
Authentication protocols based on low-bandwidth

unspoofable channels: a comparative survey

L.H. Nguyen and A.W. Roscoe
Oxford University Computing Laboratory

E-mail addresses: {Long.Nguyen, Bill.Roscoe@comlab.ox.ac.uk}

Abstract

One of the main challenges in pervasive computing is how we can establish secure communi-
cation over an untrusted high-bandwidth network without any initial knowledge or a Public Key
Infrastructure. An approach studied by a number of researchers is building security though hu-
man work creating a low-bandwidth empirical (or authentication) channel where the transmitted
information is authentic and cannot be faked or modified. In this paper, we give an analytical
survey of authentication protocols of this type. We start with non-interactive authentication
schemes, and then move on to analyse a number of strategies used to build interactive pair-wise
and group protocols that minimise the human work relative to the amount of security obtained
as well as optimising the computation processing. In studying these protocols, we will discover
that their security is underlined by the idea of commitment before knowledge, which is refined
by two protocol design principles introduced in this survey.

1

Contents

1 Introduction 3

2 Notation and basic definitions 5
2.1 Communication links . 7
2.2 Cryptographic primitives . 8

2.2.1 Commitment scheme and Commitment before knowledge 8
2.2.2 Short hash and digest functions . 11

2.3 Attack model . 12
2.4 Cost model . 13

2.4.1 Human effort . 13
2.4.2 Computation cost model of cryptographic primitives 14

3 Non-interactive protocols 16
3.1 Long authentication string over the empirical channel 16
3.2 Short authentication strings over strong empirical channels 19
3.3 Improved version of (V-)MANA I . 21

4 Interactive protocols 22
4.1 Multiple empirical short authentication strings . 23
4.2 Indirect binding . 26

4.2.1 Indirect pairwise . 26
4.2.2 Hybrid protocol . 28

4.3 Direct binding pairwise protocols . 29

5 Group protocols 33
5.1 Some existing direct binding group protocols . 34
5.2 Indirect binding group protocol . 36
5.3 Modified versions of HCBK and SHCBK . 37

6 Conclusions and further work 40
6.1 Efficiency . 40
6.2 Short-term public key cryptography . 41
6.3 Conclusions . 43
6.4 Future research . 44

A The importance of empirical display of leader(L,A) in Hybrid HCBK 48

B Attack on group protocol with two slaves 49

C Improved protocols of MANA I and their security analysis 50
C.1 Indirect binding and D-H style versions of Improved MANA I 50
C.2 Security analysis of the Improved (V-)MANA I protocols 51

C.2.1 Security analysis of the direct binding improved (V-)MANA I 52
C.2.2 Security analysis of the indirect binding improved (V-)MANA I 54
C.2.3 Security analysis of Improved V-MANA I in Diffie-Hellman style 55

2

1 Introduction

In this paper, we give a survey of authentication protocols which involve manual transfers of
short authentication strings (SASs) over an assumed empirical or authentication channel as might
be created by one or more human users of the systems being considered. The careful use of
low-bandwidth unspoofable channels offers an interesting alternative solution for the problem of
authentication, as opposed to making use of PKI and/or trusted third parties (TTP).

There have been rapid developments in this field in the last few years, resulting in publications,
international standards and patent applications relating to a variety of such protocols. In the
first few years these protocols were frequently introduced by groups working independently of each
other. For example, Stajano and Anderson [47] were the first to attempt to form a secure network
for a two-party scenario. The new approach was then studied and refined further by many research
authors, most notably Balfanz et al. [3], Creese et al. [9, 10, 11, 12], Gehrmann et al. [13, 14, 15],
Hoepman [17, 18], Vaudenay [53], Čagalj et al. [6], Wong and Stajano [56, 57] and Roscoe and
Nguyen [32, 33, 37, 41, 42, 43, 44] who introduced both pairwise and group authentication protocols
using less human interactions. Creese, Roscoe et al. in [9, 10, 11, 12, 41] refer to these human
exchanges as empirical channels since the recipient has some empirically based knowledge about
the origin of the message, as opposed to cryptographically based knowledge (e.g. via a PKI) of its
origin. We therefore use this term throughout this survey.

Given the potential importance of this work, we feel that our survey is timely.1 We consider
one-way protocols, non-interactive in the sense that all communication is one way, and interac-
tive protocols that work both for pairwise interaction and group formation. Due to the range of
potential implementation technologies in this paper we largely abstract away the details that are
not immediately important to security. We also have imagined there is a preliminary and insecure
group/pairwise set-up protocol (implementation dependent) that is run either before or simulta-
neously with the first messages of the secure protocol to agree on, for example, the number and
identities of protocol participants, since the information will significantly reduce the waiting time
in a protocol session.

The development of this novel sort of authentication has arisen from many daily life applications.
For example, in the authentication technology, for parties to agree on the same payment records in
financial transactions, healthcare information in telemedicine, or cryptographic public keys, their
portable devices exchange the data over (insecure) WiFi and then display a short and non-secret
digest of the protocol’s run that the devices’ human owners verbally or visually compare to ensure
they agree on the (public) data, i.e. the latter uses human interactions to prevent identity theft. It
is thus easier to implement the solutions, because they do not rely on the needs for PIN numbers,
passwords or trusted third parties (e.g. the government or security infrastructures distribute ID
certificates or private keys to users) which may be too complex and expensive to use on portable
devices.

We explain the notation used in describing the protocols as well as a number of cryptographic
primitives such as a commitment scheme, short/long-hash functions, and digest functions in Sec-

1There has been another survey written by Suomalainen et al. [50] where the authors concentrate on pairwise
protocols bootstrapping security from scratch by either human interaction or secret shared passwords. As we will
see, it is also significantly different from ours in a number of ways: we concentrate on one-way, mutual and group
protocols based on human interaction, and classify and analyse them in term of information binding strategies and
computational efficiency. In addition, there have been reviews in the papers of Mashatan and Stinson [27], and Pasini
and Vaudenay [39, 53], which only look at one-way authentication schemes (both interactive and non-interactive).

3

tion 2. A simple model for the computation cost of these cryptographic primitives and an attack
model are provided to assess the complexity and security of these protocols as we move along.

Although the authentication protocols considered here have been independently introduced by a
number of research groups using different notations, this survey will demonstrate that their security
is derived from the idea of commitment before knowledge, formally defined in Section 2.2.1. What
it does is to force protocol participants to be (jointly) committed to some value before knowing
what it is until they reveal their respective shares of the decommitment in a later stage of a
protocol run. This committed value will, in turn, always be instrumental in the computation of the
SASs2 compared by humans, and therefore the parties’ state of knowledge of the SASs is a uniform
distribution, i.e. this is the key to defeating any causal influence such as birthday attacks as well
as ensuring that search and multiple-shot attacks do not gain any advantage over one-shot and
guess attacks. We will see that there are two different approaches of achieving this goal depending
on whether the authenticated information is directly or indirectly bound to SASs, as studied in
Sections 4.2 and 4.3 respectively. In particular, the direct information binding strategy will be
refined by two protocol design principles, termed P1 and P2, in Sections 4.3 and 5.1.

We start with a number of non-interactive one-way authentication schemes that use empirical
channels in different ways, for example: MANA I proposed by Gehrmann, Mitchell and Nyberg [13,
14, 15]. We then see that the scheme neither optimises human effort nor offers as much security
as had previously been believed. We offer an improved version that provides more security for half
the empirical work, using a more general empirical channel.

In Section 4, we look at a variety of pairwise interactive authentication protocols. We see in
order to optimise (i.e. minimise) the amount of human/empirical work done in a protocol, it is
better to handle a single SAS rather than the several used by some protocols. Once the human
work has been optimised, we turn our attention to minimising the computing power required for the
protocols. This is likely to be important in practice because of potential applications in low-power
pervasive computing devices.

While there has been much recent literature on pairwise protocols, we find it strange that apart
from the authors’ group [9, 32, 33, 41] and Valkonen et al. [52] there has been little on group
protocols, although there appear to be many potential applications of these. We will discuss group
protocols in Section 5 as well as presenting a number of newly invented and modified versions
aiming to further improve the processing cost.

In Section 6.1, the computation cost of every protocol will be gathered into three tables that
clearly demonstrate two things:

• Interactive schemes (pairwise or group authentication) can be much more efficient in human
work than non-interactive ones (one-way authentication);

• Although the security of the majority of protocols rely on the commitment before knowledge
idea, the use of direct binding to achieve this goal has a clear advantage in efficiency. This
arises from the potential to use a digest function designed to produce only the small number
of bits required for empirical comparison as opposed to a conventional cryptographic hash
used in indirect binding.

Many of the protocols described in this paper are taken from earlier literature. However we have

2The committed value could be either used directly as the SAS or inputted as a private key of a digest, universal
hash or MAC function.

4

shown how to make minor improvements to some and major improvements to others. We will use
the following notation in protocol descriptions:

• Protocols equivalent to ones from previous literature, though perhaps in different notation,
are just cited: [].

• Protocols that have been modified in minor ways, often by replacing one or more cryptographic
primitive or other data operation, are cited []∗.

• Protocols that are either major modifications to existing ones or just new are marked New.

The protocols in this paper are organised according to their aims (e.g. one-way, pair and group)
and structure (direct versus indirect binding). This does not always make it easy to see the way the
whole topic has been developed in recent years, frequently by several independent groups. Figure 1
shows all protocols both by year of publication, section number where the protocol is described in
this paper and dependence on other work (by citation and directed arrows). For example, an arrow
from protocol A to B indicates that the design of protocol B is influenced by A.

This paper, particularly as it covers the differing approaches of several research groups and
since it sits at the boundary of cryptography and protocol design, requires a lot of (new) notation
and definitions. The reader might either choose to study all of this notation in advance, or can
read it to the end of Section 2.1 and then refer back to Sections 2.2, 2.3 and 2.4 as needed.3

2 Notation and basic definitions

Capital letters such as A, B, C, I, and S are used to identify parties, and ∀A (or A ′) means that
a message is sent or received by all parties in a group G attempting to bootstrap a secure commu-
nication between them. In common with much of the literature we are citing, the combination of
two pieces of data will frequently be written x ‖ y. This will be synonymous with the ordered pair
(x, y).

We will assume each node A in a group G of N parties has some information INFOA of length
K bits (K/w = K/32 = M words4) that it wants to have authenticated to other members of the
group, this might include:

1. Name and addressing information;

2. Its uncertificated public key or Diffie-Hellman token gxA , this might be a long-term object or
generated freshly for the present protocol run;

3. Contextual information to help identify it, such as its location or human owner, or the owner’s
photograph, video and audio;

4. Information (perhaps certificated) relating to its functionality.

3The reader might go straight to (V-)MANA I protocols and its improved versions in Section 3.2 which give a
concrete goal for the best protocol to achieve.

4Here we assume that a word consists of w = 32 bits.

5

Figure 1: Summary of all protocols.

6

Nothing in this information should be secret since all the protocols we consider will make it public.
INFOA might be attached to A permanently or for the long term; alternately some of it might be
relevant to this particular run only. The goals of the protocols will always consist of authenticating
pairs (A, INFOA) as members of the network5. In addition, we refer to INFOS as the concate-
nation in alphabet order of all the distinct pairs parties want to authenticate: NM words if they
are all size M .

If INFOS contains N photographs or similar, it may well be of significant size.

2.1 Communication links

In some cases, the protocols we quote from other papers are changed in appearance because we seek
to use a consistent nomenclature and notation: we do not want a single piece of notation to have
inconsistent meanings. One respect in which previous works and papers vary is in the assumptions
they make about the empirical or authentic channels. In this paper, we use different notations for
communications over a normal Dolev-Yao (insecure) channel and those over four types of empirical
ones, which are presented in a descending order of generality.

These empirical channels provide authenticity and data integrity, but not confidentiality: there
is enough direct familiarity or physical presence to ensure that the responsibility of a person for a
short message can be immediately ascertained.

• −→N , the normal Dolev-Yao network where all messages transmitted between the laptops in
this channel can be overheard, deleted or modified by the intruder. Examples of this channel
are the Internet, WiFi, or local network.

• −→WE, this weak empirical channel cannot be forged, but it can be blocked, overheard,
delayed or replayed. This is the weaker of the two forms of empirical channel described
in [39, 53]. A typical example of this channel could be telephone conversation, voice mail or
messages, where messages can be delayed, blocked or replayed, but cannot be forged by the
intruder.

• −→t
BE , this is similar as −→WE except that messages cannot take more than time t to arrive

and cannot be replayed. In other words, no empirical message can be accepted more than t
time units after it was sent. Such a channel might be implemented over a reliable medium
with a known bound on transmission, or over an unreliable one with the addition of some sort
of time-stamp. The latter might make sense if the empirical message is sent by some video
means, but otherwise would add significantly to the communication burden. We will call this
a bounded delay empirical channel.

• −→E is the type of empirical channel assumed in [32, 33]. Messages transmitted over the
channel cannot be mistaken or delayed from one to another session. To some extends, this
implies that −→E is a special case of −→t

BE where t is chosen to be some lower bound
on the length of time between one session and a later one. This is the type we use most
often. Sometimes the two-way arrow ←→E is used to indicate (possibly) the same message
is transmitted in both directions.

5We make the identity A explicit here, and in the protocols using it, since the identity is vital to an understanding
of who is in the group. In practice, as indicated above, A will normally just be embedded in INFOA. In particular,
we assume in these calculations that the name appears in the K bits referred to here.

7

An example of this channel is manual data transfers [13, 14, 15], i.e. human users manually
copy data from one to another device via their in/output interfaces such as screen, monitor
and keyboard. In this case, empirical messages cannot be mistaken or delayed from one to
another session because: (1) the humans involved are not away at any time during a protocol
run, and (2) each device normally only has one in/output interface for displaying or reading
data.

• −→SE, this is similar to a normal empirical channel, but it also provides stall-free transmis-
sion. As a result, a message transmitted over the channel cannot be delayed, removed or
blocked by the intruder. This implies that −→SE is the same as −→t

BE where t ≈ 0. We term
this a strong empirical channel (or a strong authentication channel). This was also defined
in [39, 53]. Face to face human conversation is an example of this channel.

2.2 Cryptographic primitives

We will be using a variety of cryptographic primitives which are related to hashing. Since bitlengths
of hash functions vary widely, for clarity, they will be classified relative to three common security
properties of a cryptographic hash function, which are inversion-resistance, collision-resistance and
second-preimage-resistance. Sometimes they will be subscripted with the number of output bits.
For example:

• longhash(X) and hashB(X) refer to standard cryptographic hash functions [30] which are as-
sumed to be inversion-resistant, collision-resistant and second-preimage resistant. In common
with the literature, we will generally assume that they have at least B = 160 bits.

• hash(X) and hashB/2(X) refer to hash functions which are only assumed to be inversion-
resistant and second-preimage resistant. Note, hash(X) is not required to resist collision
attacks since its output length is B/2 or around 80 bits.

• shorthash(X) or hashb(X) will be functions with sufficiently many bits to offer weak or
short-term versions of these security properties of hash(X) or hashB/2(X). Here b which is
the bitlength of shorthash() is in the range of [16,32].

• digest(k,X) will be a short universal hash or digest of X keyed by k – the specification and
purpose of this function will be discussed at length in Section 2.2.2 as well as an additional
property often required of the short output hash functions.

• hk(X) will be a universal hash function of X keyed by k.

Usually implemented using hashing, we will also use a commitment scheme, whose definition is
given below.

2.2.1 Commitment scheme and Commitment before knowledge

Definition 1 The following probabilistic commitment scheme, which is adapted from Vaudenay’s
definition in [53],6 consists of two mappings:

6 We note that there is a lack of explicitness in the specification of the commitment scheme defined by Vaudenay
in [53], since the security specification there fails to bind it to the input message, as was obviously intended. The

8

• commit: {0, 1}K × {0, 1}b → {0, 1}B × {0, 1}B

This mapping takes a public K-bit data INFO, a private b-bit random nonce R (e.g. b = 16),
and then internally generates a (B−b)-bit random nonce and produces two B-bit strings (e.g.
B = 160): a commit value c and a decommit value d. This algorithm is nondeterministic due
to the internally generated random element of B − b bits.

• open: {0, 1}K × {0, 1}B × {0, 1}B → {0, 1} × {0, 1}b

This mapping takes a public K-bit data INFO, a commit value c and a decommit value d, and
produces an error or success signal together with a b-bit random nonce R. This algorithm is
deterministic and to be such that whenever there exists R such that (c, d) is a possible output
for commit(INFO,R), then open(INFO, c, d) yields R.

The following provides more information about commitment schemes as well as the idea of commit-
ment before knowledge and its restrictive version called joint commitment before knowledge, which
underlie the security of nearly every protocol discussed in this thesis.

A commitment scheme used in this paper will have the following two properties:

• (εh, Th)-hiding: given (c, INFO), the probability that an attacker can determine the value
of R before the decommitment d is revealed is upper bounded by εh in a time Th. When
εh = 2−b and Th = +∞ we say that the scheme is perfectly hiding, and this is what we
assume in all of the uses of a commitment scheme in this paper.

• (εb, Tb)-binding: the probability that the sender can change the value of INFO to which it
has committed once the commitment stage is over is upper bounded by εb in a time Tb. When
εb = 2−B and Tb = +∞ we say that the scheme is perfectly binding, and this is what we
assume in all of the uses of a commitment scheme in this paper.

In other words, given (INFO,R, c, d) where c ‖ d = commit(INFO,R), it must be infeasible
to compute a different INFO′ such that c ‖ d′ = commit(INFO′, R), where d′ can be equal
to or different from d.

The bitlength of R will be short, e.g. b ∈ [16, 20] or even zero bits,7 in all protocols considered.
To prevent brute-force search and birthday attacks, the commitment scheme (i.e. commit()) needs
to extend R by a randomly chosen secret nonce R′ of (B − b) bits so that the combination R ‖
R′ has the same bitlength as the output of a cryptographic hash function. This implies that a
commitment scheme is designed to be as secure as a standard cryptographic hash function hash160()
or longhash(). In practice, a commitment scheme is usually built from a pseudorandom function
such as a hash function, and therefore they have the same computational complexity which will be
discussed in more detail in Section 2.4.2.

The two above properties regarding security and efficiency of a commitment scheme can be
demonstrated by the following construction which was introduced in [40] by Pass.

• Committing: to bind some public information INFO and a short random secret key R of
b bits together, the algorithm picks another secret random nonce R ′ ∈random {0, 1}

B−b. It

definition of commit(INFO, R) there is satisfied by defining the commitment c = longhash(N, r), where N is a long
random nonce internally generated by the committer, and the decommitment d = (N, r).

7When random nonce R is zero bit as in the one-way and non-interactive scheme of Pasini-Vaudenay of Section 3.1,
we drop R in the notation of a commitment scheme, i.e. commit(INFO).

9

then sets d = R ‖ R′ and c = longhash(INFO ‖ d), i.e. commit(INFO,R) = c ‖ d. The
committer then publishes the commitment c.8

• Decommitting: to decommit or to use open(INFO, c, d) = R, the committer first publishes
the decommitment d. Anyone can extract R from d (i.e. the first b bits), verify whether
c = longhash(INFO ‖ d), and then output success or failure.

The conventional understanding of a commitment scheme has been that the committer knows the
value to which he or she is committed. In this paper however we will see several cunning uses of the
commitment idea but without the knowledge of the committed value from protocol participants,
who can be either the committer or other parties. We will see this can be done by distinguishing
carefully between when nodes are committed without knowledge to a value and when they know
it.

The first use of this idea is called commitment before knowledge, which directly influences the
design of HCBK in Section 5.1, and some of the one-way and non-interactive protocols in Section 3.

Commitment before knowledge:9 Suppose that, in a partly complete protocol session, a
participant A has sent or received parameters, such that in all successful completions of this
session some term d has the same value, such as for instance d = digest(k, INFOS). Then
A is committed to a value of d at this point in the session.

A knows the value of some term d at a point in a partly complete protocol session if, from
values A has received, A can compute d without having to invert hash functions or decrypt
messages to which A does not hold the decryption key.

A is committed to the value of d before knowing it if the earliest point at which A is committed
to a value of d properly precedes the earliest point at which it knows the value of d.

The same properties also apply to a more restrictive use of the idea, called joint commitment before
knowledge which influences the design of nearly every interactive protocol, i.e. pairwise and group
authentication schemes in Sections 4 and 5.

Joint commitment before knowledge: A protocol ensures joint commitment before knowl-
edge for a set of participants if in every sufficiently long partial execution of the protocol, there
is a point at which each of those participants is committed to a value for a term d, but does
not yet know the value of d, and moreover in every successful completion of this partial
execution, the participants are committed to the same value for d.

One simple way to achieve joint commitment before knowledge is as follows: each node is commit-
ted to some value by publishing its commitment, for example, by using the commitment scheme
described above or a cryptographic hash function. The jointly committed value (i.e. SAS) is then
the output of some function, such as summation, exclusive-or, Diffie-Hellman key agreement or
digest functions, applying to all of the values to which every node has been committed.

8Instead of using a cryptographic hash function longhash(), one can switch to universal hash function as defined
in Section 2.2, i.e. c = longhash(INFO ‖ d) is replaced with c = hd(INFO). This of course should also apply to
decommitting.

9We are gratefull to an anonymous referee for wording of this and the idea of joint commitment before knowledge,
which improves the versions in earlier drafts of this paper.

10

We will see later that there are two different strategies of achieving (joint) commitment before
knowledge, i.e. direct and indirect information binding approaches which are formally introduced
in Section 4. In addition, the combination of commitment before knowledge and direct binding
approach will be refined by the principle P2 to design several group authentication protocols in
Section 5.1.

2.2.2 Short hash and digest functions

A normal cryptographic hash function is chosen so that it has enough bits to be essentially immune
to searching such as the birthday attacks. In this paper, we will see various cunning uses of new
functions that, like cryptographic hashes, are intended to randomise and convey no useful informa-
tion about the preimage. However, their outputs are significantly shorter, since they will always
produce values of short authentication strings (SASs) transmitted over the empirical channels which
can be very limited in bandwidth.

We will see two variants on this idea: the simpler is what we call a short hash: shorthash().
This has a single argument, and is intended to be uniformly or near-uniformly distributed over
its b-bit range as its argument varies. Since the hash output is too short, it is impossible to have
properties such as collision and inversion resistances like in cryptographic hash functions. What is
required instead is the strict avalanche criterion, which states that any number of bit-changes in
the input has an equal (but non-negligible) influence on every bit of the output [55].

In some of the protocols we consider, we need to construct a b-bit digest of INFOS and some key
k. Similar to shorthash(), digests cannot have the usually specified properties of a cryptographic
hash, namely non-invertability and collision-freeness. On the other hand, we do require that a high
degree of randomness arises from the use of the key k, as set out below and in [32, 33].

Definition 2 [32, 33] A b-bit digest function: digest : K × M → Y where K, M and Y =
{0...(2b − 1)} are the set of all keys, input messages and digest outputs, and moreover:

• for every m ∈M and y ∈ Y , Pr{k∈K}[digest(k,m) = y] = 2−b

• for every m,m′ ∈M (m 6= m′) and θ ∈ R: Pr{k∈K}[digest(k,m) = digest(k ⊕ θ,m′)] ≤ 2−b

The rationale for these two specifications, especially the use of “⊕ θ”, will become apparent when
we analyse group protocols such as SHCBK in Section 5.1. The digest specification is similar
to universal hash functions, except the probability of digest collisions relative to different keys
is also considered, i.e. the way digest keys are agreed between nodes in SHCBK protocol can be
manipulated such that different nodes’ keys may be relatively shifted by a θ known to the intruder.
The inclusion of the θ shift is therefore to ensure that this type of activity can never benefit the
intruder.

Although both shorthash() and digest() are less secure than cryptographic hashes, they are
potentially faster to compute, thanks to their short outputs. More details about their comparative
speed performance can be found in Section 2.4.2. Designing (universal) hash functions has an
exciting and long history in computer science and cryptography, however there does not seems to
be much literature on the study and exploitation of short output to speed up computation efficiency.
Thus we believe that there is a potential of new constructions for digest functions or adaptation of
existing work to acquire computation efficiency, as described below.

11

As we will see in the majority of direct binding protocols presented in this paper, the SAS is
often the output of a short-output function such as a digest function. For this reason, there have
been a number of algorithms proposed to compute short digest [2, 14, 15, 22, 23, 33, 38]. To the best
of our knowledge, the only ones that explicitly exploit the short output to improve efficiency as well
as being proved to satisfy the above specification are based on the idealised framework invented by
the authors [32, 33], which are adaptations of several well-studied universal hash constructions of
Mansour et al. [26], and Krawczyk [20, 21]. We there provide several algorithms using fully random
numbers derived from the digest key, which can be simulated in practice by a pseudorandom number
generator. The most efficient are based on Toeplitz matrices of bits or words which are generated
out of ε-biased distribution sequences as pointed out in [21, 33]. These justify the advantage claimed
for short-output digest functions in Section 2.4.2 on the computation cost model. Our algorithms
have no restriction on the length of the object (typically INFOS) being digested.

In contrast, several research authors in [14, 15, 22, 38] make use of universal hash functions
presented in [5, 19, 49] to compute digest functions. These algorithms put an upper bound on the
input length, and consequently they have to compress a long message into a fixed number of bits
(say 512 or 256 bits) by using a cryptographic hash prior to running the algorithms themselves,
which turns out to be neither ideally secure nor cost effective [33]. Alternatively, others [2, 38]
suggest using first or last b bits of a hash of a large message, which is inefficient and does not
necessarily have the precise property we need of being an ideal digest.

2.3 Attack model

In Section 2, we have defined the intruder’s power over data transmitted over all kinds of channels
used in the family of protocols. In addition to that, the following are definitions of attacks performed
by the intruder, and which will be considered as we move along.

• A general attack: uses (off-line) combinatorial search, e.g. using the birthday paradox
to search for hash collisions. This can be either interactive or noninteractive. The attack
may consist of multiple protocol runs, and so this is also referred to as multiple-shot or q-shot
attack, where q is the number of protocol runs involved.

• A one-shot attack: is a special case of a general attack, i.e. this only involves a single
protocol run.

We will also use the term combinatorial search to refer to attacks, whether general or one-shot,
which involve combinatorial search, i.e. this is the opposite of a guess attack.

Our aim is to ensure that general or multiple-shot attacks give the intruder no advantage over
a one-shot or guess attack on this family of protocols.10 This goal is achieved because once every
protocol participant is (jointly) committed before knowledge to some short authentication strings
(SASs, e.g. a digest value transmitted over empirical channels), then there is not any effective way
in which the agents can determine anything about the value – the agents’ state of knowledge of the
SAS is a uniform distribution.

Moreover, in the majority of protocols considered in this paper, SASs are transmitted over
(strong) empirical channels (−→E and −→SE), and so cannot be mistaken or delayed from one to

10This is similar to the goal of password-based authentication protocols, which have been studied extensively to
date.

12

another session.11 Hence, the SASs in all protocol runs are themselves independent12 as pointed
out by Vaudenay and other authors [24, 35, 39, 53], and for any q we have:

Pr(a successful q-shot attack) ≤ q ×Pr(a successful one-shot attack)

This model is rather conservative because it is only valid when the intruder launch attacks on
many (or perhaps q) different pairs or groups of parties.13 In practice, once a human has noticed
a short authentication string disagreement, he or she will be suspicious or aware that an attack
is taking place provided implementation is reliably constructed. This will mean that the human
will either allow no more attempts or require longer authentication strings, i.e. extending the
SAS by 1 bit after each mismatch makes the probability of a successful general attack be upper
bounded by 2b−1 =

∑∞
l=b 2−l, where 2−l is the likelihood of a successful one-shot attack on an

optimal implementation of a l-bit SAS protocol, i.e. we will formally define optimality in human
interactions of this type of protocols in Section 2.4.1.

Since the protocol design can reduce the probability of a successful attack to the chance of a
one-shot attack, for simplicity we will refer successful attacks considered in all protocols to attacks
that only involve a single protocol run, i.e. a one-shot attack.

We are also interested in chosen plain-text attacks [46] under which the intruder can influence
data trustworthy parties want to authenticate. Although this attack might seem unrealistic, it is
desirable that protocols are immune to it, i.e. it will become useful when we analyse protocol of
Balfanz et al. in Section 3. Since the attack relies on combinatorial manipulation, we refer to it as
a special case of the combinatorial search attack.

In authentication protocols where parties only want to authenticate their public-key-like infor-
mation, there is no need to distinguish between honest and dishonest nodes. Conversely, every one
has to be trustworthy in a key agreement protocol, whether it is pairwise or group schemes. More
discussion about this issue could be found at the begin of Section 5.

2.4 Cost model

It seems reasonable to measure the efficiency of the family of protocols in two ways: the amount
of empirical or human effort required to complete them; and the amount of processing required at
the nodes. The following models for human effort and computation cost are adapted from two of
our papers [32, 33].

2.4.1 Human effort

Our main measure of empirical work is the number of bits of the short authentication strings that
are transmitted over the empirical channels. Throughout this paper, we always attempt to optimise
the amount of security one can obtain from a given amount of empirical (human) communication.
The following definition which specifies when a protocol in this area optimises human interactions

11Separate security analysis will be provided whenever protocols use weak empirical channels −→WE to transmit
SASs, which can be stalled and then replayed in other protocol runs.

12 A bit string X is independent of a bit string Y if for all random variable X of value x and for all random variable
Y of value y: Pr[X = x] = Pr[X = x | Y = y].

13We will see later in Appendix C (Theorem 1) how to formalise this statement to give proofs of security for various
protocols introduced in this paper.

13

relative to a level of security obtained has been justified in the papers of the authors [32, 33, 35]
and Vaudenay [53].

Optimality of human interactions [32, 33, 35, 53]: A protocol using short authentication
strings (SASs) is said to be optimal in human interactions iff there is only a single b-bit
SAS that needs to be empirically communicated, and the probability of a successful one-shot
attack is bounded above by 2−b.

We will see in later sections that this bound is attainable, provided we can discount the probability
of strong cryptographic primitives being broken.

2.4.2 Computation cost model of cryptographic primitives

It is essential to optimise the human work in the families of protocols, but at the same time, we
also want to minimise the computational cost. We are aware that the cost of agreeing a private
key through exponentiation (in Diffie-Hellman’s style) or public key cryptography always overtakes
the cost of bootstrapping authenticity. However, if the authentication phase is carried out early
on lightweight devices prior to key agreement achieved on more powerful devices at a much later
stage. Then it is desirable to minimise the computation cost of the authentication protocols done
on lightweight devices, whose computation power can be very limited.

In order to assess the complexity of protocols, we have to have a model of the complexity
of computing cryptographic primitives, such as a cryptographic hash longhash(), a short hash
function shorthash(), a digest function, and a commitment scheme.

Let B and W be the number of bits and respectively words required to hold a long hash value.
It is normal that B =160 bits, so we assume W = B/w = 5, here we assume that a word consists
of w = 32 bits. Many researchers in [13, 33, 53, 57] suggest 15 or 16 bits are reasonable choices
for b, the width of the digest output, which is rounded up to 1 word in our analysis. We assume
that nonces, keys (used in a commitment scheme and as input of longhash()) and other strong
cryptographic values, such as a commitment c and a decommitment d, have the same bitlength B
and therefore wordlength W .

For simplicity, we only look at the Merkle-Damgard construction based hash functions [30]
(i.e. block cipher based and customised functions such as SHA-1, MD5, or Davies-Meyer, Matyas-
Meyer-Oseas and Miyaguchi-Preneel) because they are provably secure given that a one-way and
collision resistant compression function exists, and also this family of hash functions is widely used
in practice.

It is clear that the cost of computing the b-bit output hashb(m) tends to increase linearly with
the length of m, since the majority of customised cryptographic hash functions, such as MD5 and
SHA-1, are iterative in nature. They are computed by calling a “compression” function once for
every (512-bit) block in sequence.

It also seems clear that the cost will increase at least linearly with the output length b. Con-
sidering the type of operation of the Merkle-Damgard construction reveals that it always has an
internal state whose bitlength is equal to or greater than the output bitlength. The internal state is
updated by linear or bitwise operators (e.g. Shifting, AND, OR, XOR and rotation) in each loop of
the algorithms to ensure that there is a computation between each message input bit and each bit
of the internal state, i.e. the strict avalanche criterion. This implies that the computational cost

14

is proportional to the size of the internal state, and a simple cost model of a b-bit hash function,
which we will adopt in this paper, might be:

Cost(hashb(m)) ≈ b× length(m)

Since well-known hash algorithms tend to be fixed width and vary significantly in their individual
costs, it is hard to be too definite about this rule.14 The computational cost model does not take
into account the number of clock cycles and implementation-specific (i.e. software or hardware),
however it does give an approximate comparison between the cost of computing long and (very)
short output functions, for example, cryptographic hash versus digest function as can be illustrated
in Table 1.

With respect to the cost of computing a digest. As defined in Section 2.2.2, digest(,) is a family
of short hash functions indexed by a key k. Even though the key bitlength might be significantly
longer than the hash output in several constructions of universal hash functions invented to date [20,
21], it normally does not play any significant part in the computation. Consequently, key length
will not have a big impact on the computation cost.15 Hence, we assume the cost model of a digest
or universal hash functions is similar to a hash function, which is mainly dependent on the lengths
of the input message and the digest output.

A commitment scheme defined in Section 2.2.1 inputs a message of length K bits or dK/we = M
words and a pair of nonces (R,R′) that add up to B = 160 bits or W words. Since the pair of nonces
play the same index role as key k in digest computation, we assume that a commitment scheme
takes M words as input.16 These are true in both operations used to calculate a commitment and
open/verify the commitment. We therefore conclude that the computational costs of computing and
verifying a commitment are equal to each other as well as being equal to the cost of computing hash
functions. The latter is true because commitment schemes are normally built from pseudorandom
functions such as hash functions [40].

Table 1 summarises the computational cost of all cryptographic primitives introduced in this
section. While the table might suggest that the cost is equal to this product, what we are actually
doing is ignoring the multiplicative constant because all the computational costs come from the
same model.

Every protocol in this paper, except the first one in Section 5, only uses long or short hashes,
commitment schemes or digest functions. For this reason, we shall apply the simple model to
compute the cost for each of them as we move along. In Section 6.1, all of the computational costs
and human effort will be put into tables summarising the efficiency of each class of protocols.

14In practice, one often constructs a variable output-size hash function based on the idea of Key Derivation Function
(KDF) or Mask Generation Function. For example, given a 160-bit output hash function such as SHA or MD5, we
can use concatenation operator to construct a 160 × t-output hash function as follows: HASH(m) = hash(1, m) ‖
hash(2, m) ‖ . . . ‖ hash(t,m). This of course clearly follows our computational cost model.

15In fact the longer is the key, the fewer the number of random bits we have to generate in our proposed construction
of digest functions as well as universal hash constructions of Krawczyk [20, 21], and subsequently the better.

16In practice, a commitment scheme, such as one introduced in Section 2.2.1, takes both M -word messages and a
160-bit random nonce as its inputs, i.e. these are concatenated before being inputted to a cryptographic hash function:
longhash(INFO||R). However, it has been noted that longhash(INFO||R) could be replaced by a universal hash
function keyed by R, i.e. hR(INFO) to reduce the input length, and therefore computational cost. As a result, to
give a fair comparative analysis which is independent of implementation, we will stick to this assumption.

15

Cryptographic primitive Computation cost

longhash(INFO) or hash160(INFO) WM

longhash(k) or hash160(k) W 2

hash(INFO) or hash80(INFO) WM/2

shorthash(INFO) or hashb(INFO) M

digest(INFO) M

commit(INFO,R) WM

open(INFO, c, d) WM

Table 1: In the table, all calculations refer to functions that apply to either a single INFO of M
words or a key k of W words.

3 Non-interactive protocols

We examine some protocols attempting to transmit a, possibly very long, message from one party
to another efficiently in such a way that the origin and integrity of the message are authenticated.
These all use just one-way communication and authentication strings and help to illustrate the
power of authenticated empirical channels.

To set this work in context, recall the classic (non-interactive) signature mechanism which works
where there is a PKI. Here, a message INFOA of the sender A is accompanied by the signature
{longhash(INFOA)}sk(A). The receiver knows INFOA really is from A, since he can form the
cryptographic hash of INFOA and discover if it really was A who signed this value with her secret
key sk(A). Although the whole of such a message may be assumed to be sent over a standard
Dolev-Yao channel, there is in fact a closer tie-in with the subject matter of this section than there
might appear to be. For public key encryption and decryption are computationally expensive, there
is a strong incentive to keep the bandwidth of information transmitted under this form of cipher to
a minimum. We might therefore regard a signature as the combination of a large message INFOA

over an insecure channel with the smaller one longhash(INFOA) over an authenticated one.
Since in many cases the empirical channels are human mediated, the chief difference from this

view of signature will be that our empirical channels are much lower bandwidth.

3.1 Long authentication string over the empirical channel

The above analysis of the use of signatures shows they are closely analogous to the following one-
way authentication protocol devised by Balfanz et al. [3]. In this scheme, A wants to authenticate
its information INFOA to B.

Balfanz et al. non-interactive protocol, [3]

1. A −→N B : A, INFOA

2. A −→WE B : longhash(A, INFOA)
B verifies the longhash.

Computational cost: WM = 5M

Balfanz et al. [3] did not specify the length of the hash function used.17 The main issue we have to

17In the original protocol [3], there is no restriction on the order of sending and receiving Messages 1 and 2.

16

decide in analysing this protocol is whether INFOA might have been manipulated by an attacker.
This could be done, for example, by A accepting some piece of externally generated data, such
as images and videos, to include in INFOA. In several implementations, such as the specific one
anticipated by Balfanz et al. [3] where INFOA is simply the public key, this attack may be impos-
sible and here an B/2 = 80-bit hash function suffices. However, we wish to quote a protocol that
is secure in general and, following the below analysis taken from [27, 39, 53], we assume that the
hash length is B = 160 bits. When an intruder can influence some part of INFOA, the intruder
can (off-line) search for a different pair (INFOA, INFO′

A) both yielding the same hash value.
INFOA is then given to A in the information gathering stage, and the intruder sends INFO ′

A to
B masquerading as A.

1. A −→N I(B) : A, INFOA

I(A) −→N B : A, INFO′
A

2. A −→WE B : longhash(A, INFOA)

However, this is something which deems infeasible as it must take about 2B/2 = 2160/2 = 280

computation steps on average to find such a cryptographic hash collision, due to the birthday para-
dox. What this implies is that even though the protocol is secure, it is not optimal in the human
work since B or 160 empirical bits only deliver 2B/2 = 280 security level.

As a result of a single longhash whose input and output lengths are M and W words, the
computation cost is of order WM = 5M , thanks to the cost model in Section 2.4.2.

In order to improve the number of authenticated bits, Pasini and Vaudenay [39] make use of a
probabilistic commitment scheme18 to commit to the authenticated information. The (B/2 = 80)-
bit hash of the commitment is then sent over the weak empirical channel.

Pasini-Vaudenay non-interactive protocol, [39]

1. A −→N B : c ‖ d = commit(A, INFOA)
B computes A ‖ INFOA = open(c, d)

2. A −→WE B : hash(c)
B verifies the hash.

Computational cost: MW/2 + W 2/4 = 2.5M + 6.25

Here the hash function is required to be second-preimage-resistant [30]: an intruder cannot find a
second value v′ such that hash(v) = hash(v′) for fixed v) as opposed to collision-resistance required
for Balfanz et al. where both v and v′ are allowed to vary.

In [39], Pasini and Vaudenay argue that this provides the same degree of authentication as the
Balfanz et al. protocol, namely 2B/2 = 280 computation steps, because the probabilistic commitment
scheme avoids the possibility of a birthday attack. At the point where A is influenced to use the
given INFOA, the intruder cannot know what a nondeterministic component (a hidden random
nonce of B/280 bits = W/2 words) that is injected by A into the commitment scheme will be,
which is vital in obtaining a collision. Binding the information by a commitment scheme has
the advantage of halving the number of empirical bits as well as halving the bitlength of the

18A commitment scheme was defined in Section 2.2.1. We note that there is no random nonce inputted into the
commitment scheme used here. Therefore, its bitlength is assumed to be zero, and the commitment scheme has to
generate a new long nonce (80 bits) every time the commit() function is called. This is also the only time when
an (B/2 = 80)-bit commitment scheme is used. For all other employments of a commitment scheme, it is always
(B = 160)-bit.

17

commitment scheme due to the nondeterminism introduced. These together reduce the cost to
MW/2 + W 2/4 = 2.5M + 6.25.

More recently, Mashatan and Stinson [27] introduced another scheme which achieves the same
level of security with the same number of empirical bits as Pasini-Vaudenay but does not require
the use of a commitment scheme. In the following protocol, k is a long random key of B/2 = 80
bits which is generated by A.

Mashatan-Stinson [27]

1. A −→N B : INFOA ‖ k
2. A −→WE B : hash(INFOA ‖ k)

Computational cost: (M + W/2)W/2 = 2.5M + 6.25

Note, the random key k plays the same role as the non-deterministic component (also of B/2=80
bits) injected by A into the commitment scheme used in Pasini-Vaudenay. This therefore implies
that both of these obtain the same level of security.19 The computational cost of Mashatan-Stinson
is (M + W/2)W/2 = 2.5M + 6.25, which is the same as Pasini-Vaudenay. To the best of our
knowledge, the above two protocols are currently the best non-interactive schemes in terms of the
number of empirical bits relative to the level of security obtained.

The circumstances of non-interactive protocols bring the category of empirical channels →WE,
as opposed to →E or →SE, into question. For unless the recipient knows (s)he is in a protocol
and confirms it by some explicit or implicit acknowledgement, how can we possibly state that an
empirical message designed for one protocol run cannot be used for a second one? It seems to us
that there are in fact three possibilities:

• There is, in fact, no bound on the life of a delayed empirical message. In this case an
intruder can block a succession for messages from A to B, with the chances of success of each
combinatorial search becoming greater as it has more and more empirical messages it can
unblock – as in the birthday attack.

It is clear that in any use of delayable empirical channels, one needs to be certain to ensure
that this type of storage and re-use cannot occur. The feedback in interactive protocols is
one, but in non-interactive channels it is a difficult question: we can avoid re-use through
sequence numbers, but if all but one messages are blocked there is no need for re-use for the
type of intruder strategy described above to work.

• There might be some mechanism which bounds the life of a delayed message. For exam-
ple, given sufficiently synchronised clocks, a time-stamp would produce a real bound on the
delayability of the message.

Alternately there might actually be some feedback mechanism not explicitly mentioned in
the protocol which tells A when her last empirical message has arrived. In the absence of
signature mechanism for B that A can trust (unlikely in the circumstances we are considering)
this feedback mechanism will probably have to be empirical.

• There may in fact be no significant delay possible: we actually have →SE . We discuss that
case below.

19Mashatan-Stinson requires that the 80-bit hash function hash() is hybrid-collision resistant as defined in [27].

18

It seems fair to remark that since even 80 bits will seem tedious for most humans to compare
carefully, these one-way non-interactive protocols are not likely to find widespread use. Where it is
humans who actually need to do this work: they would need to have a high level of commitment and
possibly a well-designed user interface to ensure user compliance. For example, this is particularly
a difficult task when 20 hexadecimal-digits (or 80 bits) numbers which need to be compared by
humans attempting to set up a secure channels between some wearable sensors and laptops to
upload medical data only differ in one or two positions or digits.

3.2 Short authentication strings over strong empirical channels

Gehrmann, Mitchell and Nyberg [13] took a different approach to preventing combinatorial search.
They use empirical channels to transmit the b-bit output of a check function MACk()

20 together
with a b-bit key that has been instrumental in its computation.

MANA I (Gehrmann, Mitchell and Nyberg), [13, 14, 15]

1a. A −→N B : A, INFOA

1b. B −→E A : 1-bit committed signal
A picks a b-bit random number k

2. A −→E B : k,MACk(A ‖ INFOA)

Computational cost: WM = 5M

To eliminate 1-bit empirical signals in MANA I,21 Vaudenay proposes to use a strong empirical
channel (stall-free or instant delivery, and is denoted −→SE) to send the key and the check-value.22

Thus 2b bits are transmitted in all. This idea turns the protocol into a non-interactive scheme. In
the following description, we will modify the scheme slightly by using a digest function to compute
the check-value. The rest of this analysis applies to both versions.

V-MANA I, [53, 39]∗

1. A −→N B : A, INFOA

A picks a b-bit random number k
2. A −→SE B : k, digest(k,A ‖ INFOA)

B verifies the digest.

Computational cost: M

Binding INFOA (M words) directly to the SAS makes the protocol efficient because each node
computes a single digest at a cost of M : much cheaper than a long output hash function in Balfanz
et al. (5M) and a commitment scheme in Pasini-Vaudenay (2.5M + 6.25).23

20As suggested in [13, 14], a check function MACk() can be implemented by either CBC-MAC or universal hash
functions based on error correcting code, which is potentially less efficient than digest functions as discussed in
Section 2.2.2 and [33]

21The 1-bit committed signal, which can be implemented by a red line or a single button, is not a primitive property
of empirical channels. It presence aims to indicate to A that B has received Message 1, which could be either original
or fake. In the original description of MANA I, the pair of parties additionally need to agree on the success of the
protocol with the help of some human interactions. Since this is not important with respect to security analysis, we
ignore the step in our description of the protocol.

22We can replace the strong empirical channel with a bounded delay empirical one (−→t
BE), provided B checks

that he has received Message 1 before Message 2 could have been sent.
23This measurement only applies to the modified version of V-MANA I, where the digest function is used as opposed

to CBC-MAC or longhash functions that will make it increase to MW = 5M .

19

The protocol demonstrates that the use of the strong empirical channel, providing stall-free
transmission, will lead to a significant fewer number of empirical bits in non-interactive schemes.
Since the uniform distribution property of the digest makes it impossible for the intruder to look
for an INFOI digesting to the same value as INFOA in ignorance of k, this protocol comes close
to preventing the intruder from performing any useful combinatorial search.

We note however that the protocol is suboptimal in human work relative to the level of security
obtained. Any one can modify INFOA blindly in the first message and hope that the b-bit digests
come out the same in the second one. This will occur with a probability of 2−b irrespective of the
value of the key, which means that 2b empirical bits only guarantee at best a 2b security level.

Whilst the security proofs of this protocol given in [13, 15, 39] are largely correct, what these
authors have not discovered is that the bitlength they choose for the key (which happens to be equal
to b in this case) is too short compared to the digest output and the authenticated information
INFOA. As a consequence, it is impossible to construct a digest, MAC or check-value function
such that the probability of any one-shot attack on the protocol is upper bounded by 2−b. Since
the weakness has a very profound impact on all other uses of the digest function, we are going to
analyse the (off-line) computation complexity and its related probability of a successful one-shot
attack on this protocol. We then deduce a longer key is required in order for the digest function to
meet its specification.

We term b and r the bitlengths of the digest output and the key k (in this protocol, b = r = 16
bits). The intruder first chooses some number c different keys {k1, · · · , kc}. Using an off-line brute
force search at the cost of 2bc/2 computation steps he can expect to find two different INFOA and
INFO′

A,24 such that:

∀k ∈ {k1, · · · , kc} : digest(k,A ‖ INFOA) = digest(k,A ‖ INFO′
A)

Assuming that the intruder can influence INFOA that A sends in the first message (i.e. chosen
plain-text attacks), there is then an attack it can attempt.

1. A −→N I(B) : A, INFOA

I(A) −→N B : A, INFO′
A

2. A −→SE B : k, digest(k,A ‖ INFOA)

Recall that in the above protocol, the key length r and digest length b are equal. The following
calculations, where these numbers are kept separate, will allow us to draw more general conclusions.

After sending the first message, A picks a random key k: with probability c
2r , k ∈ {k1, · · · , kc}

and the attack is successful. On the other hand, with probability (2r − c)/2r , k is not in this set
and the attack is only successful with probability (presumably) 2−b(2r − c)/2r.

Overall, at the cost of Θ(2cb/2) the chance of a successful one-shot attack is:

Prr(c) = c× 2−r +
2r − c

2r
× 2−b

When r = b, this is significantly larger than the desired probability of 2−b.

24It might be clearer if we define H{k1,···,kc}(X) = digest(k1, X) ‖ · · · ‖ digest(kc, X), and if digest is an ideal
digest function, then so is the function H with respect to its c× b output-bits. As there is no limit on the bitlength
of the input X, it normally takes 2cb/2 computation steps to search for a collision, due to the birthday paradox.

20

The above vulnerability indicates we need to increase the bitlength r of the key to avoid this
type of attack. When r increases, 2r will quickly become significantly bigger than 2b and this will
allow the likelihood of a successful one-shot attack –Prr(c) – to converge to 2−b. This is however not
feasible in this protocol, since the key must be sent with the digest value over the strong empirical
channel that is severely limited in bandwidth.

An interesting question arises as we want to know how large the bitlength of the key should be
in relation to a fixed amount of information we want to authenticate and the output bitlength of
the digest. Since this question is not within the scope of this paper, we point readers to one of our
papers [34] where we successfully derive a new combinatorial bound for an almost universal family
of hash functions.25

This suggests that we should aim always to have key k noticeably longer than the digest in this
style of protocol. Of course to do this without ruining efficiency in human effort, we need to find
ways of communicating k over a high bandwidth (and insecure) communication link −→N rather
than empirically.

3.3 Improved version of (V-)MANA I

Given two weaknesses discussed in the previous section, we will present improved versions of V-
MANA I that optimise the use of the expensive strong empirical channel. These improvements can
also apply to MANA I. In other words, human comparison/handling of a b-bit short authentication
string (SAS) always corresponds to probability 2−b of a successful one-shot attack. Whilst this
can only be done at the expense of introducing another (third) message sent over the Dolev-Yao
channel we argue that this is not at all a bad trade-off since our highest priority is to minimise the
empirical cost.

In contrast to V-MANA I, the key k generated by A in the following protocol can be as long
as we want to ensure that the digest function meets the specification in Section 2.2.2. In addition,
we can weaken the assumption that empirical messages’ transmission is instantaneous to being of
bounded delay as follows.

Improved version of V-MANA I (direct binding) [35]

1. A −→N B : M, longhash(k)
2. A −→t

BE B : digest(k,M)
3. A −→N B : k

Computational cost: M + W 2 = M + 25

Note that the message order here, and in other improved schemes of V-MANA I, is more important
than in all preceding protocols in this section. We specify that

• To ensure that B was committed without knowledge to key k when Message 2 was sent, B
only accepts Message 2 after t time units or more of receiving Message 1.

• To ensure that B was committed to Message 2 when Message 3 was sent, A only sends
Message 3 after t time units or more of sending Message 2.

25There is a known theoretical bound of Stinson [49] on the bitlength of the key that can guarantee the digest
meets its specification: bitlength(k) ≥ bitlength(INFOA)− b. We should remark that the bound can be met except
for an infinitesimal tolerance in the digest collision probability ε for very much smaller lengths than this, see [34].
However, it always has to be significantly longer than b in practice.

21

Failure to follow these two principles in the implementation of the protocol, each of which uses the
time bound on the empirical channel, can result in attacks that involve combinatorial searching.

Interestingly, we can replace the bounded delay empirical channel and the need to wait by a
simple acknowledgement from B to A. The resulting protocol turns out to be the pairwise (one-way
authentication) version of HCBK protocol of Section 5 and [41].

Improved version of MANA I (direct binding) [41, 32, 33, 35]

1a. A −→N B : M, longhash(k)
1b. B −→E A : 1-bit committed signal
2. A −→E B : digest(k,M)
3. A −→N B : k

Computational cost: M + W 2 = M + 25

This scheme is flexible since the digest and key (Messages 2 and 3) can be released in any order as
long as A has received the commitment signal from B in the first message. It will often be the case
that a bounded delay empirical channel and a one-bit acknowledgement signal are alternatives in
this style of protocol design/structure.

Since the SAS in these schemes are functionally dependent on the authentic information M , we
term these as the direct binding version of Improved (V-)MANA I, i.e. direct information binding
strategy will be formally defined in Section 4. However, the computation cost is slightly increased
to W 2 + M = 25 + M due to the extra longhash required in the first message.

Readers who are interested in the formal security proof as well as variants using indirect binding
and Diffie-Hellman style can find them in Appendix C or [34].

4 Interactive protocols

To authenticate a one-way message, it is obviously convenient to have a non-interactive protocol.
We might observe that such a protocol in which the two human participants have to be active at
the same time to implement a strong empirical channel (non-delayable) is less attractive: it must
be seen as a long way along the road to being interactive.26

Interactive protocols, where all parties contribute communications, have two clear advantages
of their own. Firstly they can exchange messages without running the protocol multiple times.
Secondly, as we shall see, the interaction makes it easier to reduce the number of bits that have to
be passed empirically as well as the amount of computation power required at each node.

What we will discover is the significance of the idea of joint commitment before knowledge,
introduced by us in Section 2.2.1, in providing the same level of security for all protocols presented
in this section, i.e. the probability of a successful one-shot attack27 is upper bounded by 2−b,
where b is the bitlength of the SASs. For this reason, in all pairwise schemes (except Hoepman and
Wong-Stajano in Section 4.1), the value of the unique SAS is jointly committed to by both protocol
participants. This therefore leads us to introduce the two following information binding strategies
that help us achieve (joint) commitment before knowledge as well as classifying the many protocols
considered in this survey.

26Perhaps this could be worked around by having a logged recording mechanism for the empirical messages as part
of the receiver’s system.

27More information about the intruder’s power and different types of attack can be found in Section 2.3.

22

• Indirect information binding: A protocol using a SAS is said to achieve indirect informa-
tion binding if the SAS, jointly committed by every node, is independent of the information
INFOS parties want to authenticate.

Typically, to construct indirect binding protocols considered in this paper, the SAS is the
exclusive-or of random nonces to which every party has been individually committed at the
beginning of each protocol run. In addition, these random nonces are also cryptographically
bound to INFOS.

• Direct information binding: A protocol using a SAS is said to achieve direct information
binding if the SAS, jointly committed by every node, is dependent on the information INFOS
parties want to authenticate.

Typically, to construct direct binding protocols considered in this paper, the SAS is the output
of some function applying to INFOS in combination with secret keys individually committed
to by every party at the beginning of a run. This binding strategy is also closely related to
two protocol design principles P1 and P2 introduced later in this survey.

When we study the two strategies in Sections 4.2 and 4.3, we find that direct binding has a clear
advantage in efficiency over indirect one. This arises from the potential to use a short output digest
function to process the large INFOS as opposed to a conventional long output cryptographic hash
functions. The computational efficiency pay-off of direct binding strategy will be illustrated each
time a protocol with direct binding is introduced, i.e. we will compare its efficiency explicitly with
previous related protocols using indirect binding. The advantage will be demonstrated clearly when
the cost of all schemes are gathered in three tables in Section 6.1.

4.1 Multiple empirical short authentication strings

We intend to describe two pairwise authentication protocols, the first by Hoepman [17, 18] and
the second by Wong and Stajano [56, 57], in this subsection. In these schemes, parties manually
compare or handle two different short authentication strings (SASs) each of b = 16 bits, so 2b =
32 bits in all. We point out an important difference in how these two protocols process INFOS.

Hoepman [18] defines SASs as the outputs of a b-bit (short) hash function shorthash(), as
mentioned in Section 2.2.2. In addition, the Diffie-Hellman tokens gxA/B play the role of both
INFOA/B and long fresh random nonces, and so must be unpredictable and fresh at each session.

23

Hoepman pairwise protocol, [18]

1. A −→N B : longhash(gxA)
1′. B −→N A : longhash(gxB)

Where xY is a long random nonce of Y
2. A −→E B : shorthash(gxA)
2′. B −→E A : shorthash(gxB)
3. A −→N B : gxA

3′. B −→N A : gxB

A and B verify the long and short hashes.
A and B then share the key k = gxAxB

4. A −→N B : longhash(gxAxB)
4′. B −→N A : longhash(gxBxA)

Computational cost: 2(WM + M) = 12M

This protocol offers a good security, i.e. the probability of a successful one-shot attack is bounded
by 2−b, despite the use of b-bit short hashes can be explained through the idea of joint commitment
before knowledge: both parties are jointly committed to gxAxB by publishing their shares of the
commitment (i.e. longhash(gxA/B)) in the first messages. It is therefore vital here that both parties
must agree on when to finish inputting the first messages. Once the commitment phase is over,
Messages 2, 2’ and 3, 3’ can be sent out in any order without compromising the security.28 We will
see an example of what goes wrong without (joint) commitment before knowledge at the start of
Section 5.1, which discusses group protocols.

We assume that the word-length of the Diffie-Hellman tokens is M .29 Since Messages 4 provide
shared secret validation (using longhash() function in this case), they can be neglected in our cost
analysis. As a result, each node has to compute 2 longhashes and 2 shorthashes of Diffie-Hellman
tokens. Using our cost model of computing hash functions given in Section 2.4.2, the computation
cost of Hoepman is of order 2(WM + M) = 12M , where W and 1 are the output wordlengths of
long and respectively short hashes.

Taking a different approach, Ford-Long Wong and Frank Stajano [56, 57] propose another
scheme which does not use a short hash function, but does give the same security with an equal
number of empirical bits. The simplification comes with an extra cost of more than doubling the
input size of the longhash() function used in the commitment phase. This is the consequence of
the inclusion of short and long nonces (RY and KY) of b and (B− b) = (160− b) bits, respectively.

28In [17], Hoepman introduced a modified (pairwise) version of the above scheme in which each party can receive
multiple longhashes or commitments from unknown nodes at the very beginning of a run. But (s)he only pairs up
with the one, who provides the matched single shorthash shorthash(X) sent over the empirical channel in the second
message. In this circumstance, A only sends out the shorthash iff he receives the 1-bit commitment empirical signal
from B at the first place and vice versa. Furthermore, these acknowledgement signals must be transmitted over the
empirical channel because they must not be blocked or delayed by the intruder. In this version, A does not need to
know the identity of B during Messages 1, so Hoepman refers to it as the anonymous case. Whereas the protocol
above applies to the non-anonymous case.

29As the Diffie-Hellman tokens are the only information parties want to authenticate, we can treat them as
INFOA/B whose lengths are M words. The recommended size of Diffie-Hellman tokens in practice is about 1024
bits which is significantly longer than W words.

24

Wong-Stajano pairwise protocol, [56]

1. A −→N B : gxA

1′. B −→N A : gxB

2. A −→N B : longhash(A, gxA , gxB , RA,KA)
2′. B −→N A : longhash(B, gxB , gxA , RB ,KB)

RY and KY are short and long random nonces of Y
3. A −→E B : RA

3′. B −→E A : RB

4. A −→N B : KA

4′. B −→N A : KB

A and B verify the longhashes.

Computational cost: 2W (2M + W) = 20M + 50

The security of this protocol comes from the intruder’s inability to invert the longhashes, or to
predict the non-determinism introduced by the pair of nonces (RX ,KX) at the point when these
are committed to. As in Hoepman, both parties must receive each others’ commitments (i.e.
longhash) before they reveal their long and short nonces in the third and fourth messages. Once
the commitment phase (sending out the longhashes) is over, Messages 3, 3’ and 4, 4’ can also be
transmitted in any order.

With respect to computation cost, while there is no short hash function, the two longhashes
(with long inputs) that need to be computed at each node result in a significantly larger cost of
2W (2M + W) = 20M + 50 compared to Hoepman (12M).

We now make two observations about the structure of this protocol. The high cost of computing
longhash (due to a long input 〈A, gxA , gxB , RA,KA〉 : 2M + W words) can be improved slightly,
as it is sufficient for A to bind gxA to the pair of random nonces (RA,KA). This leads to the
elimination of Messages 1 and 2, and indeed the same problem has been independently found and
corrected by the inventors in their revised version of the paper, published in October 2007 [57].
However, they have not noticed that the Diffie-Hellman tokens (gxA and gxB) can play the dual
role of the authentic information and fresh nonces if they are made unpredictable and fresh in
each session. For this reason, we can further eliminate the need for long random nonces KA/B to
simplify the protocol. A detailed description of our modified version of the protocol will be given
in Section 4.2 and Footnote 32.

Both Hoepman and Wong-Stajano are suboptimal in the amount of work required by the humans
implementing the empirical channel, since they need to compare more than one string. Whereas
the same security level, i.e. the same probability of a successful attack, can be obtained in several
ways by them comparing or sending a single SAS of the same length over the empirical channel.
This weakness introduces another major disadvantage. If we want to generalise these protocols
into multi-party versions then the number of different SASs (each party has to compare or handle
manually) would always equal to the total number of nodes: an unattractive prospect for the
humans involved!

We end this section with a crucial observation: Hoepman chooses to bind Diffie-Hellman tokens
directly to the SASs. This is not the case in Wong-Stajano, which is therefore more expensive
in computational cost than Hoepman. By this we mean that the INFOs they are trying to
authenticate are used directly in the evaluation of the empirically compared strings in Hoepman,
while those compared in Wong-Stajano are not. These two different strategies are termed direct
and indirect bindings, and we will explore and compare them in detail when we study protocols

25

that can optimise human effort in the sections to come.

4.2 Indirect binding

In indirect binding protocols, the SASs, which are jointly committed to and manually communicated
by parties, are functionally independent of the information they want to authenticate. This is the
idea we have briefly seen in Wong-Stajano, and it appears in many other schemes proposed in the
literature [2, 6, 22, 23, 38, 53, 56, 57]. We will analyse these here. What distinguishes all of these
from Wong-Stajano is a single SAS which is required to be compared over the empirical channel as
opposed to multiple ones.

While there is no relation between the compared SAS and the authentic information INFO (i.e.
they are completely independent in the sense of probability), the security of the protocols comes
from some mechanism binding some random nonces, which are instrumental in the computation of
SASs, and INFOS together in a secure way. Thus there is a tendency to use commitment schemes
(described in Section 2.2.1) in these protocols to obtain that binding.

4.2.1 Indirect pairwise

We will discuss protocols covering two different circumstances in bootstrapping security. These
were devised by Vaudenay [53] and Čagalj et al. [6] to establish one- and two-way authentication
via one- and two-way empirical channels in a peer-to-peer network. We will extend their schemes
into group versions in Section 5.2.

The following is the description of a pairwise scheme, invented by Vaudenay [53], that authen-
ticates a single message INFOA from the party A to B using a one-way weak empirical channel.

Vaudenay pairwise one-way authentication protocol, [53]

1. A −→N B : INFOA, c
Where c ‖ d = commit(INFOA, RA),
RA is a short random nonce of A.

2. B −→N A : RB

3. A −→N B : d
B computes RA = open(INFOA, c, d)

4. A −→WE B : RA ⊕RB

B verifies the correctness of RA ⊕RB

Computational cost: MW = 5M

The protocol delivers the guarantee of authenticity of INFOA, and even with a single b-bit SAS
the probability of a successful one-shot attack is still bounded by 2−b. This is the consequence of:

• The exchange guarantees the value for RA, that B has discovered by using the partial function
open(), is the one that A intended.

• The commitment scheme (commit()) has strongly bound the message INFOA to RA at a
point where RA is itself unknown to any attacker.

The above analysis applies to a one-shot attack. If we consider a q-shot attack then we need to
take into account that the unique SAS of this protocol is transmitted over the weak empirical
channel, and so can be stalled and delayed in other protocol runs. With q concurrent runs of A

26

and B, the number of protocol sessions from the intruder’s view will become q2. Thus, the chance
of a successful q-shot attack is upper bounded by q2/2b as pointed out by Vaudenay [53]. We
however argue that the origin of data transmitted over weak empirical channels cannot be forged,
and to take advantage of the delayability of SASs the intruder will have to launch attacks on the
same pair of parties who are responsible for delivering the SASs, i.e. party A in this case. The
above security analysis is therefore only valid with a small value of q because humans are highly
sensitive to delays, i.e. they will quickly become aware that an attack is taking place, and so stop
any attempt of running the protocol again as pointed out in Section 2.3. In contrast, if we replace
−→WE with −→E then a SAS cannot be delayed from one to later runs, and so to have a fair
chance of a successful attack, the intruder needs to run 2b concurrent runs of (perhaps different)
pair of parties: an 2b-shot attack.

There is a single commitment used (committed by A, and decommitted or opened by B), hence
the computing cost at each node is of order MW = 5M . Here, both a commitment c and a
decommitment d have the same length of W words.30

Although Vaudenay’s scheme halves the amount empirical communication relative to Hoep-
man and Wong-Stajano, it only provides one-way authentication representing one role of pairwise
schemes in this paper. In practice, we often want to achieve more than this, and that is why we
now consider another protocol performing message authentication in both directions at the same
time. Suppose B has some INFOB and wants to have it authenticated to A, then the natural
way to tackle this problem is to make B commit to its information as done by party A. This idea,
proposed by Vaudenay in Appendix A of [53], fortunately makes the protocol structure completely
symmetrical. It is essentially the same as another protocol which is termed DH-SC and invented
by Čagalj, Čapkun and Hubaux [6].

Čagalj-Čapkun-Hubaux two-way authentication protocol, [6]

1. A −→N B : INFOA, cA

1′. B −→N A : INFOB , cB

Where cY ‖ dY = commit(Y, INFOY , RY),
RY is a short random nonce of Y.

2. A −→N B : dA

2′. B −→N A : dB

Y ′ computes RY = open(Y, INFOY , cY , dY)
3. A ←→E B : RA ⊕RB

Computational cost: 2WM = 10M

Both of the above protocols use the joint commitment before knowledge principle to precommit two
parties to the XOR of some random short secrets or nonces. This is achieved by parties outputting
their shares of the commitment to each other in the first messages.

This scheme can be regarded as an upgraded version of Wong-Stajano (Section 4.1) in two ways.
Firstly, the two initial messages in Wong-Stajano have been successfully eliminated. This is based
on the ground that each node A only needs to commit to its INFOA at the beginning, so he has
not to acquire INFOB at the time of computing the commitment. Secondly, the order of releasing
the SAS and the decommitments has been reversed relative to Wong-Stajano.31 As a consequence,

30The cost of XORing two short random nonces RA and RB is small compared to implementing the commitment
scheme, and therefore is neglected here.

31The SAS and the decommitments here correspond to the two different short nonces and the long nonces in

27

parties only need to manually compare a single SAS, which is the XOR of short nonces RA and RB

implicitly derived from the decommitments.
It is interesting to note that the same technique can be used to improve the human and pro-

cessing cost of Wong-Stajano.32

Regarding computation cost, the two commitments would double the cost of Vaudenay to an
order of 2WM = 10M . On the other hand, if we quantify the cost relative to the amount of
information authenticated then Vaudenay and Čagalj-Čapkun-Hubaux will be equal to each other.
The result illustrates the gain in efficiency of these in comparison with Hoepman and Wong-Stajano
in Section 4.1.

Another advantage of Čagalj-Čapkun-Hubaux is that the symmetrical structure and a single
SAS subsequently led us to realise the possibility of generalising it into a group version, as described
in Section 5.2.

4.2.2 Hybrid protocol

Prior to discussing direct binding protocols, we describe an important scheme bridging the gap
between the two strategies both in terms of protocol structure and computational cost. Pasini and
Vaudenay [38] propose a two-way authentication protocol using the idea of Vaudenay’s one-way
scheme in Section 4.2.1. They make use of a truncated hash function that we have improved to a
digest and a symmetric empirical channel.

Pasini-Vaudenay two-way authentication protocol, [38]∗

1. A −→N B : INFOA, c
Where c ‖ d = commit(INFOA, kA)
kA is a long random nonce of A

2. B −→N A : INFOB , RB

Where RB is a b-bit random nonce of B.
3. A −→N B : d

B computes kA = open(INFOA, c, d)
4. A ←→E B : RB ⊕ digest(kA, INFOB)

Computational cost: WM + M = 6M

Though the SAS = RB⊕digest(kA, INFOB) depends functionally on INFOB , it is probabilistically
independent of INFOA. This observation makes the scheme stand as a hybrid of direct- and

Wong-Stajano, respectively.
32 The idea of eliminating the first two messages carrying gxA/B , removing the long random nonces as well as

reducing the number of different SASs to a single one of b bits in Wong-Stajano can be demonstrated by our revised
scheme. The scheme achieves the same level of security as Wong-Stajano in Section 4.1, i.e. the probability of a
successful one-shot attack is bounded by 2−b.

Improved version of Wong-Stajano New

1. A −→N B : longhash(A, gxA , RA)
1′. B −→N A : longhash(B, gxB , RB)
2. A −→N B : RA||g

xA

2′. B −→N A : RB ||g
xB

3. A ←→E B : RA ⊕RB

Computational cost: 2W (1 + M) = 10M + 10

Since there are two longhashes each node has to compute, the computation cost of this scheme is 2W (1 + M) =
10M + 10 which is less than a half of the original Wong-Stajano protocol (20M + 50).

28

indirect-binding protocols. Interestingly, the hybrid strategy is also reflected by the differences in
the bitlengths and the functionality of the two random nonces: RB and kA. RB is protected by the
structure of the protocol from guessing attacks and so can be short, whereas kA is not and so has
to be long; the two influence the final empirical string in different ways.

There is no need to use a commitment scheme to bind INFOB to RB , so each node needs
to compute a digest and either a commitment or a decommitment. The processing cost drops to
WM +M = 6M , thanks to the efficiency of a digest function,33 which is significantly cheaper than
Čagalj-Čapkun-Hubaux (10M) which is the fully indirect binding scheme.

4.3 Direct binding pairwise protocols

The direct binding approach requires the SAS, to which every party is jointly committed without
knowledge, to be dependent on the information they want to authenticate. The Hoepman protocol
that we have already studied falls into this category, but is not optimal in the human work. In this
section and later ones we will discuss a number of other pairwise and respectively group protocols
which are optimal in this respect. It should be noted, however, that any group protocol can be
used to create a group of size 2, and, as we shall see, do so as efficiently as the ones in the present
section.

Direct binding has been shown in two different situations to have an advantage in computation
cost over indirect: Hoepman (direct) versus Wong-Stajano, and Pasini-Vaudenay (half direct or
hybrid) versus Čagalj-Čapkun-Hubaux.

Our first task is to formalise the direct binding approach as the following principle P1, intro-
duced by us in [32, 33].

P1 [32, 33] All the parties intended to be part of a protocol run should agree over an empirical
channel on a short-output hash or digest of all the information that the parties want to
authenticate. This method maximises the security of the authentication for a given amount
of work on the empirical channel, and it leads to protocols that are as efficient computationally
as any alternatives, and frequently considerably more efficient.

In all the protocols we introduce in this paper, the “complete description of the run” is identified
with INFOS, the collection of all the information that any member of the group wishes to have
authenticated to it: the concatenation of pairs of the form (A, INFOA). Once the agreement
required in P1 has occurred, unless there is a hash or digest anomaly – different nodes in the group
computing the same hash value or digest from different antecedents – clearly all the parties agree
on all the data transmitted during the protocol.

In this section, a number of protocols providing mutual authentication are presented in an
ascending order of computation efficiency and simplicity. In addition to the common use of the
direct binding strategy to obtain joint commitment before knowledge, they are all asymmetrical in
structure, which is similar to the one-way authentication protocol of Vaudenay [53] in Section 4.2.1.

Unlike indirect binding schemes, parties need to generate fresh long random nonces or sub-keys,
which have enough entropy to prevent them from being subject to a combinatorial search.34 On
the other hand, the security analysis of the direct binding schemes is similar to indirect binding

33There should have been no improvement (WM + WM = 10M), if we had not switched to the use of digest.
34It is possible to regard these long fresh sub-keys as the extended versions of short random nonces, used in

commitment schemes in indirect binding protocols.

29

ones provided the digest function is ideal, as specified in Section 2.2.2. In every case, the protocols
have the same security (i.e. the probability of a successful one-shot attack is bounded by 2−b)
because nodes (and hence the intruder) do not know the final value of the digest key k until they
are committed to the final value of the digest, truncated hash or universal hash output, thanks
to the joint commitment before knowledge idea that provides a common theme to this family of
protocols.

Since the roles of the sub-keys and INFOS are different in digest computation, we will analyse
how sub-keys are combined into a single digest key as we move along.

The following protocol is taken from Bluetooth whitepaper [2], where kA and kB are long fresh
sub-keys generated by A and B.

Bluetooth 2, [2]

1. A −→N B : INFOA

1′. B −→N A : INFOB

2. B −→N A : longhash(INFOS, kB)
3. A −→N B : kA

3′. B −→N A : kB

kY is a long fresh key of Y
4. A ←→E B : truncb(longhash(f(kA, kB , INFOS)))

Computational cost: W (2M + W) + 2W (M + W) = 20M + 75

In this protocol, the sub-keys of A and B are concatenated with INFOS: f(kA, kB , INFOS) =
kA ‖ kB ‖ INFOS. Since the operator is not commutative, parties have to arrange the sub-keys
in the same order in which the distinct (A, INFOA)s are concatenated into a single INFOS.

The inefficiency in using a truncated hash function35 will increase the computation cost of the
above “Bluetooth 2” to W (2M +W)+2W (M +W) = 20M +75 as opposed to W (2M +W)+2M =
12M + 25 should we employ a digest and XOR to combine sub-keys. Unfortunately, the latter will
still be more expensive than the related protocols using indirect binding (Čagalj-Čapkun-Hubaux:
10M , and Pasini-Vaudenay: 6M) and the two following schemes, as it is redundant to bind INFOS
and sub-keys together by using both longhash function in Message 2 and in the SAS. Either of them
would be sufficient for the obtained security.

Removing this unnecessary binding in Message 2 of Bluetooth 2 can increase its computational
efficiency as well as simplicity (eliminating Messages 1 and 1’), since B does not need to know
INFOA (and INFOS) at the point when he is committed to kB . This is what was proposed
in [22, 23] by Laur and Nyberg:

Laur-Nyberg pairwise protocol, [22, 23]

1. A −→N B : INFOA, c
Where c ‖ d = commit(kA)

2. B −→N A : INFOB , kB

3. A −→N B : d
B computes kA = open(c, d)

4. A ←→E B : hk∗(INFOS)
Here k∗ = g(kA, kB)

Computational cost: 2WM = 10M

35truncb() takes the first b bits of its input.

30

Here hk∗() is a universal hash function [49] of the appropriate length, i.e. b-bit in this case, whose
specification is closely related to a digest as discussed in Section 2.2.2. The impact of removing
redundancy can be seen in the decline of the computation cost of this protocol: W 2 + 2WM =
25 + 10M , 36 which can be improved further because Laur-Nyberg has not exploited the short
bitlength of SAS to increase efficiency.

Unlike Bluetooth 2, Laur and Nyberg use a different function k∗ = g(kA, kB) = (k1
A · kB)⊕ k2

A,
using (polynomial) multiplication over a finite field GF(2r/2) to combine sub-keys. Here k1

A and k2
A

are the first and second halves of kA. Not only is this method expensive with long keys compared
to concatenation and exclusive-or as we are going to propose, but also the parties need to agree an
irreducible polynomial of order r/2 prior to each session.

We observe that it would be equally satisfactory to use the combination of kA⊕kB and a digest
function in place of hk∗(INFOS), resulting in an improvement of computational cost (W 2 +2M =
25 + 2M) which is approximately 5 times cheaper than Čagalj-Čapkun-Hubaux (10M , the related
protocol using indirect binding) should M gets large. This clearly demonstrates the advantage in
efficiency of direct binding protocols over indirect binding ones.

After this transformation and a replacement of a commit scheme with a longhash, the protocol
becomes similar to the following, which also has the same cost of order 25+2M . This was discovered
independently by the author in the summer of 2006 when we combined ideas used in our SHCBK
protocol (see Section 5.1) and Vaudenay’s protocols (see Section 4.2.1).

Pairwise authentication scheme in Vaudenay’s style New

1.A −→N B : INFOA, longhash(kA)
2.B −→N A : INFOB , kB

3.A −→N B : kA

4.A ←→E B : digest(kA ⊕ kB , INFOS)

Computational cost: W 2 + 2M = 2M + 25

We subsequently discovered that the same ideas could be used to devise a more efficient version of
the Hoepman protocol, which halves (and optimises) the amount of human work while achieving
the same level of security, i.e. the probability of a successful one-shot attack is bounded by 2−b:

Improved Hoepman New

1.A −→N B : longhash(A, gxA)
2.B −→N A : gxB

3.A −→N B : gxA

4.A ←→E B : shorthash(gxA ⊕ gxB)

Computational cost: WM + M = 6M

The main difference between this and the previous schemes is that there is no INFOA/B because the
Diffie-Hellman tokens play the dual-role of both INFOA/B and the long secret keys. In order for the
protocol to be secure, the Diffie-Hellman tokens must be fresh at each session and unpredictable.37

Also because of this, the digest function (2-input function) can be replaced by a single input short
hash function shorthash(); though the combination of this and the exponentiation of Diffie-Hellman

36We choose to ignore the cost of computing g() to combine sub-keys in this calculation, since it is negligible relative
to the computation of a universal hash, which involves applying a cryptographic hash to the 2M -word input message
INFOS in the first place, as specified by Laur and Nyberg in [22, 23], which results in a cost of 2WM = 10M .

37It is possible but not necessary to replace gxA ⊕ gxB with gxAxB in this scheme.

31

needs to satisfy a specification similar to that of the digest function and the randomising effect of
XOR in combining kA’s.

In comparison with Hoepman, this requires a single SAS halving the human work. As in previous
protocols, the computation of one longhash and one short hash of Diffie-Hellman tokens results in a
cost of WM + M = 6M : exactly a half of Hoepman (direct binding, (12M) and significantly lower
than the improved version of Wong-Stajano (the related protocol using indirect binding, 10M +10)
of Footnote 32.

It is worth thinking for a moment about how a two-way agreement of a short string or similar
occurs between a pair of people over an empirical channel. There are likely to be few situations
where the string needs to be communicated both ways: all that is necessary is for one party to
communicate it to the other, who checks equality with the data displayed on her machine and then
tells the first of the agreement, i.e. sending a 1-bit committed signal over the empirical channel.
We might therefore structure the above protocol as follows.

Improved Hoepman′

(One-way empirical channels)

1.A −→N B : longhash(A, gxA)
2.B −→N A : gxB

3.A −→N B : gxA

4.A −→E B : shorthash(gxA ⊕ gxB)
5.B −→E A : 1-bit committed signal

Computational cost: WM + M = 6M
And we could re-structure just about all the protocols in this paper similarly.

Once A has received Message 2 from B, he can send Messages 3 and 4 in any order.
Wong and Stajano [57] give a protocol using this separated structure explicitly; it is however

more expensive at W (2M + 1) = 10M + 5 as well as requiring another 1-bit empirical signal in
Message 3:

Wong-Stajano (One-way empirical channel), [57]

1.A −→N B : gxA

2.B −→N A : B, gxB ,MACKB
(B, gxA , gxB , RB)

RB and KB are short and long random nonces of B
3.A −→E B : 1-bit committed signal
4.B −→E A : RB

5.B −→N A : KB

6.A −→E B : 1-bit committed signal

Computational cost: W (2M + 1) = 10M + 5
The order of Messages 4 and 5 can be interchanged in this protocol. The pair of Messages 4 and
6 results in symmetric agreement on RB: in fact they are just an implementation of “A←→E B :
RB”.

It seems unlikely that the computation cost of the cheapest of these protocols can be reduced
much further. It also seems clear that some sort of cryptographic binding of INFOS to the
empirical message is necessary, and our assumed model of the digest function appears to be a
lower bound on that as we want to bind the whole of INFOS. Similarly, it is clear that for the
joint commitment before knowledge approach to work, we need to have a token randomising the
SAS value and being committed to before any node knows it. This has to be done with strong
cryptography, and the hash used in, for example, Laur-Nyberg appears to be as efficient as possible

32

at doing this.
Another observation we want to make is that in the above protocols the use of a strong crypto-

graphic primitive, such as a hash function or a commitment scheme, to protect the secrecy of long
random nonces or keys, and in the mean time a much shorter (and therefore weaker) function to
digest large INFOS clearly aims to block combinatorial search and guess attacks separately. This
idea is called separation of security concerns which has been discussed in detail by us in [35].

5 Group protocols

The majority of work done in bootstrapping security in pervasive computing to date has focused
on pairwise applications in a peer-to-peer network. However, we believe there is a similar potential
for bootstrapping security in larger groups as can be shown by the following example. A group of
people, who are present in the same location, might want to transfer data between them securely,
meaning that they want it to be secret and of authenticated origin. They all have some pieces of
computing hardware (e.g. a mobile phone or a PDA). However, none of them knows the unique
name of any of the others’ equipment, and in any case there is no PKI which encompasses them
all.

Work in this area seems so far to have been restricted to the author’s group (including Roscoe,
Creese, Goldsmith and Zakiuddin), and more recently Valkonen et al. This has resulted in several
group protocols presented in [9, 10, 11, 12, 32, 33, 41, 52]. In [32, 33], we identified the main
challenges of bootstrapping group security in pervasive computing, and these can be explained as
follows.

There is a slightly grey area for protocols building groups of more than 2. Should we or
should we not be content if the presence of a corrupt party in a group means that communications
between other trustworthy members of the group are themselves compromised? In some of the
circumstances, where we may wish to use ad hoc group formation protocols, it would be much
better if the protocols were tolerant of corrupt members. We will, therefore, be careful about our
assumptions on this front. It is obvious any key agreement protocol is at least partially compromised
by the presence of a corrupt participant. However, protocols which merely authenticate public-key-
like information are not automatically compromised: they could be said to be establishing a local
PKI. As we will see, this will be successfully resolved by using the idea of (joint) commitment before
knowledge.

The issue of scalability plays a crucial role in constructing group protocols because of the limited
computation power of lightweight devices, and the fact that the amount of human work required
will inevitably grow as the size of the group does. Our priority is still to optimise the human work
relative to the security obtained. The best we can hope for is the same as in the binary case: it
might be possible for a group to manually compare a single short authentication string (SAS) of b
bits, and obtain the same 2b level of security.

We have already seen that the direct information binding strategy is significantly more effi-
cient than indirect one for pairwise protocols (i.e. both of these information binding strategies
are instrumental to achieving commitment before knowledge as pointed out in Section 4). In this
section, we will see the same is true for group protocols, namely HCBK and SHCBK versus the
group version of the indirect binding pairwise protocol of Čagalj-Čapkun-Hubaux. Interestingly,
it is possible to further improve the efficiency in direct group protocols with a trade-off between

33

human and computational costs, or by making use of protocol structure of the one-way scheme of
Vaudenay [53].

5.1 Some existing direct binding group protocols

The following protocol introduced by Creese et al. [11] is probably the very first group authentication
protocol in the area of pervasive computing. Here, ∀A means that a message is sent to, or received
by, all parties in the group G attempting to achieve a secure link between their laptops or PDAs.
PkA stands for an uncertificated public key that A wants to authenticate to the group, whereas
TA and NA are A’s fresh nonces. The superscript ‘all Messages 2d’ represents the concatenation of
all the decrypted content of Messages 2 in alphabetical order, for example. In addition, Messages
4 do not add any extra security to the scheme, its presence aims to provide a confirmation of the
shared secret information.38

Group protocol of Creese et al. [11]

1. ∀A −→N ∀A
′ : A,PkA, TA

2. ∀A −→N ∀A
′ : {all Messages 1, NA}PkA′

3a. A displays : shorthash({all Messages 2d}), number of processes
3b. ∀A −→E ∀A

′ : users compare hashes and check numbers

4. ∀A −→N ∀A
′ : longhash({all Messages 2d})

The protocol is shown in [41, 32, 33] by Roscoe to be vulnerable to a man-in-the-middle and
one-shot attack, related to the birthday paradox. The flaw arises from the short output of the
shorthash function shorthash() used in Messages 3a, and the intruder’s ability to manipulate the
content of Messages 1 and 2. The details of the attack can also be found in [32, 33, 41]. In spite
of the attack, the protocol invented in 2003 introduced implicitly the principle P1 in Section 4.3,
which contributes to the optimisation of not only empirical work but also computational cost.

In summer 2005 [41], Roscoe corrected this flaw by introducing a trustworthy leader L who is
responsible for generating a fresh key kL of order B = 160 bits that is inputted into the digest
function used in this scheme. The following is a slightly simplified version of this protocol, intro-
duced in [32, 33]. Here, S represents a typical slave node, and A a typical node (either L or S).
init(L,A) is true if L = A and false otherwise.

Hash Commitment Before Knowledge
HCBK protocol, [32, 33, 41]

0. L −→N ∀S : L
1. ∀A −→N ∀A

′ : (A, INFOA)
2a. L −→N ∀S : longhash(kL)
2b. ∀S −→E L : committed
3. L −→N ∀S : kL

4. ∀A −→E ∀A
′ : digest(kL, INFOS), init(L,A)

Computational cost: W 2 + NM = 25 + NM

In this scheme, the parties have to agree on the b-bit digest of INFOS and the leader’s key
kL over the empirical channel. In addition, Message 2b has all the slaves communicate to L that
they have received Message 2a, and are committed to their final digest value (though none of them

38Messages 4 in this protocol are similar in purpose to Messages 4 in Hoepman (Section 4.1).

34

know it yet). Thus the 1-bit commitment signal must be sent over the unforgeable empirical chan-
nel that cannot be blocked. We will see shortly this represents one side of an interesting trade-off.
In term of computation cost, each node has to compute a single cryptographic hash of key kL and
a b-bit digest value of INFOS, resulting in a cost of order: W 2 + NM = 25 + NM , thanks to the
use of the cost model given in Section 2.4.2.

The protocol is termed HCBK standing for Hash Commitment Before Knowledge, and its secu-
rity relies on the trustworthiness of the leader L who generates the single digest key and consequently
has control over the final digest value.39 We have seen one previous protocol in which one party
determines the final agreed value and there are two stages of commitment/agreement from the other
parties (there the single other party). That is Wong and Stajano’s “one-way empirical channel”
protocol [57] from Section 4.3. In fact if Messages 4 and 5 in that protocol are interchanged (a
possibility we noted there), it is not hard to see that it becomes an indirect binding variant on
pairwise HCBK.

In many circumstances, it is possible for such a leader to emerge (for example as the system
whose owner initiates the protocol). However this is complicated if there may be an untrustworthy
party present, since the leader must be trustworthy for the protocol to have any security.

In order to avoid this problem, the authors designed a protocol in which, provided the protocol
has completed, any pair or a sub-group of honest parties will have obtained the authentic infor-
mation of each other irrespective of what other (dishonest) parties may have done. In [32, 33] we
identified the following second principle, derived from the leader’s role in HCBK and the direct
binding strategy of commitment before knowledge, that essentially makes parties committed to the
final digest value before any of them knows what the value actually is.

P2 A protocol offers the adversary no strategy to force digest agreement to be more likely than
chance if, at some point in every partial run, for some node A,

1. A is committed to a value d such as d = digest(k∗, INFOS); and

2. A has randomly selected a value kA such that:

(a) kA randomises the value of k∗;

(b) no other participant knows the value of kA at this point in the run; and

(c) no input received by A can eliminate A’s randomising effect of kA on k∗.

This is clearly a formalisation and refinement of the (joint) commitment before knowledge concept
that we have used throughout this paper.

In the resulting protocol, every node will plays a role similar to the leader in HCBK and thus
follow P2: each node A now needs some fresh and unpredictable sub-key kA (of B = 160 bits say)
to contribute to the final digest value.

Symmetrised HCBK protocol (SHCBK), [32, 33]

1. ∀A −→N ∀A
′ : A, INFOA, longhash(A, kA)

2. ∀A −→N ∀A
′ : kA

3. ∀A −→E ∀A
′ : digest(k∗, INFOS)

where k∗ is the XOR of all the kA’s for A ∈ G

Computational cost: NW 2 + NM = 25N + NM

39The readers can find the full security analysis of HCBK in [32, 33].

35

In the first messages, the purpose of the inclusion of the identity A inside the longhash is to prevent
an intruder from eliminating A’s randomising effect on k∗ by simply copying its longhash value,
i.e. this follows part 2(c) of principle P2 .40 This protocol also eliminates the one-bit commitment
signals from the slaves to L.

This protocol is termed Symmetrised HCBK due to the similarity with HCBK and its sym-
metrical structure. Since everyone takes responsibility separately for influencing the final digest
key k∗ and the final digest value, neither any one nor any proper subset of G can determine the
digest value until all the sub-keys are revealed in Messages 2. Indeed, whatever other parties do,
the influence of a particular node A completely randomises the final digest value. As a result, this
authenticates trustworthy parties to each other irrespective of what others (dishonest nodes) may
have done. In other words, this protocol is tolerant of corrupt parties: one of the main challenges
in designing group protocols as mentioned at the beginning of Section 5.

The use of XOR to combine different sub-keys in SHCBK protocol was shown to be secure in [33].
The intuitive reason behind this choice of the operator is that, thanks to the identities included in
longhashes of Messages 1 to avoid a reflexive attack, both final digest keys (denoted k∗

A and k∗
B)

computed at trustworthy parties A and B are uniform random variables that can be considered
independent of all k∗

C introduced by other parties (corrupt or otherwise). k∗
A and k∗

B can either be
independent or dependent. When they are independent of each other, the probability of a digest
anomaly is 2−b as defined in the first part of the digest specification given in Section 2.2.2. When
they are dependent (which they will be – indeed equal – if all nodes are trustworthy and there is no
intruder), the only relation that can occur between them is linear of the form k∗

B = θ ⊕ k∗
A where

the intruder can choose θ, as discussed in [33]. But this again does not give him any advantage
thanks to the second part (in particular “⊕ θ”) of the digest specification.

The robust security achieved here comes at the expense of increased computation cost relative
to HCBK: each node now has to compute N longhashes (one for generating its own Message 1 and
N −1 for checking the coherence of what other nodes send) as opposed to the single longhash value
of HCBK. The computation cost of SHCBK is thus NW 2 + NM = 25N + NM . This is the other
side of the trade-off mentioned above: we have gained in increased corruption tolerance and the
loss of the empirical commit signal, but lost computational efficiency.

Though designed as group protocols, both HCBK and SHCBK can be easily turned into pairwise
ones. If we replace the two-way empirical channels used in HCBK with one-way channels from the
slaves to the leader then we will have a one-way authentication group protocol: all the slaves are
authenticated to the leader.

5.2 Indirect binding group protocol

We have claimed that the direct binding approach (HCBK and SHCBK protocols) remains more
efficient in group protocols than indirect binding as it was in pairwise ones. The argument is true
because it is more efficient to have the SAS created from the presumed large INFOS rather than it
is to have each INFOA bound to random nonces by full-power cryptography to resist combinatorial
search. In order to illustrate this advantage, we will generalise the (symmetrical) indirect binding
pairwise scheme of Čagalj, Čapkun and Hubaux [6] in Section 4.2.1 into a group protocol. The level

40We note the same protection is required in Čagalj-Čapkun-Hubaux whenever there are two or more longhashes or
commitments. This reflexive attack does not work against HCBK as there is only one cryptographic hash, generated
by the leader, longhash(kL).

36

of security achieved by this scheme is the same as SHCBK: (1) tolerant of corrupt parties; and (2)
the probability of successful one-shot attack is upper bounded by 2−b, here b is still the bitlength
of the single SAS transmitted over the empirical channel.

Indirect-binding group protocol New

1. ∀A −→N ∀A
′ : INFOA, cA

Where cA ‖ dA = commit(A, INFOA, RA),
RA is randomly picked by A.

2. ∀A −→N ∀A
′ : dA

A′ computes RA = open(A, INFOA, cA, dA)
3. ∀A −→E ∀A

′ :
⊕

A∈G
RA

Computational cost: NWM = 5NM

From the protocol, we can see that all of the INFOAs must be committed separately: each node
always has to commit once (for its own INFO), and de-commit or open (N − 1) times to verify
the commitments of all other parties. This results in a computation cost of order NWM = 5NM ,
which is approximately W = 5 times as expensive as either HCBK or SHCBK.

An important observation we want to make is that in this scheme any untrustworthy party
I can fool other participants of group G into accepting different versions of its own INFO, i.e.
INFOI and INFO′

I . This can be easily done if I sends the commitments of different versions of
its INFO relative to the same short random nonce RI to others in the first messages.

1. I −→N A : INFOI , cI

I −→N B : INFO′
I , c

′
I

Here :
cI ‖ dI = commit(I, INFOI , RI),
c′I ‖ d′I = commit(I, INFO′

I , RI)
A ←→N B : INFOA/B , cA/B

2. I −→N A : dI

I −→N B : d′I
A ←→N B : dA/B

3. ∀A −→E ∀A
′ : RI ⊕RA ⊕RB

Thus parties still agree the XOR of all short nonces manually in the third messages. However,
we do not consider this as a valid attack because we do not care whether we get the right or wrong
information about an untrustworthy node in an authentication protocol. Conversely, if we want
to turn this into a key agreement protocol then the first assumption we have to make is that all
participants are honest, as discussed at the start of this section.

5.3 Modified versions of HCBK and SHCBK

The difference in efficiency between SHCBK and HCBK raises the question of whether it is possible
to reduce the amount of computation processing in SHCBK without compromising its security, i.e.
being tolerant of corrupt parties and the probability of a successful one-shot attack is bounded by
2−b. A small improvement turns out to be possible if we make use of a technique used in Vaudenay’s
one-way scheme and direct binding pairwise protocols in Sections 4.2.1 and 4.3. On the one hand,

37

this can slightly reduce the number of commitments or longhashes at each node. On the other
hand, it makes the schemes asymmetrical in structure. This will be explained as follows.

Let us assume there are (N − 1) leaders L out of a total of N parties, where each leader has
to generate a fresh sub-key, compute and send its longhash over the normal network. The single
node left is the unique slave S, who transmits its fresh sub-key kS to other nodes after receiving
longhashes from every leader. Below, A is a typical node which is either S or L.

De-symmetrised SHCBK protocol, [52]∗

0. S −→N ∀L : S
1. ∀L −→N ∀A : INFOL, longhash(L, kL)
2. S −→N ∀L : INFOS , kS

3. ∀L −→N ∀A : kL

4. ∀A −→E ∀A
′ : digest(k∗, INFOS)

where k∗ is the XOR of all the kA’s for A ∈ G

Computational cost: (N − 1)W 2 + NM = 25N + NM − 25

We discovered this shortly after SHCBK. It was also independently invented by Valkonen, Asokan
and Nyberg [52], who were not aware of SHCBK and neither addressed the issue of tolerance of
untrustworthy parties nor the use of a digest function.

As can be seen from the protocol, while there is no commitment attached to the sub-key kS

of the slave, the fact that it is the only one treated in this way guarantees that it will not be
manipulated by the intruder. This is as resistant to corrupt participants as SHCBK, but of course
separate arguments are required in considering a pair of trustworthy ones, depending on whether
one of them is the single slave or not.

At the expense of introducing the role of the slave and making the protocol asymmetrical, the
total number of longhashes per node declines to (N − 1) which corresponds to a processing cost
of (N − 1)W 2 + NM = 25N + NM − 25. This is cheaper than SHCBK by W 2 = 25 units per
node, though we suspect that the asymmetry introduced into the communication regime will in
practice mean that it is no better: nodes will spend more time waiting. Nevertheless, it illustrates
the possibility of further improving the computation efficiency by careful analysis.

Unfortunately, it appears impossible to employ the same technique to decrease the number of
longhashes further. Once there are two or more slaves in a single run, the scheme will be vulnerable
to a man-in-the-middle attack in which the intruder impersonates all the slaves to talk to all the
leaders and vice versa. Intuitively, this is because principle P2 has been violated: any slave, who
sends its kA before having kB (or a commitment like longhash(kB)) for each other B, is revealing
its last piece of information too soon before it is committed to the final digest value. An example of
this attack, applied to the case of one leader and two slaves, can be demonstrated in Appendix B.

We can however reduce computational cost if we are prepared to weaken our corruption tolerance
requirement towards that of HCBK. With the addition of 1-bit empirical commitment signals like
those in HCBK and allowing the number of leaders l to vary between 1 and N , we propose a hybrid
protocol. In other words, rather than having a single leader generating the digest key by itself as in
HCBK, we will now have l leaders generating l sub-keys, here l ∈ [2, N]. The effect is that all of the
leaders would have to be corrupt for the protocol to fail, otherwise the probability of a successful
one-shot attack is upper bounded by 2−b. For example, if everyone trusts A or B, then it may be
appropriate to choose both as leaders, meaning that all nodes have to compute l = 2 longhashes.

Below, S represents a slave, L is a leader, and A is either a slave or a leader. SL is the set

38

of l leaders’ identities broadcasted to every one in Message 0 by a single node T , who knows this
information.

Hybrid HCBK New

0. T −→N ∀A : SL
1. ∀A −→N ∀A

′ : A, INFOA

2a. ∀L −→N ∀A : longhash(L, kL)
2b. ∀S −→E ∀L :1-bit committed signal
3. ∀L −→N ∀A : kL

4. ∀A −→E ∀A
′ : digest(k∗, INFOS), leader(SL,A)

Where k∗ is the XOR of all the kL’s for L ∈ SL

Computational cost: lW 2 + NM = 25l + NM

The protocol is termed the Hybrid Hash Commitment Before Knowledge (HHCBK) protocol be-
cause it applies to the hybrid case and is in effect a hybrid of HCBK and SHCBK.

One problem here is establishing which of the nodes are to be leaders in such a way that this
does not add greatly to the empirical communication burden of the protocol.

Let us assume that the set SL of leaders is actually established by insecure communications
between the nodes. One way to make the protocol secure would be to have all nodes agree not only
the digest but also the set of leaders with each other and with their systems’ views on this subject:
we assume that leader(SL,A) indicates whether A is a leader or not. Post hoc this establishes
agreement on who the leaders are a very strong way, but with a lot of leaders it could be expensive.

Imagine a weaker rule: a leader has no duty to check on the leader information from others,
and a slave only has to convince himself that there is, amongst leaders who announce themselves,
at least one leader who is trustworthy. This is perhaps surprisingly sufficient.

To see this note that slaves A and B, and a trustworthy leader L (amongst those identified by
A) have all agreed the digest. We should consider a number of possibilities, all of which could be
brought about by the intruder and the weaker use of the leader information.

• A’s final digest was not influenced by sub-key kL. In this case, the probability of A’s and L’s
digests agreeing is no more than 2−b, by P2 applied to L.

• A’s final digest was influenced by sub-key kL, as was B’s. In this case, we can use the same
argument that applies to HCBK.

• A’s final digest was influenced by kL, but B’s was not. In this case, final digest keys k∗
A and

k∗
B are independent.

Of course, in order for the digests to agree, it is necessary that the nodes as opposed to their
human users know who all the leaders are. What the argument above shows is that it is not always
necessary for the humans to check every detail of this.

It is interesting to see the trade-off between the preliminary security assumption and the com-
putation cost of lW 2 + NM = 25l + NM in this protocol. What this formula tells us is if we want
to improve the computation cost of the protocol, we need to decrease the number of leaders l in
the group G, and in effect increasing the trustworthiness requirement from each leader.

39

6 Conclusions and further work

In this section, we tabulate efficiency analysis of the various protocols discussed in this paper,
discuss the results and other topics relevant to these classes of protocol as well as looking ahead to
work that still needs to be done.

6.1 Efficiency

In this section, we tabulate the efficiency of all the protocols we have described according to the two
measures we have used throughout: the amount of empirical communication and the computation
effort required for the cryptographic primitives. More complex models might take into account
the amount of high bandwidth required and a measure of the concurrency that is possible between
nodes, but we do not go into that level of detail.

We group them into three tables: non-interactive (one-way) authentication, interactive mutual
authentication and group protocols.

Our main measure of empirical work is the number of bits that each user has to compare. Of
course we do not imagine that they will compare actual bits, but some more friendly representation
of the data! There is also a trade-off between how much work it is to compare information and the
degree of certainty we have that human users will actually do the work required of them. At one
extreme we can imagine the leader in an HCBK network announcing the final digest and asking
the rest of the humans present to put up their hand if the value displayed on their PDA’s does not
agree; at the other we can imagine that an implementation allowing the connection of a credit card
to a merchant might require the customer to type the merchant’s digest into his card (or a device
holding it) so the card can do the comparison itself. But both these last issues are implementation
dependent and orthogonal to the logical structure of the underlying protocol, so we will stick to our
simple measure. In those protocols that require the extra confirmation message over the empirical
channel (MANA I, Wong-Stajano, HCBK, HHCBK etc) we write “b+1” as the amount of empirical
effort.

In these tables we have used the simple cost model of hash and digest functions described in
Section 2.4.2: the cost is proportional to the product of the length of the information being digested
and the width of the output.

The non-interactive protocols are shown in Table 2. There is a relationship between how much
we assume of the empirical channel and how much work is required over it. Unlike later tables, we
might note that the levels of security are not the identical in the protocols listed: here B = 160
and B/2 = 80 are examples of the numbers of bits required to make a hash function strongly and
weakly collision resistant, it is assumed that 2−b = 2−16 likelihood of one-shot attacker success
is sufficiently small in all cases (except the first two protocols), but for reasons discussed earlier
(V-)MANA I does not attain this. Of course, one might want to change any of these numbers for
good reason, but we believe that the relative differences of them will not be greatly different if this
is done. Therefore, the lessons about relative cost that this table teaches us will remain true.

The same will, naturally, be true of the other tables. The reader is advised to regard constants
like 160 = B, 32 = w, 16 = b and 25 = (160/32)2 = (B/w)2 = W 2 as “variable constants”, where
exact numbers are given for illustrative purposes.

The other tables cover pairwise protocols and groups. For the latter, in each case we get another
pairwise protocol by setting N = 2: these are all competitive in the pairwise table.

40

It is also necessary to point that since most direct binding protocols invented by other authors
to date do not use a digest function to produce SASs, we will therefore illustrate the difference by
giving the computation cost of both cases in 3 tables. The truncated longhash or universal hash
functions ([49] that require a longhash to compress large messages into a fixed number of bits
initially) will be denoted (longhash).

Thanks to the principle P1 and the use of the digest function, in general direct binding protocols
are much more efficient than indirect binding ones as can be seen from all three tables: about up to
B/w = W = 5 times more efficient should M gets large.41 The larger M (the length of INFOS)
is, the more accurate this effect.42 This is likely to be the case whenever

(i) A large amount of authenticated information is being passed from one participant to another.
We might note in this connection that direct binding protocols are a more efficient way of
doing this than any method that the nodes are likely to use once a secure connection is up
and running, since the latter is likely to use either conventional symmetric cryptography or
standard length hashes.

(ii) Large amounts of information needs to be passed to enable the users of the network to be able
to associate the logical members of the network either to other human users (e.g. photographs)
or function (e.g. manufacturer’s certificate).

(iii) There are many nodes present in a group: INFOS can be expected to expand proportionately
to this.

With respect to group protocols we recall that there is a trade-off between processing cost and the
amount of corruption resistance required as well as with eliminating the 1-bit confirmation message.

6.2 Short-term public key cryptography

We anticipate that in many, probably a majority, of the practical uses of the classes of protocol
described in paper, one of the main objectives is the bootstrapping of a means of secret and
authenticated communication between the parties. In almost all such cases, we expect that this
will be done by establishing a symmetric session key to be used in conjunction with some encryption
algorithm in a way that gives both secrecy and authentication.

One cannot establish such a session key directly in the INFOAs, since all such information is
public following the protocol run. Rather, as anticipated in many of the protocols and discussion
earlier in this paper, we can expect that this is done either by including public keys in the INFOAs,
or alternatively Diffie-Hellman tokens. Of course Diffie-Hellman tokens can then be combined
directly into session keys, whereas public keys have to be used properly to establish authenticated
session keys.

41In Section 2.4.2 the digest output length is rounded up to 1 word (32 bits). However if we have a 16 bit digest and
a 8/16 bit processor (which will often be the case in lightweight devices) then the advantage of digest over hashing
grows (in other words direct over indirect bindings), potentially, to 10 times = 5W

0.5W
(from 5).

42This is not necessarily a clear advantage for direct binding in the case of the Hoepman and Wong-Stajano
protocols because the information parties want to have authenticated only includes one or two Diffie-Hellman tokens
that are quite small.

41

Protocol Binding Human Computation cost
work(bit)

Balfanz et al. Direct B=160 (→WE) WM = 5M

Pasini-Vaudenay Indirect B/2=80(→WE) MW
2 +W 2

4 =2.5M+6.25

Mashatan-Stinson Direct B/2=80 (→WE) (M + W/2)W/2 = 2.5M+6.25

MANA I (CBC-MAC) Direct 2b+1=33 (→E) WM = 5M

V-MANA I (digest) Direct 2b = 32 (→SE) M

Improved MANA I Direct b + 1 = 17 (→t
E) M + W 2 = M + 25

Improved MANA I Indirect b + 1 = 17 (→t
E) W (M + W) = 5M + 25

Improved MANA I Direct(D-H) b + 1 = 17 (→t
E) WM + M = 6M

Improved V-MANA I Direct b = 16 (→t
BE) M + W 2 = M + 25

Improved V-MANA I Indirect b = 16 (→t
BE) W (M + W) = 5M + 25

Improved V-MANA I Direct(D-H) b = 16 (→t
BE) WM + M = 6M

Table 2: One-way authentication protocols

Protocol Binding Human Computation cost
work(bit)

Hoepman Direct 2b = 32 2(WM + M) = 12M

Improved Hoepman Direct b =16 WM + M = 6M

Improved Hoepman′ Direct b + 1=17 WM + M = 6M
(one-way empirical)

Wong-Stajano Direct b + 1=17 W (2M + 1) = 10M + 5
(one-way empirical)

Wong-Stajano Indirect 2b=32 2W (2M + W) = 20M + 50

Improved Wong-Stajano Indirect b =16 2W (M + 1) = 10M + 10

Vaudenay (→WE) Indirect b =16 WM = 5M

Čagalj-Čapkun-Hubaux Indirect b =16 2WM = 10M

Pasini-Vaudenay (longhash) Hybrid b =16 WM + WM = 10M

Pasini-Vaudenay (digest) Hybrid b =16 WM + M = 6M

Bluetooth 2 (longhash) Direct b =16 W (2M+W)+2W (M + W)=20M+75

Bluetooth 2 (digest) Direct b =16 W (2M+W)+2M=12M+25

Laur-Nyberg (longhash) Direct b =16 W 2 + 2WM = 10M + 25

Laur-Nyberg (digest) Direct b =16 W 2 + 2M = 2M + 25

Vaudenay-style (digest) Direct b =16 W 2 + 2M = 2M + 25

Table 3: Interactive pairwise two-way authentication protocols (unless indicated they all use two-
way empirical channels: ←→E)

42

Protocol Binding Human Computation cost
work(bit)

Indirect binding Indirect 16 WNM = 5NM

HCBK Direct b + 1=17 NM + W 2 = NM + 25

SHCBK Direct b =16 NM + NW 2 = NM + 25N

De-symmetrised
SHCBK(longhash) Direct b =16 WNM+W 2(N -1)=5NM+25(N -1)

De-symmetrised
SHCBK (digest) Direct b =16 NM+W 2(N -1)=NM+25(N -1)

Hybrid HCBK Direct b + 1 =17 NM + W 2l = NM + 25l

Table 4: Group authentication protocols (they all use empirical channels: −→E)

In our environment where we desire low power consumption and perhaps simple processors, the
large modulus calculations needed to perform either Diffie-Hellman or public-key cryptography are
unattractive. It is worth noting however that there are opportunities for efficiencies in the use of
public keys arising from the style in which we use them.

In a PKI, it is public keys themselves that are used for long-term authentication. Any breach
of such a key will have disastrous long-term consequences. However, in our usage, public keys can
be fresh for every run of a protocol and are only used once or twice in the initial set-up phase. So
provided we can be confident that a public key cannot be broken during the length of a session,
we can be sure that the communication in that session are properly authenticated, and that any
computing power directed at cryptanalysing it subsequently can only reveal the secrets of a single
session.

The generation of fresh public/private key pairs can, or course, be done in advance of a ses-
sion or a collection of them might be “loaded” periodically onto a device that does not have the
computational power to generate them. (This would, naturally, have to be from a trusted source –
perhaps it is even an extra function built into the device’s power supply!)

In any event, a security assessment of a particular application may well, because of the short-
term nature of public keys, require shorter (and therefore easier to use) public keys than in a
PKI.

6.3 Conclusions

It this paper we have surveyed the literature on a new and – we believe – important style of
protocol, examining non-interactive, interactive and group protocols. We have also discovered
that, even though groups of these protocols have been invented independently and presented in
different notations, the basic principle of commitment before knowledge underlies all of those that
either attain or nearly attain the optimal empirical performance.

Very different from any other families of security or cryptography protocols, human interaction
plays a central and very important role in the security of the authentication schemes presented in
this survey. For this reason, we have tried to rigorously analyse how much human effort (measured
in the number of bits the humans have to keep in their minds) is required, and more importantly
whether it is optimal with respect to the obtained level of security. And we are glad to claim that

43

the result has been very positive in all three types of authentication protocols.
On the one hand, our aim of this survey is to summarise and categorise all existing protocols

invented so far into comprehensive groups. On the other hand, we also try to give the readers
a better of view of where this research area is heading to, and what can be done to make these
protocols usable in practice.

6.4 Future research

After running a successful session of one of the group protocols, the group has essentially boot-
strapped a local PKI. If such a local PKI is going to be more than short term, we are going to have
to address issues such as how to add extra nodes, form the union of two groups, and excluding
nodes. In other words how does one maintain a local PKI? An initial, but somewhat inefficient,
approach to this is described in [52].

The nature of the protocols we have described, and especially the need to take the combinatorial
search power of attackers into account when quantifying security, apparently fall outside the range
of the successful tools for protocol analysis produced in the last decade or so. If this new class
of protocols is to be as important as we believe it is important either that these tools or their
methodologies are developed or new tools created to handle them. It may well be appropriate to
use or adapt probabilistic model checkers such as PRISM [1] for this purpose.

Another interesting possibility is to apply and extend our existing work in authentication proto-
cols in pervasive computing into other security applications such as electronic polling/voting (phys-
ical envelopes) [31], auction protocols (anonymous physical broadcast channel) [48] and e-cash [8]
where human interaction is also employed but little if any investigation has been undertaken to
analytically quantify and optimise them.

And finally, designing efficient ways of comparing the SAS manually in different circumstances
(and applications) are also very important for the future of these protocols. As a result, this area
has received much attention from many different research groups [16, 25, 28, 29, 45, 51] recently.

Acknowledgements

Long Nguyen’s work on this paper was supported by studentships from QinetiQ Trusted Information
Management and the Ministry of Education and Training of Vietnam.

Roscoe’s work on this paper was partially supported by funding from the US Office of Naval
Research.

We are grateful to anonymous referees whose detailed comments allowed us to greatly improve
the paper.

References

[1] See: http://www.prismmodelchecker.org/

[2] Simple Pairing White Paper. See:
www.bluetooth.com/NR/rdonlyres/

0A0B3F36-D15F-4470-85A6-F2CCFA26F70F/0/

SimplePairing WP V10r00.pdf

44

[3] D. Balfanz, D. Smetters, P. Stewart and H. Wong. Talking to strangers: Authentication in Ad
Hoc Wireless Networks. In Symposium on Network and Distributed Systems Security, 2002.

[4] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. Advances in Cryp-
tology - Crypto 1993, LNCS vol. 773, pp. 232-249.

[5] J. Bierbrauer, T. Johansson, G.A. Kabatianskii and B.J.M. Smeets. On Families of Hash
Functions via Geometric Codes and Concatenation. Advances in Cryptology - Crypto 1993,
LNCS vol. 773, pp. 331-342.

[6] M. Čagalj, S. Čapkun and J. Hubaux. Key agreement in peer-to-peer wireless networks. Pro-
ceedings of the IEEE Special Issue on Security and Cryptography, vol. 94, no. 2, pp. 467-478,
2006.

[7] J.L. Carter and M.N. Wegman. Universal Classes of Hash Functions. Journal of Computer
and System Sciences, vol. 18 (1979), pp. 143-154.

[8] D. Chaum. Secret-ballot receipts: True voter-verifiable elections. Security and Privacy Maga-
zine, IEEE, Jan.-Feb. 2004. Volume 2, Issue: 1, pp. 38-47.

[9] S.J. Creese, M.H. Goldsmith, R. Harrison, A.W. Roscoe, P. Whittaker and I. Zakiuddin.
Exploiting empirical engagement in authentication protocol design. In Proceedings of the In-
ternational Conference on Security in Pervasive Computing (SPC ′05), LNCS vol. 3450, pp.
119-133, 2005.

[10] S.J. Creese, M.H. Goldsmith, A.W. Roscoe and M. Xiao. Bootstrapping multi-party ad-hoc
security. In Proceedings of IEEE Security Track, pp. 369-375, 2006.

[11] S.J. Creese, M.H. Goldsmith, A.W. Roscoe and I. Zakiuddin. The attacker in ubiquitous com-
puting environments: Formalising the threat model. Workshop on Formal Aspects in Security
and Trust, 2003. IIT-CNR Technical Report.

[12] S.J. Creese, M.H. Goldsmith, A.W. Roscoe and I. Zakiuddin. Security properties and mech-
anisms in human-centric computing. Proceedings of Workshop on Security and Privacy in
Pervasive Computing, 2004.

[13] C. Gehrmann, C. Mitchell and K. Nyberg. Manual Authentication for Wireless Devices. RSA
Cryptobytes, vol. 7, no. 1, pp. 29-37, 2004.

[14] C. Gehrmann and K. Nyberg. Security in personal area networks. In C. J. Mitchell, editor,
Security for Mobility, pp. 191-230. IEE, London, 2004.

[15] International Organisation for Standardisation, Geneve, Switzerland. ISO/IEC 9798 Infor-
mation technology - Security techniques - Entity authentication - Part 6: Mechanisms using
manual data transfer, 2003.

[16] M.T. Goodrich, M. Sirivianos, J. Solis, G. Tsudik and E. Uzun. Loud and Clear: Human-
Verifiable Authentication Based on Audio. IEEE International Conference on Distributed Com-
puting Systems, (ICDCS’06), pp. 10-33.

45

[17] J.-H. Hoepman. Ephemeral Pairing on Anonymous Networks. In D. Hutter and M. Ullmann,
editors, International Conference on Security in Pervasive Computing, SPC 2005, LNCS vol.
3450, pp. 101-116.

[18] J.-H. Hoepman. Ephemeral Pairing Problem. International Conference Financial Cryptogra-
phy, LNCS vol. 3110, pp. 212-226, 2004.

[19] G.A. Kabatianskii, B. Smeets and T. Johansson. On the cardinality of systematic authentica-
tion codes via error-correcting codes. IEEE Transactions on Information Theory, IT-42 (1996),
pp. 566-578.

[20] H. Krawczyk. LFSR-based Hashing and Authentication. Advances in Cryptology - Crypto 1994,
LNCS vol. 839, pp. 129-139.

[21] H. Krawczyk. New Hash Functions For Message Authentication. Advances in Cryptology -
Eurocrypt 1995, LNCS vol. 921, pp. 301-310.

[22] S. Laur and K. Nyberg. Efficient Mutual Data Authentication Using Manually Authenticated
Strings. LNCS vol. 4301 on LNSC, pp. 90-107, 2006.

[23] S. Laur, N. Asokan and K. Nyberg. Efficient mutual data authentication using manually au-
thenticated strings: Extended version. Cryptology ePrint Archive, Report 2005/424, 2006.

[24] A.Y. Lindell Comparison-Based Key Exchange and the Security of the Numeric Comparison
Mode in Bluetooth v2.1. Topics in Cryptology CT-RSA, LNCS vol. 5473, pp. 66-83, 2009.

[25] A. Madhavapeddy, D. Scott, R. Sharp and E. Upton. Using Camera Phones to Enhance
Human-Computer Interaction. Proceedings of Ubiquitous Computing (UbiComp 2004), pp.
1-2, 2004.

[26] Y. Mansour, N. Nisan and P. Tiwari. The Computational Complexity of Universal Hashing.
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pp. 235-243, 1990.

[27] A. Mashatan and D.R. Stinson. Non-interactive two-channel message authentication based on
hybrid-collision resistant hash functions. IET Information Security, 2007, vol. 1 (3), pp. 111-
118.

[28] R. Mayrhofer and M. Welch. A Human-Verifiable Authentication Protocol Using Visible Laser
Light. International Conference on Availability, Reliability and Security. ARES 2007, pp. 1143-
1148.

[29] J.M. McCune, A. Perrig and M.K. Reiter. Seeing is Believing: Using Camera Phones for
Human-Verifiable Authentication. IEEE Symposium on Security and Privacy, pp. 110-124,
8-11 May 2005.

[30] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of Applied Cryptography. ISBN:
0-8493-8523-7.

[31] T. Moran and M. Naor. Polling with Physical Envelopes: A Rigorous Analysis of a Human-
Centric Protocol. Advances in Cryptology - Eurocrypt 2006, LNCS vol. 4004, pp. 88-108.

46

[32] L.H. Nguyen and A.W. Roscoe. Efficient group authentication protocol based on human interac-
tion. Proceedings of Workshop on Foundation of Computer Security and Automated Reasoning
Protocol Security Analysis, pp. 9-31, 2006.

[33] L.H. Nguyen and A.W. Roscoe. Authenticating ad hoc networks by comparison of short digests.
Information and Computation, vol. 206 (2008), pp. 250-271. Special Issue of Information and
Computation on Computer Security: Foundations and Automated Reasoning 2006.

[34] L.H. Nguyen and A.W. Roscoe. New combinatorial bounds for universal families of hash func-
tions. Manuscript is available. A short version of the paper is presented at the Summer School
on Provable Security, 2009. See: http://www.comlab.ox.ac.uk/files/749/uhf.pdf

[35] L.H. Nguyen and A.W. Roscoe. Separating two roles of hashing in one-way message authenti-
cation. Proceedings of FCS-ARSPA-WITS 2008, pp. 195-210.

[36] L.H. Nguyen and A.W. Roscoe. Efficient digest function based on Toeplitz matrix and integer
multiplication, in preparation.

[37] L.H. Nguyen. First committee draft of ISO/IEC 9798-6 – Entity authentication using manual
data transfers. This was submitted to the committee of ISO/IEC JTC1/SC 27 (working group
2).

[38] S. Pasini and S. Vaudenay. SAS-based Authenticated Key Agreement. Public Key Cryptography
- PKC 2006: The 9th international workshop on theory and practice in public key cryptography,
LNCS vol. 3958, pp. 395-409.

[39] S. Pasini and S. Vaudenay. An Optimal Non-interactive Message Authentication Protocol. Top-
ics in Cryptology - CT-RSA 2006: The Cryptographers’ Track at the RSA Conference 2006,
LNCS vol. 3860, pp. 280-294.

[40] R. Pass. On Deniability in the Common Reference String and Random Oracle Model. Advances
in Cryptology - Crypto 2003, LNCS vol. 2729, pp. 316-337.

[41] A.W. Roscoe. Human-centred computer security. See:
http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/

publications/113.pdf, 2005.

[42] A.W. Roscoe and L.H. Nguyen. Security in computing networks. Published by the World
Intellectual Property Organization (WIPO). Publication Number: WO/2007/052045. Pub-
lication date: 10.05.2007. International Application No.: PCT/GB2006/004113. See:
http://www.wipo.int/pctdb/en/

wo.jsp?wo=2007052045&IA=WO2007052045&DISPLAY=STATUS

[43] A.W. Roscoe, B. Chen and L.H. Nguyen. Improvements in communications security. Inter-
national Patent Application No. PCT/GB07/004963, published by the World Intellectual
Property Organization (WIPO), publication number: WO/2008/078101, publication date:
03.07.2008.

[44] A.W. Roscoe and L.H. Nguyen. Improvements related to the authentication of messages. Pri-
ority patent application number 0811210.4, filed on 18 June 2008.

47

[45] N. Saxena, J.-E. Ekberg, K. Kostiainen and N. Asokan. Secure Device Pairing based on a
Visual Channel. In the Proceedings of the IEEE Symposium on Security and Privacy 2006,
pp. 306-313.

[46] N. Smart. Cryptography, An Introduction. ISBN 0 077 09987 7 (PB). Or see:
http://en.wikipedia.org/wiki/Chosen plaintext attack

[47] F. Stajano and R. Anderson. The resurrecting duckling: Security issues for ad-hoc wireless
networks. Workshop on Security Protocols 1999, LNCS vol. 1976, pp. 172-194.

[48] F. Stajano and R. Anderson. The Cocaine Auction Protocol: on the Power of Anonymous
Broadcast. In the Proceedings of the 3rd International Workshop on Information Hiding, LNCS,
1999.

[49] D.R. Stinson. Universal Hashing and Authentication Codes. Advances in Cryptology - Crypto
1991, LNCS vol. 576, pp. 74-85, 1992.

[50] J. Suomalainen, J. Valkonen and N. Asokan. Security Associations in Personal Networks: A
Comparative Analysis. In the Proceedings of the 4th European Workshop on Security and
Privacy in Ad hoc and Sensor Networks 2007. LNCS vol. 4572, pp. 43-57.

[51] E. Uzun, K. Karvonen and N. Asonka. Usability Analysis of Secure Pairing Methods. Nokia
Research Center, Technical Report NRC-TR-2007-002, January 2007. In the Usable Security
(USEC ’07) workshop 2007. LNCS vol. 4886, pp. 307-324, 2008.

[52] J. Valkonen, N. Asokan and K. Nyberg. Ad Hoc Security Associations for Groups. In Proceed-
ings of the Third European Workshop on Security and Privacy in Ad hoc and Sensor Networks
2006. LNCS vol. 4357, pp. 150-164.

[53] S. Vaudenay. Secure Communications over Insecure Channels Based on Short Authenticated
Strings. Advances in Cryptology - Crypto 2005, LNCS vol. 3621, pp. 309-326.

[54] M.N. Wegman and J.L. Carter. New Hash Functions and Their Use in Authentication and Set
Equality. Journal of Computer and System Sciences, vol. 22, pp. 265-279, 1981.

[55] A.F. Webster and S.E. Tavares. On the Design of S-Boxes. Advances in Cryptology 1985,
LNCS vol. 218, pp. 523-534, 1986.

[56] Ford-Long Wong and F. Stajano. Multi-channel Protocols. Proceedings of the 13th Interna-
tional Workshop on Security Protocols 2005. LNCS vol. 4631, pp. 128-132.

[57] Ford-Long Wong and F. Stajano. Multi-channel Security Protocols. IEEE Pervasive Comput-
ing, vol. 6 (4), pp. 31-39, Oct-Dec 2007.

A The importance of empirical display of leader(L, A) in Hybrid
HCBK

In order to illustrate that if the information leader(L,A) were not be communicated over the
empirical channel, the protocol would suffer from an attack, we shall look at the situation where

48

there are two users A and B. The intruder invents INFO ′
X for each of them in which it says X

is a leader43. In fact neither A nor B act as a leader, and the intruder is able to send hash keys
to A and B such that the final digests agree. So they agree on the final digest, each believing the
others to be the leader. Of course this works equally well with any two disjoint sets of “leaders”.
This attack works when we can block the commitment sent via empirical channel. Otherwise both
A and B will realise something wrong going on as both of them are not supposed to receive any
commitment as neither of them created any longhash. This will depend on whether commitment
signals are directed at only specific leaders in Message 2b, which is specified in this protocol to save
the amount of human work, however real life implementations might vary significantly from our
specification.

B Attack on group protocol with two slaves

In this appendix, we demonstrate why the “De-symmetrised SHCBK” protocol of Section 5.3 cannot
be weakened further to have two slaves, even when all the nodes in the protocol are trustworthy.

Assume that there is a leader L trying to authenticate its information INFOL to two slaves A
and B. In the first run α of the protocol, the intruder I impersonates slaves A and B to commu-
nicate with the leader L, and comes up with two random keys k ′

A and k′
B .

1.α. L −→N I(A,B) : INFOL, longhash(kL)
2.α. I(A) −→N L : k′

A

I(B) −→N L : k′
B

3.α. L −→N I(A,B) : kL

After L sends out its own key kL, the intruder can determine the final digest value of run α that
L is going to compare over the empirical network in Message 4. Let us assume that kS = k′

A ⊕ k′
B .

To fool slaves A and B into thinking that a fake INFO ′
L is authentic, the intruder needs to find

k′
S such that the digests of both runs come out to be the same:

digest(kL ⊕ kS , INFOL) = digest(kL ⊕ k′
S , INFO′

L)

This should not take a long time as the bitlength of the digest output is short. Once he successfully
searches for k′

S , he starts the second run β. In this run, he impersonates the leader L to talk to
slaves A and B as well as modifying the their keys as follows

1.β. I(L) −→N A,B : INFO′
L, longhash(kL)

2.β. A −→N I(B,L) : kA

B −→N I(A,L) : kB

I(A) −→N B : kB ⊕ k′
S

I(B) −→N A : kA ⊕ k′
S

3.β. I(L) −→N A,B : kL

After the key kL is revealed to A and B, all three nodes should be able to empirically agree on two
equal digests that have different antecedents. In other words, the slaves accept INFO ′

L faked by
the intruder.

43A will receives INFO′
B saying that B is the leader and vice versa.

49

4.β. A,B −→E L : digest(kL ⊕ k′
S , INFO′

L)
A ←→E B : digest(kL ⊕ k′

S , INFO′
L)

4.α. L −→E A,B : digest(kL ⊕ kS , INFOL)

The digests of all three nodes will agree despite them not agreeing on INFOL.
Note that not only does the above attack work when we XOR digest subkeys as in SHCBK

protocol, but also with any other ways to combine them. This is because the intruder will always
be able to predetermine the final digest value before any slave is committed to the digest. Since
a digest value is short, it is feasible for the intruder to search for digest subkeys that map to the
digest value regardless of how nodes choose to combine them.

C Improved protocols of MANA I and their security analysis

In this Appendix, we will present another two versions of Improved MANA I, which are termed
the indirect binding and Diffie-Hellman style (or D-H style) protocols.

C.1 Indirect binding and D-H style versions of Improved MANA I

An alternative solution for Improved V-MANA I is to use a commitment scheme to bind INFOA to
a b-bit random nonce R, which is generated by A and released over the bounded empirical channel.
This therefore makes use of the indirect information binding strategy, as can be seen below.

Improved version of V-MANA I (indirect binding) [35]

1. A −→N B : INFOA, c
(c, d) = commit(INFOA, R)

2. A −→t
BE B : R

3. A −→N B : d

Computational cost: W (M + W) = 5M + 25

The order and time constraints of messages’ arrival in this scheme must be the same as in the direct
binding version of Improved V-MANA I. However, this protocol is expensive to run because the
large INFOA must be processed by a long output commitment scheme, which is more expensive
than a digest function: W (M +W) = 25+5M , i.e. an approximate (W = 5)-fold increase compared
to the direct binding version.

It is interesting to note that this protocol might be regarded as the non-interactive version of
the pairwise (indirect binding) protocol of Vaudenay [53] of Section 4.2.

Similar to the direct binding version of Improved MANA I, we can replace the bounded delay
empirical channel with a simple acknowledgement to have the following scheme.

Improved version of MANA I (indirect binding) [35]

1a. A −→N B : INFOA, c
(c, d) = commit(INFOA, R)

1b. B −→E A : 1-bit committed signal
2. A −→E B : R
3. A −→N B : d

Computational cost: W (M + W) = 5M + 25

50

Next we describe another improved scheme, whose main idea is taken root from the pairwise
(direct binding) authentication protocol of Hoepman [17, 18] in Section 4.1.

In the following description, k is a long secret key (160-bit) of A that corresponds to his Diffie-
Hellman token gk he wants to authenticate. In order for the following protocol to be secure, the
Diffie-Hellman token gk must be fresh at each session, unpredictable and kept secret to A when its
longhash and b-bit shorthash are revealed in the first two messages.

Improved version of V-MANA I (D-H style) [35]

1. A −→N B : longhash(gk)
2. A −→t

BE B : shorthash(gk)
3. A −→N B : gk

Computational cost: WM + M = 6M

The main difference between this and the direct/indirect binding versions is that there is no INFOA

sent in Message 1 because the Diffie-Hellman token, revealed in Message 3, plays the dual-role of
both INFOA and the long secret key. This results in a cost of order WM + M = 6M .

C.2 Security analysis of the Improved (V-)MANA I protocols

We will adapt the Bellare-Rogaway security model where an intruder can control on which node a
new protocol instance is launched, and so we are going to define the two kinds of adversaries used
our security analysis.

1. A general adversary can launch multiple instances of participants (A and B in our pro-
tocols). As commonly the case in the literature, the number of times that (s)he can launch
an instance of any participant is limited by a finite number, for example QA for A and QB

for B. The time complexity of this adversary is bounded by a finite number say T . This is
the kind of adversary we want to prove our protocols resist in the security analysis presented
here.

2. A one-shot adversary is a special case of the general adversary where the number of each
participant’s instances he can launch is at most once, in other words, QA = QB = 1.

We are going to prove that the Improved (V-)MANA I protocols are secure against a one-shot
attack in the first step, and then use Theorem 1 stated below to lift the one-shot attack’s model to
a general attack’s model.

The following theorem is the combined result of Lemma 6 of Vaudenay [53] and Theorem 5 of
Pasini and Vaudenay [39].

Theorem 1 [35, 39, 53] We consider a general attack such that the number of instances of A
(respectively B) is at most QA (respectively QB).

If there exists a one-shot attack against the three improved versions of the (V-)MANA I protocol
which has success probability p in a time T , then a general attack is successful with probability
P ≤ p · QA in a time QAT .

In the following and all subsequent security proofs, we only consider the case when the intruder
cannot influence random keys and nonces which are generated by A’s instances (possibly launched

51

by the intruder) and which are instrumental in the computation of SASs.44 Note, we believe that
the same assumption has also been made by Vaudenay in his proof of this theorem (i.e. Lemma 6
of [53]).

Proof An instance of A is compatible with an instance of B if B’s instance succeeded and received
all messages in the right order, where Message 2 is transmitted over the empirical channels from
the corresponding A’s instance.

The number of possible compatible pairs of instances is upper bounded by QAQB , which can
be reduced to QA in the Improved (V-)MANA I protocols because

• In the Improved versions of MANA I, the single SAS (i.e. digest or random nonce) transmitted
over empirical channels by definition in Section 2.1 cannot be mistaken, replayed or delayed
from one to another session.

• In the Improved versions of V-MANA I, B can always be offline. As a result, the intruder
can simulate all instances of B and picks one who will make the attack succeed.

When an attack is successful, there should exist one compatible pair of instances of A and B which
(1) have or compute the same SAS value sent over the empirical channel; and (2) do not share the
same public data INFOA that they try to agree on.

Note, the SASs’ values of all compatible pairs of instances are uniformly distributed and inde-
pendent 45 from one another because the SASs are randomised by either random keys (k in direct
binding), random nonces (R in indirect binding), or random Diffie-Hellman tokens (gk in the Diffie-
Hellman style version). All of these random elements, which are instrumental in the computation of
SASs, are unknown to the intruder at the point when they were generated by A’s instances thanks
to the above assumption. (This argument remains true even when data INFOAs are controlled by
the intruder in the direct binding version, thanks to the use of digest functions).

We know that the probability of a successful attack on each compatible pair of instances is
limited to p in a time T (i.e. A and B agree on the same digest of different preimage data INFOAs).
We therefore have that the general adversary is successful with probability P ≤ p · QA in a time
QAT .

C.2.1 Security analysis of the direct binding improved (V-)MANA I

In the following theorem, the notation (εc, Tc)-collision-resistant indicates that the success proba-
bility of finding a hash collision is upper bounded by εc in a time Tc. Similarly, (εi, Ti)-inversion-
resistant indicates that the success probability of inverting a hash value is upper bounded by ε i in
a Ti.

Theorem 2 [35] Given that longhash() is (εc, Tc)-collision-resistant and (εi, Ti)-inversion-resistant,
a general attack with number of A’s (respectively B’s) instances bounded by QA (respectively
QB) is successful against the direct binding versions of Improved (V-)MANA with probability
2−bQA(1 + εi + εc) in a time QA(Ti + Tc).

44The assumption must be made even though the intruder can launch new instances of any party or device, for
otherwise, the intruder could easily fool B into accepting a fake INFO′

A by searching for a digest or short hash
collision. Examples are long key k in the direct binding version of Improved (V-)MANA I, and short nonce R and
commitment value c in the indirect binding ones.

45See Footnote 12 for what independence means.

52

The following proof applies to the direct binding version of Improved V-MANA I, but it can be
slightly modified to cope with the direct binding version of Improved MANA I.

Proof We first find the probability of a successful one-shot attack.
A one-shot intruder has no advantage of sending fake INFO ′

A and longhash(k′) to B (mas-
querading as A) after the digest is released in Message 2. Therefore, after INFOA and longhash(k)
are sent in Message 1 where k is a private, fresh and long (160-bit) key generated by A in each
session and is unknown to any one including the intruder, there are three possibilities that can
happen:46 (1) with probability εc the intruder can find a hash collision in a time Tc; (2) with prob-
ability εi the intruder can invert the hash value in a time Ti; and (3) with probability (1− εc − εi)
neither can the intruder find a hash collision nor invert the hash value. Note, there is no need to
consider the 2nd-preimage resistance property of a hash function since the intruder does not know
key k generated by the honest party A in Message 1.

1. With probability εc in a time Tc, the adversary can search (off-line) for two distinct keys k ′

and k′′ for which longhash(k′) = longhash(k′′). The adversary then sends an arbitrarily data
INFO′

A (INFO′
A 6= INFOA) and longhash(k′) to B (masquerading as A).

Game against the improved V-MANA I (direct binding)– hash collision

1. A −→N I(B) : INFOA, longhash(k)
I(A) −→N B : INFO′

A, longhash(k′)
2. A −→SE B : digest(k, INFOA)

3. A −→N I(B) : k

Winning condition: digest(k, INFOA) = digest(k′, INFO′
A) or

digest(k, INFOA) = digest(k′′, INFO′
A)

Prior to sending a key to B in Message 3 the adversary checks to see whether or not
digest(k, INFOA) = digest(k′, INFO′

A), and/or digest(k, INFOA) = digest(k′′, INFO′
A).

In the first case (which has probability 2−b), the adversary sends k′ to B. In the second case
(which also has probability 2−b), the adversary sends k′′ to B. We conclude that a one-shot
attack has probability 2εc2

−b of success in a time Tc.

2. With probability εi in a time Ti, the adversary can find a preimage k′ such that longhash(k′) =
longhash(k). The adversary then replaces INFOA with an arbitrarily data INFO′

A (INFO′
A 6=

INFOA) in Message 1.

Game against the improved V-MANA I (direct binding)– hash inversion

1. A −→N I(B) : INFOA, longhash(k)
I(A) −→N B : INFO′

A, longhash(k)
2. A −→SE B : digest(k, INFOA)

3. A −→N I(B) : k

Winning condition: digest(k, INFOA) = digest(k, INFO′
A) or

digest(k, INFOA) = digest(k′, INFO′
A)

46We assume that given any INFOA and longhash(k), it is infeasible to gain any advantage in predicting the value
of digest(k, INFOA), i.e. the digest value should be uniformly distributed even in the presence of m and longhash(k).

53

Prior to sending a key to B the adversary checks to see whether or not digest(k, INFOA) =
digest(k, INFO′

A), and/or digest(k, INFOA) = digest(k′, INFO′
A). Similar to the previous

case, a one-shot attack has probability 2εi2
−b of success in a time Ti.

3. On the other hand, with probability (1− εi− εc) in a time (Ti +Tc) neither can the adversary
search for a hash collision or invert the hash value. Thus the adversary has to select a random
pair (k′, INFO′

A) where INFOA 6= INFO′
A.

Game against Improved V-MANA I (direct binding)
No hash collision and no hash inversion

1. A −→N I(B) : INFOA, longhash(k)
I(A) −→N B : INFO′

A, longhash(k′)
2. A −→E B : digest(k, INFOA)

3. A −→N I(B) : k
I(A) −→N B : k′

Winning condition: INFOA 6= INFO′
A and

digest(k, INFOA) = digest(k′, INFO′
A)

Clearly, the probability of success of this case is (1− εi− εc)2
−b in a time (Ti + Tc) thanks to

the digest specification.

We conclude that any one-shot adversary in a time (Ti +Tc) has the following probability of success

p ≤ 2εc2
−b + 2εi2

−b + (1− εc − εi)2
−b = 2−b(1 + εc + εi)

We now can apply Theorem 1 to deduce that any general adversary has probability 2−bQA(1+εc+εi)
of success in a time QA(Ti + Tc).

C.2.2 Security analysis of the indirect binding improved (V-)MANA I

Theorem 3 [35] Given that a commitment scheme is (εh, Th)-hiding and (εb, Tb)-binding, a gen-
eral attack with number of A’s (respectively B’s) instances bounded by QA (respectively QB) is
successful against the indirect binding versions of Improved (V-)MANA with probability (εh+εb)QA

in a time QA(Tb + Th).

The following proof gives supporting evidence for the security of the indirect binding version of
Improved (V-)MANA I.

Proof There are two possibilities that a one-shot attacker can do after receiving INFO and c in
Message 1 from A:

• Leaving c unchanged, the intruder sends INFO ′
A and c to B (masquerading as A) where

INFO′
A 6= INFOA. With probability εb in a time Tb, the intruder can come up with a

d′ (which can be either the same as or different from d revealed in Message 3) such that
open(INFO′

A, c, d′) = R thanks to the binding property of a commitment scheme.

54

• With probability εh in a time Th, the intruder can guess the value of R from INFOA and c,
and then compute (c′, d′) such that open(INFO′

A, c′, d′) = R thanks to the hiding property
of a commitment scheme.47

We can apply Theorem 1 to deduce that any general intruder has a success probability QA(εb + εh)
in a time QA(Th + Tb).

C.2.3 Security analysis of Improved V-MANA I in Diffie-Hellman style

Theorem 4 [35] Given that longhash() is (εc, Tc)-collision-resistant and (εi, Ti)-inversion-resistant,
a general attack with number of A’s (respectively B’s) instances bounded by QA (respectively QB)
is successful against the Improved V-MANA I protocol in Diffie-Hellman (D-H) style with proba-
bility 2−bQA(1 + εc) in a time QA(Tc + Ti).

Proof As in the proof of Theorem 2, there are three possibilities which can happen after A releases
Message 1:48

1. With probability εc in a time Tc, the adversary can search for two distinct D-H tokens gk′

and gk′′
for which longhash(gk′

) = longhash(gk′′
). The adversary then sends longhash(gk′

)
to B (masquerading as A).

Game against the improved V-MANA I (D-H style)– hash collision

1. A −→N I(B) : longhash(gk)

I(A) −→N B : longhash(gk′
)

2. A −→SE B : shorthash(gk)

3. A −→N I(B) : gk

Winning condition: shorthash(gk) = shorthash(gk′
) or

shorthash(gk) = shorthash(gk′′
)

A one-shot attack has probability 2εh2−b of success in a time Tc.

2. With probability εi in a time Ti, the adversary can find a preimage gk′
such that longhash(gk) =

longhash(gk′
). The adversary then replaces gk with gk′

in Message 3 and hopes that they
produce the same b-bit hash output. Therefore, the probability of success is εi2

−b in a time
Ti.

Game against the improved V-MANA I (D-H style)– hash inversion

1. A −→N B : longhash(gk)
2. A −→SE B : shorthash(gk)

3. A −→N I(B) : gk

I(A) −→N B : gk′

Winning condition: shorthash(gk) = shorthash(gk′
)

47Since INFOA 6= INFO′
A, it is very unlikely that c = c′.

48We also assume that given longhash(gk) it is infeasible for the intruder to gain any advantage in predicting the
value of shorthash(gk).

55

3. On the other hand, with probability (1− εi − εc) in a time Ti + Tc neither can the adversary
search for a hash collision or invert the hash value. Thus the adversary has to select a random
D-H token gk′

and send longhash(gk′
) to B in Message 1 (masquerading as A).

Game against Improved V-MANA I (D-H style)
No hash collision and no hash inversion

1. A −→N I(B) : longhash(gk)

I(A) −→N B : longhash(gk′
)

2. A −→SE B : shorthash(gk)

3. A −→N I(B) : gk

I(A) −→N B : gk′

Winning condition: shorthash(gk) = shorthash(gk′
)

Clearly, the probability of success of this case is (1− εi − εc)2
−b.

We conclude that any one-shot adversary in a time Ti + Tc has the following probability of success

p ≤ 2εc2
−b + εi2

−b + (1− εc − εi)2
−b = 2−b(1 + εc)

We now can apply Theorem 1 to deduce that any general adversary has a success probability
2−bQA(1 + εc) in a time QA(Ti + Tc).

56

