
Chapter 1

Insight, inspiration and collaboration

C. B. Jones, A. W. Roscoe

Abstract Tony Hoare’s many contributions to computing science are marked
by insight that was grounded in practical programming. Many of his papers
have had a profound impact on the evolution of our field; they have moreover
provided a source of inspiration to several generations of researchers. We
examine the development of his work through a review of the development
of some of his most influential pieces of work such as Hoare logic, CSP and
Unifying Theories.

1.1 Introduction

To many who know Tony Hoare only through his publications, they must
often look like polished gems that come from a mind that rarely makes false
steps, nor even perhaps has to work at their creation. As so often, this impres-
sion is a further compliment to someone who actually adds to very hard work
and many discarded attempts the final polish that makes complex ideas rel-
atively easy for the reader to comprehend. As indicated on page xi of [HJ89],
his ideas typically go through many revisions.

The two authors of the current paper each had the honour of Tony Hoare
supervising their doctoral studies in Oxford. They know at first hand his
kind and generous style and will count it as an achievement if this paper
can convey something of the working style of someone big enough to eschew
competition and point scoring. Indeed it will be apparent from the following
sections how often, having started some new way of thinking or exciting ideas,
he happily leaves their exploration and development to others. We have both
benefited personally from this.

Tony retired from Oxford in 1999 and has had, as we write this, 10 ex-
tremely active years at Microsoft, improving that company’s software devel-
opment techniques, engaging enthusiastically in the debates of the computer
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science and software engineering world, promoting Grand Challenges such as
the Verifying Compiler, and taking renewed interests in programming logic
thanks to topics such as Separation Logic. We, however, have restricted our-
selves to studying his work up to 1999 on the grounds that 10 years is already
too short a time to understand the impact of academic work.

In writing about the various phases and topics of Tony’s career we have
tried to analyse the influences and developing themes that have run through
it.

1.2 Education and early career

Charles Antony Richard Hoare, the eldest of five children (he has two brothers
and two sisters), was born of British parents on 11 January 1934 in Colombo
in what was then called Ceylon (now Sri Lanka). Ceylon was at that time
part of the British Empire, and his father and maternal grandfather were
both Englishmen engaged in the business of Empire, and from somewhat
upper-class backgrounds.1

After his family returned to England at the end of World War II, Tony
attended the Dragon School, Oxford and King’s School, Canterbury before
going to Oxford University to study Greats (formally known as Literae Hu-
maniores) at Merton College between 1952 and 1956. Greats is Oxford’s clas-
sics course, in which students study Latin and Greek for the first two years,
and concentrate on philosophy, literature and ancient history for the final
two. Tony specialised in modern philosophy, being taught by John Lucas,
an expert on logic and Gödel in particular, who was then a Junior Research
Fellow2 at Merton. By the time the authors studied at Oxford from the mid
1970s to early 1980s, Greats had gained the reputation of being one of the best
courses to do at Oxford if you wanted to become a computer programmer.
So perhaps the training Greats offered in systematic thinking, particularly
given Lucas’ influence, was in fact the ideal education for an early computer
scientist. There was no undergraduate course in computer science at Oxford
until about a decade after Hoare returned as a professor.

In 1956 Tony was called up into the Royal Navy to do his “National Ser-
vice”, two years’ military service that was compulsory for young men in the
UK until the early 1960s. Perhaps thanks to his linguistic background, he
went on a course on the Russian language while in the Navy.

Tony returned for a further year at Oxford after completing his National
Service degree, studying Statistics. During that year he took a course in
programming (Mercury Autocode) from Leslie Fox, the founding Director of

1 See thepeerage.com, for example.
2 This is a a type of position given by Oxford Colleges to allow leading young academics

to pursue their research.
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Oxford University Computing Laboratory, about two years after the Lab-
oratory was founded. Fox, one of the great figures of Numerical Analysis,
remained Director until he retired in 1983, at which point Hoare took over
this role.

He then went to Moscow State University as a graduate student and stud-
ied Machine Translation, along with probability in the school of the great
Russian Mathematician Andrey Kolmogorov. Tony states that it was there,
in the context of dictionary processing, that he invented Quicksort while
unaware of any sorting algorithms other than bubblesort, which he had re-
discovered and decided was too slow. At the same time he began translating
Russian literature on computer science into English.

On his return to England he joined the small British computer company
Elliott Brothers, by whom he had been recruited while still in Moscow. One
of the first tasks he was given there was to implement Shellsort in Elliott
803 Autocode. He remarks in [Hoa81b] that he then bet his manager that
he had an algorithm that would usually run faster. He remarks how difficult
Quicksort was to explain in the language of the time; but he won his sixpenny
(£0.025) bet. He famously led the team that wrote one of the first ALGOL
60 compilers, for the Elliott 503 (the curiously numbered successor to the
803), a computer with 8K of 39-bit words and which was advertised as being
able to run “as many as 200 programs per day”3. By the time this compiler
was released in 1963 Tony had married (in 1962) Jill Pym, a member of his
team. The ALGOL compiler was “one pass”: in other words it only required
a single pass through the source code tree of the object program.

There is no doubt that Tony’s work on ALGOL helped to define his under-
standing of the nature of programming. Indeed, in [Hoa81b], he writes “It was
there [an ALGOL 60 course in Brighton by Naur, Dijkstra and Landin which
inspired him to choose this language for Elliott] that I first learned about
recursive procedures and saw how to program the sorting method which I
had earlier found such difficulty in explaining.”

In [Hoa81b] Tony goes on to explain how his understanding of program-
ming and the need for clear semantics of programming languages developed
as the result of the failure to deliver an operating system for the Elliott 503
Mark II, and how this, in particular, inspired his work on concurrency:

I did not see why the design and implementation of an operating system should be so
much more difficult than that of a compiler. This is the reason why I have devoted my

later research to problems of parallel programming and language constructs which

would assist in clear structuring of operating systems–constructs such as monitors
and communicating processes.

Tony reached the position of Chief Engineer at Elliott Brothers, but de-
cided to leave because of the effects of the company being taken over in 1968.
His academic career therefore began after he saw an advertisement for the

3 According to [27] when the compiler was run on the much slower 803 a typical half-page
ALGOL program would take half an hour to compile and execute.
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position of Professor at the Queen’s University, Belfast. By this time his po-
sition in the developing subject of computer science was secure thanks not
only to Quicksort but, perhaps more importantly, to the collaborations and
contacts he obtained through his ALGOL work and the work he was doing on
the ALGOL Working Group (IFIP WG2.1). By the time Tony was recruited
to Oxford in 1977 no application was necessary: he was simply contacted and
told that he had been elected to the job.

1.3 Programming languages

Hoare’s most explicit set of positive rules for designers of programming lan-
guages was titled “Hints on Programming Language Design”. This was origi-
nally written for the first (ACM SIGPLAN) POPL conference held in Boston
in October 1973. Sadly, the paper did not appear in the proceedings but has
been reprinted several times in slightly different forms — probably the most
accessible electronic version is [Hoa73a]. Rather than repeat the points in this
important paper, can we encourage our readers to study it? This plea is most
strongly addressed to anyone who is thinking of designing a new language.

The importance that Tony Hoare attaches to programming languages is
made abundantly clear in his acceptance speech for the ACM Turing Award.4

This 1980 speech is published as [Hoa81b]. As mentioned in Section 1.2, he
remarks there how he could only express Quicksort elegantly after he had
seen ALGOL.

Hoare also makes clear that he sees it “as the highest goal of programming
language design to enable good ideas to be elegantly expressed”. Later in the
same paper he observes the importance of “programming notations so as to
maximise the number of errors which cannot be made, or if made, can be
reliably detected at compile time.”

ALGOL 60 had been devised by a committee; but a committee of the
highest calibre. Hoare was invited to join IFIP WG 2.1 in August 1962. One
of the proposals on which he looked back with pride is the “switch” concept.

His work with Niklaus Wirth to clean up ALGOL 60 led to the elegant
ALGOL W proposal in [WH66] which in turn paved the way for Pascal.5

Sadly, WG 2.1 saw fit to go another way and invent ALGOL 68 [Hoa68]: a
language which gives rise in [Hoa81b] to one of Tony’s most biting aphorisms

There are two ways of constructing a software design: one way is to make is so

simple that there are obviously no deficiencies and the other way is to make it so
complicated that there are no obvious deficiencies.

4 The Turing Award is often referred to as the “Nobel Prize for computing”. It is not clear
that the Kyoto Prize committee would concede this — but Tony Hoare has been awarded

both.
5 Probably because of his respect for this language, Hoare outlined its defects in [WSH77].
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He recounts the final denouement at which a subset of the members of WG 2.1
submitted a minority report containing the comment “as a tool for reliable
creation of sophisticated programs, the language was a failure.”

The over-ambitiousness of the PL/I project is also described in [Hoa81b]
from the standpoint of the ECMA committee of which Tony was initially a
member and which he ultimately chaired. After listing an (extremely sober-
ing) litany of failures, Tony writes “I knew that it would be impossible to
write a wholly reliable compiler for a language of this complexity and impos-
sible to write a wholly reliable program . . . ”. Again, he ends his observations
on this language with the withering observation “The price of reliability is
the utmost simplicity. It is the price that the very rich find most hard to
pay.”

The obvious and then topical reason for selecting the theme of program-
ming language design for his Turing Award lecture was the evolution of the
language which became known as Ada. As he observes, Tony had offered
advice and judgement that largely went unheeded.

What he did instead was to lead by example. Mastering concurrency is
still a major challenge for designers of programming languages. Tony’s early
work in this area is described in Section 1.6.1 below, but once he saw the
depth of the questions surrounding communication, he took the radical step
of studying it as “Communicating Sequential Processes”: CSP is explored
below in Sections 1.6.2 and 1.6.3. This in turn led to his work on occam (see
Section 1.7), a language named after an earlier Oxford philosopher whose
famous principle Occam’s Razor was in harmony with Tony’s views on pro-
gramming languages: entia non sunt multiplicanda praeter necessitatem, in
other words “entities must not be multiplied more than necessary”.

1.4 Reasoning about sequential programs

Hoare’s “Axiomatic basis” paper [Hoa69] is one of the most influential in the
computing literature. It marks a transition from simply adding assertions
to programs towards a position that increasingly emphasised reasoning in
entirely non-operational terms about the claim that programs match their
specifications.

To understand its contribution, it is essential to outline where most re-
searchers in the field stood in the 1960s. There are hints of the need to
reason about programs in [12] and a proposal in [35] for an approach that
uses a clear notion of assertions being added to a flowchart of a program. The
latter paper went unnoticed for decades and had no influence on the devel-
opment of ideas. Furthermore, as the only mention traced in his writing, one
can only guess at the scope of what Turing had in mind. Turing’s assertions
appear to be limited to relational expressions between (values of) variables
of the program. Far more influential than either of these contributions from
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the 1940s was Bob Floyd’s paper [10]. Floyd again places his assertions on a
flowchart but the language in which the assertions are written here is (first-
order) predicate calculus. This means that Floyd could be, and was, much
more precise than Turing was about the validity of assertions; the fact that
he was using a higher-level programming language than his predecessor also
helped.

Somewhat before 1969 –in 1964 to be precise– there was an important
meeting in Baden-bei-Wien (Austria) organised by Heinz Zemanek of the
IBM Vienna Laboratory. This was, in fact, the first of many highly influential
IFIP working Conferences and led to the creation if IFIP Working Group 2.2.
The proceedings took some time to be published but [33] is invaluable in un-
derstanding scientific opinion of the time and, specifically, in charting the
development of Hoare’s thinking. From the conference proceedings, it is clear
that considerable attention was given to the need for, and challenges of, for-
mally defining the semantics of programming languages. McCarthy’s clarion
call of [21] to define semantics formally is backed up in [22] by an operational
semantics of “Micro-ALGOL”. Both Strachey and Landin discuss the connec-
tions between programming languages and Church’s Lambda Calculus. On
the other hand, Jan Garwick’s paper opens with the provocative sentence:
“No programming language for a given computer can be better defined than
by its compiler.”

Hoare did not present a formal contribution, but one of the helpfully
recorded discussion items [33, pp. 142–143] indicates his perception of “the
need to leave [aspects of] languages undefined”. At the following meeting of
IFIP WG 2.1, Hoare gave the example of fixing the meaning of functions like
mod (modulus) by stating their required properties.

The IBM Vienna group borrowed concepts from McCarthy, Landin and
Cal Elgot as the basis for the first version of the huge operational semantics
for the language PL/I. This approach was to be named “Vienna Definition
Language” (VDL) — see [20]. In 1965, Hoare attended a course in Vienna
on VDL. The Vienna Lab at that time tended to do things in style and the
ECMA TC10 guests were booked into the Hotel Imperial (where the British
Queen stayed on her visit a few years later). On paper of that imperious hotel,
Tony Hoare wrote a sketch of his first attempt at an axiomatic treatment of
languages. Of the two-part draft dated December 1967, the first axiomatised
execution traces as a partial order on states. It is probably fair to say that the
objectives are clearer in the 1967 draft than the outcome. Hoare sent these
notes to (at least) Peter Lucas of the Vienna group.

Tony recalled years after the event that, on his arrival to take up his
chair in Belfast in October 1968, he “stumbled upon” the mimeographed
draft (dated 20 May 1966) of Floyd’s paper [10]. Peter Lucas had sent this
partly as a response to Hoare’s 1967 draft. Floyd’s ideas on predicate calculus
assertions had a major impact on Hoare’s thinking and the debt is clearly ac-
knowledged in [Hoa69]. Hoare produced in December 1968 a further two-part
draft that strongly resembles the final Communications of the ACM paper.
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The first part addresses the thorny issue that numbers stored in computers
are not quite the same as those of mathematics — in this Hoare was following
van Wijngaarden’s lead in [36], which is again gratefully acknowledged in the
CACM paper. The second part of the 1968 draft contains the core of what is
today called “Hoare axioms”.

In this draft, Hoare followed Floyd’s original “forwards” assignment ax-
iom, which requires an existential quantifier in the post condition of any
assignment statement. The now common “backwards” rule that only needs
substitution was first published in Jim King’s thesis [17], where he attributes
it to his supervisor Bob Floyd. Hoare uses this in the published version of
“axiomatic basis” [Hoa69]; he was made aware of the idea by David Cooper
who gave a seminar at Belfast on his return from a sabbatical in Pittsburgh.
Hoare’s decision to use this version possibly sparked the later development
of “weakest pre condition” thinking.

Hoare’s paper was quickly accepted by CACM and was far more approach-
able than Floyd’s earlier paper. Where Floyd had bundled together many
ideas including early hints of what would later become known as “healthi-
ness conditions” for proof rules, Hoare limited what he covered even to the
point of not handling termination.6

Much the most important step was the move away from Floyd’s flowcharts
to a view of program texts decorated with axioms as part of a unified for-
mal system. It was this point that changed the way whole generations of
researchers have been persuaded to approach programming. Hoare’s decision
to use post conditions of the final state alone led to concise axioms, but it is
fair to say that later he conceded the value of using relational post conditions
that link to the initial state as well.

As soon as a decade after the first appearance of the “axiomatic basis”
paper, Krzysztof Apt published a summary of its already significant impact
in [2].7 Hoare’s language had only sequential composition, conditional and a
“while” repetitive construct; attention soon turned to tackling other features
commonly found in high-level programming languages and relevant papers
include [Hoa71a, Hoa72a, ACH76]. An attempt at the whole of Pascal [HW73]
was however incomplete but this is indicative of the fact that formalism makes
its largest contribution if used during –rather than after– design. In fact, the
only language with a complete Hoare axiom system is probably “Turing” [13].

Given the unbridled enthusiasm of researchers to propose new languages,
a far more productive avenue was probably that of showing where clean
axiomatisations were consistent with subsets of languages. Peter Lauer did
part of his PhD under Tony Hoare in Belfast and Lauer’s thesis [18] is clearly
summarised in their joint paper [HL74]. A fuller discussion of the history and
impact of research on reasoning about programs can be found in [15].

6 In terminology that some find unfortunate –but that has become ubiquitous– he limited

himself to “partial correctness” whereas Floyd treated “total correctness”.
7 The slightly enigmatic “Part I” sub-title indicates Apt’s strong interest in non-

determinism which he covered in [3].
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1.5 Formal program development

Hoare’s axioms in [Hoa69] possessed a crucial property that was not ex-
ploited within that paper: the given axioms are “compositional” in a sense
that made it possible to employ them to reason about combinations of yet-
to-be-developed code (e.g. one can prove that a while construct satisfies a
specification even where its body is so far only a specification). Technically,
each axiom is monotonic in the satisfaction ordering; practically, this opens
the door to their use is stepwise development. Hoare first wrote his “Proof
of a Program: Find” as a post facto proof of correctness but revised it before
publication as [Hoa71b] to describe a stepwise development. The omission in
not revising the title is surprising from a writer who takes such care with the
prose of each revision.

The final text in [Hoa71b] is far more readable than the first version, more
importantly, it is also much more convincing. Recall that there were almost
no programs available in the early 1970s to check (let alone help construct)
such predicate calculus proofs so the move to a top-down development of Find
decomposed the proof into more manageable steps. Given the comments in
Section 1.4 above, it will come as no surprise that the termination proof (that
Tony conceded “was more than usually complex”) had to be handled sepa-
rately from that for correctness (see [Hoa71b, §4]). Furthermore, the decision
to use post conditions of only the final state left the need for a section enti-
tled “Reservation” ([Hoa71b, §5]) that concedes “one very important aspect
of correctness has not been treated, namely that the algorithm merely rear-
ranges the elements of array A without changing any of their values”; post
conditions of two states would have allowed the “permutation” property to
have been handled within the main proof.

One extremely important and far sighted point was the recognition of the
way that programs can be designed via their loop invariants.

Having developed the method, it was possible in fairly short order to apply
it to a range of problems:

• [FH71] returns to the Quicksort algorithm discussed in Section 1.2 above
and presents its stepwise development.
• [Hoa72c] tackles finding primes using the “sieve of Eratosthenes” (a prob-

lem which is used to illustrate the development of concurrent implemen-
tations in [Hoa75] and by other subsequent authors).
• [Hoa73b] nicely links to Hoare’s work on operating systems by tackling a

structured paging system.
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“Structured Programming”

Many who know the literature on “Structured Programming” might be sur-
prised that the important book [Hoa72b] has not yet been mentioned. The
book is widely cited and the topic of its title has had major impact on software
design. Like many successful ideas, however, the term was abused to cover a
range of things from a narrow message of “avoiding goto statements” through
to systematic, justified design processes. Hoare’s solo chapter [DDH72]8 starts
with the ringing

“In the development of our understanding of complex phenomena, the most powerful

tool available to the human intellect is abstraction.”

and goes on to provide a masterly description of concepts of data structuring
for programming languages.

Data refinement

Another important contribution to the formal, stepwise, development of pro-
grams was the recognition of the importance of using, in specifications, ob-
jects that are abstract in the sense that they match the problem being de-
scribed. Development by data refinement can then bring in representations on
which efficient programs can be based as part of the design process. Hoare’s
paper [Hoa72d] is widely cited as one that recognised this aspect of formal
program development. In common with other authors, Hoare recognised later
that the neat homomorphism rule does not cover all situations and was a
coauthor of [HHS86] which presents a more general rule.

An interesting success of Tony’s ability to inspire other scientific activity
was the way he brought Jean-Raymond Abrial and the first author together in
Oxford. In 1979, Abrial was working on ideas that were eventually developed
into the “Z” specification language. Jones had been a key member of the
Vienna work on denotational semantics which had been published in [4, 5]
and had developed his earlier ideas on program development to provide the
other part of VDM: [14] was printed in the famous “red and white” Prentice-
Hall series edited by Hoare.

Tony thought it would be interesting for both Abrial and Jones to share
an office when they both arrived in Oxford in 1979 — at that time the
“Programming Research Group” (PRG) had rather cramped quarters in 45
Banbury Road. This was certainly an inspired and inspiring idea. Often a
discussion would result in a blackboard containing a mixture of notations

8 The material had been presented in his Marktoberdorf lectures of 1970.
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but the fact that the basic ideas of abstraction were shared meant that the
focus was on the underlying issues.9

The language known as “Z” continued to develop after Abrial and Jones
left Oxford and has become a widely used specification language with tool
support. Its use on IBM’s “CICS” system led to a Queen’s Award for Tech-
nological Achievement to the Oxford PRG group in 1992.

1.6 Concurrency

As shown by the quotation in Section 1.2, Hoare’s work on concurrency was
inspired by the problems of operating system design. This influence is still
very much apparent in the text and examples in his 1985 book on CSP
(Chapter 6, for example).

The driving theme in his work is the need to keep separate threads from
interfering with each other in ways that are undesired or hard to understand.
We can see this in the evolution from work based on shared memory to CSP,
in which all interaction is via explicit communication over channels.

1.6.1 Concurrency with shared variables

Before turning, as we do in the next section, to Tony’s most radical and
influential suggestion of communication-based concurrency, it is important to
understand his earlier attempts to tame its shared-variable cousin. It is easy
to decry the use of variables that can be changed by more than one thread, but
at the machine interface there is little else. There were various suggestions for
programming constructs to make this troublesome fact tolerable: the hope to
extend the axiomatic approach to concurrency was already there in [Hoa69];
in [Hoa72e], Hoare had tackled the sort of disjoint parallelism that could be
controlled by conditional critical sections. In [Hoa75] he moves on to more
general concurrency governed by his “monitor” proposal [Hoa74].

In “Parallel Programming: An Axiomatic Approach”, Hoare carefully dis-
tinguishes:

• disjoint processes: [Hoa75, §3] essentially reproduces the earlier “sym-
metric parallel rule”, but the rule is still limited to partial correctness. In
view of the way parallelism is often used, this is perhaps more reasonable
here.

9 The development of Abrial’s ideas through to “B” [1] (and beyond) deserves separate
discussion elsewhere.
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• competition ([Hoa75, §4]) clearly establishes the notion of ownership10.
• cooperation ([Hoa75, §5]) recognises the importance of a commutativity

requirement between operations in the cooperating processes. It is here
that Hoare returns to the “sieve of Eratosthenes” from [Hoa72c]: he also
concedes that “when a variable is a large data structure . . . the apparently
atomic operations upon it may in practice require many actual atomic
machine instructions”. The atomicity issue is extremely important and
has been pursued by other researchers (e.g. [16]).

• the section on communication gives an insight into the way Hoare de-
velops ideas: ([Hoa75, §6]) recognises that communication does not fit
the commutativity property above; he introduces a notion of “semi-
commutativity” that clearly only handles uni-directional communication.
One can see here the seeds of CSP (see Section 1.6.2) whose realisation
took several years of further hard struggle, before it could be published.

1.6.2 Imperative CSP

Tony published two works entitled “Communicating Sequential Processes”,
the CACM paper from 1978 and the 1985 book. The languages in these
publications are very different from each other. In this section and the next
we discuss the development of the two versions, and try to understand why
they are as they are. The first version of the language is essentially Dijkstra’s
language of guarded commands [8] (a simple imperative language) with point-
to-point communication added, so we have termed it Imperative CSP.

Hoare states11 that the move from studying concurrency via shared vari-
ables and monitors to explicit communication over channels was inspired
by the advent of the microprocessor and the thought (later realised in the
transputer) of these “communicating with other microprocessors of a similar
nature along wires”.

An Imperative CSP program is a parallel composition of named sequential
processes: the only parallelism is at the highest level. Thus this language fits
the name Communicating Sequential Processes much better than Algebraic
CSP, where the parallel operator would be on a par with all others, or even
occam where the same is true.

Hoare was clearly inspired by examples such as the sieve of Erastothenes,
where it was natural to create an array of processes with closely related struc-
ture, and included explicit notation for addressing members of an indexed
array of processes in the language.

He specifies that communication between processes is synchronised (only
taking place when both outputter and inputter are ready) but gives little ex-

10 At the April 2009 event to celebrate Tony’s 75th birthday, Peter O’Hearn linked this to

his own research on Separation Logic.
11 In the interview with Bowen cited in Sources.
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planation of this decision, which was to prove so important in the structure of
the many languages and theories that would be inspired by CSP. This clearly
fits well with the intuition of communication being direct from one process
to another along a piece of wire, and Hoare implies that where buffering is
wanted it can be introduced explicitly via buffer processes.

It is natural in contemplating communications between two processes to
think of one as outputting and one as inputting, and in this first version of
CSP Hoare makes this an important distinction. For example, as would later
be the case in occam, only the input end of a communication may appear with
alternatives. He does, however, discuss allowing outputs in guarded alterna-
tives, and in doing so raises the possibility of proving the parallel program
[X !2 ‖ Y !3] equivalent to a sequential one, while commenting that this is not
achieved by the program

[true → X !2; Y !3 2 true → Y !3; X !2]

in which the implementation is permitted to resolve the choice, thereby flag-
ging the importance of nondeterminism in reasoning about CSP. This prob-
lem would be solved by using outputs directly in the guards:

[iX !2→ Y !3 2 Y !3→ X !2]

This one example and the motivation behind it is a powerful indication of
an inevitable move towards an algebra of communication, concurrency and
nondeterminism.

1.6.3 Algebraic CSP

The language in the 1985 book started to develop even before the 1978 pa-
per was published. Indeed, by the time the second author joined Tony as a
research student in October 1978 the process algebra CSP (i.e. the one in
the 1985 book) was almost completely formed as a notation and Tony was
working on his traces model.

The most obvious difference between the old and new CSPs is that the
former is a conventional programming language with point-to-point commu-
nication added in a natural way, whereas the new one looks like some sort
of abstract algebra, hence our name Algebraic CSP. Indeed it is one of the
first two developed examples (the other being CCS) of what rapidly became
known as a process algebra: a notation for creating algebraic terms repre-
senting the interacting behaviour of a number of distinct processes. These
processes are themselves patterns of communication: it would be wrong to
call them threads since there is no guarantee that the processes are sequential.
Indeed, in both CSP and CCS and most subsequent process algebras, there is
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no semantic distinction between sequential and parallel processes, and every
parallel process is equivalent to a sequential one,

¿From this discussion alone the reader will appreciate that the creation
of these first process algebras represented a huge intellectual step: that from
a programming language to calculi that attempt to attribute meaning to
patterns of communication.

The need for such a meaning was clear from the fact that concurrent pro-
grams behave so differently from sequential ones, with phenomena such as
deadlock and livelock to worry about, as well as the nondeterminism caused
by resource contention (common in operating systems) and similar situa-
tions that are intrinsic to concurrency. This led both Hoare and Milner down
remarkably similar paths: discarding almost all the things that programs do
between communications, and developing notations that allowed them to con-
centrate purely on the synchronised communications between processes and
the way in which patterns of these arise.

Whether CSP and CCS seem similar to a reader will depend on his or
her viewpoint, but certainly they are very similar when viewed from the
standpoint of Imperative CSP. Both Hoare and Milner were working on this
convergent course before either had a clear idea of what the other was do-
ing. Milner, indeed, had been looking at the semantics of interaction since
the early 1970s. He had started off [23] working on the semantics of shared-
variable “transducers” and by 1977 was working on “flow graphs”, a partly
graphical notation of parallel composition that was not specific about the
protocol used on channels. They only got a clear vision of each other’s work
at a meeting in Aarhus in June 1977, by which time Hoare had already put
considerable efforts into understanding the algebra of CSP. Hoare’s paper at
that workshop (which we have unfortunately been unable to locate) was en-
titled “A relational trace-oriented semantics for Communicating Sequential
Processes”. W.P. de Roever worked with Hoare in Belfast in 1977 on the se-
mantics of CSP, the results of which were reported in [FHLdR79]. Both this
work and Milner’s initial thoughts on concurrent semantics centred on domain
theory. This was very natural in the context of the times, given the success of
Strachey, Scott and others in developing and applying domain theory to the
semantics of a wide range of programming language constructs in the preced-
ing years. The main challenge to domain theory inherent in giving semantics
to communicating processes was the need to handle an interleaving sequence
of external choices and nondeterministic choice. External choices could be
handled with function spaces, which work extremely elegantly in domain
theory. But nondeterministic choice seemed to require powerdomains [26], in
other words a domain-theoretic analogue of the powerset operator.

There are two major problems with powerdomains. The first is that it
proves very difficult to combine the natural set theoretic order structure with
the order of the underlying domain in a satisfactory way, and none of the
available orders (including the strong Egli-Milner order of the Plotkin pow-
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erdomain and the angelic order of the Hoare powerdomain12) produce equiv-
alences between processes at a persuasive level of abstraction. The second
is that the powerdomains are in themselves difficult to understand, mean-
ing that any semantics based on them is unlikely to be useful in explaining
concurrency beyond a select group of researchers.

Of course the reason for needing domain theory for other “interesting”
languages is the quality of self-referentiality they have, in particular programs
that accept other programs as functional arguments, as exemplified by the
λ-calculus. Dijkstra’s guarded command language, without such constructs,
can easily be given a semantics as a relation on S × (S ∪ {⊥}), where S is
the set of states and ⊥ represents non-termination or divergence. So while
concurrency is itself certainly “interesting”, there is nothing in Imperative
CSP that implies the need for domain theory. And both Milner, and Hoare
in turn, reacted against powerdomains. Indeed Willem-Paul de Roever tells
us this this was evident during his 1977 visit: the powerdomain models were
“not to Tony’s taste”, and Tony would regularly propose models that were
converging on the traces model.

Milner chose an operationally based theory in which equivalences are de-
veloped between processes described as labelled transition systems. Hoare
has stated that his approach to process equivalence, based on algebraic laws
relating processes and behaviourally-based models, was a reaction against
Milner’s operational approach. Both their philosophies, quite clearly, have
been extremely successful. Of course they have long since reconciled, for ex-
ample by the development of operational semantics for CSP and the testing
equivalences for CCS. It was these constrasting decisions, of course, which led
to the different choice operators of CCS [25] and CSP: the CCS “+” being
the obvious operational version.

There are two other interesting contrasts between CCS and (Algebraic)
CSP. The first is that CSP contains a great many more operators than CCS,
such as sequential composition, very general renaming and interrupt. Here,
Hoare seems to have been driven by the types of system he wished to model,
for example Imperative CSP (with sequential composition, of course) where
variables are modelled as parallel processes, and operating systems where
processes are interrupted and checkpointed.

The second is the very different factorisation of the “natural” parallel
construct in which multiple processes communicate point-to-point over chan-
nels with these communications internalised, or hidden. Here Hoare seems to
have been inspired by the algebra of synchronisation, interleaving and hiding,
which required process alphabets to determine which events are synchronised.
Milner, on the other hand, has stated that he decided to avoid using alpha-
bets and was able to do so by devising an extremely clever device whereby
(i) events synchronise not with themselves but with duals (ii) dual events

12 The powerdomain of downward-closed sets was not developed by Hoare, but named
after him by Plotkin, because of its close relationship to Tony’s important work on partial

correctness.
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in parallel processes can either synchronise to become τ or happen indepen-
dently, and (iii) such “free radical” events are restricted outside the syntactic
level where synchronisation can occur. This approach is already evident in his
flow-graph work, for example [24]. Milner’s trick makes multi-way synchro-
nisation unnatural (because of the duality), and in any case requires events
to be hidden once synchronised. So CSP ended up with much more flexible
parallel and hiding operators, at the expense of the need to declare (in one
way or another) the interfaces that parallel processes use to communicate
with each other.

It is hard to overstate the importance of algebraic laws in guiding Hoare’s
intuition about what were the “right” models of CSP. In particular, his belief
in the laws of distribution over non-deterministic choice corresponds almost
exactly, theoretically, to the decision to model processes as sets of linearly
observable behaviours. This means that each behaviour may be observed as
time progresses forward on a single execution of the process: in particular no
branching behaviour is recorded.

The following few paragraphs describe the development, during 1979, of
the failures model. It was clear that the traces model was too weak: a model
was required that distinguished nondeterministic from external choice, and
which captured the phenomena of deadlock and livelock accurately.

The failures model started its life as the acceptances model, in which a
process was modelled as the set of pairs (s,A) where s is a trace and A is a
set of events from which the process accepts. The meaning of this phrase is
deliberately vague, since HBR (Hoare, Brookes and Roscoe) spent some time
experimenting with it. After a few weeks working on this, they came to the
conclusion that a good way to interpret this was “the process can choose to
restrict its next actions to being within A”. In other words, P actually offers
some subset of A. HBR realised the interesting fact that this interpretation
fails to distinguish between the processes13

STOP u (?x : {a, b} → STOP) and
STOP u (a → STOP) u (?x : {a, b} → STOP)

even though the first (unlike the second) has no state from which it actually
accepts {a}. Nevertheless, the interpretation in which these two are equated
was found to be a congruence which, if one interprets livelock as the most
nondeterministic process CHAOS , seemed to satisfy the better set of alge-
braic laws than did what is now known as the acceptances, or ready sets
congruence, which distinguishes these two processes. In the latter, the alge-

13 P u Q is a nondeterministic process which is itself allowed to decide which of P and Q

to run. Thus the second of these two processes can opt to offer just the event a, while the
first has to offer nothing at all (STOP) or {a, b}.
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braic law P = P 2 P does not hold, for example14. That congruence was
later developed by Olderog and Hoare [HO83].

Quickly after this, HBR decided to turn their somewhat convoluted accep-
tance sets into refusal sets by the simple device of complementation: where
A was an acceptance set, Σ \ A (Σ being the set of all visible events) was
a refusal set, which could be understood as being a set of events that the
process might not accept a member from, even if offered it for ever. Since
HBR’s acceptance sets were upward closed (if a process can accept from A,
it can also accept from A′ ⊇ A), refusal sets became downward closed, but
somehow this seemed much more natural.

The result, a pair (s,X ) where s is a trace and X is one of these refusal
sets was called a failure because it represents an experiment to which the
process fails to respond. The model of [HBR81, BHR84] is, of course, excel-
lent at representing nondeterminism, and makes it very clear that P v Q
(refinement modelled by reverse containment) corresponds to P being more
nondeterministic than Q . It is worth noting that the healthiness conditions
of this model were in effect a statement of what a process should look like,
rather than being derived from an operational semantics, since none of these
then existed and LTS’s were not considered!

It was immediately apparent that the refinement maximal elements of
this model were in natural 1–1 correspondence with the traces model and
were exactly the deterministic processes, judged extensionally. Its refinement-
minimum element was CHAOS , the most nondeterministic process which
contained every failure imaginable.

The obvious choice for a least fixed point based semantics for recursion was
therefore based on the refinement order, but this was in any case appealing
since it meant iteration corresponded to reduction of nondeterminism and
identified the undefined recursion µ p.p with the sort of divergence produced
by hiding (µ p.a → p) \ {a}.

Unsurprisingly, given the heritage we have described, the second author
discovered the fatal flaw in the original failures model by observing that a
self-evident law failed, namely

(P ‖ Q) \ A = (P \ A) ‖ (Q \ A) if A ∩ αP ∩ αQ = ∅

This is the principle that, provided no synchronised events are hidden, one
can distribute hiding over parallel. The fatal flaw is that the identification of
divergence with CHAOS is not robust enough to survive some of the operator
definitions in CSP, so the expression on the right above might have some of the
behaviours introduced from divergence removed by the parallel composition.

14 P 2 Q means that the environment has the choice of the initial events offered by P and
Q . The counter-intuitive failure of this law comes about because in P 2 P the two copies

of P might, because they resolve nondeterminism differently, choose to offer different sets,
which the operator combines into a single offer that P alone cannot make. This distinction
is made in the acceptances or ready-sets congruence, but not using the upwards-closed
version of acceptances.
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This flaw was also discovered by de Nicola and Hennessy [9]. Their work was
communicated to Brookes, who had recently moved to Pittsburgh with Dana
Scott. The fix to this flaw, the failures-divergences model in which the failure
set was augmented was thus discovered separately by Brookes and the second
author, appearing in [28, 7, 6]. This model, consistently with the intuition
about divergence in [BHR84], has explicitly strict divergence: no attempt is
made to see what goes on after a process might have diverged15

This brought the theory of CSP to the level that was presented in the 1985
book, and since Hoare’s involvement in the development of its core theory
since then has been relatively small we will leave it here16.

This book was developed by Tony over a period of several years, parts of
it having appeared as a technical report in 1983, together with a separate
set of exercises. Tony was able to try it on numerous groups of students, for
example those studying the MSc in Computation which Tony had helped set
up in Oxford in 1979.

In the early 1980s, Hoare developed techniques [Hoa81a, Hoa85a] both for
specifying and giving semantics to CSP processes in the predicate calculus:
a program or specification is described as a predicate calculus formula over
formal variables representing a typical trace, a typical refusal set coupled
with that trace, a divergence etc. By describing not the whole process, but
a typical individual behaviour, in this way, the resulting semantics – albeit
just a recoding of the set-theory based ones discussed above – gained much
in elegance. For example, the specification that a process P whose alphabet
is in.T ∪ out .T is a buffer in terms of traces is just written P sat tr ↓ out ≤
tr ↓ in, with the quantification of tr over all traces of P being implicit.
This work was not restricted to CSP, as shown by the paper “Programs are
Predicates” [Hoa85b], which clearly links it with the earlier work on Hoare
logic.

As part of this project he developed some new logical notations, such as
x <I b>I y , the infix version of if b then x else y. The point of the operator <I b>I ,
of course, is that it puts conditional choice at the same linguistic level as the
other choice operators u and 2, allowing it to be compared with these and
reasoned about with similar laws.

By incorporating ideas such as these he made the 1985 book a masterpiece
of presentation: it succeeded in making material which in truth is really quite
difficult seem accessible, natural and elegant.

15 The intuition that divergence should be disasterous, derived from the first failures model,

was very strong at that time. It is interesting that neither Brookes nor the second author
then discovered the “stable failures model”, in which divergence is not recorded, so (as in

the traces model) the simply divergent process is top of the refinement order. The existence

of that model was conjectured by Albert Meyer and Lalita Jagadeesan in the late 1980s,
and developed by the second author following a conversation with them.
16 The second author’s paper elsewhere in this volume illustrates how well CSP has stood
the test of time. His 1997 book [31] and forthcoming book [32] both give extensive updates

on CSP, its theory, tools and applications.
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1.7 occam and the Transputer

In 1978 the UK government sponsored the creation of a company called
inmos, led by Iann Barron, part of whose vision was to create components
for parallel processing systems. This would be a microchip company to rival
the foreign giants, it was hoped. Its design operations were based in Bristol
and it had a fabrication plant in Newport, South Wales. Barron’s vision of
a network of components interacting via serial links emerged from his work
for the Science Research Council on its Distributed Computing Program.
This brought him into contact with the ideas of Hoare and Milner, and the
more practically-based work of David May at Warwick on the design and
implementation of distributed systems and languages to program them.

inmos’s early products were memory chips, but it was always anticipated
by Barron that its flagship product would be the transputer, a single chip
that contained a processor, cache memory and communications hardware.
Barron hired Hoare and May as consultants in 1978, and the latter joined
inmos as full-time “Chief Technologist” in mid 1979. This team refined the
concept of a transputer.

May, with input from Hoare, designed the occam programming language,
which is a low-level imperative language based on CSP, inheriting features
both of Imperative CSP and Algebraic CSP (the latter including the idea of
parallel as a first-class language construct). May has told us various respects,
such as having the ALT construct analogous to external choice 2 rather than
explicit channel polling, in which occam moved closer to CSP during its
design process. This particular change – lobbied for by Hoare – was doubtless
in pursuit of the stated goal of giving occam the cleanest possible semantics.
The fact that occam was so cleanly defined and so close to CSP meant that it
had clean formal semantics. The second author and Hoare each played a large
role in defining these through papers such as [29] (denotational semantics),
[HR84] (logical semantics in the sense discussed above) [RH86] (algebraic
semantics).

It was, of course, extremely bold (and some might put it stronger than
that) of inmos to base itself on such a novel product and a completely novel
language. The transputer’s primary market was intended, from a fairly early
stage, to be in embedded applications, but naturally it was the prospect of
large parallel systems composed of many transputers that caught the imagi-
nation. The first (16-bit) transputers were delivered in 1985, with 32-bit ones
following soon afterwards.

May and Hoare had extraordinary vision when it came to the use of oc-
cam, and the language quickly became the main medium by which hardware
was specified within inmos. They realised that the clean semantics of occam
made this an excellent vehicle for formal verification work. The first major
exercise in this did not involve occam’s parallel capabilities at all, but solely
involved reasoning about sequential occam programs: the microcoded instruc-
tions for the FPU of the T800 transputer. This project, which was conceived
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by Hoare and May, involved translating the IEEE 754 floating-point number
standard into Z, developing correct occam programs from that for its various
operations, and proving these equivalent to highly stylised occam programs
representing the microcode programs designed for a special data path. The
translation of the specification was done by Geoff Barrett, as was the deriva-
tion of the top level programs from these. The proofs of equivalence were
performed by David Shepherd using the occam transformation system [11], a
tool that implemented the algebraic semantics for occam developed by Hoare
and the second author in [RH86].

The error-free FPU was developed at a considerable saving to what would
have been achieved with a traditional testing regime.

The use of occam in hardware design at inmos was taken to entirely new
levels in the design of the T9000: a pipelined processor, executing RISC-style
instructions that were automatically grouped into compound instructions,
and with far more advanced communications hardware. Associated formal
methods work was successful [30], but no longer involved Hoare closely.

Unfortunately it became apparent that a company the size of inmos (by
1990 a branch SGS Thomson Microelectronics) could no longer compete with
the investment put in by the giants in leading-edge microprocessors, so the
transputer concept and with it its implementation of CSP ceased to be de-
veloped in the early 1990s.

It is of course interesting that the lesson of how valuable formal methods
are to microprocessors was not learned by these giants until one of them
had a problem with a floating point unit some years after the successful
Oxford/inmos collaboration. These companies are now by far the biggest
users of formal verification.

1.8 Unified Theories of Programming

He Jifeng first came to work in Oxford in 1984, and he remained there, either
full or part time, until 1998: one year before Tony’s retirement. For most of
this time, he and Tony were a close working partnership. As Tony’s ideas
stretched beyond CSP to the idea of correctness in a completely general
setting, Jifeng provided him with mathematical support in a similar sense
that Brookes and the second author had done on CSP and occam.

One early project was “The laws of programming” [HHH+87], a project
that drew on earlier work on algebra for the more complex language oc-
cam [19] and set out a programme for using algebraic laws for language
definition and formal methods. Part of this programme was the use of weak-
est prespecifications, as defined in [HH86], the paper which began serious
Hoare/He effort to understand programming and specification via the rela-
tional calculus.
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They used the relational calculus to discover much about the nature of
specification and implementation, using such tools as Galois connections to
relate programming and specification constructs. One important idea that
emerged from this work was that of an operational semantics defined in terms
of algebraic transformation towards normal form: see [HHS93], for example.

Hoare and He took on the extremely ambitious project of creating a frame-
work in which one could give semantics, make specifications, reason about
and relate a wide range of programming languages such as imperative, log-
ical and concurrent languages. This led to the book Unifying Theories of
Programming [HH98], and, though the book makes few explicit references to
the relational calculus, it is there throughout as the mathemtical foundation
upon which this work is built.

In the book, we can see direct influences from all the previous joint work of
Hoare and He that we have discussed in this section as well as Hoare’s earlier
work on algebraic laws, coding semantics in predicate calculus, and logical
notation. Certainly it is easy to see the roots of it in Hoare’s intuitions about
CSP and its presentation in the late 1970s and early 1980s. In this respect we
are thinking not only of the importance of algebraic laws and of the logical
representation of observable behaviour, but also about the problem of how
to construct denotational semantics without domain theory.

Sources

The main source we used on Tony’s research is, of course, his published work
of which we give a bibliography below. He has also written several articles
containing reminiscences, most notably [Hoa81b], and there are several pub-
lished interviews with him, of which we have used the following:

www.simple-talk.com/opinion/geek-of-the-week/

sir-tony-hoare-geek-of-the-week

archive.computerhistory.org/resources/text/

Oral_History/Hoare_Sir_Antony/102658017.05.01.pdf

This paper has two bibliographies. The first lists all of Hoare’s papers
that we have either cited above or which do not appear in the bibliography
of his papers to 1987 that appeared in Essays in computing science [HJ89], a
book that arose from discussions between the first author and Tony in Austin
Texas. The second bibliography consists of all those papers we have referred
to that do not have Tony as an author. To help the reader distinguish between
the two, citations in the Hoare bibliography (which is sorted into date order)
are given thus [Hoa81b] while those in the second (sorted alphabetically) are
numerically labelled [7].
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Green, Silvio Ranise, Cesare Tinelli, Thomas Ball, and Sriram K. Rajamani.

Intelligent systems and formal methods in software engineering. IEEE Intel-

ligent Systems, 21(6):71–81, 2006.
[BHW06] Juan Bicarregui, C. A. R. Hoare, and J. C. P. Woodcock. The verified software

repository: a step towards the verifying compiler. Formal Asp. Comput.,
18(2):143–151, 2006.

[HH06] Jifeng He and C. A. R. Hoare. CSP is a retract of CCS. In UTP, pages 38–62,

2006.
[Hoa06b] C. A. R. Hoare. The ideal of verified software. In CAV, pages 5–16, 2006.

[Hoa06c] C. A. R. Hoare. Why ever CSP? Electr. Notes Theor. Comput. Sci., 162:209–

215, 2006.
[VHHS06] Viktor Vafeiadis, Maurice Herlihy, C. A. R. Hoare, and Marc Shapiro. Proving

correctness of highly-concurrent linearisable objects. In PPOPP, pages 129–

136, 2006.
[Hoa07a] C. A. R. Hoare. Fine-grain concurrency. In CPA, pages 1–19, 2007.

[Hoa07b] C. A. R. Hoare. The ideal of program correctness: hird Computer Journal

lecture. Comput. J., 50(3):254–260, 2007.
[Hoa07c] C. A. R. Hoare. Science and engineering: A collusion of cultures. In DSN,

pages 2–9, 2007.
[HO08] C. A. R. Hoare and Peter W. O’Hearn. Separation logic semantics for com-

municating processes. Electr. Notes Theor. Comput. Sci., 212:3–25, 2008.

[Hoa08a] C. A. R. Hoare. Keynote: A vision for the science of computing. In BCS Int.
Acad. Conf., pages 1–29, 2008.

[Hoa08b] C. A. R. Hoare. Verification of fine-grain concurrent programs. Electr. Notes

Theor. Comput. Sci., 209:165–171, 2008.
[Hoa08c] C. A. R. Hoare. Verified software: Theories, tools, experiments. In ICECCS,

page 3, 2008.

[HM09] C. A. R. Hoare and Jayadev Misra. Preface to special issue on software
verification. ACM Comput. Surv., 41(4), 2009.

[HMLS09] C. A. R. Hoare, Jayadev Misra, Gary T. Leavens, and Natarajan Shankar.

The verified software initiative: A manifesto. ACM Comput. Surv., 41(4),
2009.
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The academic family tree of C.A.R. Hoare

We began this article with some remarks about Tony’s family background.
We conclude it with as much as we have been able to piece together about his
academic family, of which we are both proud members, namely his doctoral
students, their doctoral students and so on. To become a member of the family
below we asked that a student had successfully completed their doctorate by
the time this article was finalised. This family is not entirely without incest,
in that some students were jointly supervised by two other members of the
tree (sometimes including Tony himself). We have organised the tree below
so that each student is given as short a route to Tony as possible. Entries in
italics (e.g. Roscoe’s supervision of Kong) indicate that the student’s main
entry is elsewhere. A joint supervisor (js) in italics is elsewhere in the tree.

In most cases, for brevity, we give here the topic or area of the thesis,
rather than its title.

We intend to supply our information, including titles where we have them,
to the Mathematics Genealogy Project17, from where, in turn, some of this

17 http://genealogy.math.ndsu.nodak.edu/
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information was gathered. Therefore if you have any corrections or additions
to this tree, we encourage you to upload the details there.

C.A.R. Hoare

1 Peter Lauer, Belfast 1971, Axiomatic semantics

1.1 Eike Best, Newcastle18 1981, Concurrency (js Brian Randell)
1.1.1 Lucia Pomello, Milano and Torino 1988, Petri nets (js Giorgio De

Michelis and Mariangiola Dezani-Ciancaglini)
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18 University of Newcastle upon Tyne
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20 Technical University of Munich
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7.4.6 David von Oheimb, TUM 2001, Analyzing Java
7.4.7 Leonor Prensa Nieto, TUM 2002, Parallel program verification
7.4.8 Markus Wenzel, TUM 2002, Human-readable formal proofs
7.4.9 Gerwin Klein, TUM 2003, Verifying a bytecode verifier

7.4.9.1 Harvey Tuch, UNSW 2008, Formal memory models
7.4.10 Stefan Berghofer, TUM 2003, Executable specifications
7.4.11 Gertrud Bauer, TUM 2006, Plane graph theory
7.4.12 Norbert Schirmer, TUM 2006, Verifying sequential code
7.4.13 Martin Wildmoser, TUM 2006, Proof carrying code
7.4.14 Amine Chaieb, TUM 2008, Automated formal proofs
7.4.15 Tjark Weber, TUM 2008, SAT-based finite model generation
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7.4.17 Alexander Krauss, TUM 2009, Recursion in higher-order logic
7.4.18 Florian Haftmann, TUM 2009, Code generation
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7.7 Jean Alain Ah-Kee, Manchester 1989, Operation decomposition
7.8 Ketil Stølen, Manchester 1990, Parallel programs

7.8.1 Ida Hogganvik, Oslo 2007, Security risk analysis
7.8.2 Ragnhild Kobro Rund, Oslo 2007, UML interaction diagrams
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7.9.1 Andrej Pietschker, Newcastle 2001, Automated Test Generation
7.9.2 Daniel Owen, Newcastle 2005, Real-time networks
7.9.3 Neil Henderson,Newcastle 2006,Asynch.communications (see 7.14)

7.10 Alan Wills, Manchester 1993, Formal methods in OO
7.11 Carlos de Figueiredo, Manchester 1994, Object-based languages
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7.11.2 Cristiano Vasconcellos, UFMG 2004, Type inference
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7.14 Neil Henderson, Newcastle 2006, Asynch. communications (js Fitzger-

ald)
7.15 Tony Lawrie, Newcastle 2006, System dependability
7.16 Martin Ellis, Newcastle 2008, Compiler-generated function units
7.17 Joseph Coleman, Newcastle 2008, Operational semantics
7.18 David Greathead, Newcastle 2008, Code comprehension (js George

Erdos and Joan Harvey)
7.19 Ken Pierce, Newcastle 2009, Atomicity in refinement

8 Bill Roscoe, Oxford 1982, Concurrency

21 Federal University of Minas Gerais, Brazil
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8.1 Tat Yung Kong, Oxford 1986, Digital topology (see 14)
8.2 Andrew Boucher, Oxford 1986, Real-time semantics for occam
8.3 Mike Reed22, Oxford 1988, Timed CSP

8.3.1 Steve Schneider, Oxford 1989, Timed CSP
8.3.1.1 Carl Adekunle, RHUL 2000, Feature interaction
8.3.1.2 Helen Treharne, RHUL 2000, Controlling specifications

8.3.1.2.1 Damien Karkinsky, Surrey 2007, Mobile B
8.3.1.2.2 Chris Culnane, Surrey 2009, Digital watermarking

8.3.1.3 James Heather, RHUL 2000, Security protocols
8.3.1.3.1 Kun Wei, Surrey 2006, Automated proofs and CSP
8.3.1.3.2 James Salter, Surrey 2007, P2P networks (js Antonopoulos)
8.3.1.3.3 Zhe Xia, Surrey 2009, Electronic voting (see 8.3.1.8)

8.3.1.4 Neil Evans, RHUL 2003, Security
8.3.1.5 Roberto Delicata, Surrey 2006, Security
8.3.1.6 Wilson Ifill, Surrey 2008, CSPB
8.3.1.7 Siraj Shaikh, University of Gloucestershire 2008, Security
8.3.1.8 Zhe Xia, Surrey 2009, Electronic voting (js Heather)

8.3.2 David Jackson, Oxford 1992, Verification of timed CSP
8.3.3 Abida Mukkaram, Oxford 1993, Refusal testing in CSP
8.3.4 Joel Ouaknine, Oxford 2001, Timed CSP

8.4 Naiem Dathi, Oxford 1989, Deadlock avoidance
8.5 Martin Ward, Oxford 1989, Program transformation
8.5.1 Matthias Ladkau, De Montfort 2008, Program transformation
8.5.2 Shaoyun Li, De Montfort 2008, Program transformation
8.5.3 Stefan Natelberg, De Montfort 2009, Prog. transf. (js Zedan)

8.6 Geoff Barrett, Oxford 1989, Operational semantics of the transputer
8.7 Alan Jeffrey, Oxford 1989, Timed concurrency

8.7.1 Ralf Schweimeier, Sussex 2000, Categorical models
8.8 Gavin Lowe, Oxford 1993, Priority and probability in timed CSP

8.8.1 Mei Lin Hui, Leicester 2001, Security protocols
8.8.2 Gordon Rohrmair, Oxford 2005, Security
8.8.3 Chris Dilloway, Oxford 2008, Security protocols
8.8.4 Allaa Kamil, Oxford 2009, Security protocols

8.9 Brian Scott, Oxford 1995, Semantics of occam II
8.10 Lars Wulf, Oxford 1996, Noninterference security
8.11 Bryan Scattergood, Oxford 1998, Tools for CSP
8.12 Ranko Lazić, Oxford 1999, Data independence

8.12.1 Tom Newcomb, Oxford 2003, Data independence (see 8.16)
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