ∧ (8)

∧
∧

0≤j≤l′

∑
0≤i<j

w(v′iv
′
i+1) ≥ −c ∧

∑
l′1≤i<l′

w(v′iv
′
i+1) < 0 ∧ (9)

∧ϕf ∧ cf = c ∧ c′f = c′. (10)

Proposition 12. Let G = (V,E, P,w) be a PWDG. Let s, t ∈ V, d, d′ ∈ N and
I be an instantiation.

(i) (a) For all ϕ(Z, c, c′) ∈ RC1(G, s, t) such that ϕ[Z/I, c/d, c′/d′] is satis-
fiable there is an s-t path flow f such that (G(I), f, d, d′) fulfills the
type-1 reachability criteria.

(b) If there is an s-t path flow f such that (G(I), f, d, d′) fulfills the type-1
reachability criteria then there is some ϕ(Z, c, c′) ∈ RC1(G, s, t) such
that ϕ[Z/I, c/d, c′/d′] is satisfiable.

(ii) (a) For all ϕ(Z, c, c′) ∈ RC2(G, s, t) such that ϕ[Z/I, c/d, c′/d′] is satis-
fiable there is an s-t path flow f such that (G(I), f, d, d′) fulfills the
type-2 reachability criteria.

(b) If there is an s-t path flow f such that (G(I), f, d, d′) fulfills the type-2
reachability criteria then there is some ϕ(Z, c, c′) ∈ RC2(G, s, t) such
that ϕ[Z/I, c/d, c′/d′] is satisfiable

(iii) (a) For all ϕ(Z, c, c′) ∈ RC3(G, s, t) such that ϕ[Z/I, c/d, c′/d′] is satis-
fiable there is an s-t path flow f such that (G(I), f, d, d′) fulfills the
type-3 reachability criteria.

(b) If there there is some ϕ(Z, c, c′) ∈ RC3(G, s, t) such that ϕ[Z/I, c/d, c′/d′]
is satisfiable then there is some ϕ(Z, c, c′) ∈ RC3(G, s, t) such that
ϕ[Z/I, c/d, c′/d′] is satisfiable.

Proof. (i) (a) Let some ϕ[Z/I, c/d, c′/d′] be satisfiable. Then ϕ is derived
from some vertex decomposition (F0, s0, s1, . . . , Fm−1, sm−1, sm) ∈ V DS(G, s, t).
Since each ϕi in (7) is satisfied, by Proposition 10(i) there exist si-si+1

path flows fi with weight c′i − ci, 0 ≤ i < m. Moreover, since ϕ− is
satisfied, there is no positive cycle in G(I)/F . It is also ensured that
the sum of the weights over all sums of path flows in the relevant order
does not go below d and that that their overall weight is d′−d. Hence,
the type-1 reachability criteria are fulfilled for (G(I), f, d, d′), where
f =

∑
0≤i≤m fi.

(b) Let f be a path flow with support F such that (G(I), f, d, d′) fulfills the
type-1 reachability criteria. Thus, let (F0, s0, s1, . . . , Fm−1, sm−1, sm) ∈
V DS(G, s, t) be the supports of the corresponding vertex decomposi-
tion. Since there are si-si+1 path flows fi in G/Fi with weight(fi) =
d′i − di, by Proposition 10(ii) there are ϕi ∈ PF (G/Fi, si, si+1) such
that each ϕ(G/Fi, sm−1, sm) is satisfiable, 0 ≤ i < m. Moreover, ϕ−

is also satisfiable, since G(I)/F does not contain any positive cycle.
The remaining type-1 reachability criteria enforce that the remaining
conjuncts from Equation (7) are also satisfied, hence there exists some
ϕ[Z/I, c/d, d′] that is satisfiable.

(ii) This is just the dual of part (i).
(iii) (a) Let some ϕ[Z/I, c/d, d′] be satisfiable. Then ϕ is derived from some

(π1, π2, π3) ∈ CC(G, s) and (π′1, π
′
2, π
′
3) ∈ CC(G, t). The conjuncts

from (8) together with Proposition 6(i) ensure that there is a positive
cycle `+ at s in G(I) with drop(`+) ≥ d. Likewise, the conjuncts from
(9) together with Proposition 6(ii) ensure that there is a negative cycle
`− at t in G(I) with drop(`−) ≥ c′. Last, the conjunct from (10)
together with Proposition 10(i) ensures that there is an s-t path flow

in G(I) with weight d′ − d. Hence (G(I), f, d, d′) fulfills the type-3
reachability criteria.

(b) Let f be a path flow such that (G(I), f, d, d′) be such that it fulfills the
type-3 reachability criteria. Then there is a positive cycle at s and a
negative cycle at t. We derive from Proposition 6 that there exists some
corresponding (π1, π2, π3) ∈ CC(G, s) and (π′1, π

′
2, π
′
3) ∈ CC(G, t) such

that the conjuncts from (8) and (9) are fulfilled. Moreover, Proposi-
tion 10(ii) implies that there is some ϕf (Z, cf , c′f) ∈ PF (G, s, t) such
that ϕf [Z/I, cf/d, c′f/d

′] and all the remaining conjuncts from (10) are
satisfied. Hence the required ϕ(Z, c, c′) ∈ RC3(G, s, t) exists.

We finally reached the point where we can define the set RF (G, s, t) of reacha-
bility formulas. The previously defined sets RC1, RC2 and RC3 allow us to check
for the existence of path flows that fulfill the type-1, type-2 respectively type-3
reachability criteria. Proposition ?? allows us to decide a reachability problem
by just considering at most three path flows that fulfill the type-i reachabil-
ity criteria. Hence, the set RF (G, s, t) consists of conjunction of formulas from
RC1, RC2 and RC3.

In the following, let us assume without loss of generality that all formulas
from RC1, RC2 and RC3 only share the variables z1, . . . , zk. Define RF (G, s, t)
to be a finite set of QFPAD formulas ϕ(Z, c, c′) such that

RF (G, s, t) := {c1 = c ∧ c′1 = c′ ∧ ϕ1 : ϕ1(Z, c1, c′1) ∈ RC1(G, s, t)}
∪{c1 = c ∧ c′1 = c2 ∧ c′2 = c′ ∧ ϕ1 ∧ ϕ2 :

ϕ1(Z, c1, c′1) ∈ RC1(G, s, s′), ϕ2(Z, c2, c′2) ∈ RC2(G, s′, t), s′ ∈ V }
∪{c1 = c ∧ c′1 = c2 ∧ c′2 = c3 ∧ c′3 = c′ ∧ ϕ1 ∧ ϕ2 ∧ ϕ3 :

ϕ1(Z, c1, c′1) ∈ RC1(G, s, s′), ϕ2(Z, c2, c′2) ∈ RC3(G, s′, t′),
ϕ3(Z, c3, c′3) ∈ RC2(G, t′, t), s′, t′ ∈ V }.

Proposition 13. Let A = 〈Q, qin , F, P,∆, λ〉 be a zero-test free POCA with the
corresponding PWDG GA. Let q, q′ ∈ Q, d, d ∈ N and I be an instantiation.

(a) For all ϕ(Z, c, c′) ∈ RF (G, q, q′) such that ϕ[Z/I, c/d, c′/d′] is satisfiable we
have (q, d)→∗A(I) (q′, d′) in (CA(I),→A(I)).

(b) If (q, d)→∗A(I) (q′, d′) in (CA(I),→A(I)) then there is ϕ(Z, c, c′) ∈ RF (G, q, q′)
such that ϕ[Z/I, c/d, c′/d′] is satisfiable.

Proof. (a) We only consider the most general case ϕ(Z, c, c′) = c1 = c ∧ c′1 =
c2 ∧ c′2 = c3 ∧ c′3 = c′ ∧ ϕ1 ∧ ϕ2 ∧ ϕ3, the other cases follow in a similar
fashion. Since ϕ is satisfiable, there are d1, d2 ∈ N and q1, q2 ∈ Q such
that ϕ1[Z/I, c1/d, c′1/d1], ϕ2[Z/I, c2/d1, c

′
2/d2] and ϕ3[Z/I, c3/d2, c

′
3/d
′] are

satisfiable for ϕ1(Z, c1, c′1) ∈ RC1(G, q, q1), ϕ2(Z, c2, c′2) ∈ RC3(G, q1, q2)
and ϕ3(Z, c3, c′3) ∈ RC2(G, q2, q′). It follows from Proposition 12 that there
is a q-q1 path flow f1 such that (G(I), f1, d, d1) fulfills the type-1 reachability

criteria, and hence by Proposition 9(i) (q, d) →∗A(I) (q1, d1). By the same
argumentation, we have (q1, d1) →∗A(I) (q2, d2) and (q2, d2) →∗A(I) (q′, d′),
whence (q, d)→∗A(I) (q′, d′).

(b) By Proposition 9, in the most general case there exist a q-q1 path flow
f1, a q1-q2 path flow f2, a q2-q′ path flow f3 and d1, d2 ∈ N such that
(GA, f1, d, d1), (GA, f2, d1, d2) and (GA, f3, d2, d

′) fulfill the type-1, type-2
respectively type-3 reachability criteria. By Proposition 12, there are for-
mulas ϕ1(Z, c1, c′1) ∈ RC1(GA, q, q1), ϕ2(Z, c2, c′2) ∈ RC3(GA, q1, q2) and
ϕ3(Z, q3, c′3) ∈ RC2(GA, q2, q′) such that ϕ1[Z/I, c1/d, c′1/d1], ϕ1[Z/I, c1/d1, c

′
1/d2]

and ϕ1[Z/I, c1/d2, c
′
1/d
′] are satisfiable. Hence, the formula ϕ(Z, c, c′) :=

c1 = c ∧ c′1 = c2 ∧ c′2 = c3 ∧ c′3 = c′ ∧ ϕ1 ∧ ϕ2 ∧ ϕ3, which obviously is
contained in RF (G, q, q′), is satisfiable.

It is easily verified that any formula from ϕ ∈ RF (G, s, t) can be guessed
in polynomial time in |G|, since all the formulas from FI, PC,NC,RC1, RC2

and RC3 can be guessed respectively constructed in time polynomial in |G|.
Recalling that checking for satisfiability in QFPAD is in NP, we have thus
shown that the reachability problem for POCA without zero tests is in NP. As
discussed at the beginning of this section, this shows that the general POCA
reachability problem is in NP. Moreover, in Proposition 3 we proved that the
POCA reachability problem is NP-hard, hence our main theorem follows.

Theorem 2. The reachability problem for parametric one-counter automata is
NP-complete.

Remark 3. In Section 2, we defined an instantiation to be a function that maps
the set of parameters to the set of positive integers. It is now easily seen that
this definition can be generalised to allow for instantiations mapping the set of
parameters to the whole set of integers without changing the complexity of the
reachability problem. Given a POCAA, by guessing beforehand the signs of each
parameter and replacing p with −p respectively −p with p at the transitions of
A if the sign of p is guessed to be negative, this generalised reachability problem
reduces to the original problem.

3.4 Emptiness with Büchi Acceptance Condition

In the literature, Büchi automata have been introduced for the specification,
modeling and reasoning about non-terminating systems, see e.g. [22]. A Büchi
automaton is defined in a similar way to a finite state automaton, but its defi-
nition of emptiness differs. A Büchi automaton A is empty if there is an infinite
run r of A such that there is a state from the set of final states that occurs
infinitely often in r. This condition is known as Büchi acceptance condition. The
concept of Büchi acceptance condition can be introduced in a straight-forward
way to the setting of (parametric) one-counter automata. We show in this sec-
tion that checking emptiness for parametric one-counter automata with Büchi
acceptance condition is co-NP-complete. The decidability of this problem has
independently been established by Demri and Sangnier in [10].

Let A = 〈Q, qin , F,∆, λ〉 be an OCA. Given a run r in (CA,→A), r(i) is
defined to be the i-th configuration of r, 1 ≤ i ≤ |r|+ 1. The set inf (r) ⊆ Q of
control locations occurring infinitely often in r is defined as inf (r) := {q ∈ Q :
#{i ∈ N : r(i) = (q, c), c ∈ N} is infinite}.
Definition 9. A POCA A = 〈Q, qin , F, P,∆, λ〉 is empty with respect to Büchi
acceptance condition if inf (r) ∩ F = ∅ for all instantiations I and all runs r in
(CA(I),→A(I)) with r(1) = (qin , 0).

In the setting of Büchi automata, non-emptiness can be decided by finding
a strongly connected component in the graph underlying the automaton that
contains a final location and is reachable from the initial location. We can mod-
ify this approach for deciding non-emptiness for POCA with Büchi acceptance
condition. Given a POCA A, we aim for finding an instantiation I such that we
can find a cycle reachable from the initial configuration between configurations
(q, c) and (q, c′) in (CA(I),→A(I)) such that q ∈ F and either there is no zero-test
between (q, c) and (q, c′) and the counter value increases, or there is a zero-test
and the counter value remains the same. This idea is formalised in the following
proposition.

Proposition 14. A POCA A = 〈Q, qin , F, P,∆, λ〉 is not empty with respect
to Büchi acceptance condition if and only if there are an instantiation I, q ∈ F
and c ∈ N such that

(i) there is c′ ∈ N with c′ ≥ c and there are runs r1 : (qin , 0) →∗ (q, c) and
r2 : (q, c)→∗ (q, c′) in (CA(I),→A(I)) and r2 is zero-test free; or

(ii) there is q′ ∈ Q and there are runs r1 : (qin , 0) →∗ (q′, 0), r2 : (q′, 0) →∗
(q, c) and r3 : (q, c)→∗ (q′, 0) in (CA(I),→A(I)).

Proof. (⇒) Suppose I is an instantiation such that there is a run r in (CA(I),→A(I)

) with inf (r)∩F 6= ∅. Let q ∈ inf (r)∩F . If r can be partitioned into r = r1 ·r2 ·r3
such that r2 : (q, c) →∗A(I) r

′
2 · (q, c′), r2 is zero-test free and c′ ≥ c we are

done. Otherwise there is some q′ ∈ inf (r) such that (q′, 0) occurs infinitely of-
ten in r, since some zero test is performed infinitely often in r. Hence there is
some c ∈ N such that r can be decomposed as r = r1 · r2 · r3 · r4 such that
r1 : (qin , 0)→∗A(I) (q′, 0), r2 : (q′, 0)→∗A(I) (q, c) and r3 : (q, c)→∗A(I) (q′, 0).

(⇐) Case (i): Suppose there are an instantiation I, q ∈ F , c, c′ ∈ N with
c′ ≥ c and runs r1 : (qin , 0) →∗ (q, c) and r2 : (q, c) →∗ (q, c′) in (CA(I),→A(I))
with r2 being zero-test free. Using the latter fact, we have (q, c+d)→∗ (q, c′+d)
in (CA(I),→A(I)) for all d ∈ N. It follows that r = r1 · r2 · (r2 + (c′ − c)) · (r2 +
2(c′ − c)) · (r2 + 3(c′ − c)) . . . is a run witnessing non-emptiness.

Case (ii): It obviously follows that r = r1 · r2 · r3 · r2 · r3 · r2 . . . is a run in
(CA(I),→A(I)) witnessing non-emptiness.

From this proposition we can derive the main result of this section. We will
omit the proof since it is just a straight forward combination of Proposition 14
together with the proof of Theorem 2.

Theorem 3. The emptiness problem for parametric one-counter automata with
respect to Büchi acceptance condition is co-NP-complete.

4 Conclusion

In this paper, we have considered the reachability problem for parametric counter
automata. By previous results on non-parametric counter automata, this prob-
lem is undecidable in general. We have shown that—in contrast to the non-
parametric case—the reachability problem remains undecidable in general even
if we ban zero tests. However, for the sub-class of parametric one-counter au-
tomata we have shown that the reachability problem is NP-complete by showing
that it is inter-reducible to quantifier free Presburger arithmetic with divisibility.
Based on our result on reachability, we have shown that deciding emptiness for
parametric one-counter automata with Büchi acceptance condition is co-NP-
complete.

An interesting aspect for future work could be the investigation of the effect
of introducing additional operations on the counter such as non-equality tests on
the decidability and complexity of the reachability problem. According to [10],
this could give new decidability respectively undecidability results for freeze LTL
model checking of one-counter automata. It is however unlikely that the tech-
niques we used in this paper can be adopted to this setting in a straightforward
way. One of our main technical tools, lifting up paths by pumping of positive
and negative cycles, does not seem to have a correspondent when non-equality
test with parameters are allowed.

Acknowledgments. We would like to thank Leonard Lipshitz for making
reference [17] available to us.

References

1. R. Alur, T.A. Henzinger, and M. Y. Vardi. Parametric real-time reasoning. In
Proceedings of the 25th Symposium on Theory of Computing (STOC), pages 592–
601. ACM, 1993.

2. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs
with lists are counter automata. In CAV, volume 4144 of LNCS. Springer, 2006.

3. M. Bozga, R. Iosif, and Y. Lakhnech. Flat parametric counter automata. In Proc.
ICALP’06, volume 4052 of LNCS. Springer, 2006.

4. J. R. Büchi. Regular canonical systems. Archive for Mathematical Logic, 6(3-4):91,
April 1964.

5. H. Comon and Y. Jurski. Multiple counters automata, safety analysis and pres-
burger arithmetic. In Proc. CAV’98, volume 1427 of LNCS. Springer, 1998.

6. T. Cormen, C. Leiserson, and R. Rivest. Introduction to algorithms. MIT Press
and McGraw-Hill, 1990.

7. S. Demri. Logiques pour la spécification et vérification. Mémoire d’habilitation,
Université Paris 7, 2007.

8. S. Demri and R. Gascon. The effects of bounding syntactic resources on Presburger
LTL. In Proc. TIME’07. IEEE Computer Society Press, 2007.

9. Stéphane Demri and Régis Gascon. The effects of bounding syntactic resources on
Presburger LTL. Journal of Logic and Computation, 2009. To appear.

10. Stéphane Demri and Arnaud Sangnier. When model-checking freeze LTL over
counter machines becomes decidable. In C.-H. Luke Ong, editor, Proceedings of the

13th International Conference on Foundations of Software Science and Computa-
tion Structures (FoSSaCS’10), volume 6014 of Lecture Notes in Computer Science,
Paphos, Cyprus, March 2010. Springer. To appear.

11. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

12. J. E. Hopcroft and J. Pansiot. On the reachability problem for 5-dimensional
vector addition systems. Technical report, Ithaca, NY, USA, 1976.

13. O. H. Ibarra and Z. Dang. On two-way finite automata with monotonic counters
and quadratic diophantine equations. Theoretical Computer Science, 312(2-3):359–
378, 2004.

14. O. H. Ibarra, T. Jiang, N. Trân, and H. Wang. New decidability results concerning
two-way counter machines and applications. In ICALP, volume 700 of LNCS.
Springer, 1993.

15. J. Leroux and G. Sutre. Flat counter automata almost everywhere! In Proc.
ATVA’05, volume 3707 of LNCS. Springer, 2005.

16. L. Lipshitz. The diophantine problem for addition and divisibility. Transaction of
the American Mathematical Society, 235:271–283, 1976.

17. L. Lipshitz. Some remarks on the diophantine problem for addition and divisibility.
In Proceedings of the Model Theory Meeting, volume 33, pages 41–52, 1981.

18. R. Lipton. The reachability problem requires exponential space. Technical report,
New Haven, CT, USA, 1975.

19. E. W. Mayr. An algorithm for the general petri net reachability problem. In Proc.
STOC’81, pages 238–246, New York, NY, USA, 1981. ACM.

20. M. Minsky. Recursive unsolvability of post’s problem of ”tag” and other topics in
theory of turing machines. Annals of Mathematics, 74(3), 1961.

21. Wojciech Plandowski and Wojciech Rytter. Complexity of language recognition
problems for compressed words. In Jewels are Forever, Contributions on Theoret-
ical Computer Science in Honor of Arto Salomaa, pages 262–272, London, UK,
1999. Springer-Verlag.

22. Wolfgang Thomas. Automata on infinite objects. pages 133–191, 1990.
23. G. Xie, Z. Dang, and O. H. Ibarra. A solvable class of quadratic diophantine

equations with applications to verification of infinite-state systems. In Proc. ICALP
2003, volume 2719 of LNCS. Springer, 2003.

